JP4319828B2 - Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product - Google Patents

Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product Download PDF

Info

Publication number
JP4319828B2
JP4319828B2 JP2002333298A JP2002333298A JP4319828B2 JP 4319828 B2 JP4319828 B2 JP 4319828B2 JP 2002333298 A JP2002333298 A JP 2002333298A JP 2002333298 A JP2002333298 A JP 2002333298A JP 4319828 B2 JP4319828 B2 JP 4319828B2
Authority
JP
Japan
Prior art keywords
cold
strength
metal
ultrasonic impact
impact treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002333298A
Other languages
Japanese (ja)
Other versions
JP2004169065A (en
Inventor
知徳 冨永
和巳 松岡
宏二 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002333298A priority Critical patent/JP4319828B2/en
Priority to AU2003280853A priority patent/AU2003280853A1/en
Priority to KR1020057008799A priority patent/KR100676333B1/en
Priority to CNB2003801035915A priority patent/CN100379883C/en
Priority to PCT/JP2003/014670 priority patent/WO2004046397A1/en
Publication of JP2004169065A publication Critical patent/JP2004169065A/en
Application granted granted Critical
Publication of JP4319828B2 publication Critical patent/JP4319828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments

Description

【0001】
【発明の属する技術分野】
本発明は、超音波衝撃処理による冷間加工部の強度向上方法およびその方法によって製造された金属製品に関するものである。
【0002】
【従来の技術】
近年、高性能化、高機能化、軽量化、低コスト化等のために、構造部材に使用される鋼の高強度化が進んでいる。しかし、例えば船舶、海洋構造物、橋梁などの、使用期間中に繰り返し荷重を受ける構造物においては、このような高強度化に伴い構造部材に発生する応力が高くなるのが通例であるため、金属疲労の問題が顕在化する場合も多く、この金属疲労問題で高強度化が制限される場合もある。一般に、構造物で疲労き裂が問題となる箇所は、応力集中部や溶接部が多く、その他、冷間加工部や切断端面でも疲労き裂がしばしば問題となることが知られている。このような冷間加工や切断端面には、溶接部と同様に大きな引張残留応力が一般に存在する。
【0003】
また、この様な部位には、しばしばノッチなどの応力集中部を伴う場合がある。さらに、ガス切断などの熱を与える切断法では、急熱急冷のために著しく硬くて脆い組織が切断面に形成され易く、そのために母材部よりも疲労強度が著しく低いのが通例である。特に薄板では、ほとんどの場合にプレスなどの冷間曲げ加工を伴うこと、そして、切断方法として疲労強度が特に低いことが指摘されているシャーリングを用いることが多いために、溶接部以外のこのような冷間加工部や切断部の疲労強度を確保することが必要になってくる。また、厚板にあっても、ラインパイプ等を代表とするベンドロール加工される鋼管などのための素材について、加工後の溶接性や破壊靭性を確保しながら高強度化を進めるための製品が求められている。
【0004】
しかしながら、冷間加工においては、一般にその歪みによって金属材料の破壊靱性が低下することが知られている。特に鋼材の種類によっては圧縮側での靱性低下がより顕著である。この破壊靱性の低下を防止するためには、冷間曲げ加工時に与えられる歪みの量ごとに鋼材の必要靱性が規定されている。また、曲げ加工によって、引張側に大きな残留応力が一般に働くが、これによって、一旦疲労などによってき裂が発生すると、そのき裂進展が著しく速くなるという悪影響がある。このような冷間加工部の引張残留応力の改善については従来、一般に使われている技術というのは存在しない。しかし、他の部位の引張残留応力の改善方法としては、非特許文献1に開示されているような、ショットピーニング処理が広く知られている。
【0005】
【非特許文献1】
「浸炭焼入れの実際」第2版、日刊工業新聞社発行(浸炭鋼のショットピーニング)(199年2月26日)
【0006】
【発明が解決しようとする課題】
上述したような、冷間加工部における金属材料に生じる問題の解決のためには、まず破壊靭性については、冷間加工に供する前の母材の段階で、もともとの靱性を必要レベルまで高くするように製造をするという対応が取られている。しかしながら、高強度材になると金属は一般に脆くなりやすいために、高靭性の高強度材を作るためにはコストの高い成分やプロセスが必要になってしまう。さらに、将来的にさらに高強度化が進むと、そのようなコストをかけても必要な靭性を確保することが不可能なレベルとなってしまう可能性もある。
【0007】
また、引張残留応力の課題を解決するための、非特許文献1に開示されているショットピーニング処理は、金属の表面の高速の鋼の粒子を衝突させることにより金属の表面を加工する方法で、表面硬さや圧縮残留応力の改善が図れるが、しかしながら、ショットピーニング処理で残留応力を変えられるのは、せいぜい300μmほどの深さまでであり、そのき裂進展抑制効果は限定され、必ずしも十分な方法とまでは言えない。また、大きな機械と処理対象物を入れるためのチャンバーが必要なため、大型の対象物の処理は困難である。また、処理場所の選択性が低いため、処理を行いたい鋼板面のみを処理することは不可能であり、処理痕によって外観を損ねることがあるため、意匠性を要求される対象物には使用できない等の問題がある。
【0008】
【課題を解決するための手段】
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、超音波衝撃処理による衝撃エネルギーを被対象金属の加工部の引張側表面および圧縮側表面に与えることで加工部の引張側表面または圧縮側表面の引張側残留応力緩和および圧縮側残留応力緩和を図ると共に金属組織の微細化による破壊靱性および疲労強度向上を図る方法提供するものである。その発明の要旨とするところは、以下のとおりである。
【0009】
)金属の冷間曲げ加工部の引張側表面および圧縮側表面に超音波衝撃処理を施すことによって、金属表面から中心線平均粗さRaで10μm以下に平滑化し、また、処理部の表面硬さを非処理部より10%以上増加させ、かつ引張残留応力を引張強度の50%以下から圧縮の範囲まで緩和し、破壊靱性および疲労強度を向上させることを特徴とする超音波衝撃処理による冷間加工部の強度向上方法。
)金属の冷間曲げ加工部の引張側表面および圧縮側表面に超音波衝撃処理を施すことによって、処理部を金属表面から中心線平均粗さRa(JIS B0601)で10μm以下に平滑化し、かつ引張側の引張残留応力を該金属の材料での破断強度の80%以下に緩和し、意匠性並びに、破壊靱性および疲労強度を向上させることを特徴とする超音波衝撃処理による冷間加工部の強度向上方法。
【0010】
)金属の冷間曲げ加工部の引張側表面に、ピンの先端が凹部となった超音波衝撃処理を施し、かつ圧縮側表面に超音波衝撃処理を施すことによって、処理部の表面硬さを非処理部より10%以上増加させ、かつ引張残留応力を引張強度の50%以下から圧縮の範囲まで緩和し、意匠性並びに、破壊靱性および疲労強度を向上させることを特徴とする超音波衝撃処理による冷間加工部の強度向上方法。
【0012】
【発明の実施の形態】
以下、本発明について図面に従って詳細に説明する。
図1は、金属平板から冷間曲げ加工により金属管を製造する工程を示す図である。この図に示すように、金属平板1を冷間曲げ加工してパイプ形状2とした後ガスアーク溶接等で溶接4して金属管3を製造するものであるが、この場合に、金属管3の表面側には、一般に引張残留応力が生じる。一方、金属管の内面側には、圧縮残留応力が働く状態となる。さらに、内面には後述する図2に示すような圧縮塑性変形に伴うしわ状の表面が形成されることがある。金属材料は塑性変形を与えられることにより、靭性が低下するため、上記のような冷間加工によってあまりに多くの塑性ひずみを与えた場合、圧縮ひずみを与えられた後、その圧縮弾性ひずみ分が反発することによって戻ろうとする、スプリングバックという状態の時に、その内側のしわがき裂の起点となって、脆性破壊が生じることがある。
【0013】
近年は、特に鋼材について、引張塑性ひずみと比較して圧縮塑性ひずみの方がより金属材料の靭性を低下させることが判明してきており、金属管や角形金属管においては圧縮側である内面からき裂が発生することを防止しなければならない。一方、外面の引張側については、内面側と異なって冷間加工によるき裂の起点はそれほど入らないし、もし、冷間加工前に傷が入っていても、冷間加工の過程で脆性破壊を生じなければ、そのときに付与される塑性ひずみによってそのき裂先端は鈍化し、むしろ脆性破壊は生じにくくなる。
【0014】
しかしながら、冷間加工終了後に他の物体との衝突等により傷が付いた場合、または、溶接部に割れや深いノッチが生じた場合などは、もともと外面には大きな引張残留応力が存在するために、そのき裂の進展は早くなり、脆性破壊の可能性も高くなってしまう。また、溶接部近傍の材料は熱影響により粒が粗大化し、靭性が溶接前の値より著しく低下することが知られており、脆性破壊の危険性は溶接部近傍でより顕著である。このような現象は、プレスなどにより加工される薄板による部品についても同様に生じる。曲げ量の大きな部分が割れ易いこと、また、使用時に疲労破壊の箇所となり易いことが、やはりよく知られている。
【0015】
上述したような、管の内外表面に発生した引張残留応力および圧縮残留応力を緩和させるために、少なくとも外表面から超音波衝撃処理を施すことで、引張残留応力を緩和することを見出した。これによって引張側表面の引張残留応力を少なくとも材料の降伏強度の50%以下には緩和し、加工表面の疲労強度を向上させることができる。また、圧縮側から処理を行った場合も、表面に与えられる塑性変形による再分配の効果や、引張側表面にまで伝達される衝撃や超音波のエネルギーなどによる応力緩和効果によって、引張側の残留応力を素材の降伏応力の80%以下までは緩和することができる。
【0016】
また、超音波衝撃処理においては、処理を行う最表面に100%を超える非常に大きな加工度が与えられると同時に、加工熱、また材料と処理ピンの摩擦熱によって、温度が600℃以上に上昇する。このため、特に鋼材においては高いレベルでの低温圧延と同様の状態となる。これは、近年開発が進められている超鉄鋼材料と同様のプロセスを処理部最表面部で実施することであり、これにより最表面に表面から30〜100μmの深さの範囲で、粒径が1μm以下の細粒化した領域が形成される。これは、普通鋼材の表面に超鉄鋼の薄い膜を形成しているような状況になるものである。
【0017】
超鉄鋼は、同じ成分の鋼材と比較して、強度は倍、また、細粒化によるはるかに高い靭性を持つ。加工によって多くの転位が材料に導入されること、また、この超鉄鋼と同様の効果によって、材料は硬さを増す。この特殊な層は厚さが薄いために、計測の仕方にもよるがマイクロ・ビッカース等を用いても、10%以上の硬化が確認される。また、この最表面部に関しては靭性も向上していると予想されている。このような効果は、特に管の板厚tと曲げ加工半径R(内法)の比R/t=15以下の場合に、材料の持つ破壊靭性値が低下することが判明しているため、材料の元々の靭性値を向上させるという従来の対策手法と比較して、特に有用であることが判った。
【0018】
図2は、金属管内外面に超音波衝撃処理を施す状態を示す図である。図2(a)は金属管内外面に超音波振動子5で超音波衝撃処理を施す状態を示す図であり、図2(b)は金属管の内面には、圧縮残留応力が生じてシワ状態6となる。このシワ状態6を形成した内面を、例えば、振幅20〜60μm、周波数19〜60kHz、出力0.2〜3kWの超音波衝撃処理を施すことにより、金属表面から中心線平均粗さRaで10μm以下に平滑化するものである。図2(c)は金属管外面に超音波振動子のピンの先端が凹部7となった超音波振動子5によって超音波衝撃処理を施すと処理部の表面硬さを非処理部より10%以上増加させ、かつ引張残留応力を引張強度の50%以下から圧縮の範囲まで緩和することが可能となった。
【0019】
図3は、金属管外周面位置と表面粗さとの関係を示す図である。この図に示すように、冷間加工した金属管外周面は凹凸が大きく、その表面に超音波振動子により、本発明処理である超音波衝撃処理を施すことにより、この金属板表面の小さなノッチを中心線平均粗さRaで10μm以下に平滑化することができることが判る。これにより管表面の意匠性を高めることができる。また、金属管の処理部の表面硬さを非処理部と比較して10%以上増加した。さらに、引張残留応力を引張強度の50%以下から圧縮の範囲まで緩和すると共に、引張残留応力をその材料の破断強度の80%以下に緩和し、破壊靱性および疲労強度を向上させることができた。
【0020】
以上、金属管について説明してきたが、丸管に限定されることなく、角型金属管の冷間加工部やそれらと同様の状況が生じるプレスなどの冷間加工部においても適用できるものであり、この場合は、冷間加工角部において曲率を有する部分のみに、内面および外面に表面から超音波衝撃処理を施すことにより処理部の表面硬さを非処理部より10%以上硬く、かつ、処理部表面で主な荷重作用方向での引張残留応力を引張強度の50%以下に低減することにより、破壊靱性および疲労強度の高い金属製品を得ることができる。
【0021】
【実施例】
以下、本発明について実施例によって具体的に説明する。
鋼材に曲げ加工を行ってBR鋼管を作製し、その後、超音波衝撃処理を実施後、その一部を切り出して疲労試験片、およびミクロ試験片を作製して比較を行った。破壊靱性は直接計測することは困難なので、ミクロ試験で粒径を測定することによって、靱性のパラメータとする(例えば、製鉄研究No.327「微細分散したTi酸化物によるHSLA鋼HAZの靱性改善」の図7では、靱性(遷移温度)と粒径は“Y=−1059(x0.5)+40,このときyは遷移温度、dは粒径”、という関係にある)。硬さもミクロ試験で計測している。表1に使用鋼材、また、表2に曲げ加工のスペックと疲労試験結果および計測した粒径、硬さを示す。
【0022】
【表1】

Figure 0004319828
【0023】
【表2】
Figure 0004319828
【0024】
表2に示すように、表1に示す鋼種A、Bについて、それぞれ鋼管板厚t:12mm、曲げ加工半径R:60mmと120mmでの超音波衝撃処理なしの場合と外面ないし内面と外面に施した場合の疲労限および粒径を示した。その結果、超音波衝撃処理しない場合はいずれも疲労限および靱性において劣っている。
これに対し、外面ないし内面と外面に施した場合の疲労限および靱性においては、いずれの場合も優れていることが判る。特に、内面と外面に施した場合は外面のみの場合に比較してより優れている。一方、硬さについても、処理することによって、硬度の向上が図られていることが判る。
【0025】
【発明の効果】
以上述べたように、本発明による超音波衝撃処理による超音波衝撃エネルギーを被対象金属の加工部の引張側表面および圧縮側表面に与えることで加工部の引張側表面または圧縮側表面の引張側残留応力緩和および圧縮側残留応力緩和を図ると共に金属組織の微細化による破壊靱性および疲労強度向上方法およびそれにより製造された長寿命を有する金属製品を得るものである。
【図面の簡単な説明】
【図1】金属平板から冷間曲げ加工により金属管を製造する工程を示す図である。
【図2】金属管内外面に超音波衝撃処理を施す状態を示す図である。
【図3】金属管外周面位置と表面粗さとの関係を示す図である。
【符号の説明】
1 金属平板
2 パイプ形状
3 金属管
4 溶接
5 超音波振動子
6 シワ状態
7 凹部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for improving the strength of a cold-worked portion by ultrasonic impact treatment and a metal product manufactured by the method.
[0002]
[Prior art]
In recent years, the strength of steel used for structural members has been increasing for higher performance, higher functionality, lighter weight, lower cost, and the like. However, in structures such as ships, offshore structures, bridges, etc. that receive repeated loads during the period of use, it is customary that the stress generated in structural members increases with such high strength, In many cases, the problem of metal fatigue becomes obvious, and the increase in strength may be limited by this metal fatigue problem. In general, there are many stress-concentrated parts and welded parts in a structure where fatigue cracks are a problem, and it is known that fatigue cracks often cause problems in cold-worked parts and cut end faces. Such a cold work or a cut end face generally has a large tensile residual stress like the welded portion.
[0003]
Further, such a part often has a stress concentration part such as a notch. Further, in a cutting method that applies heat such as gas cutting, a remarkably hard and brittle structure tends to be formed on the cut surface due to rapid heating and rapid cooling, and therefore the fatigue strength is usually significantly lower than that of the base material. Especially for thin plates, it is often accompanied by cold bending such as pressing, and shearing, which has been pointed out to have a particularly low fatigue strength as a cutting method. It is necessary to ensure the fatigue strength of a cold-worked part and a cut part. In addition, even for thick plates, there is a product for increasing strength while securing weldability and fracture toughness after processing for materials such as bend roll processed steel pipes such as line pipes. It has been demanded.
[0004]
However, in cold working, it is generally known that the fracture toughness of a metal material is reduced by the strain. In particular, depending on the type of steel material, the reduction in toughness on the compression side is more remarkable. In order to prevent this reduction in fracture toughness, the required toughness of the steel material is defined for each amount of strain applied during cold bending. In addition, a large residual stress generally acts on the tension side by bending, but this causes an adverse effect that once a crack is generated due to fatigue or the like, the crack propagation is remarkably accelerated. Conventionally, there is no generally used technique for improving the tensile residual stress in such a cold worked part. However, a shot peening process as disclosed in Non-Patent Document 1 is widely known as a method for improving the tensile residual stress in other parts.
[0005]
[Non-Patent Document 1]
“Carburizing and quenching” 2nd edition, published by Nikkan Kogyo Shimbun (Shot peening of carburized steel) (February 26, 199)
[0006]
[Problems to be solved by the invention]
In order to solve the problems that occur in the metal material in the cold-worked part as described above, first, with regard to fracture toughness, the original toughness is raised to the required level at the stage of the base material before being subjected to cold work. The measures of manufacturing are taken. However, since a metal generally tends to become brittle when it becomes a high-strength material, high-cost components and processes are required to produce a high-strength high-strength material. Furthermore, if the strength is further increased in the future, there is a possibility that the required toughness cannot be secured even at such a cost.
[0007]
Further, the shot peening treatment disclosed in Non-Patent Document 1 for solving the problem of tensile residual stress is a method of processing a metal surface by colliding high-speed steel particles on the metal surface. Although the surface hardness and compressive residual stress can be improved, however, the residual stress can be changed by shot peening treatment at most to a depth of about 300 μm, and its crack growth suppressing effect is limited, and it is not always a sufficient method. I can't say that. In addition, since a large machine and a chamber for containing a processing object are necessary, it is difficult to process a large object. In addition, because the selectivity of the processing place is low, it is impossible to process only the steel sheet surface to be processed, and the appearance may be damaged by the processing marks, so it is used for objects that require design properties. There are problems such as being unable to do so.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have intensively developed, and as a result, applied the impact energy by ultrasonic impact treatment to the tensile side surface and the compression side surface of the processed part of the target metal. The present invention provides a method for reducing the tensile-side residual stress and the compression-side residual stress on the tension-side surface or the compression-side surface of the metal and improving the fracture toughness and fatigue strength by refining the metal structure. The gist of the invention is as follows.
[0009]
( 1 ) By applying ultrasonic impact treatment to the tension side surface and compression side surface of the cold bending portion of the metal, the center line average roughness Ra is smoothed to 10 μm or less from the metal surface, and the surface of the treatment portion By ultrasonic impact treatment characterized by increasing the hardness by 10% or more from the untreated part and relaxing the tensile residual stress from 50% or less of the tensile strength to the range of compression to improve fracture toughness and fatigue strength A method for improving the strength of cold-worked parts.
( 2 ) By subjecting the tensile side surface and the compression side surface of the cold-bending portion of the metal to ultrasonic impact treatment, the treatment portion is smoothed from the metal surface to a center line average roughness Ra (JIS B0601) of 10 μm or less. , And the tensile residual stress on the tensile side is relaxed to 80% or less of the breaking strength of the metal material, and the design property, fracture toughness and fatigue strength are improved. Strength improvement method of the part.
[0010]
( 3 ) The surface hardness of the processing portion is obtained by subjecting the tensile side surface of the cold-bending portion of the metal to an ultrasonic impact treatment in which the tip of the pin becomes a concave portion and applying the ultrasonic impact treatment to the compression side surface. Ultrasonic wave characterized in that the thickness is increased by 10% or more from the non-treated part and the tensile residual stress is relaxed from 50% or less of the tensile strength to the range of compression to improve the design, fracture toughness and fatigue strength. A method for improving the strength of cold-worked parts by impact treatment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a diagram showing a process of manufacturing a metal tube from a metal flat plate by cold bending. As shown in this figure, a metal tube 3 is manufactured by cold bending a flat metal plate 1 into a pipe shape 2 and then welding 4 by gas arc welding or the like. A tensile residual stress is generally generated on the surface side. On the other hand, a compressive residual stress acts on the inner surface side of the metal tube. Furthermore, a wrinkle-like surface accompanying compression plastic deformation as shown in FIG. Since metal materials are subjected to plastic deformation and toughness is reduced, if too much plastic strain is applied by cold working as described above, the compressive elastic strain is rebounded after the compressive strain is applied. When it is in the state of spring back that is going to return, brittle fracture may occur as a starting point of a wrinkle crack inside.
[0013]
In recent years, especially for steel materials, it has been found that compressive plastic strain lowers the toughness of metal materials more than tensile plastic strain, and in metal pipes and square metal pipes, cracks start from the inner surface on the compression side. Must be prevented from occurring. On the other hand, on the tensile side of the outer surface, unlike the inner surface side, the crack initiation point by cold working does not enter so much, and even if there are scratches before cold working, brittle fracture occurs during the cold working process. If not, the crack tip is blunted by the plastic strain applied at that time, and brittle fracture is less likely to occur.
[0014]
However, if the surface is damaged by collision with other objects after the end of cold working, or if a crack or deep notch occurs in the welded part, there is originally a large tensile residual stress on the outer surface. The crack progresses faster and the possibility of brittle fracture increases. In addition, it is known that the material in the vicinity of the welded part becomes coarse due to the heat effect, and the toughness is remarkably lowered from the value before welding, and the risk of brittle fracture is more remarkable in the vicinity of the welded part. Such a phenomenon also occurs in parts made of thin plates processed by pressing or the like. It is well known that a portion with a large amount of bending is easily cracked and that it is likely to become a portion of fatigue failure during use.
[0015]
In order to relieve the tensile residual stress and compressive residual stress generated on the inner and outer surfaces of the tube as described above, it was found that the tensile residual stress is relieved by applying ultrasonic impact treatment from at least the outer surface. As a result, the tensile residual stress on the surface on the tension side can be relaxed to at least 50% or less of the yield strength of the material, and the fatigue strength of the processed surface can be improved. In addition, even when processing is performed from the compression side, the residual on the tension side is affected by the effect of redistribution due to plastic deformation applied to the surface and the stress relaxation effect due to impact and ultrasonic energy transmitted to the surface on the tension side. The stress can be relaxed to 80% or less of the yield stress of the material.
[0016]
In the ultrasonic impact treatment, a very large degree of processing exceeding 100% is given to the outermost surface to be processed, and at the same time, the temperature rises to 600 ° C. or more due to processing heat and frictional heat between the material and the processing pin. To do. For this reason, especially in steel materials, it will be in the same state as low-temperature rolling at a high level. This is to carry out a process similar to that of super steel material, which has been developed in recent years, on the outermost surface portion of the processing portion, whereby the particle diameter is within the range of 30 to 100 μm from the surface to the outermost surface. A finely divided region of 1 μm or less is formed. This is a situation where a thin film of super steel is formed on the surface of the ordinary steel material.
[0017]
Super steel has twice the strength and much higher toughness due to grain refinement than steels of the same composition. Many dislocations are introduced into the material by processing, and the material has increased hardness due to the same effect as this super steel. Since this special layer has a small thickness, although it depends on the measurement method, curing of 10% or more is confirmed even when using Micro Vickers or the like. Further, it is expected that the toughness is improved with respect to the outermost surface portion. Such an effect has been found to decrease the fracture toughness value of the material, particularly when the ratio R / t = 15 or less of the tube thickness t and the bending radius R (inner method). It has been found to be particularly useful compared to conventional countermeasures that improve the original toughness value of the material.
[0018]
FIG. 2 is a diagram illustrating a state in which ultrasonic shock treatment is performed on the inner and outer surfaces of the metal tube. FIG. 2A is a view showing a state in which an ultrasonic impact treatment is performed on the inner and outer surfaces of the metal tube by the ultrasonic vibrator 5, and FIG. 2B is a state in which a compressive residual stress is generated on the inner surface of the metal tube to cause a wrinkle. 6 The inner surface where the wrinkled state 6 is formed is subjected to ultrasonic impact treatment with an amplitude of 20 to 60 μm, a frequency of 19 to 60 kHz, and an output of 0.2 to 3 kW, for example, so that the center line average roughness Ra is 10 μm or less from the metal surface. To smooth. FIG. 2 (c) shows that when the ultrasonic shock treatment is performed by the ultrasonic vibrator 5 in which the tip of the ultrasonic vibrator pin is formed into the concave portion 7 on the outer surface of the metal tube, the surface hardness of the treated portion is 10% of that of the non-treated portion. Further, the tensile residual stress can be relaxed from 50% or less of the tensile strength to the compression range.
[0019]
FIG. 3 is a diagram showing the relationship between the position of the outer peripheral surface of the metal tube and the surface roughness. As shown in this figure, the outer peripheral surface of the cold-worked metal tube has large irregularities, and the surface of the metal plate is subjected to ultrasonic impact treatment, which is the present invention treatment, by an ultrasonic vibrator. It can be seen that the center line average roughness Ra can be smoothed to 10 μm or less. Thereby, the designability of the tube surface can be enhanced. Moreover, the surface hardness of the processing part of the metal tube increased by 10% or more compared with the non-processing part. Furthermore, the tensile residual stress was relaxed from 50% or less of the tensile strength to the compression range, and the tensile residual stress was relaxed to 80% or less of the breaking strength of the material, thereby improving the fracture toughness and fatigue strength. .
[0020]
The metal tube has been described above. However, the present invention is not limited to a round tube, and can be applied to a cold-worked portion of a square metal tube or a cold-worked portion such as a press that causes the same situation as those. In this case, the surface hardness of the treated portion is 10% or more harder than that of the non-treated portion by subjecting only the portion having the curvature in the cold-worked corner portion to ultrasonic shock treatment from the surface to the inner surface and the outer surface, and A metal product having high fracture toughness and fatigue strength can be obtained by reducing the tensile residual stress in the main load acting direction to 50% or less of the tensile strength on the surface of the treated portion.
[0021]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
The steel material was bent to produce a BR steel pipe, and then subjected to ultrasonic impact treatment, and then a part thereof was cut out to produce a fatigue test piece and a micro test piece for comparison. Fracture toughness is difficult to measure directly, so it is a parameter of toughness by measuring the particle size in a micro test (for example, Steelmaking Research No. 327 “Improvement of toughness of HSLA steel HAZ with finely dispersed Ti oxide”) In FIG. 7, the toughness (transition temperature) and the particle size are “Y = −1059 (x 0.5 ) +40, where y is the transition temperature and d is the particle size”. Hardness is also measured by a micro test. Table 1 shows steel materials used, and Table 2 shows bending specifications, fatigue test results, measured particle sizes, and hardness.
[0022]
[Table 1]
Figure 0004319828
[0023]
[Table 2]
Figure 0004319828
[0024]
As shown in Table 2, the steel types A and B shown in Table 1 were applied to the outer surface or the inner surface and the outer surface when the steel pipe plate thickness t: 12 mm and bending radius R: 60 mm and 120 mm, respectively, without ultrasonic shock treatment. The fatigue limit and particle size are shown. As a result, the fatigue limit and the toughness are all poor when the ultrasonic impact treatment is not performed.
On the other hand, it can be seen that the fatigue limit and toughness when applied to the outer surface or the inner surface and the outer surface are excellent in any case. In particular, when applied to the inner and outer surfaces, it is superior to the case of only the outer surface. On the other hand, it can be understood that the hardness is improved by processing the hardness.
[0025]
【The invention's effect】
As described above, by applying the ultrasonic impact energy by the ultrasonic impact treatment according to the present invention to the tensile side surface and the compression side surface of the processed part of the target metal, the tensile side surface of the processed part or the tensile side of the compressed side surface The present invention provides a method for improving the fracture toughness and fatigue strength by reducing the residual stress and compressive residual stress, and improving the fracture toughness and fatigue strength by refining the metal structure, and a metal product having a long life produced thereby.
[Brief description of the drawings]
FIG. 1 is a view showing a process of manufacturing a metal tube from a metal flat plate by cold bending.
FIG. 2 is a view showing a state in which ultrasonic impact treatment is performed on the inner and outer surfaces of a metal tube.
FIG. 3 is a diagram showing the relationship between the position of the outer peripheral surface of a metal tube and the surface roughness.
[Explanation of symbols]
1 Metal flat plate 2 Pipe shape 3 Metal tube 4 Welding 5 Ultrasonic vibrator 6 Wrinkle state 7 Recess

Claims (3)

金属の冷間曲げ加工部の引張側表面および圧縮側表面に超音波衝撃処理を施すことによって、金属表面から中心線平均粗さRaで10μm以下に平滑化し、また、処理部の表面硬さを非処理部より10%以上増加させ、かつ引張残留応力を引張強度の50%以下から圧縮の範囲まで緩和し、破壊靱性および疲労強度を向上させることを特徴とする超音波衝撃処理による冷間加工部の強度向上方法。  By applying ultrasonic impact treatment to the tension side surface and compression side surface of the metal cold bending portion, the center line average roughness Ra is smoothed to 10 μm or less from the metal surface, and the surface hardness of the treatment portion is reduced. Cold working by ultrasonic impact treatment characterized by increasing fracture residual toughness and fatigue strength by increasing tensile residual stress from 50% or less of tensile strength to compression range by increasing 10% or more from non-treated part Strength improvement method of the part. 金属の冷間曲げ加工部の引張側表面および圧縮側表面に超音波衝撃処理を施すことによって、処理部を金属表面から中心線平均粗さRaで10μm以下に平滑化し、かつ引張側の引張残留応力を該金属の材料での破断強度の80%以下に緩和し、意匠性並びに、破壊靱性および疲労強度を向上させることを特徴とする超音波衝撃処理による冷間加工部の強度向上方法。  By applying ultrasonic impact treatment to the tension side surface and the compression side surface of the cold bending portion of the metal, the treatment portion is smoothed from the metal surface to a center line average roughness Ra of 10 μm or less, and the tensile residual on the tension side A method for improving the strength of a cold-worked portion by ultrasonic impact treatment, wherein the stress is relaxed to 80% or less of the breaking strength of the metal material to improve designability, fracture toughness and fatigue strength. 金属の冷間曲げ加工部の引張側表面に、ピンの先端が凹部となった超音波衝撃処理を施し、かつ圧縮側表面に超音波衝撃処理を施すことによって、処理部の表面硬さを非処理部より10%以上増加させ、かつ引張残留応力を引張強度の50%以下から圧縮の範囲まで緩和し、意匠性並びに、破壊靱性および疲労強度を向上させることを特徴とする超音波衝撃処理による冷間加工部の強度向上方法。  The surface hardness of the treated part is reduced by subjecting the tensile side surface of the cold-bending part of the metal to an ultrasonic impact treatment in which the tip of the pin becomes a recess and applying the ultrasonic impact treatment to the compression side surface. By ultrasonic impact treatment characterized by increasing the residual stress by 10% or more from the treated part and relaxing the tensile residual stress from 50% or less of the tensile strength to the range of compression to improve the design, fracture toughness and fatigue strength. A method for improving the strength of cold-worked parts.
JP2002333298A 2002-11-18 2002-11-18 Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product Expired - Fee Related JP4319828B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002333298A JP4319828B2 (en) 2002-11-18 2002-11-18 Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product
AU2003280853A AU2003280853A1 (en) 2002-11-18 2003-11-18 Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength
KR1020057008799A KR100676333B1 (en) 2002-11-18 2003-11-18 Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength
CNB2003801035915A CN100379883C (en) 2002-11-18 2003-11-18 Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength
PCT/JP2003/014670 WO2004046397A1 (en) 2002-11-18 2003-11-18 Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333298A JP4319828B2 (en) 2002-11-18 2002-11-18 Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product

Publications (2)

Publication Number Publication Date
JP2004169065A JP2004169065A (en) 2004-06-17
JP4319828B2 true JP4319828B2 (en) 2009-08-26

Family

ID=32321689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333298A Expired - Fee Related JP4319828B2 (en) 2002-11-18 2002-11-18 Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product

Country Status (5)

Country Link
JP (1) JP4319828B2 (en)
KR (1) KR100676333B1 (en)
CN (1) CN100379883C (en)
AU (1) AU2003280853A1 (en)
WO (1) WO2004046397A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833615B2 (en) * 2005-09-06 2011-12-07 新日本製鐵株式会社 Ultrasonic impact plastic processing method for metals with excellent fatigue strength improvement
KR100966531B1 (en) 2008-01-28 2010-06-29 주식회사 성진이앤아이 Surface Forge method and producted roll thereof
KR20120130263A (en) * 2010-03-18 2012-11-29 미츠비시 쥬고교 가부시키가이샤 Molding method for plate-shaped workpiece, and molded article
JP5878294B2 (en) * 2011-01-11 2016-03-08 地方独立行政法人東京都立産業技術研究センター Bending method and bending tool for titanium member
CN102230146B (en) * 2011-05-06 2013-08-28 广西南南铝加工有限公司 Method for cutting residual stress in sawing area by ultrasonic vibration after aluminum alloy medium and heavy plate prestretching
CN103084800B (en) * 2011-12-12 2016-04-13 沈阳航空航天大学 The pre-stretch bending of metal thick plate blank and band curvature height muscle wallboard digital control processing manufacturing process
CN102839276B (en) * 2012-09-19 2014-12-10 哈尔滨工业大学 Method for ultrasonically loosening residual stress of connecting part of metal part bolt
CN103255281B (en) * 2013-06-03 2015-06-03 赵显华 Processing method capable of realizing shape stability of thin-walled pipe fitting
KR101858226B1 (en) 2016-08-31 2018-05-16 단국대학교 산학협력단 Crack repairing method for deterring growth of surface cracks on the wall using ultrasound
DE102016219278A1 (en) 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Process for producing a high-strength tube part
CN111235507A (en) * 2018-11-29 2020-06-05 有研工程技术研究院有限公司 Method for reducing residual stress of welded titanium alloy sheet welded cylinder structure
KR102552514B1 (en) 2021-09-06 2023-07-05 단국대학교 산학협력단 Peening apparatus and method of peening using the same
JP7205601B1 (en) * 2021-11-08 2023-01-17 Jfeスチール株式会社 METHOD FOR SUPPRESSING FATIGUE CRACK PROGRESSION OF BENDED METAL PLATE AND AUTOMOBILE PARTS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622404A (en) * 1969-02-19 1971-11-23 Leonard E Thompson Method and apparatus for stress relieving a workpiece by vibration
JPS50157249A (en) * 1974-06-01 1975-12-19
JPS61202727A (en) * 1985-03-06 1986-09-08 Mitsubishi Electric Corp Bending device
JPS6479320A (en) * 1987-09-19 1989-03-24 Nippon Steel Corp Improvement of material quality of metal for welding austenitic stainless steel
CN1024817C (en) * 1993-02-25 1994-06-01 北京海淀区金星超声波应用技术研究所 Ultrasonic treatment method and equipment for metal surface
JPH081514A (en) * 1994-06-16 1996-01-09 Toshiba Corp Surface treatment method for structure in reactor
JP3408687B2 (en) * 1996-02-29 2003-05-19 三菱重工業株式会社 Welding equipment with welding residual stress reduction device
US6171415B1 (en) * 1998-09-03 2001-01-09 Uit, Llc Ultrasonic impact methods for treatment of welded structures
JP2003113418A (en) * 2001-10-04 2003-04-18 Nippon Steel Corp Method for improving fatigue life and long-life metal material

Also Published As

Publication number Publication date
JP2004169065A (en) 2004-06-17
KR20050086683A (en) 2005-08-30
KR100676333B1 (en) 2007-02-02
CN1714162A (en) 2005-12-28
AU2003280853A1 (en) 2004-06-15
CN100379883C (en) 2008-04-09
WO2004046397A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4319828B2 (en) Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product
Nalla et al. On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures
Ramos et al. Improvement in fatigue life of Al 7475-T7351 alloy specimens by applying ultrasonic and microshot peening
EP1541252B1 (en) Uoe steel pipe with excellent crash resistance, and method of manufacturing the uoe steel pipe
JP2006320960A (en) Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
Schubnell et al. The influence of work hardening and residual stresses on the fatigue behavior of high frequency mechanical impact treated surface layers
JP4261879B2 (en) Method for producing a long-life rotating body with excellent fatigue strength
JP3899007B2 (en) Method for improving fatigue strength of lap fillet welded joints
Lefebvre et al. Understanding of fatigue strength improvement of steel structures by hammer peening treatment
JP4488347B2 (en) Leaf spring and manufacturing method thereof
JP4537649B2 (en) Rotating welded joint, manufacturing method of Rotated welded joint, and welded structure
Balawender The ability to clinching as a function of material hardening behavior
JP2004027355A (en) Steel member having excellent fatigue crack propagation resistance and method of producing the same
JP4235176B2 (en) Method for improving fatigue strength of metal cut surface by ultrasonic impact treatment and long-life metal product
JP3872742B2 (en) UOE steel pipe manufacturing method with excellent formability
Määttä et al. Influence of predetermined surface defect to the bendability of ultra-high-strength Steel
JP4131389B2 (en) Shot peening method
JP2004337938A (en) Weld joint with high fatigue strength
Odesskii et al. Estimation of the resistance to the initiation of fatigue cracks in the welded joints of steel constructions
JP2005095960A (en) Method for preventing stress corrosion cracking of metal
Vo et al. Effects of Shot and Laser-peening on SAE 1010 Steel Tubes with a Transverse Center Weld Subjected to Constant and Variable Amplitude Loading
JP3843059B2 (en) Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics
JPH10176241A (en) Steel plate with high toughness and high strength for bolting splice plate, easy of cutting and bolthole punching, and splice plate using this steel plate
JP6769723B2 (en) Extruded member
Mitra Microstructure and Mechanical Properties of Laser Welded Dual Phase Steel: Effect of Welding Speed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4319828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees