JP2019135318A - Manufacturing method of gold dust - Google Patents

Manufacturing method of gold dust Download PDF

Info

Publication number
JP2019135318A
JP2019135318A JP2018018304A JP2018018304A JP2019135318A JP 2019135318 A JP2019135318 A JP 2019135318A JP 2018018304 A JP2018018304 A JP 2018018304A JP 2018018304 A JP2018018304 A JP 2018018304A JP 2019135318 A JP2019135318 A JP 2019135318A
Authority
JP
Japan
Prior art keywords
gold
reduction
organic solvent
gold powder
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018018304A
Other languages
Japanese (ja)
Other versions
JP7006332B2 (en
Inventor
中井 隆行
Takayuki Nakai
隆行 中井
秀昌 永井
Hidemasa Nagai
秀昌 永井
諭 松原
Satoshi Matsubara
諭 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018018304A priority Critical patent/JP7006332B2/en
Publication of JP2019135318A publication Critical patent/JP2019135318A/en
Application granted granted Critical
Publication of JP7006332B2 publication Critical patent/JP7006332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a manufacturing method of gold dust capable of suppressing contamination of impurities caused by local rise of pH at a reduction time of gold without using urea, and obtaining a high rate of reduction of gold.SOLUTION: In a method for manufacturing gold dust by performing a reduction treatment by adding water and, preferably, a reductant comprising oxalic acid, into an organic solvent such as dibutyl-carbitol containing tetrachloroaurate ion obtained by performing an extraction treatment to leachate obtained by leaching copper electrolytic slime by gaseous chlorine, adjustment is carried out so that a value determined by dividing a volume of water by a volume of the organic solvent becomes 0.5 or more.SELECTED DRAWING: Figure 1

Description

本発明は金粉の製造方法に関し、特に金を含む有機溶媒から金を還元処理することによって金粉を製造する方法に関する。   The present invention relates to a method for producing gold powder, and more particularly to a method for producing gold powder by reducing gold from an organic solvent containing gold.

金は耐食性に優れ、導電性等の電気的特性においても優れているため、工業的に有用な金属として様々な分野で使用されている。一方で、金に代表される貴金属は極めて高価で希少な金属であるため、近年では主に携帯電話などの廃棄された工業製品の電子基板などから、該貴金属を回収する事業が展開されている。金の製造方法としては、従来、銅製錬において副生される銅の電解スライムを湿式法により脱銅した後、乾式法によりセレン、アンチモン、鉛、錫、ビスマス、テルルなどを分離することで最後に金、銀、白金族の合金を回収し、これらを電解を中心とした湿式法により処理することにより、それぞれ回収する方法がとられていた。   Gold is used in various fields as an industrially useful metal because it has excellent corrosion resistance and excellent electrical properties such as conductivity. On the other hand, since noble metals represented by gold are extremely expensive and rare metals, in recent years, a business for recovering such noble metals from electronic substrates of industrial products discarded such as mobile phones has been developed. . As a gold production method, conventionally, copper electrolytic slime, which is a by-product in copper smelting, is removed by a wet method, and then selenium, antimony, lead, tin, bismuth, tellurium, etc. are separated by a dry method. In addition, gold, silver, and platinum group alloys were recovered, and these were treated by a wet method centered on electrolysis, thereby recovering each of them.

近年では、上記の銅電解スライムを強酸化性の酸で処理することで金を含む有価金属を浸出液中に溶解し、該浸出液に有機溶媒を混合して金を選択的に抽出して回収する湿式法が採用されている。例えば特許文献1には、銅電解スライムを水に懸濁させた液に塩素ガスを直接吹き込むことで有価金属の金を浸出処理し、浸出された金がテトラクロロ金酸イオンの形態で存在する浸出液に有機溶媒を混合して該テトラクロロ金酸イオンを有機相側に選択的に抽出した後、蓚酸にて還元して金粉を回収する方法が開示されている。   In recent years, valuable metals including gold are dissolved in a leachate by treating the above copper electrolytic slime with a strong oxidizing acid, and gold is selectively extracted and recovered by mixing the leachate with an organic solvent. A wet method is employed. For example, in Patent Document 1, valuable metal gold is leached by directly blowing chlorine gas into a liquid in which copper electrolytic slime is suspended in water, and the leached gold exists in the form of tetrachloroaurate ions. A method is disclosed in which an organic solvent is mixed with a leachate and the tetrachloroauric acid ions are selectively extracted to the organic phase side and then reduced with oxalic acid to recover gold powder.

上記の金粉の回収方法では、金粉への還元の際に還元剤である蓚酸に加えてpH調整用の中和剤として尿素が添加されている。尿素は水溶液中で加熱されると加水分解し、該水溶液のpHを均一に上昇させることができるので、上記のように尿素を添加することで金の還元時における局部的なpH上昇に起因する不純物の混入を防止することが可能になる。   In the above gold powder recovery method, urea is added as a neutralizing agent for pH adjustment in addition to oxalic acid as a reducing agent during reduction to gold powder. Urea hydrolyzes when heated in an aqueous solution, and the pH of the aqueous solution can be increased uniformly, resulting in the local increase in pH during the reduction of gold by adding urea as described above. It becomes possible to prevent contamination of impurities.

特開2015−105413号公報JP-A-2015-105413

上記した特許文献1に示される金粉の回収方法のように、金の塩素浸出液に還元剤として蓚酸を用いた場合は、下記式1に示す還元反応により塩酸が発生する。
[式1]
→2CO+2H+2e
When oxalic acid is used as the reducing agent in the gold leaching solution as in the gold powder recovery method disclosed in Patent Document 1 described above, hydrochloric acid is generated by the reduction reaction shown in the following formula 1.
[Formula 1]
H 2 C 2 O 4 → 2CO 2 + 2H + + 2e

そのため、発生した塩酸(H)を中和する中和剤を添加して、有機溶媒側に抽出された金の量に対する金粉の量として表される金の還元率を高く維持することが行われていた。これは、発生した塩酸を中和しなければ金の還元率を高めるために極めて多量の蓚酸が必要になるからである。更にこの塩酸の中和に使用する中和剤には、下記式2に示すように、加熱により徐々に加水分解して液のpHを均一に上昇させることができる尿素を採用していた。
[式2]
(NHCO+HO→CO+2NH
Therefore, a neutralizing agent that neutralizes the generated hydrochloric acid (H + ) is added to maintain a high reduction rate of gold expressed as the amount of gold powder relative to the amount of gold extracted on the organic solvent side. It was broken. This is because a very large amount of oxalic acid is required to increase the reduction rate of gold unless the generated hydrochloric acid is neutralized. Furthermore, as the neutralizing agent used for neutralization of hydrochloric acid, as shown in the following formula 2, urea that can be gradually hydrolyzed by heating to uniformly increase the pH of the solution has been employed.
[Formula 2]
(NH 2 ) 2 CO + H 2 O → CO 2 + 2NH 3

これにより中和剤添加時の局所的なpH上昇を抑えることができるので、金の急激な析出を抑えることができ、よって溶液と共に不純物が金粉に取り込まれるのを防ぐことができる。また、金の粒径が不揃いになって取り扱いが困難になることも防ぐことができる。しかしながら、尿素は窒素含有物質であるため、尿素を中和剤として使用すると排水中の全窒素量(T−N)が増加し、環境に対して悪影響を及ぼすことが懸念される。   This can suppress a local increase in pH when the neutralizing agent is added, so that rapid precipitation of gold can be suppressed, and thus impurities can be prevented from being taken into the gold powder together with the solution. In addition, it is possible to prevent the gold particles from becoming uneven and difficult to handle. However, since urea is a nitrogen-containing substance, if urea is used as a neutralizing agent, there is a concern that the total amount of nitrogen (T-N) in the waste water increases and adversely affects the environment.

尿素に代えて窒素を含まない中和剤を使うことも可能であるが、窒素を含まない中和剤は一般に強アルカリであるため局所的なpH上昇が生じやすく、その結果、還元した金粉に不純物が混入しやすい。また、窒素を含まない中和剤は一般的にアルカリ金属元素を含んでおり、この元素は一旦金粉に取り込まれると分離が難しい。本発明は、上記した従来の金粉の製造方法が抱える問題点に鑑みてなされたものであり、窒素含有物質である尿素を使用することなく金の還元時における局部的なpHの上昇に起因する不純物の混入を抑えることができ、且つ高い金還元率を得ることが可能な金粉の製造方法を提供することを目的とする。   It is possible to use a neutralizing agent that does not contain nitrogen instead of urea, but a neutralizing agent that does not contain nitrogen is generally a strong alkali, and thus a local pH increase is likely to occur. Impurities are easily mixed. Moreover, the neutralizing agent which does not contain nitrogen generally contains an alkali metal element, and this element is difficult to separate once taken into the gold powder. The present invention has been made in view of the problems of the above-described conventional method for producing gold powder, and is caused by a local increase in pH during the reduction of gold without using urea, which is a nitrogen-containing substance. It is an object of the present invention to provide a method for producing gold powder which can suppress the mixing of impurities and can obtain a high gold reduction rate.

本発明者らは上記目的を達成するために鋭意研究をすすめ、有機溶媒に含まれるテトラクロロ金酸イオンを還元させて金粉を回収する際、当該有機溶媒に混合する水の混合比率を適切な値に調整することで、中和剤として尿素を使用する時と同等の金品位を有する金粉を同等の還元率で回収し得ることを見出し、本発明を完成するに至った。   The inventors of the present invention have intensively studied to achieve the above object, and when collecting gold powder by reducing tetrachloroauric acid ions contained in an organic solvent, the mixing ratio of water mixed in the organic solvent is appropriately set. By adjusting to the value, it was found that gold powder having the same gold quality as when using urea as a neutralizing agent can be recovered at the same reduction rate, and the present invention has been completed.

すなわち、本発明に係る金粉の製造方法は、テトラクロロ金酸イオンを含む有機溶媒に水及び還元剤を添加して還元処理を行うことで金粉を製造する方法であって、前記水の体積を前記有機溶媒の体積で除した値が0.5以上となるように調整することを特徴としている。   That is, the method for producing gold powder according to the present invention is a method for producing gold powder by adding water and a reducing agent to an organic solvent containing tetrachloroaurate ions and performing a reduction treatment, wherein the volume of the water is reduced. It adjusts so that the value which remove | divided with the volume of the said organic solvent may be set to 0.5 or more.

本発明によれば、テトラクロロ金酸イオンを含む有機溶媒から尿素を添加することなく高い還元率で金を回収することができる。   According to the present invention, gold can be recovered at a high reduction rate without adding urea from an organic solvent containing tetrachloroaurate ions.

本発明の金粉の製造方法の一具体例を示すブロックフロー図である。It is a block flowchart which shows one specific example of the manufacturing method of the gold powder of this invention.

以下、図1を参照しながら本発明の金粉の製造方法の一具体例について工程順に説明する。この本発明の一具体例の金粉の製造方法は、先ず塩素浸出工程S1において金(Au)を含有する銅電解スライムのスラリーに塩素ガスを吹き込んでテトラクロロ金酸イオン(AuCl )の形態でAuの浸出を行った後、固液分離することによりAuを含んだスライム浸出液とスライム浸出残渣を得る。得られたスライム浸出液は、次にAu溶媒抽出工程S2において抽出剤が混合され、テトラクロロ金酸イオンの抽出が行われる。テトラクロロ金酸イオンを抽出した抽出剤は、抽出残液としての水相から金含有有機相として分離される。 Hereinafter, a specific example of the method for producing gold powder of the present invention will be described in the order of steps with reference to FIG. In the method for producing a gold powder according to one specific example of the present invention, first, chlorine gas is blown into a slurry of copper electrolytic slime containing gold (Au) in the chlorine leaching step S1 to form tetrachloroaurate ions (AuCl 4 ). After leaching Au, a solid-liquid separation is performed to obtain a slime leaching solution containing Au and a slime leaching residue. The obtained slime leachate is then mixed with an extractant in the Au solvent extraction step S2 to extract tetrachloroaurate ions. The extractant from which tetrachloroaurate ions have been extracted is separated as a gold-containing organic phase from the aqueous phase as the extraction residual liquid.

上記の金の抽出に用いる抽出剤としては、R−O−[C−O]−Rの構造式で示される「対称グリコールジエーテル」を用いることができる。特に、C−O−C−O−C−O−Cの構造を有するジブチルカルビトール:DBC(ジブチル・ジグリコール:DBDGとも称する)は、各種産業界で様々な用途に使われているため入手が容易であるので好ましい。DBCは抽出溶剤としては比較的抽出力の弱い溶媒和型の抽出剤に属し、クロロ錯体の抽出に好適に用いることができる。 As the extractant used for the gold extraction, “symmetric glycol diether” represented by the structural formula of R—O— [C 2 H 4 —O] n —R can be used. In particular, dibutyl carbitol: DBC (also called dibutyl diglycol: DBDG) having a structure of C 4 H 9 —O—C 2 H 4 —O—C 2 H 4 —O—C 4 H 9 is used in various industries. It is preferable because it is easily available because it is used for various purposes in the field. DBC belongs to a solvation type extraction agent having a relatively weak extraction power as an extraction solvent, and can be suitably used for extraction of a chloro complex.

上記Au溶媒抽出工程S2で得た金含有有機相は、次に洗浄工程S3において塩酸により洗浄され、テトラクロロ金酸イオンと共に抽出された不純物の除去が行われる。洗浄された金含有有機相は、次に調整工程S4において適量の水を添加することで、当該金含有有機相に対する水相の体積比(すなわち水相/有機層の体積比)が0.5以上となるように、より好ましくは0.7以上となるように、最も好ましくは1.0以上となるように調整する。   The gold-containing organic phase obtained in the Au solvent extraction step S2 is then washed with hydrochloric acid in the washing step S3 to remove impurities extracted together with tetrachloroaurate ions. The washed gold-containing organic phase is added with an appropriate amount of water in the adjustment step S4, so that the volume ratio of the aqueous phase to the gold-containing organic phase (that is, the volume ratio of the aqueous phase / organic layer) is 0.5. As described above, the adjustment is made so that it is more preferably 0.7 or more, and most preferably 1.0 or more.

このように水相/有機相の体積比を0.5以上にすることによって、次工程のAu還元工程S5において、蓚酸により生ずる塩酸の濃度が適度に希釈されるので、中和剤として尿素を使用する場合と同程度の高品位の金粉を、該尿素を使用する場合と同程度の還元率で回収することが可能となる。また、水相/有機相の体積比を1.0まで増加させると、金の還元率を更に増加させることが可能となる。この水相/有機相の体積比の上限については特に限定はないが、2.0を超えると後段のAu還元工程S5以降の処理量が増えすぎるので経済的な観点から好ましくない。なお、この調整工程S4において添加する水の少なくとも一部に、後述する油水分離工程で水相として回収されるAu還元後液を用いてもよい。特に、水相/有機相の体積比を0.5以上と高くした場合は、Au還元後液に塩化物や未反応の蓚酸が多く溶存しているため、水だけでなくAu還元工程S5で添加する塩化物や蓚酸の節約にもなる。   By setting the volume ratio of the aqueous phase / organic phase to 0.5 or more in this way, the concentration of hydrochloric acid generated by oxalic acid is appropriately diluted in the next Au reduction step S5. Therefore, urea is used as a neutralizing agent. It is possible to collect high-grade gold powder of the same level as when used at a reduction rate of the same level as when urea is used. Further, when the volume ratio of the aqueous phase / organic phase is increased to 1.0, the reduction rate of gold can be further increased. The upper limit of the volume ratio of the aqueous phase / organic phase is not particularly limited, but if it exceeds 2.0, the treatment amount after the subsequent Au reduction step S5 is excessively increased, which is not preferable from an economical viewpoint. In addition, you may use the post-Au reduction | restoration liquid collect | recovered as an aqueous phase at the oil-water separation process mentioned later for at least one part of the water added in this adjustment process S4. In particular, when the volume ratio of the aqueous phase / organic phase is increased to 0.5 or more, since a large amount of chloride and unreacted oxalic acid are dissolved in the solution after Au reduction, not only water but also the Au reduction step S5. It will also save chloride and oxalic acid added.

上記調整工程S4で得た有機相と水相とからなる混合液は、次にAu還元工程S5において蓚酸水溶液が添加された後、好適には85〜95℃程度に加熱された状態で還元処理が行われる。これにより金が逆抽出されると同時に還元反応により金の析出が行われる。このAu還元工程S5では、還元始液としての上記の混合液に塩化ナトリウムなどの塩化物を添加して還元始液のハロゲン化物濃度を高めておくのが好ましい。これにより還元処理の際、不純物の共析を防止でき、高純度の金メタルを得ることができる。   The mixed solution composed of the organic phase and the aqueous phase obtained in the adjustment step S4 is then reduced in a state preferably heated to about 85 to 95 ° C. after the oxalic acid aqueous solution is added in the Au reduction step S5. Is done. As a result, gold is back-extracted, and at the same time, gold is deposited by a reduction reaction. In this Au reduction step S5, it is preferable to add a chloride such as sodium chloride to the above mixed solution as the reduction start solution to increase the halide concentration of the reduction start solution. As a result, during the reduction treatment, impurity eutectoid can be prevented and high-purity gold metal can be obtained.

上記還元処理の際は、銀塩化銀電極を参照電極にした酸化還元電位が好適には500mV以上800mV以下、より好適には680mV以上750mV以下となるように還元剤を添加する。この電位が750mVより高いと金の析出速度が遅くなり、800mVより高いと金を十分に析出させることができなくなる。一方、680mV以上であれば、金の析出反応に要する時間が短くてすむ。なお、500mVを下回る程度に還元剤を添加しても、還元剤を多量に要するだけであって反応時間はほとんど変わらない上、後段で酸化剤を多量に添加することが必要になるので好ましくない。   In the reduction treatment, a reducing agent is added so that the redox potential using the silver-silver chloride electrode as a reference electrode is preferably 500 mV to 800 mV, more preferably 680 mV to 750 mV. If this potential is higher than 750 mV, the deposition rate of gold is slow, and if it is higher than 800 mV, gold cannot be sufficiently deposited. On the other hand, if it is 680 mV or more, the time required for the gold precipitation reaction can be shortened. Even if a reducing agent is added to a level below 500 mV, only a large amount of reducing agent is required, the reaction time hardly changes, and a large amount of oxidizing agent needs to be added later, which is not preferable. .

上記Au還元工程S5で得た析出した金を含む還元処理済みの処理液は、次に固液分離工程S6において、一般的な固液分離手段によって、析出した金の分離回収が行われる。なお、処理液中に残存した還元剤を分解するため、上記固液分離工程の前又は後に酸化剤を添加してもよい。また、固液分離後に析出した少量の金は、前述した調整工程S4やAu溶媒抽出工程S2などの前段の工程に繰り返すことで回収することができる。   In the solid-liquid separation step S6, the processing solution that has been subjected to the reduction treatment including the precipitated gold obtained in the Au reduction step S5 is separated and recovered by a general solid-liquid separation means. In order to decompose the reducing agent remaining in the treatment liquid, an oxidizing agent may be added before or after the solid-liquid separation step. Further, a small amount of gold deposited after the solid-liquid separation can be recovered by repeating the preceding steps such as the adjustment step S4 and the Au solvent extraction step S2.

上記析出した金とは別に固液分離手段から抜き出される液相は、次の油水分離工程S7で有機相と水相に分けられる。そして、有機相は前述したAu溶媒抽出工程S2に送液され、有機溶媒(DBC)として再利用される。一方、水相は排水処理工程S8に送液され処理される。前述したようにAu還元工程S5において尿素を添加していないので、この排水処理工程S8で処理される水相は全窒素量(T−N)が低く、よって活性汚泥などの一般的な処理法により簡易に処理することが可能になる。なお、この水相は前述した調整工程S4にAu還元後液として送液して再利用してもよい。   The liquid phase extracted from the solid-liquid separation means separately from the deposited gold is divided into an organic phase and an aqueous phase in the next oil / water separation step S7. Then, the organic phase is sent to the Au solvent extraction step S2 described above and reused as an organic solvent (DBC). On the other hand, the aqueous phase is sent to the waste water treatment step S8 and processed. As described above, since urea is not added in the Au reduction step S5, the aqueous phase treated in the waste water treatment step S8 has a low total nitrogen amount (T-N), and thus a general treatment method such as activated sludge. It becomes possible to process simply. The aqueous phase may be reused by sending it as a solution after Au reduction in the adjusting step S4 described above.

上記のように油水分離工程S7を固液分離工程S6の後に行うのは、回収する有機溶媒やAu還元後液に、析出した金が混入するのを抑制するためである。但し油水分離工程S7で得た水相には前段の固液分離工程S6において分離しきれない程度に微細な微粒子状の金が浮遊していることがある。この場合はAu還元工程S5よりも前工程の洗浄工程S3や調整工程S4に戻すことで、微粒子状の金を太らせてから回収してもよい。   The reason why the oil / water separation step S7 is performed after the solid-liquid separation step S6 as described above is to prevent the deposited gold from being mixed into the organic solvent to be recovered or the Au reduced solution. However, in the water phase obtained in the oil / water separation step S7, fine fine gold particles may float to the extent that they cannot be separated in the previous solid-liquid separation step S6. In this case, the fine gold particles may be recovered by returning to the cleaning step S3 or the adjustment step S4, which is a step prior to the Au reduction step S5.

[実施例1]
銅電解スライムを塩素ガスで浸出することで作製したテトラクロロ金酸イオンを含む浸出液に市販のDBCを混合し、該浸出液中のテトラクロロ金酸イオンを該DBCに抽出した後、60分間静置して有機相と水相とに分けた(Au溶媒抽出工程)。得られたテトラクロロ金酸イオンを含む有機相1Lに1.5モル/Lの塩酸からなる洗浄液1Lを加えて100分間振蕩させることで洗浄した(洗浄工程)。この洗浄済み有機相1Lを他の容器に移したうえで撹拌しながら、0.5Lの純水を添加し、更に塩化ナトリウムを投入して、水相の塩化物イオン濃度が60g/Lとなるように調整した(調整工程)。
[Example 1]
Commercial DBC was mixed with a leachate containing tetrachloroaurate ions prepared by leaching copper electrolytic slime with chlorine gas, and the tetrachloroaurate ions in the leachate were extracted into the DBC, and then allowed to stand for 60 minutes. Thus, the organic phase and the aqueous phase were separated (Au solvent extraction step). Washing was performed by adding 1 L of a cleaning liquid consisting of 1.5 mol / L hydrochloric acid to 1 L of the organic phase containing tetrachloroauric acid ions and shaking for 100 minutes (cleaning step). While transferring 1 L of this washed organic phase to another container and stirring, 0.5 L of pure water is added, and sodium chloride is further added, so that the chloride ion concentration of the aqueous phase becomes 60 g / L. (Adjustment process).

この塩化物イオン濃度が調整された混合液を3つに小分けして試料1〜3とし、それらの各々を内壁がグラスライニングされた槽内に入れ、そのジャケット部に蒸気を通して混合液を90℃まで加温すると共に、有機相(有機溶媒)と水相(塩化ナトリウム水溶液)を十分に接触させながら、蓚酸を添加した。蓚酸を添加する際に、これらの試料1〜3の混合液のうち試料1の混合液には有機溶媒200mlに対して6.6gの割合で尿素を添加し、試料2の混合液には有機溶媒200mlに対して3.3gの割合で尿素を添加し、残る試料3の混合液には尿素を添加しなかった。この状態で加温温度90℃を維持したまま撹拌を継続することで還元反応を行い、金を析出させた(Au還元工程)。その際、還元反応中の混合液の酸化還元電位とpHを、銀塩化銀電極を参照電極にした酸化還元電位(ORP)計とpH計で計測し、酸化還元電位が低下して、5分間に10mV以上の低下がなくなった時点で還元反応が終了したと判断してジャケット部への供給媒体を蒸気から冷水に切り替えて槽内を25℃まで冷却した。   Divide the mixed liquid with the adjusted chloride ion concentration into three parts to make samples 1 to 3, put each of them into a glass-lined inner wall, and pass steam through the jacket part of the mixed liquid at 90 ° C. The oxalic acid was added while sufficiently contacting the organic phase (organic solvent) and the aqueous phase (aqueous sodium chloride solution). When adding oxalic acid, 6.6 g of urea is added to the mixed solution of sample 1 among these mixed solutions of samples 1 to 200 ml of the organic solvent, and the mixed solution of sample 2 is organic. Urea was added at a rate of 3.3 g with respect to 200 ml of the solvent, and urea was not added to the remaining mixture of sample 3. In this state, the reduction reaction was carried out by continuing stirring while maintaining the heating temperature of 90 ° C., thereby precipitating gold (Au reduction step). At that time, the oxidation-reduction potential and pH of the mixed solution during the reduction reaction are measured with an oxidation-reduction potential (ORP) meter and a pH meter using a silver-silver chloride electrode as a reference electrode. When the reduction of 10 mV or more disappeared, the reduction reaction was judged to be completed, and the supply medium to the jacket part was switched from steam to cold water to cool the inside of the tank to 25 ° C.

冷却後は、析出した金を含むスラリーを濾過して固形物の金を回収した後、乾燥して金粉を得た。このようにして得た3種類の金粉の不純物元素(Ag、Al、As、B、Ba、Be、Bi、Ca、Cd、Co、Cr、Fe、Ge、Hg、Ir、Li、Mg、Mn、Mo、Na、Ni、P、Pb、Pd、Pt、Rh、Ru、Sb、Se、Si、Sn、Te、Ti、V、W、Zn)の含有量をICP発光分光分析装置を用いて分析した。その結果、いずれの元素についても10ppm未満又は検出下限未満であった。この結果から、Au還元の際に尿素を添加しなくても、従来のように尿素を添加する場合と同等の不純物品位を維持できることが分かる。   After cooling, the slurry containing the deposited gold was filtered to collect solid gold, and then dried to obtain gold powder. Thus obtained three kinds of gold powder impurity elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Fe, Ge, Hg, Ir, Li, Mg, Mn, The contents of Mo, Na, Ni, P, Pb, Pd, Pt, Rh, Ru, Sb, Se, Si, Sn, Te, Ti, V, W, and Zn) were analyzed using an ICP emission spectrometer. . As a result, all elements were less than 10 ppm or less than the detection lower limit. From this result, it can be seen that even if urea is not added during Au reduction, the same impurity quality as when urea is added as in the conventional case can be maintained.

[実施例2]
上記実施例1と同様にして再度3種類の金粉の製造を行った。その際、Au溶媒抽出工程で得た有機相中の金の濃度を蛍光X線分析を用いて測定することで有機溶媒中に含まれている金の量を算出し、この値で回収した金の量を除することで金還元率を算出した。更に、試料4及び5として水相/有機相の体積比を0.5に代えてそれぞれ0.7及び1.0とした以外は上記実施例1の試料3と同様にして金粉を製造し、それらの金還元率を上記と同様に算出した。その結果を下記表1に示す。
[Example 2]
In the same manner as in Example 1, three types of gold powder were produced again. At that time, the amount of gold contained in the organic solvent was calculated by measuring the gold concentration in the organic phase obtained in the Au solvent extraction step using fluorescent X-ray analysis, and the gold recovered at this value was calculated. The gold reduction rate was calculated by dividing the amount of. Further, as Samples 4 and 5, gold powder was produced in the same manner as Sample 3 in Example 1 except that the volume ratio of the aqueous phase / organic phase was changed to 0.5 and changed to 0.7 and 1.0, respectively. Their gold reduction rates were calculated as described above. The results are shown in Table 1 below.

Figure 2019135318
Figure 2019135318

上記表1の結果から、Au還元の際に添加する尿素の添加量が低減すると他の条件が同一であれば金還元率が低下するが、水相/有機相の体積比を0.5以上にすることで尿素の添加量がゼロであっても金還元率66%以上を確保できることが分かる。特に、水相/有機相の体積比が0.7以上の試料4及び5は、従来のAu還元条件である試料1と同等以上の金還元率が得られており、水相/有機相の体積比が1.0の試料5では、試料1に比べて約6%高い金還元率が得られた。なお、尿素を添加せずにAu還元を行った試料3〜5では、析出した金を濾過した濾液を油水分離して得た水相側の全窒素量(T−N)をJIS K0102の紫外線吸光光度法に準拠して測定したところ、同様にして測定した試料1及び2の全窒素量(T−N)に比べて低かった。   From the results of Table 1 above, when the amount of urea added during Au reduction is reduced, the gold reduction rate is reduced if the other conditions are the same, but the volume ratio of the aqueous phase / organic phase is 0.5 or more. It can be seen that even if the amount of urea added is zero, a gold reduction rate of 66% or more can be secured. In particular, Samples 4 and 5 having a volume ratio of water phase / organic phase of 0.7 or more have a gold reduction rate equal to or higher than that of Sample 1 which is the conventional Au reduction condition. In Sample 5 having a volume ratio of 1.0, a gold reduction rate of about 6% higher than that in Sample 1 was obtained. In Samples 3 to 5 in which Au reduction was performed without adding urea, the total nitrogen amount (TN) on the water phase side obtained by oil-water separation of the filtrate obtained by filtering the deposited gold was measured according to the ultraviolet ray of JIS K0102. When measured in accordance with the spectrophotometric method, it was lower than the total nitrogen amount (TN) of Samples 1 and 2 measured in the same manner.

Claims (5)

テトラクロロ金酸イオンを含む有機溶媒に水及び還元剤を添加して還元処理を行うことで金粉を製造する方法であって、前記水の体積を前記有機溶媒の体積で除した値が0.5以上となるように調整することを特徴とする金粉の製造方法。   A method for producing gold powder by adding water and a reducing agent to an organic solvent containing tetrachloroaurate ions and performing a reduction treatment, wherein the value obtained by dividing the volume of the water by the volume of the organic solvent is 0. It adjusts so that it may become 5 or more, The manufacturing method of the gold powder characterized by the above-mentioned. 前記テトラクロロ金酸イオンを含む有機溶媒が、銅電解スライムを塩素ガスで浸出して得た浸出液に対して抽出処理を行うことで得た有機溶媒であることを特徴とする、請求項1に記載の金粉の製造方法。   The organic solvent containing the tetrachloroaurate ion is an organic solvent obtained by performing an extraction treatment on a leachate obtained by leaching copper electrolytic slime with chlorine gas. The manufacturing method of the gold powder of description. 前記有機溶媒がジブチルカルビトールを含有することを特徴とする、請求項1又は2に記載の金粉の製造方法。   The method for producing gold powder according to claim 1 or 2, wherein the organic solvent contains dibutyl carbitol. 前記還元剤が蓚酸であることを特徴とする、請求項1〜3のいずれか1項に記載の金粉の製造方法。   The said reducing agent is oxalic acid, The manufacturing method of the gold powder of any one of Claims 1-3 characterized by the above-mentioned. 前記還元処理により製造した金粉を分離したあとの処理液を有機相と水相に分離し、該水相を、前記テトラクロロ金酸イオンを含む有機溶媒に添加する前記水の少なくとも一部に用いることを特徴とする、請求項1〜4のいずれか1項に記載の金粉の製造方法。   The treatment liquid after separating the gold powder produced by the reduction treatment is separated into an organic phase and an aqueous phase, and the aqueous phase is used for at least a part of the water added to the organic solvent containing the tetrachloroaurate ion. The manufacturing method of the gold powder of any one of Claims 1-4 characterized by the above-mentioned.
JP2018018304A 2018-02-05 2018-02-05 How to make gold powder Active JP7006332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018018304A JP7006332B2 (en) 2018-02-05 2018-02-05 How to make gold powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018018304A JP7006332B2 (en) 2018-02-05 2018-02-05 How to make gold powder

Publications (2)

Publication Number Publication Date
JP2019135318A true JP2019135318A (en) 2019-08-15
JP7006332B2 JP7006332B2 (en) 2022-01-24

Family

ID=67624080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018018304A Active JP7006332B2 (en) 2018-02-05 2018-02-05 How to make gold powder

Country Status (1)

Country Link
JP (1) JP7006332B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411240A (en) * 2020-04-23 2020-07-14 贺利氏贵金属技术(中国)有限公司 Method for recovering noble metal from waste catalyst containing noble metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105413A (en) * 2013-11-29 2015-06-08 住友金属鉱山株式会社 Method for manufacturing gold powder with high bulk density

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105413A (en) * 2013-11-29 2015-06-08 住友金属鉱山株式会社 Method for manufacturing gold powder with high bulk density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411240A (en) * 2020-04-23 2020-07-14 贺利氏贵金属技术(中国)有限公司 Method for recovering noble metal from waste catalyst containing noble metal

Also Published As

Publication number Publication date
JP7006332B2 (en) 2022-01-24

Similar Documents

Publication Publication Date Title
JP3616314B2 (en) Method for treating copper electrolytic deposits
JP3879126B2 (en) Precious metal smelting method
JP3474526B2 (en) How to recover silver
JP4715627B2 (en) Method for recovering platinum group element from ion exchange resin adsorbed platinum group element
EP3655557B1 (en) Method for precious metal recovery
JP6011809B2 (en) Method for producing gold powder with high bulk density
JP2012126611A (en) Method for recovering selenium from copper electrolysis slime
JP2012246198A (en) Method for purifying selenium by wet process
JP6233478B2 (en) Purification method of bismuth
JP7006332B2 (en) How to make gold powder
US20210292927A1 (en) Method for refining bismuth
JP2012246197A (en) Method for purifying selenium by wet process
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP5200588B2 (en) Method for producing high purity silver
JP4882125B2 (en) Silver recovery method
JP6442674B2 (en) Method for producing platinum group hydrochloric acid solution
JP2007231397A (en) Method for refining silver chloride
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP3407600B2 (en) Silver extraction and recovery method
JP5145956B2 (en) Ruthenium separation and recovery method
JP2017197844A (en) Method for producing gold from copper electrolytic slime
JP6585955B2 (en) Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material
JP3938909B2 (en) Method for selectively recovering platinum and palladium from a sample containing platinum and palladium
JP5573763B2 (en) High purity silver production waste liquid treatment method
RU2779554C1 (en) Method for producing refined silver from intermediate products of precious metal production containing silver in the form of chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7006332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150