JP5020843B2 - Processing method of processing end of electrical steel sheet - Google Patents

Processing method of processing end of electrical steel sheet Download PDF

Info

Publication number
JP5020843B2
JP5020843B2 JP2008023789A JP2008023789A JP5020843B2 JP 5020843 B2 JP5020843 B2 JP 5020843B2 JP 2008023789 A JP2008023789 A JP 2008023789A JP 2008023789 A JP2008023789 A JP 2008023789A JP 5020843 B2 JP5020843 B2 JP 5020843B2
Authority
JP
Japan
Prior art keywords
residual stress
processing
ultrasonic
steel sheet
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008023789A
Other languages
Japanese (ja)
Other versions
JP2009185310A (en
Inventor
環輝 鈴木
厚司 瀬戸
哲郎 野瀬
知徳 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008023789A priority Critical patent/JP5020843B2/en
Publication of JP2009185310A publication Critical patent/JP2009185310A/en
Application granted granted Critical
Publication of JP5020843B2 publication Critical patent/JP5020843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、例えば、自動車、家電・重電分野などの部品等に利用される電磁鋼板の加工端部の疲労強度および磁気特性の向上する技術に関し、特に、疲労特性を向上するための超音波打撃処理後の化学研磨もしくは電解研磨を用いた後処理方法に関する。   The present invention relates to a technique for improving the fatigue strength and magnetic properties of a processed end portion of an electrical steel sheet used for parts such as automobiles, home appliances, and heavy electric fields, and more particularly, an ultrasonic wave for improving fatigue properties. The present invention relates to a post-processing method using chemical polishing or electrolytic polishing after a hitting process.

打抜き加工を含むせん断加工により新たに生じる加工端面をもつ鋼に繰返し加重が作用すると、加工部は切り欠きとなって、加工端面から疲労きれつが発生して破壊に至る。自動車、家電・重電分野などのモーターに使用される電磁鋼板は、打抜き加工等が施された後、高回転速度で使用されると、回転に伴う遠心力により加工端部に応力が集中して疲労破壊することが問題となっている。また他方で打抜きなどの加工に伴って加工前の良好な時期特性が劣化することが多く、加工部の疲労特性の向上ならびに磁気特性の向上が切望されている。   When a repeated load is applied to steel having a machining end face newly generated by a shearing process including punching, the machined portion becomes a notch, and fatigue cracks are generated from the machining end face, leading to fracture. When magnetic steel sheets used in motors for automobiles, home appliances, heavy electric fields, etc. are punched, etc. and used at a high rotational speed, stress concentrates on the processing edge due to the centrifugal force associated with rotation. The problem is fatigue failure. On the other hand, good timing characteristics before machining often deteriorate with machining such as punching, and improvement of fatigue characteristics and magnetic characteristics of the machined part is desired.

このうち、疲労破壊問題に対し、溶接部等の疲労強度向上を目的とした超音波衝撃処理が近年開発され、超音波衝撃処理を溶接部および機械加工穴に適用することにより疲労強度を向上させる方法が文献1に開示されている。なお、超音波衝撃処理とは、超音波発生機から発生された数十KHzの超音波振動をピン等の工具を介して対象物に押し当てて、塑性変形により表面形状の改善および残留応力の緩和・再配分等を行う処理である。   Of these, ultrasonic shock treatment for the purpose of improving fatigue strength of welded parts, etc. has been recently developed for the fatigue fracture problem, and fatigue strength is improved by applying ultrasonic shock treatment to welded parts and machined holes. A method is disclosed in Document 1. The ultrasonic impact treatment refers to the improvement of the surface shape and residual stress caused by plastic deformation by pressing ultrasonic vibrations of several tens of KHz generated from an ultrasonic generator against an object through a tool such as a pin. This is a process of mitigation and reallocation.

また打抜き部の疲労強度向上を目的として、穴縁に超音波処理を施す方法が、特許文献2に開示されている。   Further, Patent Document 2 discloses a method of applying ultrasonic treatment to the hole edge for the purpose of improving the fatigue strength of the punched portion.

さらに、電磁鋼板の加工部端部の疲労強度向上を目的として、特許文献3に開示されている。   Furthermore, it is disclosed in Patent Document 3 for the purpose of improving the fatigue strength at the end of the processed part of the electromagnetic steel sheet.

米国特許6338765号公報US Pat. No. 6,338,765 特開2004-115856号公報JP 2004-115856 JP 特開2007-277650号公報JP 2007-277650 A

しかし、超音波衝撃処理は、硬質金属により処理対象物表面に圧縮応力を付与する方法であるため、処理表面に圧縮残留応力を多く導入するためには表面性状を劣化させ、表面に形成された凹部は応力集中部および疲労亀裂発生基点となるおそれがあり、疲労強度を飛躍的に向上するためには限界があった。また、上記表面に形成された凹部は磁壁がピンニングされ、ヒステリシス損があがり、磁気特性の劣化の原因となる。   However, since the ultrasonic impact treatment is a method of applying compressive stress to the surface of the object to be treated with a hard metal, in order to introduce a large amount of compressive residual stress to the treated surface, the surface properties are deteriorated and formed on the surface. The concave portion may become a stress concentration portion and a fatigue crack initiation point, and there is a limit to dramatically improve the fatigue strength. Further, the concave portion formed on the surface has a domain wall pinned, resulting in increased hysteresis loss, which causes deterioration of magnetic characteristics.

また、加工部には圧縮の応力が導入されるが、形状変化によりその絶対値には限界があり、超音波打撃処理方法では、疲労強度を飛躍的に向上するためには限界があった。   In addition, although compressive stress is introduced into the processed portion, the absolute value is limited due to the shape change, and the ultrasonic hitting method has a limit to dramatically improve the fatigue strength.

また、超音波ピーニングにより鋼材表面に導入される圧縮の残留応力は、表面下数十μm〜数百μm内部の位置でピークを有し、より表面層では、圧縮の残留応力の絶対値が小さいという特性を有することが明らかとなった。   Moreover, the compressive residual stress introduced into the steel surface by ultrasonic peening has a peak at a position within several tens of μm to several hundreds of μm below the surface, and the absolute value of the compressive residual stress is smaller in the surface layer. It became clear that it has the characteristic.

本発明は、上記従来技術の現状に鑑み、超音波打撃処理後の後処理を用いて、自動車や自動二輪の部品、家電製品などに用いられる、電磁鋼板の加工端部に生じた引っ張り残留応力に対して大きな圧縮残留応力を効率的に導入し、かつ、加工端部に生じる凹凸を平滑化することにより、繰り返し荷重が作用する環境で従来よりも疲労特性および磁気特性を向上させるための超音波打撃処理後の後処理法を提供することを目的とする。   In view of the current state of the prior art described above, the present invention uses a post-treatment after ultrasonic impact treatment, and is used in automobiles, motorcycle parts, home appliances, etc. In order to improve fatigue and magnetic properties compared to conventional methods in environments where repetitive loads are applied by efficiently introducing large compressive residual stress against the surface and smoothing the irregularities generated at the machining end. It aims at providing the post-processing method after a sonic hit | damage process.

電磁鋼板の加工端部を超音波振動端子で打撃した後に、打撃箇所を化学研磨もしくは電解研磨することによって、仮に超音波打撃により表面に凹凸が生じても、従来に比べて高い疲労強度および磁気特性を確保できる電磁鋼板の加工端部の疲労強度および磁気特性の向上方法を提供するものであり、その要旨、超音波打撃処理を行い表面からの深さ5〜15μmに−60〜−80MPaの残留応力を導入した電磁鋼板の加工端部を、電解研磨もしくは化学研磨方法で、5μm以上15μm以下エッチングし、電磁鋼板の加工端部の疲労強度を200MPa以上、および磁気特性を9.5W/kg(1.5T/50Hz)以下に強化することを特徴とする電磁鋼板の加工端部の加工方法、である。 After hitting the processed end of an electromagnetic steel sheet with an ultrasonic vibration terminal, even if the surface of the hit is chemically polished or electrolytically polished, even if the surface is uneven due to ultrasonic hitting, the fatigue strength and magnetic properties are higher than before. there is provided a method for improving fatigue strength and magnetic properties of the processed end portion of the electromagnetic steel sheet capable of securing the characteristics and the gist thereof, the depth 5~15μm from ultrasound striking through the rows have surface -60 to-80 MPa The processed end portion of the electrical steel sheet with the residual stress introduced is etched by 5 to 15 μm by electrolytic polishing or chemical polishing , the fatigue strength of the processed end part of the electrical steel sheet is 200 MPa or more, and the magnetic property is 9 A method for processing a processed end portion of an electrical steel sheet, characterized by strengthening to 5 W / kg (1.5 T / 50 Hz) or less .

本発明によれば、超音波打撃処理を用いた加工方法の後に化学研磨もしくは電解研磨することにより、電磁鋼板の加工端部に生じた引っ張り残留応力のうち、特に繰り返し荷重が作用する方向に導入された大きな圧縮残留応力を効率的・効果的に活用することができ、かつ表面に形成される凹凸を平滑化することにより応力集中を減らし、さらに磁壁のピンニングによるヒステリシス損を減らすことにより、電磁鋼板の加工端部の疲労特性および磁気特性を従来よりも一段と向上させることが可能となる。   According to the present invention, chemical polishing or electrolytic polishing is performed after the processing method using the ultrasonic impact treatment, so that the residual tensile stress generated at the processing end of the electromagnetic steel sheet is introduced particularly in the direction in which the repeated load acts. The large residual compressive residual stress can be used efficiently and effectively, and the stress concentration is reduced by smoothing the unevenness formed on the surface, and the hysteresis loss due to pinning of the domain wall is further reduced. It is possible to further improve the fatigue characteristics and magnetic characteristics of the processed end portion of the steel plate than before.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

本発明者は、疲労特性および磁気特性の向上が問題となっている電磁鋼板の打抜き加工部について両方の特性を両立する方法の検討を行った。   The present inventor has studied a method for achieving both of the properties of a punched portion of an electrical steel sheet in which improvement of fatigue properties and magnetic properties is a problem.

まず、電磁鋼板打抜き加工部の端面付近の変形状況および残留応力分布を検討した結果、塑性変形状態は図1に、残留応力は図2に示す分布をしていることが判明した。すなわち、図3のようにダイ2とポンチ1の間で打抜かれるうち抜き部4および残存部3において、打抜き部4の裏面側角部6と残存部3の表面側角部8に引っ張り変形が、打抜き部4の表面側角部7と残存部3の裏面側角部5に圧縮変形が存在する。   First, as a result of examining the deformation state and the residual stress distribution in the vicinity of the end face of the electromagnetic steel sheet punching portion, it was found that the plastic deformation state has the distribution shown in FIG. 1 and the residual stress has the distribution shown in FIG. That is, in the punched portion 4 and the remaining portion 3 that are punched between the die 2 and the punch 1 as shown in FIG. 3, the rear surface side corner portion 6 of the punched portion 4 and the front surface side corner portion 8 of the remaining portion 3 are pulled and deformed. However, compression deformation exists in the front side corner 7 of the punched portion 4 and the back side corner 5 of the remaining portion 3.

これらの塑性変形部は隣接部の拘束を受け、図2に示すように打抜き部4の裏面側角部6と残存部3の表面側角部8の引張変形部には圧縮残留応力が、打抜き部4の表面側角部7と残存部3の裏面側角部5の圧縮変形部には引張残留応力がそれぞれ発生する。また、これら変形部の隣接部9〜12には、変形部の残留応力とバランスする反対符号の残留応力、すなわち残存部3の裏面側角部5の隣接部9および打抜き部4の表面側角部7の隣接部11には圧縮残留応力が、打抜き部4の裏面側角部6の隣接部10および残存部3の表面側角部8の隣接部12には引張残留応力がそれぞれ発生する。   These plastic deformation portions are constrained by the adjacent portions, and as shown in FIG. 2, compressive residual stress is applied to the tensile deformation portions of the back side corner portion 6 of the punched portion 4 and the front side corner portion 8 of the remaining portion 3. Tensile residual stresses are generated in the compression deformed portions of the front surface side corner portion 7 of the portion 4 and the back surface side corner portion 5 of the remaining portion 3. Further, in the adjacent portions 9 to 12 of these deformed portions, the residual stress of the opposite sign that balances the residual stress of the deformed portion, that is, the adjacent portion 9 of the back surface side corner portion 5 of the remaining portion 3 and the surface side corner of the punched portion 4 Compressive residual stress is generated in the adjacent portion 11 of the portion 7, and tensile residual stress is generated in the adjacent portion 10 of the back surface side corner portion 6 of the punched portion 4 and in the adjacent portion 12 of the front surface side corner portion 8 of the remaining portion 3.

このような打抜き加工部において、特にダイ2と接触する残存部3の裏面側角部5の鋭利な形状、加工部の凹凸、および裏面側角部5を中心とした圧縮変形により発生する引張残留応力が疲労特性の低下を招いていることを把握した。また、磁気特性については、加工部の凹凸を減らし、ある程度絶対値の大きい圧縮残留応力の発生が磁気特性を向上していることも知見した。   In such a punched portion, in particular, the sharp shape of the back side corner 5 of the remaining portion 3 that comes into contact with the die 2, the unevenness of the processed portion, and the tensile residual generated by compressive deformation centered on the back side corner 5 It was understood that the stress caused the deterioration of fatigue characteristics. In addition, regarding the magnetic characteristics, it was also found that the unevenness of the processed portion was reduced and the generation of compressive residual stress having a certain absolute value improved the magnetic characteristics.

これらの問題の解決手段を鋭意検討した結果、疲労強度向上のために鋭利な裏面側角部5の形状を改善しつつ、加工部の凹凸を改善し、ある程度圧縮の残留応力の絶対値を大きくすることが有効との結論に至り、裏面側角部5および/又は表面側角部8を中心に超音波打撃処理を行い、さらに電解研磨もしくは化学研磨することが疲労特性および磁気特性の向上にさらに有効であることを見出した。超音波衝撃処理は、超音波エネルギーを振動エネルギーに変換して対象物に塑性変形を与え、主に工具の形状にならって表面形状をなだらかに改善する効果、および塑性変形に伴って圧縮残留応力を発生させる効果の二つの効果により対象物の疲労強度を向上させる。電解研磨法とは、酸またはアルカリ溶液中で金属表面を陽極溶解し、電気化学 的に表面を平滑に改善する効果により対象物の疲労強度および磁気特性をより向上させる。化学研磨法とは、酸またはアルカリ溶液中で金属表面を溶解し、化学 的に表面を平滑に改善する効果により対象物の疲労強度および磁気特性をより向上させる。   As a result of diligently investigating the means for solving these problems, the shape of the sharp corners 5 on the back side was improved to improve fatigue strength, while the unevenness of the processed part was improved, and the absolute value of the residual stress of compression was increased to some extent. In order to improve fatigue characteristics and magnetic properties, it is concluded that it is effective to perform ultrasonic impact treatment mainly on the back side corner 5 and / or the front side corner 8 and then perform electropolishing or chemical polishing. It was found to be more effective. Ultrasonic impact treatment transforms ultrasonic energy into vibration energy to give plastic deformation to the object, mainly to improve the surface shape gently following the shape of the tool, and compressive residual stress accompanying plastic deformation The fatigue strength of an object is improved by two effects of generating an effect. The electropolishing method is to improve the fatigue strength and magnetic properties of an object by anodically dissolving a metal surface in an acid or alkaline solution and electrochemically improving the surface smoothly. The chemical polishing method is to improve the fatigue strength and magnetic properties of an object by dissolving the metal surface in an acid or alkali solution and chemically improving the surface smoothly.

超音波衝撃処理された部分の応力状態を詳細に調査した結果、裏面側角部5では打抜き加工により図1に示すように圧縮変形が生じ、その結果引張残留応力が発生しており、応力とひずみの関係を示すと図3の状態にある。この引張残留応力は、圧縮ひずみの量およびバランスする隣接部の体積、境界長さ等により変化するが、概ね降伏応力相当の値になっている。   As a result of investigating the stress state of the ultrasonic shock treated portion in detail, as shown in FIG. 1, the back side corner portion 5 undergoes compressive deformation as shown in FIG. 1, resulting in a tensile residual stress. The strain relationship is shown in FIG. The tensile residual stress varies depending on the amount of compressive strain, the volume of the adjacent portion to be balanced, the boundary length, and the like, but is approximately a value corresponding to the yield stress.

本発明ではこの部分に超音波衝撃処理を施すことにより、引張の塑性変形を与えて図4に示すような応力とひずみの関係とすることにより残留応力を低減させることが望ましい。ここで、超音波衝撃処理によって付与する引張歪みは僅かでも引張残留応力が低減するが、先の打抜き加工による圧縮ひずみを相殺するように同程度の大きさの引張ひずみを与えることが好ましい。   In the present invention, it is desirable to reduce the residual stress by subjecting this portion to ultrasonic impact treatment to give a tensile plastic deformation to have a stress-strain relationship as shown in FIG. Here, even if the tensile strain applied by the ultrasonic impact treatment is slight, the tensile residual stress is reduced, but it is preferable to apply a tensile strain of the same magnitude so as to offset the compressive strain due to the previous punching process.

超音波衝撃処理により疲労強度を向上させるための処理範囲は、加工に伴って形成される周辺の塑性変形領域およびそれに伴って発生する残留応力が発生する領域をカバーする範囲まで行うことが必要である。本発明では、打抜き加工によって発生する組成変形領域および残留応力分布を調べた結果、概ね加工端から素材の厚板相当の範囲までは加工の影響により変形・残留応力が発生していることから、超音波衝撃処理も加工端から板厚以上の範囲の鋼表面に行うことが望ましい。   The treatment range for improving fatigue strength by ultrasonic impact treatment needs to cover the peripheral plastic deformation region formed with processing and the region covering the region where residual stress is generated. is there. In the present invention, as a result of investigating the composition deformation region and residual stress distribution generated by the punching process, deformation and residual stress are generated due to the influence of processing from the processing end to the range corresponding to the thick plate of the material, It is desirable that the ultrasonic impact treatment is also performed on the steel surface in the range of the plate thickness or more from the processed end.

加工端からの処理長さの上限は特に限定しないが、超音波衝撃処理の長さが長くなると、図5に示すように処理部分15の圧縮残留応力とバランスして処理部分に隣接する部分16に発生する引張残留応力の平均値が上昇して疲労破壊や他の破壊を誘発する恐れがあるため、引張残留応力の上昇を抑制するためには、処理長さ18を処理部15と他の自由端面17との間の長さ19以下とすることが好ましい。   The upper limit of the processing length from the processing end is not particularly limited, but when the length of the ultrasonic impact processing is increased, the portion 16 adjacent to the processing portion is balanced with the compressive residual stress of the processing portion 15 as shown in FIG. In order to suppress the increase in the tensile residual stress, the processing length 18 is set to be different from that of the processing unit 15 and other factors. It is preferable that the length between the free end surface 17 is 19 or less.

超音波衝撃処理を行った加工部について電解研磨して応力状態を詳細に調査した結果、加工部では電解研磨量により図6に示すような応力分布となっていた。   As a result of examining the stress state in detail by electrolytic polishing the processed part subjected to the ultrasonic impact treatment, the processed part had a stress distribution as shown in FIG. 6 depending on the amount of electrolytic polishing.

本発明では、鋼板の加工部表面上に、超音波処理による加工帯を形成し、その加工帯を電解研磨もしくは化学研磨する。望ましくは、その加工帯を表面から深さ1μm以上20μm以下について電解研磨もしくは化学研磨する。   In the present invention, a processed band is formed by ultrasonic treatment on the surface of the processed portion of the steel sheet, and the processed band is electrolytically polished or chemically polished. Desirably, the processing zone is subjected to electrolytic polishing or chemical polishing at a depth of 1 μm to 20 μm from the surface.

疲労が生じる箇所に圧縮応力が入っていると、疲労寿命が向上する。このとき、表面の凹凸が小さく、表面の圧縮残留応力の絶対値が大きいほどその疲労強度向上効果は大きいものと考えられる。   If compressive stress is present at a place where fatigue occurs, the fatigue life is improved. At this time, the fatigue strength improvement effect is considered to be greater as the surface irregularities are smaller and the absolute value of the surface compressive residual stress is larger.

ここで、加工帯処理位置について、電解研磨もしくは化学研磨後に、表面の残留応力を測定したところ、圧縮の応力の絶対値が大きくなった理由を推定すると、以下のようになる。   Here, with respect to the processing band processing position, when the residual stress on the surface was measured after electrolytic polishing or chemical polishing, the reason why the absolute value of the compressive stress increased was estimated as follows.

超音波打撃処理方法では、超音波で駆動した超音波振動端子により加工された加工帯周辺には圧縮の残留応力が導入されるが、打撃箇所表面(加工帯表面)においては、その衝撃で形状が変化することにより、圧縮の残留応力の一部は開放されてしまうのに対し、打撃箇所表面から内部においては、形状変化もなく、導入された圧縮の残留応力がすべて残留することにより、打撃位置よりも絶対値の高い圧縮残留応力となる。しかし、加工帯よりもさらに内部の領域においては、応力バランスで、逆に引張残留応力となる。   In the ultrasonic hitting method, compressive residual stress is introduced around the processing zone processed by the ultrasonic vibration terminal driven by the ultrasonic wave, but the impact is formed on the surface of the hitting spot (processing zone surface) by the impact. As a result of the change in pressure, a part of the compression residual stress is released. The compressive residual stress is higher in absolute value than the position. However, in a region further inside than the work zone, a tensile residual stress is generated in reverse due to a stress balance.

以上の結果から、以下のことを想定した。   From the above results, we assumed the following.

圧縮残留応力の値は、打撃処理表面からの深さに関係し、打撃箇所表面から化学研磨もしくは電解研磨して、その深さを適度にすることにより、圧縮残留応力の絶対値を大きくすることができる。   The value of the compressive residual stress is related to the depth from the impact treatment surface, and the absolute value of the compressive residual stress is increased by making the depth appropriate by chemical polishing or electropolishing from the impact surface. Can do.

加工帯処理位置について、電解研磨もしくは化学研磨後、表面の凹凸は小さくなる。ここで研磨により表面凹凸が減少すると磁壁のピンニングが小さくなりヒステリシス損が減少し磁気特性は向上することができる。しかし、ここで圧縮の残留応力の絶対値がある程度より大きくなりすぎると、渦電流損が大きくなり磁気特性は低下する。   Regarding the processing band processing position, the surface irregularities become smaller after electrolytic polishing or chemical polishing. Here, when the surface irregularities are reduced by polishing, the pinning of the domain wall is reduced, the hysteresis loss is reduced, and the magnetic characteristics can be improved. However, if the absolute value of the compressive residual stress becomes too large to some extent, the eddy current loss increases and the magnetic characteristics deteriorate.

これらの考えを基礎に、直径D=2mmの超音波振動端子を用いて、研磨の処理深さを変えて、化学研磨もしくは電解研磨した場合の加工部の残留応力がどのように変化し、表面凹凸、疲労特性、および磁気特性がどのように変化するかを検討した。   Based on these ideas, how the residual stress of the processed part changes when the polishing depth is changed using an ultrasonic vibration terminal with a diameter D = 2 mm, and chemical polishing or electrolytic polishing changes. We examined how the unevenness, fatigue properties, and magnetic properties change.

実験方法
UIT装置(AppliedUitrasonic社製):周波数27kHz
超音波振動端子の直径:2mm、
出力パワー:機器と機器の設定値に依存する
UIT装置では、装置についている回転するつまみで1〜9まで調整できるが絶対値は不明であった。
experimental method
UIT device (AppliedUitrasonic): Frequency 27kHz
Diameter of ultrasonic vibration terminal: 2mm,
Output power: Depends on device and device settings
The UIT device can be adjusted from 1 to 9 with the rotating knob attached to the device, but the absolute value is unknown.

(残留応力の測定)
残留応力の測定は、X線回折により応力をsin2ψ-2θ法を用いて測定した。測定に用いた装置はリガク(株)のMSF-2Mを用い、X線の管球はCr、検出器はシンチレーション計測器を用い、電圧は30kv、電流は10mA、回折線の測定方法に並傾法を用い、X線の入射方法にψ一定法を用い、入射角ψは0度、15度、30度、45度の4点について、検出器を151度〜161度までの範囲について3sec/step、ステップ間隔0.25度でステップ操作をして測定し、ピークの決定には半値幅法を用いた。応力測定においては、フェライトの[211]回折面を利用し、物理定数として吸収係数850.04、ヤング率21000kgf/mm2、ポアッソン比0.28、応力定数-32.44を用いた。測定領域は0.5mm(処理方向に垂直な方向)×6mm(処理方向)について測定を行った。
(Measurement of residual stress)
The residual stress was measured by X-ray diffraction using the sin2ψ-2θ method. The instrument used for the measurement was MSF-2M manufactured by Rigaku Corporation, the X-ray tube was Cr, the detector was a scintillation measuring instrument, the voltage was 30 kv, the current was 10 mA, and the diffraction line measurement method was tilted. The X-ray incidence method is the ψ constant method, the incident angle ψ is 0 sec, 15 deg, 30 deg, 4 deg. Step, measurement was performed by stepping at a step interval of 0.25 degrees, and the half-width method was used to determine the peak. In the stress measurement, the [211] diffraction surface of ferrite was used, and the physical constants were absorption coefficient 850.04, Young's modulus 21000kgf / mm2, Poisson's ratio 0.28, and stress constant -32.44. The measurement area was 0.5 mm (direction perpendicular to the processing direction) × 6 mm (processing direction).

図7は、本発明における超音波打撃処理の加工帯を深さdだけ電解研磨した場合の加工端部での磁気特性の関係を示す図である。図7の横軸に示す表面から電解研磨した距離と磁気特性に相関が見られ、その深さが、1μm以上20μm以下であれば、加工部を超音波加工したままの場合よりも、磁気特性が良いことがわかる。   FIG. 7 is a diagram showing the relationship of the magnetic characteristics at the processing edge when the processing band of the ultrasonic impact treatment in the present invention is electropolished by the depth d. When the distance electroplated from the surface shown on the horizontal axis in FIG. 7 and the magnetic characteristics are correlated, and the depth is 1 μm or more and 20 μm or less, the magnetic characteristics are more than when the processed part is ultrasonically processed. I understand that is good.

図8に本発明における超音波打撃処理の加工帯を化学研磨もしくは電解研磨した表面からの深さと加工部の疲労強度(破断寿命が200万回となる応力範囲)の関係を示す。   FIG. 8 shows the relationship between the depth from the surface obtained by chemically polishing or electrolytically polishing the processing zone for ultrasonic impact treatment in the present invention and the fatigue strength of the processed portion (stress range where the fracture life is 2 million times).

なお、これらの効果をより顕著に得るためには、加工帯においては、処理前の表面に対して、深さ数十um〜深さ数百um程度の圧痕を形成するように打撃することが望ましい。   In order to obtain these effects more remarkably, in the processing zone, the surface before the treatment may be hit so as to form an indentation having a depth of several tens of um to a depth of several hundreds of um. desirable.

0.5mm厚の無方向性電磁鋼板を、幅108mm、長さ500mmの帯板に加工し、その帯板の中央部に、図9に示す穴を打抜き加工し、加工部に超音波衝撃処理を施した。超音波衝撃処理装置は、振動周波数26kHz,ピン振幅25〜30μm、工具は直径2mmの円筒状ピンを用いて人手により加工端部に押し当てることにより処理した。処理は長さ1cm当たり5秒の速さで一方向にピンを移動させて行い、同じ箇所を2度以上処理することはしなかった。   A non-oriented electrical steel sheet with a thickness of 0.5 mm is processed into a strip with a width of 108 mm and a length of 500 mm, and the hole shown in FIG. 9 is punched into the central portion of the strip, and ultrasonic shock treatment is applied to the processed portion. gave. The ultrasonic shock treatment apparatus was processed by manually pressing the tool end with a cylindrical pin having a vibration frequency of 26 kHz, a pin amplitude of 25 to 30 μm, and a diameter of 2 mm. The treatment was performed by moving the pin in one direction at a speed of 5 seconds per 1 cm length, and the same part was not treated more than twice.

処理した試験片の長手方向に繰返し加重を負荷し、荷重制御、応力比R=0(完全片振り)の条件において室温大気中で疲労試験を行った。さらに試験片の疲労きれつ発生位置、すなわち打抜き加工部の裏面側端部で円周方向側面に当たる部分について、表面粗さRaを測定し、さらにX線による残留応力測定を行った。また同じ試験片を日本電気工業規格JEM1432「単板磁気試験方法」に準拠して鉄損を評価した。比較のため超音波衝撃処理を施さない試験片も作製し、同様にX線による残留応力測定(プラスは引張残留応力、マイナスは圧縮残留応力)、疲労試験および磁気特性の評価を行った。これらの結果をまとめて表1に示す。   A repeated load was applied in the longitudinal direction of the treated test piece, and a fatigue test was performed in a room temperature atmosphere under the conditions of load control and stress ratio R = 0 (complete single swing). Furthermore, the surface roughness Ra was measured for the fatigue crack generation position of the test piece, that is, the portion that hits the circumferential side surface at the end on the back side of the punched portion, and the residual stress was measured by X-ray. The same test piece was evaluated for iron loss according to JEM1432 “Single-plate magnetic test method”. For comparison, a test piece not subjected to ultrasonic impact treatment was also prepared, and similarly, residual stress measurement by X-ray (plus is tensile residual stress, minus is compressive residual stress), fatigue test, and evaluation of magnetic properties were performed. These results are summarized in Table 1.

超音波衝撃処理を施さないNo1の比較例、超音波処理は施すが電解研磨も化学研磨も施さないNo2の比較例、超音波処理は施すが電解研磨を0.5μmしかしていないNo3の比較例、超音波処理は施すが電解研磨を0.5μmしかしていないNo12の比較例、超音波処理は施すが電解研磨を30μm、40μmしているNo10、No11の比較例、超音波処理は施すが化学研磨を30μm、40μmしているNo19、No20の比較例に比べ、超音波処理を施した上で電解研磨もしくは化学研磨を適度に1μm以上20μ以下行ったNo4〜No9、No13〜No18の本発明において、加工部裏面側端部(きれつ発生位置)での残留応力およびRaが適度に改善され、疲労特性および、磁気特性の両方が改善している。ここで、超音波処理は施すが電解研磨を30μm、40μmしているNo10、No11の比較例、超音波処理は施すが化学研磨を30μm、40μmしているNo19、No20の比較例においては、加工部裏面側端部(きれつ発生位置)でのRaが改善され、残留応力も圧縮の残留応力で大きくなっているため、疲労強度は改善されているが、圧縮の残留応力が大きくなりすぎ、渦電流損が大きくなりすぎ、磁気特性は劣化している。   No. 1 comparative example without ultrasonic impact treatment, No. 2 comparative example with ultrasonic treatment but no electrolytic polishing or chemical polishing, No. 3 comparative example with ultrasonic treatment but only 0.5 μm electrolytic polishing, Comparative example of No12 with sonication applied but only 0.5μm electropolishing, Comparative example of No10 and No11 with sonication but 30μm and 40μm electrolytic polishing, sonication applied but chemical polishing In the present invention of No4 to No9 and No13 to No18 in which electrolytic polishing or chemical polishing is appropriately performed at 1 μm or more and 20 μm or less after ultrasonic treatment as compared with the comparative examples of No. 19 and No. 20 with 30 μm and 40 μm. Residual stress and Ra at the rear surface side edge (cracking position) are moderately improved, and both fatigue characteristics and magnetic characteristics are improved. Here, in the comparative examples of No. 10 and No. 11 that are subjected to ultrasonic treatment but electrolytic polishing is 30 μm and 40 μm, and in the comparative examples of No. 19 and No. 20 that are subjected to ultrasonic treatment but chemical polishing is 30 μm and 40 μm, Ra at the back side edge (cracking position) is improved, and the residual stress is also increased by the compressive residual stress, so the fatigue strength is improved, but the compressive residual stress is too large, The eddy current loss becomes too large and the magnetic properties are deteriorated.

Figure 0005020843
Figure 0005020843

以上、実施例で示したように本発明の方法は電磁鋼板加工部の疲労特性および磁気特性の向上に有効であることが判明した。   As described above, it has been found that the method of the present invention is effective in improving the fatigue characteristics and magnetic characteristics of the processed part of the electrical steel sheet as shown in the examples.

電磁鋼板打抜き加工部の端面付近の塑性変形状態を示す図。The figure which shows the plastic deformation state of the end surface vicinity of an electromagnetic steel plate punching part. 電磁鋼板打抜き加工部の端面付近の残留応力分布を示す図。The figure which shows the residual stress distribution of the end surface vicinity of an electromagnetic steel plate stamping process part. 超音波打撃処理された部分(裏面側角部)の応力と歪の関係を示す図。The figure which shows the relationship between the stress and distortion of the part (back surface side corner | angular part) by which the ultrasonic impact process was carried out. 打抜き等加工によるダイ側圧縮変形部の加工履歴を示す図。The figure which shows the process log | history of the die side compression deformation part by processes, such as punching. 超音波衝撃処理による加工履歴を示す図。The figure which shows the process log | history by an ultrasonic impact process. 超音波衝撃処理を行った加工部の電解研磨量と残留応力との関係を示す図。The figure which shows the relationship between the amount of electropolishing of the process part which performed the ultrasonic impact process, and residual stress. 超音波衝撃処理を行った加工部の電解研磨量と磁気特性との関係を示す図。The figure which shows the relationship between the amount of electropolishing of the process part which performed the ultrasonic impact process, and a magnetic characteristic. 超音波衝撃処理を行った加工部の電解研磨量と疲労強度との関係を示す図。The figure which shows the relationship between the amount of electropolishing of the process part which performed the ultrasonic impact process, and fatigue strength. 超音波衝撃処理を行う電磁鋼板の加工部を示す図。The figure which shows the process part of the electromagnetic steel plate which performs an ultrasonic impact process.

Claims (1)

超音波打撃処理を行い表面からの深さ5〜15μmに−60〜−80MPaの残留応力を導入した電磁鋼板の加工端部を、電解研磨もしくは化学研磨方法で、μm以上15μm以下エッチングし、電磁鋼板の加工端部の疲労強度を200MPa以上、および磁気特性を9.5W/kg(1.5T/50Hz)以下に強化することを特徴とする電磁鋼板の加工端部の加工方法。 Machining end of the electromagnetic steel sheet introduced residual stress of -60 to-80 MPa at a depth 5~15μm from the surface have line ultrasonic striking treatment, in electrolytic polishing or chemical polishing method, 5 [mu] m or more 15 [mu] m or less Etching and strengthening the fatigue strength of the processed end of the electromagnetic steel sheet to 200 MPa or more and the magnetic properties to 9.5 W / kg (1.5 T / 50 Hz) or less, and processing the processed end of the electromagnetic steel sheet .
JP2008023789A 2008-02-04 2008-02-04 Processing method of processing end of electrical steel sheet Active JP5020843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023789A JP5020843B2 (en) 2008-02-04 2008-02-04 Processing method of processing end of electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023789A JP5020843B2 (en) 2008-02-04 2008-02-04 Processing method of processing end of electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2009185310A JP2009185310A (en) 2009-08-20
JP5020843B2 true JP5020843B2 (en) 2012-09-05

Family

ID=41068837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023789A Active JP5020843B2 (en) 2008-02-04 2008-02-04 Processing method of processing end of electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5020843B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106271383A (en) * 2015-05-19 2017-01-04 天津大学 A kind of ultrasonic impact and light decorations are utilized to combine the method improving metal part surface performance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761519B2 (en) * 1986-08-22 1995-07-05 住友電気工業株式会社 Method for manufacturing spring with excellent fatigue resistance
JP5098205B2 (en) * 2006-04-07 2012-12-12 新日鐵住金株式会社 Method for improving fatigue strength and magnetic properties of punched part of electrical steel sheet
JP2007301566A (en) * 2006-05-08 2007-11-22 Nippon Steel Corp Method of laser peening treatment

Also Published As

Publication number Publication date
JP2009185310A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5503608B2 (en) Fatigue fracture evaluation method for cylindrical metal materials
He et al. Correction of buckling distortion by ultrasonic shot peening treatment for 5A06 aluminum alloy welded structure
JP4319828B2 (en) Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product
Najafizadeh et al. Improved microstructure and mechanical properties of sheet metals in ultrasonic vibration enhanced biaxial stretch forming
Sun et al. Improving the high cycle fatigue property of Ti6Al4V ELI alloy by optimizing the surface integrity through electric pulse combined with ultrasonic surface rolling process
JP5020843B2 (en) Processing method of processing end of electrical steel sheet
JP4261879B2 (en) Method for producing a long-life rotating body with excellent fatigue strength
JP5251486B2 (en) Machining method using ultrasonic impact treatment
KR100606312B1 (en) Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure
CN110000514B (en) Ultrasonic vibration rolling processing device
JP5098205B2 (en) Method for improving fatigue strength and magnetic properties of punched part of electrical steel sheet
JP4709697B2 (en) Method for improving fatigue strength of metal lap weld joints
JP3974840B2 (en) Steel plate dehydrogenation method and steel plate manufacturing method using the same
RU2625619C1 (en) Method of strength increase of details with coating
JP4351427B2 (en) Method for improving fatigue strength of steel working edge
KR20090113888A (en) Chamfering device and chamfering method for metallic material
JP2013233590A (en) Welded joint superior in fatigue characteristic
CN114491945A (en) Ultrasonic rolling strengthening parameter normalization method
JP4987773B2 (en) Long rail
JP6314670B2 (en) Structure with excellent fatigue characteristics
JP5977077B2 (en) Welding peening method
Larose et al. Limitation of distortion in friction stir welded (FSW) panels using needle peening
Shaban et al. EffEct of flap pEEning SpEEd on thE SurfacE Quality and Micro hardnESS of aircraft aluMinuM alloyS
CN213895932U (en) Ultrasonic rolling device based on metal fatigue sample excircle and V type groove
CN218983327U (en) Ultrasonic-assisted brittle coating metal plate cutting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R151 Written notification of patent or utility model registration

Ref document number: 5020843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350