JP5251486B2 - Machining method using ultrasonic impact treatment - Google Patents

Machining method using ultrasonic impact treatment Download PDF

Info

Publication number
JP5251486B2
JP5251486B2 JP2008326065A JP2008326065A JP5251486B2 JP 5251486 B2 JP5251486 B2 JP 5251486B2 JP 2008326065 A JP2008326065 A JP 2008326065A JP 2008326065 A JP2008326065 A JP 2008326065A JP 5251486 B2 JP5251486 B2 JP 5251486B2
Authority
JP
Japan
Prior art keywords
processing
ultrasonic
weld toe
hitting
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008326065A
Other languages
Japanese (ja)
Other versions
JP2010142870A (en
Inventor
環輝 鈴木
知徳 冨永
哲郎 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008326065A priority Critical patent/JP5251486B2/en
Publication of JP2010142870A publication Critical patent/JP2010142870A/en
Application granted granted Critical
Publication of JP5251486B2 publication Critical patent/JP5251486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、例えば、橋梁の橋桁、自動車や自動二輪の足回りの部品、家電製品などの成型部品などの疲労特性を改善する技術に関し、特に引張り残留応力が生じやすい溶接部または塑性加工部に圧縮応力を導入し、疲労特性を向上するための超音波打撃装置を用いた加工法に関する。   The present invention relates to a technique for improving fatigue characteristics of, for example, a bridge girder of a bridge, parts for automobile and motorcycle undercarriages, and molded parts such as home appliances. The present invention relates to a processing method using an ultrasonic impacting device for introducing compressive stress and improving fatigue characteristics.

一般に溶接構造物における溶接部及びその近傍(以下、溶接止端部ということもある)は、溶接後の熱収縮により引っ張り残留応力が生じやすいと同時に、その形状が急峻な角度を有する切欠形状となりやすいことに起因して、溶接継手の繰返し応力付加時に応力集中部となりやすい。
また、冷間プレス成形などにより強い引っ張り応力が付与される金属部品の塑性変形領域にも、同様に引っ張り残留応力が生じる。
In general, a welded portion and its vicinity (hereinafter, also referred to as a weld toe) in a welded structure are likely to have tensile residual stress due to thermal shrinkage after welding, and at the same time have a notch shape with a steep angle. Due to the fact that it is easy, it tends to become a stress concentration part when cyclic stress is applied to the welded joint.
Similarly, a tensile residual stress is also generated in a plastic deformation region of a metal part to which a strong tensile stress is applied by cold press forming or the like.

特に、橋梁の橋桁、自動車の足回り部品などの溶接構造物、自動車ホイールなど成形部品などでは、繰り返し荷重を受ける環境下で使用されるため、引っ張り残留応力が生じやすい溶接部や塑性変形部位が疲労亀裂の発生箇所となり、疲労特性を低下させる主要な原因となっている。   In particular, welded structures such as bridge girders, undercarriage parts of automobiles, molded parts such as automobile wheels, etc. are used in environments subject to repeated loads. It becomes a place where fatigue cracks occur, and is a major cause of reducing fatigue properties.

従来、溶接構造物の溶接止端部に生じた引っ張り残留応力部に対して外部から圧縮応力を導入し、疲労特性を改善させるための方法として、ショットピーニング、ハンマーピーニング、超音波打撃処理等が知られている。   Conventionally, shot peening, hammer peening, ultrasonic hammering, etc. are methods for introducing compressive stress from the outside to the tensile residual stress part generated at the weld toe of the welded structure and improving the fatigue characteristics. Are known.

ショットピーニングは、1mm以下の硬質金属球体を圧縮空気などにより処理対象物表面に吹き付けることにより、表面に圧縮残留応力を導入する方法である。また、ハンマーピーニングは、硬質金属棒を用いて処理対象物表面を機械的に打撃することにより、表面に圧縮残留応力を導入する方法である。   Shot peening is a method of introducing a compressive residual stress on the surface of the object to be processed by spraying a hard metal sphere of 1 mm or less onto the surface of the object to be processed with compressed air or the like. Hammer peening is a method of introducing a compressive residual stress to the surface of the object by mechanically hitting the surface of the object to be processed using a hard metal rod.

これに対し、超音波打撃処理は、上記ショットピーニングやハンマーピーニングに比べて、反動が少なくて作業性が良く、また、比較的深い領域まで圧縮残留応力を導入できる方法として知られている。この超音波打撃処理は、硬質金属製の超音波振動端子を超音波を用いて高周波数で振動させ、その端子で処理対象物表面を打撃することにより、処理対象物表面に圧縮残留応力を導入する方法である。   On the other hand, the ultrasonic hitting process is known as a method capable of introducing compressive residual stress to a relatively deep region with less reaction and better workability than the shot peening and hammer peening. This ultrasonic striking treatment introduces compressive residual stress to the surface of the object to be treated by vibrating an ultrasonic vibration terminal made of hard metal at a high frequency using ultrasonic waves and hitting the surface of the object to be treated with the terminal. It is a method to do.

しかし、ショットピーニング、ハンマーピーニング、超音波打撃処理は、いずれも、硬質金属により打撃して処理対象物表面に圧縮応力を付与する方法であるため、処理表面に圧縮残留応力を多く導入しようとすると、結果的に表面性状を劣化させることになり、さらに、表面に形成された凹部は応力集中部および疲労亀裂発生基点となる恐れがあるため、疲労強度の飛躍的な向上には限界があった。   However, shot peening, hammer peening, and ultrasonic hitting treatment are all methods of applying compressive stress to the surface of the object to be processed by hitting with a hard metal. As a result, the surface properties are deteriorated, and furthermore, the recess formed on the surface may become a stress concentration part and a fatigue crack initiation point, so there is a limit to dramatic improvement in fatigue strength. .

この超音波打撃処理技術については、特許文献1に開示されている。また、その技術を用いて溶接継手の疲労強度を向上させる技術としては、例えば、特許文献2〜4に開示されている。   This ultrasonic impact processing technique is disclosed in Patent Document 1. Moreover, as a technique which improves the fatigue strength of a welded joint using the technique, it is disclosed by patent documents 2-4, for example.

特許文献2には、重ね合わせした端部を溶接した後に、疲労強度向上の為に、打撃する位置を規定する方法が開示されている。しかし、この方法により規定された打撃位置は、溶接止端部を含めた位置であったため、処理表面に圧縮残留応力を多く導入する場合は、打撃表面に形成された凹部は応力集中部および疲労亀裂発生基点となるおそれがあり、疲労強度を飛躍的に向上するためには限界があった。また、溶接止端部に圧縮の応力が導入されるが、形状変化によりその絶対値には限界があった。   Patent Document 2 discloses a method for defining a hitting position in order to improve fatigue strength after welding the overlapped end portions. However, since the striking position specified by this method was the position including the weld toe, when a large amount of compressive residual stress was introduced to the treated surface, the recesses formed on the striking surface were stress concentrating and fatigued. There is a possibility that it becomes a crack initiation base point, and there is a limit to dramatically improve the fatigue strength. Moreover, although compressive stress is introduced into the weld toe, the absolute value has a limit due to the shape change.

特許文献3、特許文献4には、溶接止端部を含めない箇所についても超音波打撃することが開示されているが、これらの溶接継ぎ手形状は、溶接止端部での応力集中が高い隅肉溶接継ぎ手であり、溶接止端部で応力集中の小さい突合せ溶接継手には適用できないという問題があった。   Patent Document 3 and Patent Document 4 disclose that ultrasonic hitting is also performed on a portion that does not include the weld toe, but these weld joint shapes are corners where stress concentration at the weld toe is high. There is a problem that it is a meat welding joint and cannot be applied to a butt-welded joint having a small stress concentration at the weld toe.

米国特許6171415号明細書US Pat. No. 6,171,415 特開2004−130315号公報JP 2004-130315 A 特開2004−130313号公報JP 2004-130313 A 特開2004−130316号公報JP 2004-130316 A

上記従来技術の現状を鑑みて、本発明は、2枚の金属板を突き合わせて溶接した突合せ溶接継手の溶接止端部に生じた引っ張り残留応力に対して、超音波打撃処理法を用いて大きな圧縮残留応力を効率的に導入し、繰り返し荷重が作用する環境で従来よりも疲労特性を向上させるための超音波打撃処理法を提供することを目的とする。   In view of the above-described conventional state of the art, the present invention greatly increases the residual tensile stress generated at the weld toe of a butt welded joint where two metal plates are butted against each other using an ultrasonic impact treatment method. An object of the present invention is to provide an ultrasonic impact treatment method for efficiently introducing a compressive residual stress and improving the fatigue characteristics in an environment where a repeated load is applied.

2枚の金属板を突き合わせて溶接した突合せ溶接継手のボンド部における特定の範囲を超音波振動端子で打撃することによって、仮にビード形状不良が生じても、従来に比べて高い疲労強度を確保できる突合せ溶接継手の疲労強度向上方法を提供するものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)2枚の鋼板の端部を突合わせて溶接された突合せ溶接継手の溶接止端部近傍を超音波打撃処理することにより、突合せ溶接継手の疲労強度を向上する加工方法であって、溶接止端部に沿った方向の材料表面上に超音波打撃処理を施して、鋼板表面から20μm〜300μmの最大深さを有する加工帯を形成する際、その打撃処理位置が、溶接止端部を含まない鋼板部分であり、かつ、前記加工帯の端部が溶接止端部から0.1mm以上7mm以下の範囲に位置すること、及び、打撃処理位置における単位時間あたりの処理長さをT[mm/sec]、打撃処理ピンの直径をD[mm]としたときに、下記式1で定義される打撃処理密度A[sec/mm ]が、0.0125[sec/mm ]以上であることを特徴とする超音波打撃処理を用いた加工方法。
A=1/(T・D 2 ) ・・・(式1)
By hitting a specific range in the bond part of a butt welded joint where two metal plates are butted together with an ultrasonic vibration terminal, even if a bead shape defect occurs, higher fatigue strength can be ensured than before. The present invention provides a method for improving the fatigue strength of a butt-welded joint, the gist of which is as follows.
(1) A processing method for improving the fatigue strength of a butt-welded joint by subjecting the vicinity of a weld toe of a butt-welded joint welded by butting the ends of two steel plates to each other, When forming a processing band having a maximum depth of 20 μm to 300 μm from the surface of the steel sheet by subjecting the material surface in the direction along the weld toe to ultrasonic striking, the striking position is the weld toe And the processing length per unit time at the striking processing position is T, and the end of the working band is located in the range of 0.1 mm to 7 mm from the weld toe. When the diameter of the impact treatment pin is D [mm], the impact treatment density A [sec / mm 3 ] defined by the following formula 1 is 0.0125 [sec / mm 3 ] or more. A processing method using ultrasonic striking treatment, characterized by being:
A = 1 / (T · D 2 ) (Formula 1)

本発明によれば、超音波打撃処理を用いた加工方法における処理位置を最適制御することにより、2枚の鋼板を突き合わせて溶接した突合せ溶接継手の溶接止端部に生じた引っ張り残留応力のうち、特に繰り返し荷重が作用する方向に大きな圧縮残留応力を効率的・効果的に導入することができ、その結果、溶接構造物および成形加工部品の疲労特性を従来よりも向上させることが可能となる。   According to the present invention, by optimally controlling the processing position in the processing method using ultrasonic hammering processing, out of the tensile residual stress generated at the weld toe of the butt weld joint in which two steel plates are butted together and welded In particular, large compressive residual stresses can be efficiently and effectively introduced in the direction in which repeated loads are applied, and as a result, the fatigue characteristics of welded structures and molded parts can be improved as compared with conventional ones. .

本発明の実施の形態について、図1及至図4を用いて詳細に説明する。
図1は、超音波打撃装置を用いた加工方法を例示する図である。
図1においては、突合わされた鋼板1および鋼板2は、溶接金属3により突き合せ溶接されている。超音波打撃処理は、超音波振動端子4により、溶接金属3に沿った方向に鋼板を打撃することにより行われる。その結果、超音波振動端子4により打撃された部分に、溶接金属3に沿った加工帯5が形成される。
Embodiments of the present invention will be described in detail with reference to FIGS.
FIG. 1 is a diagram illustrating a processing method using an ultrasonic striking device.
In FIG. 1, the butt steel plate 1 and the steel plate 2 are butt welded by a weld metal 3. The ultrasonic hitting process is performed by hitting a steel plate in the direction along the weld metal 3 with the ultrasonic vibration terminal 4. As a result, a processed band 5 along the weld metal 3 is formed in the portion hit by the ultrasonic vibration terminal 4.

図1に示すように、溶接止端部7に沿った鋼板1表面上に、超音波打撃処理による加工帯5を形成し、その加工帯5が、溶接止端部7を含まないよう加工する。その際、その加工帯5の溶接金属3に近い側の加工帯端部6の位置が、加工帯に近い側の溶接止端部7から0.1mm以上7mm以下、すなわち、加工帯端部6と溶接止端部7の間の距離が0.1mm以上7mm以下となるように加工するのがよいことを見出した。   As shown in FIG. 1, a processing band 5 is formed on the surface of the steel plate 1 along the weld toe portion 7 by an ultrasonic impact treatment, and the processing band 5 is processed so as not to include the weld toe portion 7. . At that time, the position of the work band end 6 near the weld metal 3 of the work band 5 is 0.1 mm or more and 7 mm or less from the weld toe 7 near the work band, that is, the work band end 6. It was found that the distance between the weld toe 7 and the weld toe portion 7 is preferably 0.1 mm or more and 7 mm or less.

疲労が生じる箇所に圧縮応力が入っていると、疲労寿命が向上する。このとき、圧縮残留応力の絶対値が大きいほどその疲労強度向上効果は大きいものと考えられる。特につき合わせ溶接のように、溶接止端部における応力集中係数が大きくない場合、疲労向上効果は大きい。さらに、鋼材の強度が高い程、導入される圧縮の残留応力は高くなるため、鋼材強度が高い程、疲労向上効果は大きい。   If compressive stress is present at a place where fatigue occurs, the fatigue life is improved. At this time, the fatigue strength improvement effect is considered to be greater as the absolute value of the compressive residual stress is larger. In particular, when the stress concentration coefficient at the weld toe is not large as in the case of butt welding, the fatigue improvement effect is great. Furthermore, the higher the strength of the steel material, the higher the residual stress of the introduced compression. Therefore, the higher the steel material strength, the greater the fatigue improvement effect.

しかし、図2に示すような、溶接止端部も打撃する従来から行われている超音波打撃処理方法では、実験してみると、打撃処理前に溶接止端部であった位置について、打撃加工により生じた加工帯処理方向に直角方向(図2に示すX方向)では、圧縮応力が導入されるが、その値は十分に大きな値ではない結果が得られた。   However, in the conventional ultrasonic hitting method for hitting the weld toe as shown in FIG. 2, when experimented, the position of the weld toe before hitting was hit. In the direction perpendicular to the processing direction of the processing band generated by processing (X direction shown in FIG. 2), a compressive stress is introduced, but the value is not sufficiently large.

しかも、溶接金属に遠い側の加工帯処理端部6から少し離れた位置9について、加工帯処理方向に直角であるX方向の圧縮残留応力は、溶接金属に遠い側の加工帯処理端部よりも、導入される圧縮の応力の絶対値が大きいことも判明した。   In addition, the compressive residual stress in the X direction, which is perpendicular to the working band processing direction, at a position 9 slightly away from the working band processing end 6 on the side far from the weld metal is more than the working band processing end on the side far from the weld metal. It was also found that the absolute value of the compressive stress introduced was large.

この理由を推定すると、以下のようになる。
超音波打撃処理では、超音波で駆動した超音波振動端子により打撃加工された加工帯周辺には圧縮の残留応力が導入されるが、打撃箇所(加工帯真上)においては、その衝撃で形状が変化することにより、圧縮の残留応力の一部は開放されてしまうと考えられる。
これに対し、打撃箇所から離れた位置においては、形状変化もなく、導入された圧縮の残留応力がすべて残留することにより、打撃位置よりも絶対値の高い圧縮残留応力となり、加工帯よりもさらに離れた領域においては、応力バランスで、逆に引張残留応力となると考えられる。
The reason is estimated as follows.
In ultrasonic striking treatment, compressive residual stress is introduced around the work zone that has been hit by the ultrasonic vibration terminal driven by ultrasonic waves. It is considered that a part of the compressive residual stress is released by the change of.
On the other hand, at the position away from the hitting location, there is no shape change, and all of the introduced compressive residual stress remains, resulting in a compressive residual stress having a higher absolute value than the hitting position, and even more than the processing band. In the distant region, it is considered that the tensile residual stress is reversed due to the stress balance.

以上の結果から、以下のことを想定した。
処理の進行方向に直角の方向での圧縮残留応力の値は、打撃処理位置と止端部との距離に関係し、止端部から離して打撃処理を行い、その離す距離を適度にすることにより、止端部の処理方向に垂直方向での圧縮残留応力の絶対値を大きくすることができる。
From the above results, we assumed the following.
The value of the compressive residual stress in the direction perpendicular to the processing direction is related to the distance between the hitting position and the toe part, and the hitting process is performed away from the toe part, and the distance to be released is appropriate. Thus, the absolute value of the compressive residual stress in the direction perpendicular to the processing direction of the toe portion can be increased.

これらの考えを基礎に、直径D=2mm、4mm、8mmの超音波振動端子を用いて、処理位置と溶接線の距離を変えて、溶接線に平行に加工帯を形成した場合の止端部の処理垂直方向の残留応力がどのように変化し、疲労特性にどのように変化するかを検討した。   On the basis of these ideas, the toe when a processing band is formed parallel to the weld line by changing the distance between the processing position and the weld line using an ultrasonic vibration terminal having a diameter D = 2 mm, 4 mm, and 8 mm. We examined how the residual stress in the vertical direction of the process changes and the fatigue characteristics change.

(実験方法)
超音波打撃(UIT)装置(Applied Uitrasonic社製):電源1kw、周波数27kHz
超音波振動端子の直径:2mm、4mm、8mm
出力パワー:機器と機器の設定値に依存する。このUIT装置では、装置についている
回転つまみで1〜9まで調整できるが絶対値は不明であった。
また、超音波打撃処理を施して加工帯を形成する際、打撃処理速度(打撃処理位置における単位時間あたりの処理長さ)をT[mm/sec]、打撃処理ピンの直径をD[mm]としたときに、下記式1で定義される打撃処理密度A[sec/mm3]を変えて実験を行った。
A=1/(T・D2 ) ・・・(式1)
(experimental method)
Ultrasonic impact (UIT) device (Applied Uitrasonic): Power supply 1kw, frequency 27kHz
Ultrasonic vibration terminal diameter: 2mm, 4mm, 8mm
Output power: Depends on device and device settings. This UIT device is attached to the device
Although it can be adjusted from 1 to 9 with the rotary knob, the absolute value was unknown.
Further, when forming a processing band by performing ultrasonic hitting processing, the hitting processing speed (processing length per unit time at the hitting processing position) is T [mm / sec], and the diameter of the hitting processing pin is D [mm]. Then, the experiment was conducted by changing the impact treatment density A [sec / mm 3 ] defined by the following formula 1.
A = 1 / (T · D 2 ) (Formula 1)

(残留応力の測定)
残留応力の測定は、X線回折によりsin2ψ−2θ法を用いて行った。測定に用いた装置はリガク(株)のMSF−2Mを用い、X線の管球はCr、検出器はシンチレーション計測器を用い、電圧は30kv、電流は10mA、回折線の測定方法に並傾法を用い、X線の入射方法にψ一定法を用い、入射角ψは0度、15度、30度、45度の4点について、検出器を151度〜161度までの範囲について3sec/step、ステップ間隔0.25度でステップ操作をして測定し、ピークの決定には半値幅法を用いた。
(Measurement of residual stress)
The residual stress was measured by X-ray diffraction using the sin2ψ-2θ method. The apparatus used for the measurement is MSF-2M manufactured by Rigaku Corporation, the X-ray tube is Cr, the detector is a scintillation measuring instrument, the voltage is 30 kv, the current is 10 mA, and the method for measuring diffraction lines is tilted. Is used, and the X-ray incidence method is the ψ constant method, and the incident angle ψ is 3 sec / in the range of 151 ° to 161 ° with respect to four points of 0 °, 15 °, 30 °, and 45 °. Measurement was performed by step operation at a step of 0.25 degrees, and the half-width method was used to determine the peak.

応力測定においては、フェライトの[211]回折面を利用し、物理定数として吸収係数850.04、ヤング率21000kgf/mm、ポアッソン比0.28、応力定数−32.44を用いた。測定領域は0.5mm(処理方向に垂直な方向)×6mm(処理方向)について測定を行った。 In the stress measurement, the [211] diffraction surface of ferrite was used, and an absorption coefficient of 850.04, a Young's modulus of 21000 kgf / mm 2 , a Poisson's ratio of 0.28, and a stress constant of −32.44 were used as physical constants. The measurement area was 0.5 mm (direction perpendicular to the processing direction) × 6 mm (processing direction).

図3は、溶接止端部に近い側の加工帯端部から加工帯に近い側の溶接止端までの距離Xと加工帯に近い側の溶接止端部での残留応力の関係を示す図である。
図3においては、横軸の前記距離Xと残留応力との間に相関が見られ、その距離が7mm以下であれば、溶接止端部を超音波加工した場合よりも、圧縮の残留応力が高いことがわかる。
FIG. 3 is a diagram showing the relationship between the distance X from the end of the work band near the weld toe to the weld toe near the work band and the residual stress at the weld toe near the work band. It is.
In FIG. 3, there is a correlation between the distance X on the horizontal axis and the residual stress. If the distance is 7 mm or less, the residual stress of compression is higher than that in the case where the weld toe portion is ultrasonically processed. I understand that it is expensive.

このことから、溶接金属に近い側の加工帯端部と加工帯に近い側の溶接止端部の距離Xを7mm以下にすれば、溶接止端部を含む位置に加工帯を形成した場合に比べ、加工帯に近い側の溶接止端部の残留応力を高くすることができる。
その際、溶接金属に近い側の加工帯端部を溶接止端部にできるだけ近づけていけば、加工帯に近い側の溶接止端部での残留応力を高くすることができるが、あまり近づけすぎた場合には、溶接止端部を処理してしまうため限界があり、実際には溶接止端部に未処理領域を残した上で0.1mmより内に近づけることは難しい。
From this, when the distance X between the work band end near the weld metal and the weld toe close to the work band is 7 mm or less, the work band is formed at a position including the weld toe. In comparison, the residual stress at the weld toe near the working band can be increased.
At that time, if the work band end near the weld metal is as close as possible to the weld toe, the residual stress at the weld toe near the work band can be increased, but it is too close. In this case, there is a limit because the weld toe is processed, and it is actually difficult to bring the weld toe closer to within 0.1 mm while leaving an untreated region at the weld toe.

以上のように超音波打撃位置での残留応力を高くすることができれば、疲労強度を向上させることができる。
図4に、溶接止端部に近い側の加工帯から加工帯に近い側の溶接止端部までの距離Xと加工帯に近い側の溶接止端部の疲労強度(破断寿命が200万回となる応力範囲)の関係を示すが、上記距離Xを7mm以下にすれば、疲労強度も向上することが示されている。
If the residual stress at the ultrasonic hitting position can be increased as described above, the fatigue strength can be improved.
FIG. 4 shows the distance X from the work band near the weld toe to the weld toe near the work band and the fatigue strength of the weld toe near the work band (breaking life is 2 million times). It is shown that if the distance X is 7 mm or less, the fatigue strength is also improved.

さらに、超音波打撃端子のサイズ(ピンサイズ)を変えた場合について検討したところ、単位面積あたりの打撃密度(単位時間に単位面積に与えられるエネルギー=1/単位時間あたりの処理長さ・ピンの面積)を同じにした場合、残留応力の分布はほぼ同じになり、疲労強度も同程度の結果となった。   Furthermore, when the size of the ultrasonic impact terminal (pin size) was changed, the impact density per unit area (energy given to the unit area per unit time = 1 / processing length per unit time / pin length) When the area was the same, the distribution of residual stress was almost the same, and the fatigue strength was the same.

そこで、打撃処理密度の大きさについて検討した結果、その値を0.0125[sec/mm]以上とすることにより、より高い圧縮残留応力を付与できることがわかった。
すなわち、打撃処理位置における単位長さあたりの処理時間をT[mm/sec]、打撃処理ピンの直径をD[mm]としたときに、下記式1で定義される打撃処理密度A[sec/mm]が、0.0125[sec/mm]以上となるように、打撃処理ピンの直径に応じて単位長さあたりの処理時間を選定して、超音波打撃処理を実施すればよい。
A=1/(T・D2 ) ・・・(式1)
Therefore, as a result of examining the magnitude of the impact treatment density, it was found that a higher compressive residual stress can be imparted by setting the value to 0.0125 [sec / mm 3 ] or more.
That is, when the processing time per unit length at the impact processing position is T [mm / sec] and the diameter of the impact processing pin is D [mm], the impact processing density A [sec / mm 3] is such that 0.0125 [sec / mm 3] or more, and selected processing time per unit length in accordance with the diameter of the striking processing pin may be carried ultrasonic striking treatment.
A = 1 / (T · D 2 ) (Formula 1)

なお、打撃処理密度の値の上限は、特に制限されるものではないが、処理時間の現実的な制約から、現状では、37.5[sec/mm]である。
また、これらの効果をより顕著に得るためには、加工帯においては、処理前の表面に対して、深さ20um〜深さ300um程度の圧痕を形成するように打撃することが望ましい。
The upper limit of the value of the hitting processing density is not particularly limited, but is 37.5 [sec / mm 3 ] at present due to a practical limitation of processing time.
Moreover, in order to obtain these effects more remarkably, it is desirable to strike the processed band so as to form an indentation having a depth of about 20 μm to a depth of about 300 μm on the surface before processing.

突合せ溶接継手としては、本発明においては、金属板の突合せ溶接継手の形成に適用できる溶接方法であれば、継手を形成する溶接方法は特に問わない。レーザー溶接、プラズマ溶接や電子ビーム溶接などの高エネルギービーム溶接のほか、一般に用いられるアーク溶接によって形成された継手にも適用できる。   In the present invention, the welding method for forming a joint is not particularly limited as long as it is a welding method applicable to the formation of a butt-welded joint for metal plates. In addition to high-energy beam welding such as laser welding, plasma welding, and electron beam welding, the present invention can also be applied to joints formed by generally used arc welding.

(実施例1)
板厚1.2mm、強度490MPaの鋼板2枚を突き合わせ、レーザー溶接によって突き合わせ溶接した後、直径2mm,4mm,8mmの超音波振動端子により本発明例の打撃処理を行った。継手サイズは40mm(幅)×200mm(長さ)とした。レーザー溶接にはYAGレーザーを用い、加工点出力を3.0kW、溶接速度を7.5m/min、焦点のビーム直径を0.4mmとした。シールドにはセンターシールドトーチ、ガスとして窒素を用いた。ビームの焦点位置は、鋼板表面とした。
Example 1
Two steel plates having a plate thickness of 1.2 mm and a strength of 490 MPa were butted together and butt welded by laser welding, and then the impact treatment of the example of the present invention was performed using ultrasonic vibration terminals having diameters of 2 mm, 4 mm, and 8 mm. The joint size was 40 mm (width) × 200 mm (length). A YAG laser was used for laser welding, the processing point output was 3.0 kW, the welding speed was 7.5 m / min, and the focal beam diameter was 0.4 mm. The shield used was a center shield torch and nitrogen was used as the gas. The focal position of the beam was the steel plate surface.

超音波振動装置は、電源1kW、周波数27kHとし、超音波振動端子の振幅は30μm〜40μm、打撃処理速度(単位時間あたりの処理長さ)は、ピンのサイズにより打撃密度が変わるため、打撃密度が一定となるよう、2mmピンでは20mm/sec,4mmピンでは5mm/sec,8mmピンでは5mm/4secで行なった。   The ultrasonic vibration device has a power supply of 1 kW and a frequency of 27 kW, the amplitude of the ultrasonic vibration terminal is 30 μm to 40 μm, and the impact treatment speed (treatment length per unit time) varies depending on the size of the pin. Was fixed at 20 mm / sec for the 2 mm pin, 5 mm / sec for the 4 mm pin, and 5 mm / 4 sec for the 8 mm pin.

上記のようにピンの形状および打撃処理速度を変えた場合について、超音波振動端子による打撃処理を行った後の疲労特性を、打撃処理を溶接止端部真上に処理したものと比較し、疲労強度が10%以上向上したものをOK、それ以下のものをNGとした。
なお、疲労試験条件は、荷重比(最小荷重/最大荷重)=0.1、繰り返し速度=10kHzの片振り引張とした。
For the case where the shape of the pin and the hitting processing speed are changed as described above, the fatigue characteristics after performing the hitting process with the ultrasonic vibration terminal are compared with those in which the hitting process is processed directly above the weld toe, Those whose fatigue strength was improved by 10% or more were OK, and those with lower fatigue strength were NG.
Fatigue test conditions were one-way tension with a load ratio (minimum load / maximum load) = 0.1 and a repetition rate = 10 kHz.

これらの試験条件と評価結果を表1〜3に示す。
表1〜3に示すとおり、本願発明の規定範囲内(打撃処理位置:溶接止端部から0.1〜7mmの範囲内、打撃処理密度:0.0125sec/mm以上)で超音波打撃処理を行った発明例1〜27は、本願発明の規定範囲を外れて処理を行った、あるいは処理を行わなかった比較例1〜20に比べて継ぎ手の疲労強度が向上できることが示される。
These test conditions and evaluation results are shown in Tables 1-3.
As shown in Tables 1 to 3, ultrasonic impact treatment within the specified range of the present invention (blow treatment position: within a range of 0.1 to 7 mm from the weld toe, impact treatment density: 0.0125 sec / mm 3 or more) Inventive Examples 1 to 27 in which the joints were subjected to the treatment were shown to be able to improve the fatigue strength of the joint as compared with Comparative Examples 1 to 20 in which the treatment was performed outside the specified range of the present invention or the treatment was not performed.

Figure 0005251486
Figure 0005251486

Figure 0005251486
Figure 0005251486

Figure 0005251486
Figure 0005251486

(実施例2)
板厚1.2mm、強度780MPaの鋼板2枚を突き合わせ、レーザー溶接によって突き合わせ溶接した後、直径2mmの超音波振動端子により本発明例の打撃処理を行った。継手サイズは40mm(幅)×200mm(長さ)とした。レーザー溶接にはYAGレーザーを用い、加工点出力を3.0kW、溶接速度を7.5m/min、焦点のビーム直径を0.4mmとした。シールドにはセンターシールドトーチ、ガスとして窒素を用いた。ビームの焦点位置は、鋼板表面とした。
(Example 2)
Two steel plates having a plate thickness of 1.2 mm and a strength of 780 MPa were butted together and butt welded by laser welding, and then the impact treatment of the example of the present invention was performed using an ultrasonic vibration terminal having a diameter of 2 mm. The joint size was 40 mm (width) × 200 mm (length). A YAG laser was used for laser welding, the processing point output was 3.0 kW, the welding speed was 7.5 m / min, and the focal beam diameter was 0.4 mm. The shield used was a center shield torch and nitrogen was used as the gas. The focal position of the beam was the steel plate surface.

超音波振動装置は、電源1kW、周波数27kHとし、超音波振動端子の振幅は30μm〜40μm、打撃処理速度は10mm/sec(打撃処理密度:0.025sec/mm)で行なった。 The ultrasonic vibration device was a power source of 1 kW, a frequency of 27 kW, an ultrasonic vibration terminal having an amplitude of 30 μm to 40 μm, and an impact treatment speed of 10 mm / sec (impact treatment density: 0.025 sec / mm 3 ).

超音波振動端子による打撃処理を行った後の疲労特性を、打撃処理を溶接止端部真上に処理したものと比較し、疲労強度が10%以上向上したものをOK、それ以下のものをNGとした。なお、疲労試験条件は、荷重比(最小荷重/最大荷重)=0.1、繰り返し速度=10kHzの片振り引張とした。   The fatigue characteristics after performing the hammering treatment with the ultrasonic vibration terminal are compared with those in which the hammering treatment is processed immediately above the weld toe. NG. Fatigue test conditions were one-way tension with a load ratio (minimum load / maximum load) = 0.1 and a repetition rate = 10 kHz.

これらの試験条件と評価結果を表4に示す。
表4に示すとおり、本願発明の規定範囲内(溶接止端部から0.1〜7mmの範囲内)で超音波打撃処理を行った発明例28〜36は、本願発明の規定範囲を外れて処理を行った比較例21〜26、打撃処理を行わなかった比較例27に比べて継ぎ手の疲労強度が向上できることが示される。
These test conditions and evaluation results are shown in Table 4.
As shown in Table 4, Invention Examples 28 to 36 in which ultrasonic impact treatment was performed within the specified range of the present invention (within a range of 0.1 to 7 mm from the weld toe) deviated from the specified range of the present invention. It is shown that the fatigue strength of the joint can be improved as compared with Comparative Examples 21 to 26 where the treatment was performed and Comparative Example 27 where the hitting treatment was not performed.

Figure 0005251486
Figure 0005251486

(実施例3)
板厚1.2mm、強度490MPaの鋼板2枚を突き合わせ、アーク溶接によって突き合わせ溶接した後、直径2mmの超音波振動端子により本発明例の打撃処理を行った。継手サイズは40mm(幅)×200mm(長さ)とした。
(Example 3)
Two steel plates having a thickness of 1.2 mm and a strength of 490 MPa were butted together and butt welded by arc welding, and then the impact treatment of the example of the present invention was performed using an ultrasonic vibration terminal having a diameter of 2 mm. The joint size was 40 mm (width) × 200 mm (length).

超音波振動装置は、電源1kW、周波数27kHとし、超音波振動端子の振幅は30μm〜40μm、打撃速度は20mm/secで行なった。   The ultrasonic vibration device was a power source of 1 kW, a frequency of 27 kW, an ultrasonic vibration terminal amplitude of 30 μm to 40 μm, and an impact speed of 20 mm / sec.

超音波振動端子による打撃処理を行った後の疲労特性を、打撃処理を溶接止端部真上に処理したものと比較し、疲労強度が10%以上向上したものをOK、それ以下のものをNGとした。なお、疲労試験条件は、荷重比(最小荷重/最大荷重)=0.1、繰り返し速度=10kHzの片振り引張とした。   The fatigue characteristics after performing the hammering treatment with the ultrasonic vibration terminal are compared with those in which the hammering treatment is processed immediately above the weld toe. NG. Fatigue test conditions were one-way tension with a load ratio (minimum load / maximum load) = 0.1 and a repetition rate = 10 kHz.

これらの試験条件と評価結果を表5に示す。
表5に示すとおり、本願発明の規定範囲内(溶接止端部から0.1〜7mmの範囲内)で超音波打撃処理を行った発明例37〜45は、本願発明の規定範囲を外れて処理を行った比較例28〜33、打撃処理を行わなかった比較例34に比べて継ぎ手の疲労強度が向上できることが示される。
These test conditions and evaluation results are shown in Table 5.
As shown in Table 5, Invention Examples 37 to 45 in which ultrasonic impact treatment was performed within the specified range of the present invention (within a range of 0.1 to 7 mm from the weld toe) deviated from the specified range of the present invention. It is shown that the fatigue strength of the joint can be improved as compared with Comparative Examples 28 to 33 in which the treatment was performed and Comparative Example 34 in which the batting treatment was not performed.

Figure 0005251486
Figure 0005251486

(比較例1)
板厚1.2mm、強度490MPaの鋼板2枚を突き合わせ、レーザー溶接によって突き合わせ溶接した後、直径2mm、4mmの超音波振動端子により打撃処理を行った。継手サイズは40mm(幅)×200mm(長さ)とした。レーザー溶接にはYAGレーザーを用い、加工点出力を3.0kW、溶接速度を7.5m/min、焦点のビーム直径を0.4mmとした。シールドにはセンターシールドトーチ、ガスとして窒素を用いた。ビームの焦点位置は、鋼板表面とした。
(Comparative Example 1)
Two steel plates having a plate thickness of 1.2 mm and a strength of 490 MPa were butted together and butt-welded by laser welding, and then subjected to an impact treatment using an ultrasonic vibration terminal having a diameter of 2 mm and 4 mm. The joint size was 40 mm (width) × 200 mm (length). A YAG laser was used for laser welding, the processing point output was 3.0 kW, the welding speed was 7.5 m / min, and the focal beam diameter was 0.4 mm. The shield used was a center shield torch and nitrogen was used as the gas. The focal position of the beam was the steel plate surface.

超音波振動装置は、電源1kW、周波数27kHとし、超音波振動端子の振幅は30μm〜40μm、打撃速度は、打撃密度が変わるよう、2mmピンで30mm/sec,4mmピンでは10mm/secでおこなった。
これらの試験条件と評価結果を表6、7に示すが、上記のようにピンの形状および打撃処理速度を変えて、打撃密度を変えた場合について、超音波振動端子による打撃処理を行った後の疲労特性を、打撃処理を溶接止端部真上に処理したものと比較したが、いずれも疲労強度の向上率が10%未満であった。
なお、疲労試験条件は、荷重比(最小荷重/最大荷重)=0.1、繰り返し速度=10kHzの片振り引張とした。
The ultrasonic vibration device has a power supply of 1 kW and a frequency of 27 kW, the amplitude of the ultrasonic vibration terminal is 30 μm to 40 μm, and the striking speed is 30 mm / sec for the 2 mm pin and 10 mm / sec for the 4 mm pin so that the striking density changes. .
These test conditions and evaluation results are shown in Tables 6 and 7. After changing the shape of the pin and the hitting speed and changing the hitting density as described above, the hitting process using the ultrasonic vibration terminal was performed. The fatigue characteristics were compared with those obtained by performing the striking treatment immediately above the weld toe, and in all cases, the improvement rate of the fatigue strength was less than 10%.
Fatigue test conditions were one-way tension with a load ratio (minimum load / maximum load) = 0.1 and a repetition rate = 10 kHz.

Figure 0005251486
Figure 0005251486

Figure 0005251486
Figure 0005251486

本発明における超音波打撃処理方法を示す図である。It is a figure which shows the ultrasonic hit processing method in this invention. 従来の超音波打撃処理方法を示す図である。It is a figure which shows the conventional ultrasonic impact processing method. 溶接止端部から超音波処理の位置までの距離と溶接止端部の残留応力との関係を示す図である。It is a figure which shows the relationship between the distance from the welding toe part to the position of an ultrasonic treatment, and the residual stress of a welding toe part. 溶接止端部から超音波処理の位置までの距離と溶接継手の疲労強度(破断寿命が200万回となる応力範囲)との関係を示す図である。It is a figure which shows the relationship between the distance from the welding toe part to the position of an ultrasonic treatment, and the fatigue strength of a welded joint (stress range where a fracture life becomes 2 million times).

符号の説明Explanation of symbols

1、2 金属板
3 溶接金属
4 超音波振動端子
5 加工帯
6 加工帯端部
7 溶接止端部
X 溶接止端部から加工帯端部までの距離
D 超音波振動端子の直径
1, 2 Metal plate 3 Weld metal 4 Ultrasonic vibration terminal 5 Machining band 6 Machining band edge 7 Weld toe X Distance from weld toe to machining band edge D Diameter of ultrasonic vibration terminal

Claims (1)

2枚の鋼板の端部を突合わせて溶接された突合せ溶接継手の溶接止端部近傍を超音波打撃処理することにより、突合せ溶接継手の疲労強度を向上する加工方法であって、溶接止端部に沿った方向の材料表面上に超音波打撃処理を施して、鋼板表面から20μm〜300μmの最大深さを有する加工帯を形成する際、その打撃処理位置が、溶接止端部を含まない鋼板部分であり、かつ、前記加工帯の端部が溶接止端部から0.1mm以上7mm以下の範囲に位置すること、及び、打撃処理位置における単位時間あたりの処理長さをT[mm/sec]、打撃処理ピンの直径をD[mm]としたときに、下記式1で定義される打撃処理密度A[sec/mm ]が、0.0125[sec/mm ]以上であることを特徴とする超音波打撃処理を用いた加工方法。
A=1/(T・D 2 ) ・・・(式1)
A processing method for improving the fatigue strength of a butt-welded joint by subjecting the vicinity of the weld toe of a butt-welded joint welded by butt-welding two steel plates to each other, and improving the fatigue strength of the butt-welded joint. When forming a processing band having a maximum depth of 20 μm to 300 μm from the steel sheet surface by applying ultrasonic hitting on the material surface in the direction along the part, the hitting position does not include the weld toe It is a steel plate portion, and the end of the work band is located within a range of 0.1 mm to 7 mm from the weld toe , and the processing length per unit time at the striking processing position is T [mm / sec], the impact treatment density A [sec / mm 3 ] defined by the following formula 1 is 0.0125 [sec / mm 3 ] or more when the diameter of the impact treatment pin is D [mm]. A processing method using ultrasonic striking treatment characterized by the above.
A = 1 / (T · D 2 ) (Formula 1)
JP2008326065A 2008-12-22 2008-12-22 Machining method using ultrasonic impact treatment Active JP5251486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326065A JP5251486B2 (en) 2008-12-22 2008-12-22 Machining method using ultrasonic impact treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326065A JP5251486B2 (en) 2008-12-22 2008-12-22 Machining method using ultrasonic impact treatment

Publications (2)

Publication Number Publication Date
JP2010142870A JP2010142870A (en) 2010-07-01
JP5251486B2 true JP5251486B2 (en) 2013-07-31

Family

ID=42563840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326065A Active JP5251486B2 (en) 2008-12-22 2008-12-22 Machining method using ultrasonic impact treatment

Country Status (1)

Country Link
JP (1) JP5251486B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821516B2 (en) * 2010-10-26 2015-11-24 新日鐵住金株式会社 Welded joint and method for producing welded joint
WO2012164774A1 (en) * 2011-05-30 2012-12-06 Jfeスチール株式会社 Welded joint
JP6349785B2 (en) * 2014-02-28 2018-07-04 新日鐵住金株式会社 Ultrasonic shock treatment method
CN104846174B (en) * 2015-05-22 2017-07-07 南通中远船务工程有限公司 A kind of cylindrical leg weld residual stress cancellation element and method
JP6841042B2 (en) * 2017-01-06 2021-03-10 日本製鉄株式会社 Welded joint manufacturing method and welded joint

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060016858A1 (en) * 1998-09-03 2006-01-26 U.I.T., Llc Method of improving quality and reliability of welded rail joint properties by ultrasonic impact treatment
JP4537649B2 (en) * 2002-10-08 2010-09-01 新日本製鐵株式会社 Rotating welded joint, manufacturing method of Rotated welded joint, and welded structure
JP3899008B2 (en) * 2002-10-08 2007-03-28 新日本製鐵株式会社 Method for improving fatigue strength of butt welded joints
JP3899007B2 (en) * 2002-10-08 2007-03-28 新日本製鐵株式会社 Method for improving fatigue strength of lap fillet welded joints
JP3843059B2 (en) * 2002-10-31 2006-11-08 新日本製鐵株式会社 Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics

Also Published As

Publication number Publication date
JP2010142870A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5251486B2 (en) Machining method using ultrasonic impact treatment
CN1708593A (en) Method of increasing toughness of heat-affected part of steel product welded joint
JP3899007B2 (en) Method for improving fatigue strength of lap fillet welded joints
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
JP4392337B2 (en) Processing method and structure using ultrasonic striking device
JP3002229B2 (en) Method for improving the fatigue strength of welded joints
WO2013081015A1 (en) Method for minimizing fatigue damage in welded structure, tool for forming strike mark, and welded structure
JP5130478B2 (en) Butt weld joint with excellent fatigue characteristics and method for producing the same
KR100606312B1 (en) Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure
JP3899008B2 (en) Method for improving fatigue strength of butt welded joints
JP2004169340A (en) Reinforcement method of beam structure
JP3820208B2 (en) Method for improving fatigue strength of lap welded joints
JP4709697B2 (en) Method for improving fatigue strength of metal lap weld joints
KR101799376B1 (en) Impact tip, method for hammer peening, and method for manufacturing weld joint using the same
JP2013233590A (en) Welded joint superior in fatigue characteristic
JP5977077B2 (en) Welding peening method
JP2013136091A (en) Tool for forming impact trace
JP3843059B2 (en) Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics
JP2023162132A (en) Method for suppressing fatigue crack initiation of weld zone and method for manufacturing weld joint
JP3900490B2 (en) Fatigue reinforcement method for girders with flange gussets
JP6349785B2 (en) Ultrasonic shock treatment method
JP2023162133A (en) Method for suppressing fatigue crack initiation of weld zone and method for manufacturing weld joint
JP5955752B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP6051817B2 (en) Method for suppressing fatigue damage of welded structure, tool for forming impact mark used in the method, and welded structure
JP2013136094A (en) Weld structure of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5251486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350