JP3843059B2 - Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics - Google Patents
Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics Download PDFInfo
- Publication number
- JP3843059B2 JP3843059B2 JP2002318082A JP2002318082A JP3843059B2 JP 3843059 B2 JP3843059 B2 JP 3843059B2 JP 2002318082 A JP2002318082 A JP 2002318082A JP 2002318082 A JP2002318082 A JP 2002318082A JP 3843059 B2 JP3843059 B2 JP 3843059B2
- Authority
- JP
- Japan
- Prior art keywords
- seam
- steel pipe
- strength
- internal pressure
- weld
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Description
【0001】
【発明の属する技術分野】
本発明は、鋼板を順にC成形、U成形、O成形し、鋼板の端部同士をシーム溶接後、拡管する、図1に示したUOE鋼管の製造方法において、シーム溶接強度特性および内圧疲労特性を改善した、ラインパイプ等に好適なUOE鋼管の製造方法に関する。
【0002】
【従来の技術】
近年、原油・天然ガスの長距離輸送方法としてラインパイプの重要性がますます高まっており、特に高圧化による輸送効率の向上やラインパイプの外径・重量の低減による現地施工能率の向上のため、今ではAPI規格でX100(引張強さ760MPa以上)を超える高強度のラインパイプに対するニーズが強くなってきた。
【0003】
ラインパイプの高強度化に伴い、従来の引張強さ700MPa程度の中低強度材の潜弧溶接などの溶接では、ほとんど問題にされなかった溶接熱影響部(以下HAZ)の軟化が、引張強さ760MPaを超える高強度材では大きくなるという新たな課題が生じるようになった。
【0004】
一方、汎用のUOE鋼管を幹線のラインパイプに使用する場合、内圧の脈動が小さく、シーム溶接部からの疲労破壊が問題になることはなかった。しかし、昇圧、降圧が繰り返される環境下や内圧脈動が頻繁に経験される環境下では、疲労強度が要求され、またシーム溶接部の疲労強度は管体の疲労強度に比べてはるかに小さいため、シーム溶接部の疲労強度をこれまで以上に改善することが望まれていた。
【0005】
このような問題に対し、鋼管溶接時のHAZに圧縮残留応力を付与して強度を上昇させる方法が、特許文献1に開示されている。しかし、この方法をUOE鋼管製造法におけるシーム溶接部に適用しても顕著な効果は得られなかった。また、残留応力をショットブラストで付与する場合、鋼球の処理上、オフラインでの作業が前提となり、オンラインの設備化は困難であった。
【0006】
また、溶接直後のシーム溶接部に沿って超音波振動による応力を与え、疲労強度を向上させる方法が、特許文献2に開示されている。しかし、この方法は、溶接直後の高温のシーム溶接部に超音波振動による打撃を与えるものであり、シーム溶接部およびHAZが高温のため降伏強度が低く、応力によって容易に塑性変形するため、応力は緩和され、圧縮残留応力は導入され難い。また、圧縮残留応力が導入されたとしても、その後の室温までの冷却過程で熱収縮によってキャンセルされるため、溶接止端部への圧縮残留応力導入による疲労強度向上効果は十分に得られない。さらに、超音波振動子で打撃する範囲などの溶接止端部の圧縮残留応力導入のための具体的な条件の開示がないため、この方法を用いても安定して所定レベル以上の疲労強度を向上することは難しい。
【0007】
【特許文献1】
特開昭54−47839号公報
【特許文献2】
米国特許第6,171,415号公報
【0008】
【発明が解決しようとする課題】
本発明は、成形条件、シーム溶接部の形状、母材の成分を工夫することなく、高強度UOE鋼管のシーム溶接部およびHAZの強度を安定化させ、汎用UOE鋼管の内圧疲労強度を向上させた、シーム溶接強度特性および内圧疲労特性に優れたUOE鋼管の製造方法を提供するものである。
【0009】
【課題を解決するための手段】
このような課題を解決するために、特に高強度のUOE鋼管のシーム溶接部およびHAZの引張試験およびシャルピー衝撃試験を行い、汎用UOE鋼管の疲労試験を行い、溶接止端部への溶接後処理の効果について検討し、シーム溶接部およびHAZの引張強度、靭性および疲労特性を改善する製造方法を発明した。本発明の要旨とするところは、以下の通りである。
(1) 鋼板を順にC成形、U成形、O成形し、鋼板の端部同士をシーム溶接後、拡管するUOE鋼管の製造方法において、拡管後の少なくともシーム溶接止端部に超音波振動によるピーニング処理を施すことを特徴とするシーム溶接強度特性および内圧疲労特性に優れたUOE鋼管の製造方法。
【0010】
【発明の実施の形態】
本発明者は、まず引張強度が600〜1050MPaのUOE鋼管を図1に示したように、鋼板をC成形、U成形、O成形し、鋼板の端部同士をシーム溶接後、拡管するUOE方式により製造した。外径および肉厚は、それぞれ609〜904mmおよび16〜38mmであった。これらのUOE鋼管を偏平後、シーム溶接部を中央に配したJIS Z 2201の14B号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行った。
【0011】
その結果を図2に示すが、これは破断箇所が継手であるか、管体であるかという破断形態と引張強度の関係を示したものであり、管体破断(管体の母材からの破断)が好ましい破断形態である。引張強度が780MPa以下では管体破断であるが、780MPa超から950MPa未満では、継手破断と管体破断の両方の破断形態が見られ、950MPa以上ではすべての試験片が継手破断であり、溶接部から破断することがわかった。
【0012】
さらに継手破断した試験片の破断後の破面の詳細解析を、目視および走査型電子顕微鏡によって行ったところ、破断起点は内面の溶接止端部であることがわかった。このことから、高強度材では破断の原因がシーム溶接止端部の軟化であり、この部分の強化により母材から破断させることが可能であるとの結論に至った。
【0013】
シーム溶接止端部の強度を向上させる方法として、図3および図4に模式的に示したように、拡管後のシーム溶接部にショットブラストによる加工歪みの導入あるいはTIG溶接による補強を施す方法が挙げられる。
【0014】
すなわち、図3、図4は上記の処理を行なった後の断面の状況を模式的に示したものであるが、図3において、母材(鋼板)1は外面溶接金属2と内面溶接金属3によりシーム溶接されており、拡管後のシーム溶接部の両溶接金属2,3および溶接止端部5、HAZ4を覆う範囲にショットブラストが施され、ショットブラスト部6が形成されている。これにより、シーム溶接部に加工歪みを導入するものである。
【0015】
また、図4においては、図3と同様に、母材(鋼板)1は外面溶接金属2と内面溶接金属3によりシーム溶接されており、拡管後のシーム溶接部の溶接止端部5、HAZ4を覆う範囲にTIG溶接部7が形成されている。これにより、シーム溶接部を補強するものである。
【0016】
引張強度、外径および肉厚が、それぞれ600〜1050MPa、609〜904mmおよび16〜38mmのUOE鋼管のシーム溶接部にショットブラストあるいはTIG溶接補強を施した。ショットブラストあるいはTIG溶接補強は止端部を含み、HAZを十分に覆う範囲に施した。ショットブラストでは加工深さが表面から0.05〜0.15mmになるように加工した。加工深さの測定は、ミクロ写真による表面近傍の塑性変形の観察と、ビッカース硬さの測定によって行った。TIG溶接は入熱0.2〜1.0kJ/mm、速度10cm/minで行った。
【0017】
これらのUOE鋼管を偏平後、シーム溶接部を中央に配したJIS Z 2201の14B号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行った。拡管後のシーム溶接部にショットブラストによる加工歪みを導入した鋼管の試験結果を図5に、TIG溶接による補強を施した鋼管の試験結果を図6に示す。
【0018】
図5より、ショトブラストによって拡管後のシーム溶接部に加工歪みを導入した場合には、継手破断を起こす境界は970MPaになり、図2の結果と比較して大幅に改善されたものの、それ以上の強度を有する鋼管に対しては依然、継手破断が起こった。また、図6に示すようにTIG溶接補強をした場合は、1050MPaの高強度材でも継手破断は生じず、ショットブラストよりも効果が顕著であった。
【0019】
以上のようにショットブラストおよびTIG溶接補強によるシーム溶接部の強化により、高強度材の継手破断の防止に効果が見られる。しかし、ショットブラストでは効果が不十分であり、また鋼球の処理上、オンラインの設備化は困難である。また、TIG溶接補強は効果的であるものの、溶接設備を新たに増設する必要があり、生産効率が悪いため、安価に製造できるものではない。
【0020】
そこでショットブラストよりもオンラインによる設備化が容易で、尚かつ、加工深さが深く、組織改善も期待できる超音波振動によるピーニング処理に着目した。超音波振動によるピーニング処理を、拡管後の鋼管の止端部を含む熱影響部を覆うように行った後の断面の状況を示す模式図を図7に示す。
【0021】
すなわち、図7において、母材(鋼板)1は外面溶接金属2と内面溶接金属3によりシーム溶接されており、拡管後のシーム溶接部の溶接止端部5を含むHAZ4を覆うように超音波振動によるピーニング処理部8が形成されている。
【0022】
超音波振動によるピーニング処理によって止端部を含めたHAZに塑性変形を加える場合、加工深さが数ミリに及ぶ。したがって、軟化したHAZを硬化させる効果は、ショットブラストと比較して、超音波振動によるピーニング処理の方が優れ、結果としてより良好な管体破断形態が得られる。
【0023】
なお、本発明に使用する超音波振動の超音波発生装置は特に問わないが、500w〜1kwの電源を用いて、発振機により超音波を発振後、トランスデューサーによりその周波数を20〜60kHzに変換し、さらに、ウェーブガイドにてその振幅を増幅させて、直径2mm〜6mmφのピンからなる超音波振動端子を20〜40μmの振幅で機械的に振動させることによって、打撃部の表面において、平滑性を維持しつつ打撃前の表面に対して深さ数百μm程度の圧痕を形成することができる。
【0024】
ここで圧痕は超音波処理を施した部分の、超音波処理前の表面から深さ数百μm程度の形状的変化であり、断面のマクロ写真、あるいは触針計で測定することができる。また、前述の加工深さとは超音波振動により塑性加工が及んだ深さであり、表面から数ミリ程度の加工組織を有する部分であり、断面のミクロ写真による測定が可能である。また、母材に対する加工組織の硬さ変化として、例えばJIS Z 2244に準拠したビッカース硬さ試験により測定することができる。
【0025】
【実施例】
(実施例1)
継手引張強度が620〜1050MPaで外径、及び肉厚が609〜904mm、及び16〜38mm、管体強度が590〜1030MPaのUOE鋼管を製造した。シーム溶接は、サブマージアーク溶接によって行った。拡管後、シーム溶接部内外面の止端部を含むHAZに工具の振幅40μm、振動数30kHzで超音波振動によるピーニング処理を施した。圧痕の深さはサンプル断面のマクロ写真より計測し、0.05〜0.1mmであった。
【0026】
これらのUOE鋼管を偏平後、シーム溶接部を中央に配したJIS Z 2201の14B号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行った。結果を図8に示すが、超音波振動によるピーニング処理をシーム溶接部の止端部を含むHAZに施すと、最大1050MPaの継手強度に対しても母材から破断した。
【0027】
溶接継手引張試験で母材から破断するということは実管によるバースト試験においても管体から破断することを意味する。したがって、ラインパイプなどに使用する際に最も好ましい破断形態である。
【0028】
(実施例2)
引張強度が600MPaで外径、肉厚がそれぞれ、660mm、25mmのUOE鋼管を製造した。シーム溶接は、サブマージアーク溶接によって行った。拡管後、シーム溶接部内外面の止端部を含むHAZに工具の振幅40μm、振動数30kHzで超音波振動によるピーニング処理を施した。圧痕の深さはサンプル断面のマクロ写真より計測し、0.05〜0.1mmであった。また、比較のため、一部の鋼管には、拡管後、シーム溶接部内外面の止端部を含むHAZにショットブラストを施した。ショットブラストの条件は表面粗さがRmaxで0.1mm、加工深さで0.15mmになるように調整した。Rmaxは触針計で測定し、加工深さは、断面のミクロ組織を3〜5視野観察し、加工組織の深さとして測定した。
【0029】
これらの鋼管、すなわち拡管後、シーム溶接部内外面の止端部を含むHAZに超音波振動によるピーニング処理またはショットブラストを施した鋼管と、拡管ままの鋼管を実管内圧疲労試験に供した。内圧疲労試験は圧力媒体に油を使用し、軸力が発生しないように10秒/サイクルで、所定の応力比となるように内圧を上下させて行った。内圧疲労特性は、応力比を変化させた際のバーストが生じるまでのサイクル数として評価した。結果を図9に示す。
【0030】
図9において、超音波振動によるピーニング処理を施した試験材の結果を「超音波ピーニング」として示した。シーム溶接部内外面の止端部を含むHAZに超音波振動によるピーニング処理を施した鋼管の内圧疲労特性は、拡管ままの鋼管および拡管後にショットブラストを施した鋼管よりも大幅に向上した。
【0031】
このように、シーム溶接部内外面の止端部を含むHAZにショットブラストを施した鋼管を比較材として内圧疲労試験に供したが、内圧疲労特性は超音波振動によるピーニング処理を施した鋼管の方が優れており、本発明の効果が実証された。
【0032】
【発明の効果】
以上述べたように本発明によれば、UOE方式で拡管後のシーム溶接部に超音波振動によるピーニング処理を施すことにより、シーム溶接強度特性および内圧疲労特性に優れたUOE鋼管を提供することができるため、産業上の貢献が極めて高い。
【図面の簡単な説明】
【図1】UOE方式による鋼管製造プロセスを示す模式図。
【図2】拡管まま継手の破断形態の破断強度による比較を示す図。
【図3】シーム溶接部にショットブラスト処理を行なった後の断面の状況を示す模式図。
【図4】シーム溶接部にTIG溶接補強を施した後の断面の状況を示す模式図。
【図5】ショットブラスト処理を行なった溶接継手の破断形態の破断強度による比較を示す図。
【図6】TIG溶接補強を施した溶接継手の破断形態の破断強度による比較を示す図。
【図7】シーム溶接部への本発明の超音波振動によるピーニング処理後の断面の状況を示す模式図。
【図8】本発明の超音波振動によるピーニング処理を施したUOE鋼管の破断形態の破断強度による比較を示す図。
【図9】UOE鋼管の内圧疲労試験強度に対する本発明の超音波振動によるピーニング処理と他の処理との効果の比較を示す図。
【符号の説明】
1…母材
2…外面溶接金属
3…内面溶接金属
4…HAZ
5…溶接止端部
6…ショットブラスト部
7…TIG溶接部
8…超音波振動によるピーニング処理部[0001]
BACKGROUND OF THE INVENTION
In the manufacturing method of the UOE steel pipe shown in FIG. 1 in which the steel sheet is C-shaped, U-shaped, O-shaped in order, and the ends of the steel sheets are seam welded and then expanded, seam weld strength characteristics and internal pressure fatigue characteristics The present invention relates to a method for manufacturing a UOE steel pipe suitable for a line pipe or the like.
[0002]
[Prior art]
In recent years, line pipes have become increasingly important as a long-distance transportation method for crude oil and natural gas. In particular, to improve transportation efficiency by increasing pressure and to improve local construction efficiency by reducing the outer diameter and weight of line pipes. Now, there is a strong need for a high-strength line pipe that exceeds X100 (tensile strength of 760 MPa or more) in the API standard.
[0003]
With the increase in strength of line pipes, the softening of the weld heat affected zone (hereinafter HAZ), which was hardly considered a problem in conventional welding such as submerged arc welding of medium and low strength materials with a tensile strength of about 700 MPa, A new problem has arisen that a high strength material exceeding 760 MPa becomes large.
[0004]
On the other hand, when a general-purpose UOE steel pipe is used for a main line pipe, the pulsation of the internal pressure is small, and fatigue failure from the seam weld does not become a problem. However, in environments where pressure increase and decrease are repeated or in environments where internal pressure pulsations are frequently experienced, fatigue strength is required, and the fatigue strength of seam welds is much smaller than the fatigue strength of the tube, It has been desired to improve the fatigue strength of seam welds more than ever.
[0005]
For such a problem, Patent Document 1 discloses a method of increasing strength by applying compressive residual stress to HAZ during steel pipe welding. However, even if this method is applied to a seam welded portion in the UOE steel pipe manufacturing method, a remarkable effect was not obtained. In addition, when applying residual stress by shot blasting, offline work is a prerequisite for the processing of steel balls, making online equipment difficult.
[0006]
Further,
[0007]
[Patent Document 1]
JP 54-47839 A [Patent Document 2]
US Pat. No. 6,171,415
[Problems to be solved by the invention]
The present invention stabilizes the strength of seam welds and HAZ of high-strength UOE steel pipes without improving the molding conditions, shape of seam welds, and base metal components, and improves the internal pressure fatigue strength of general-purpose UOE steel pipes. Further, the present invention provides a method for manufacturing a UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics.
[0009]
[Means for Solving the Problems]
In order to solve such problems, seam welds of high strength UOE steel pipes and HAZ tensile tests and Charpy impact tests are performed, fatigue tests of general-purpose UOE steel pipes are performed, and post-weld processing to weld toes And invented a manufacturing method for improving the tensile strength, toughness and fatigue properties of seam welds and HAZ. The gist of the present invention is as follows.
(1) In a method of manufacturing a UOE steel pipe in which steel plates are sequentially formed into C, U, and O, and the ends of the steel plates are seam welded and then expanded, at least the seam weld toe after the expansion is peened by ultrasonic vibration. A method for producing a UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics, characterized by performing a treatment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, as shown in FIG. 1, the inventor first forms a UOE steel pipe having a tensile strength of 600 to 1050 MPa by C-forming, U-forming, O-forming a steel plate, and seam welding the ends of the steel plate, and then expanding the pipe. Manufactured by. The outer diameter and wall thickness were 609 to 904 mm and 16 to 38 mm, respectively. After flattening these UOE steel pipes, a JIS Z 2201 No. 14B tensile test piece with a seam weld in the center was sampled and subjected to a tensile test in accordance with JIS Z 2241.
[0011]
The result is shown in FIG. 2, which shows the relationship between the fracture form and whether the fractured part is a joint or a tube and the tensile strength. Rupture) is the preferred form of rupture. When the tensile strength is 780 MPa or less, the tube breaks, but when the tensile strength is over 780 MPa and less than 950 MPa, both fracture forms of joint breakage and tube breakage are observed. It was found to break.
[0012]
Further, detailed analysis of the fracture surface after fracture of the joint fractured test piece was carried out visually and with a scanning electron microscope. As a result, it was found that the fracture origin was the weld toe on the inner surface. From this, it was concluded that the cause of breakage in the high-strength material was the softening of the seam weld toe, and it was possible to break the base metal by strengthening this part.
[0013]
As a method for improving the strength of the seam weld toe, as shown schematically in FIGS. 3 and 4, there is a method of introducing processing strain by shot blasting or reinforcing by TIG welding to the seam weld after expansion. Can be mentioned.
[0014]
That is, FIG. 3 and FIG. 4 schematically show the state of the cross-section after performing the above processing. In FIG. 3, the base material (steel plate) 1 is an outer
[0015]
Further, in FIG. 4, as in FIG. 3, the base material (steel plate) 1 is seam welded by the outer
[0016]
Shot blasting or TIG welding reinforcement was applied to seam welds of UOE steel pipes having a tensile strength, outer diameter and wall thickness of 600 to 1050 MPa, 609 to 904 mm, and 16 to 38 mm, respectively. Shot blasting or TIG welding reinforcement was applied to a range that sufficiently covered the HAZ including the toe. In shot blasting, the processing depth was 0.05 to 0.15 mm from the surface. The processing depth was measured by observing plastic deformation in the vicinity of the surface with a microphotograph and measuring Vickers hardness. TIG welding was performed at a heat input of 0.2 to 1.0 kJ / mm and a speed of 10 cm / min.
[0017]
After flattening these UOE steel pipes, a JIS Z 2201 No. 14B tensile test piece with a seam weld in the center was sampled and subjected to a tensile test in accordance with JIS Z 2241. FIG. 5 shows a test result of a steel pipe in which processing distortion due to shot blasting is introduced into the seam welded portion after pipe expansion, and FIG. 6 shows a test result of a steel pipe reinforced by TIG welding.
[0018]
From FIG. 5, when processing strain is introduced into the seam weld after pipe expansion by shot blasting, the boundary at which the joint breaks is 970 MPa, which is significantly improved compared to the result of FIG. The joint fracture still occurred for the steel pipe having the following strength. In addition, when TIG welding reinforcement was performed as shown in FIG. 6, the joint fracture did not occur even with a high-strength material of 1050 MPa, and the effect was more remarkable than shot blasting.
[0019]
As described above, by strengthening the seam welded portion by shot blasting and TIG welding reinforcement, an effect is seen in preventing joint breakage of the high-strength material. However, the effect of shot blasting is insufficient, and on-line equipment is difficult to process steel balls. Further, although TIG welding reinforcement is effective, it is necessary to newly add a welding facility, and production efficiency is poor, so that it cannot be manufactured at low cost.
[0020]
Therefore, we focused on peening by ultrasonic vibration, which is easier to implement on-line than shot blasting, has a deep machining depth, and can be expected to improve the structure. FIG. 7 shows a schematic diagram showing a state of a cross section after the peening treatment by ultrasonic vibration is performed so as to cover the heat affected zone including the toe portion of the steel pipe after the pipe expansion.
[0021]
That is, in FIG. 7, the base material (steel plate) 1 is seam welded by the outer
[0022]
When plastic deformation is applied to the HAZ including the toe by peening by ultrasonic vibration, the processing depth reaches several millimeters. Therefore, the effect of hardening the softened HAZ is superior to that of shot blasting by the peening treatment by ultrasonic vibration, and as a result, a better tubular body fracture form is obtained.
[0023]
In addition, although the ultrasonic generator for ultrasonic vibration used in the present invention is not particularly limited, an ultrasonic wave is oscillated by an oscillator using a power source of 500 w to 1 kw, and the frequency is converted to 20 to 60 kHz by a transducer. Further, the amplitude is amplified by a wave guide, and an ultrasonic vibration terminal composed of a pin having a diameter of 2 mm to 6 mmφ is mechanically vibrated with an amplitude of 20 to 40 μm. Indentation with a depth of about several hundreds μm can be formed on the surface before hitting while maintaining the above.
[0024]
Here, the indentation is a shape change of a depth of about several hundred μm from the surface before the ultrasonic treatment of the portion subjected to the ultrasonic treatment, and can be measured by a macro photograph of a cross section or a stylus meter. The above-mentioned processing depth is a depth that has undergone plastic processing by ultrasonic vibration, and is a portion having a processed structure of several millimeters from the surface, and can be measured by a micrograph of a cross section. Moreover, it can measure by the Vickers hardness test based on JISZ2244 as a hardness change of the process structure | tissue with respect to a base material, for example.
[0025]
【Example】
Example 1
UOE steel pipes having joint tensile strengths of 620 to 1050 MPa, outer diameters and wall thicknesses of 609 to 904 mm and 16 to 38 mm, and tube strengths of 590 to 1030 MPa were produced. Seam welding was performed by submerged arc welding. After the pipe expansion, the HAZ including the toe portions of the inner and outer surfaces of the seam welded portion was subjected to a peening process by ultrasonic vibration with a tool amplitude of 40 μm and a vibration frequency of 30 kHz. The depth of the indentation was measured from a macro photograph of the sample cross section and was 0.05 to 0.1 mm.
[0026]
After flattening these UOE steel pipes, a JIS Z 2201 No. 14B tensile test piece with a seam weld in the center was sampled and subjected to a tensile test in accordance with JIS Z 2241. The results are shown in FIG. 8, and when the peening treatment by ultrasonic vibration was applied to the HAZ including the toe portion of the seam welded portion, the joint material was broken even at a joint strength of a maximum of 1050 MPa.
[0027]
Breaking from the base metal in the welded joint tensile test means breaking from the pipe body in a burst test using an actual pipe. Therefore, it is the most preferable fracture mode when used for a line pipe or the like.
[0028]
(Example 2)
UOE steel pipes having a tensile strength of 600 MPa and outer diameters and thicknesses of 660 mm and 25 mm, respectively, were produced. Seam welding was performed by submerged arc welding. After the pipe expansion, the HAZ including the toe portions of the inner and outer surfaces of the seam welded portion was subjected to a peening process by ultrasonic vibration with a tool amplitude of 40 μm and a vibration frequency of 30 kHz. The depth of the indentation was measured from a macro photograph of the sample cross section and was 0.05 to 0.1 mm. For comparison, some steel pipes were subjected to shot blasting on the HAZ including the toe ends of the inner and outer surfaces of the seam welded portion after pipe expansion. The shot blasting conditions were adjusted so that the surface roughness was 0.1 mm in Rmax and 0.15 mm in processing depth. Rmax was measured with a stylus meter, and the processing depth was measured as the depth of the processed structure by observing 3 to 5 views of the microstructure of the cross section.
[0029]
These steel pipes, that is, steel pipes obtained by peening treatment or shot blasting by ultrasonic vibration on the HAZ including the toe ends of the inner and outer surfaces of the seam welded part, and the steel pipes as expanded, were subjected to an actual pipe internal pressure fatigue test. The internal pressure fatigue test was performed by using oil as a pressure medium and increasing and decreasing the internal pressure so that a predetermined stress ratio was obtained at 10 seconds / cycle so that no axial force was generated. The internal pressure fatigue characteristics were evaluated as the number of cycles until a burst occurred when the stress ratio was changed. The results are shown in FIG.
[0030]
In FIG. 9, the result of the test material subjected to the peening treatment by ultrasonic vibration is shown as “ultrasonic peening”. The internal pressure fatigue characteristics of a steel pipe that had been subjected to peening treatment by ultrasonic vibration on the HAZ including the toes on the inner and outer surfaces of the seam welded portion were significantly improved compared to the steel pipe that had been expanded and shot blasted after the expansion.
[0031]
As described above, the steel pipe with shot blasting on the HAZ including the toes on the inner and outer surfaces of the seam welded part was subjected to the internal pressure fatigue test as a comparative material. However, the internal pressure fatigue characteristics of the steel pipe subjected to peening treatment by ultrasonic vibration And the effects of the present invention were demonstrated.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics by performing peening treatment by ultrasonic vibration on the seam welded portion after pipe expansion by the UOE method. As a result, the industrial contribution is extremely high.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a steel pipe manufacturing process by a UOE method.
FIG. 2 is a view showing a comparison of the breaking mode of the joint as it is expanded, according to the breaking strength.
FIG. 3 is a schematic diagram showing a state of a cross section after performing a shot blast process on a seam welded portion.
FIG. 4 is a schematic view showing a state of a cross section after TIG welding reinforcement is applied to a seam welded portion.
FIG. 5 is a diagram showing a comparison of fracture forms of welded joints subjected to shot blasting treatment according to fracture strength.
FIG. 6 is a diagram showing a comparison of fracture forms of welded joints subjected to TIG welding reinforcement according to fracture strength.
FIG. 7 is a schematic diagram showing a state of a cross section after peening treatment by ultrasonic vibration of the present invention to a seam welded portion.
FIG. 8 is a diagram showing a comparison of fracture forms of UOE steel pipes subjected to peening treatment by ultrasonic vibration according to the present invention according to fracture strength.
FIG. 9 is a diagram showing a comparison of the effects of peening treatment by ultrasonic vibration of the present invention and other treatments on the strength of an internal pressure fatigue test of a UOE steel pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...
5 ...
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002318082A JP3843059B2 (en) | 2002-10-31 | 2002-10-31 | Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002318082A JP3843059B2 (en) | 2002-10-31 | 2002-10-31 | Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004148384A JP2004148384A (en) | 2004-05-27 |
JP3843059B2 true JP3843059B2 (en) | 2006-11-08 |
Family
ID=32461307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002318082A Expired - Fee Related JP3843059B2 (en) | 2002-10-31 | 2002-10-31 | Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3843059B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5130478B2 (en) * | 2007-07-31 | 2013-01-30 | 新日鐵住金株式会社 | Butt weld joint with excellent fatigue characteristics and method for producing the same |
JP5251486B2 (en) * | 2008-12-22 | 2013-07-31 | 新日鐵住金株式会社 | Machining method using ultrasonic impact treatment |
-
2002
- 2002-10-31 JP JP2002318082A patent/JP3843059B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004148384A (en) | 2004-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4319828B2 (en) | Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product | |
JP3899007B2 (en) | Method for improving fatigue strength of lap fillet welded joints | |
JP5130478B2 (en) | Butt weld joint with excellent fatigue characteristics and method for producing the same | |
JP4441166B2 (en) | Method for improving environmentally-assisted cracking resistance of steel structure products | |
JP3002229B2 (en) | Method for improving the fatigue strength of welded joints | |
JP5251486B2 (en) | Machining method using ultrasonic impact treatment | |
JP3843059B2 (en) | Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics | |
EP1579945A1 (en) | Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure | |
JP3899008B2 (en) | Method for improving fatigue strength of butt welded joints | |
JP3872742B2 (en) | UOE steel pipe manufacturing method with excellent formability | |
JP3820208B2 (en) | Method for improving fatigue strength of lap welded joints | |
JP4709697B2 (en) | Method for improving fatigue strength of metal lap weld joints | |
JP2007283355A (en) | Ultrasonic impact treatment method of weld toe and ultrasonic impact treated weld toe superior in fatigue resistant characteristic | |
JP6042074B2 (en) | Ultrasonic shock treatment method | |
JP6314670B2 (en) | Structure with excellent fatigue characteristics | |
JP3840172B2 (en) | UOE steel pipe manufacturing method with excellent HAZ toughness | |
JP2007210023A (en) | High strength welded steel pipe having excellent weld zone embrittlement crack property | |
WO2004042093A1 (en) | Iron structure product and metal structure product excelling in resistance to liquid metal embrittlement and process for producing the same | |
JP2023162132A (en) | Method for suppressing fatigue crack initiation of weld zone and method for manufacturing weld joint | |
Shajan et al. | Role of residual stress in the failure of HF-ERW welded tubes | |
RU2821463C1 (en) | Method of ultrasonic impact treatment for reduction of residual stresses in butt joints of pipes of strength class k60 | |
JP2023162133A (en) | Method for suppressing fatigue crack initiation of weld zone and method for manufacturing weld joint | |
KR102606405B1 (en) | Needle peening method | |
WO2004029303A1 (en) | Method of improving fatigue strength of work end portion of steel | |
Simion et al. | Study of fatigue behavior of longitudinal welded pipes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060811 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3843059 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090818 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110818 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |