JP2011131260A - Method for increasing fatigue strength of weld zone, and weld joint - Google Patents

Method for increasing fatigue strength of weld zone, and weld joint Download PDF

Info

Publication number
JP2011131260A
JP2011131260A JP2009294674A JP2009294674A JP2011131260A JP 2011131260 A JP2011131260 A JP 2011131260A JP 2009294674 A JP2009294674 A JP 2009294674A JP 2009294674 A JP2009294674 A JP 2009294674A JP 2011131260 A JP2011131260 A JP 2011131260A
Authority
JP
Japan
Prior art keywords
base material
fatigue strength
toe
weld
weld toe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009294674A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kurihara
康行 栗原
Shinji Kato
真志 加藤
Yasushi Morikage
康 森影
Hirofumi Otsubo
浩文 大坪
Makoto Doi
真 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2009294674A priority Critical patent/JP2011131260A/en
Publication of JP2011131260A publication Critical patent/JP2011131260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fatigue strength increasing method favorable when it is used for the hammer peening, and capable of increasing the fatigue strength of a weld zone in a steel structure such as a steel bridge by introducing the compressive residual stress without imparting any deformation forming a new stress concentration part in the weld zone. <P>SOLUTION: A part of a surface of a base material distant from a toe of weld is pressed normally to the surface of the base material, preferably, a part of plastically deformed zones is moved gradually to the outer side from the side in a vicinity of the toe so as to overlap each other, and subjected to plastic deformation to introduce the compressive residual stress in the toe. Favorably, a fore end of a member to be used for pressing is substantially rectangular and has a flat part of the width of ≥4 mm, a portion of the surface of the base material exceeding 3 mm from the toe is plastically deformed, and further preferably, a recess having the radius of curvature of ≥1 mm is formed in the toe in advance before the pressing is performed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼橋など鋼構造物における溶接部の疲労強度を、溶接部に新たな応力集中部となる変形を与えずに圧縮残留応力を導入し向上させる疲労強度向上方法および該方法を施した溶接継手に関し、ハンマーピーニングに用いて好適なものに関する。   The present invention provides a fatigue strength improving method for introducing and improving the fatigue strength of a welded portion in a steel structure such as a steel bridge by introducing compressive residual stress without giving the welded portion a deformation that becomes a new stress concentration portion. The present invention relates to a welded joint suitable for use in hammer peening.

近年、鋼橋の老朽化に伴い腐食や疲労に伴う損傷事例の報告が増加している。疲労損傷の防止には検査体制の確立とともに、通過車両などの作用外力を軽減したり、設計製作面からの溶接品質の向上が重要である。   In recent years, with the aging of steel bridges, reports of damage cases due to corrosion and fatigue are increasing. In order to prevent fatigue damage, it is important to establish an inspection system, to reduce external forces such as passing vehicles, and to improve welding quality from the design and production aspects.

溶接部は、割れなどの欠陥が存在したり、溶接止端部の形状が不適で応力集中部となると繰り返し応力に溶接残留応力の影響が重畳して疲労亀裂が発生しやすく、疲労破壊をもたらす場合があるため、その防止のため種々の観点からの提案がなされている。   If the weld has defects such as cracks, or if the shape of the weld toe is inappropriate and becomes a stress concentrated part, the effect of welding residual stress is superimposed on the repeated stress and fatigue cracks tend to occur, resulting in fatigue failure Since there are cases, proposals from various viewpoints have been made to prevent this.

特許文献1は、溶接部の疲労強度向上方法およびそれを用いた溶接構造物に関し、溶接止端部の近傍を超音波振動する打撃装置で塑性変形させる際、所定の打撃条件で特定寸法の溝を加工することで、短時間でかつ作業者の熟練度に依存しないで安定して疲労強度を向上させることが記載されている。   Patent Document 1 relates to a method for improving fatigue strength of a welded portion and a welded structure using the welded portion. When plastic deformation is performed by a striking device that ultrasonically vibrates the vicinity of a weld toe, a groove having a specific dimension under a predetermined striking condition. It is described that the fatigue strength is stably improved in a short time and without depending on the skill level of the operator.

特許文献2は、レーザ衝撃ピーニング方法に関し、レーザ光源からのパルスレーザビームを使用して、表面のコーティングを瞬間的に気化させてその爆発力により表面の一部に局所的に圧縮力を発生させる方法で、ガスタービンエンジンのファン動翼に圧縮残留応力を導入させることが記載されている。   Patent Document 2 relates to a laser shock peening method, which uses a pulsed laser beam from a laser light source to instantaneously vaporize a coating on the surface and generate a compressive force locally on a part of the surface by the explosive force. The method describes introducing compressive residual stress into a fan blade of a gas turbine engine.

非特許文献1は、ハンマーピーニング及びTIG処理による高強度鋼(SM570)の溶接継手部の疲労強度向上法に関し、ハンマーピーニングを施すと疲労強度が低下する場合があるため、溶接止端部の応力集中や残留応力を低減させる新たなハンマーピーニング法について検討した結果が記載されている。   Non-Patent Document 1 relates to a method for improving the fatigue strength of a welded joint portion of high strength steel (SM570) by hammer peening and TIG treatment. When hammer peening is applied, the fatigue strength may be reduced. The result of examination of a new hammer peening method for reducing concentration and residual stress is described.

通常、ハンマーピーニングは、作業者がピーニング装置のチッパーを手で持って、溶接止端部にチッパー先端が斜め上方から当たるようにし、ピーニング装置の荷重を溶接止端部に預けるようにして作業を行い作業負荷を軽減している。   Normally, hammer peening is performed by holding the chipper of the peening machine with the hand so that the tip of the chipper hits the weld toe from diagonally above and entrusting the load of the peening machine to the weld toe. To reduce the workload.

そのため、図11に示す母材1にリブ2を直立させた面外ガセット継手にハンマーピーニングを施した場合、ピーニング装置のチッパー5の先端により溶接止端部に応力集中箇所となる深い溝6が形成され、溶接ビード3の先端部から疲労亀裂7が発生する場合がある。   Therefore, when hammer peening is performed on the out-of-plane gusset joint in which the rib 2 is erected on the base material 1 shown in FIG. 11, a deep groove 6 serving as a stress concentration point is formed at the weld toe by the tip of the chipper 5 of the peening apparatus. The fatigue crack 7 may be formed from the tip of the weld bead 3.

非特許文献1にはハンマーピーニングの前にグラインダで溶接止端部の一部を予め研削すると疲労亀裂の発生防止に有効であることが紹介され、ハンマーピーニングを3パス程度の複数回行うことを提案している。   Non-Patent Document 1 introduces that it is effective to prevent the occurrence of fatigue cracks if a part of the weld toe is ground in advance with a grinder before hammer peening. is suggesting.

特開2006−175512号公報JP 2006-175512 A 特開2006−159290公報JP 2006-159290 A

IMPROVING FATIGUE STRENGTH OF WELDED JOINTS BY HAMMER PEENING TIG−DRESSING:Kengo ANAMI,Chitoshi MIKI,Hideki TANI,Haruhito YAMAMOTO,Structual Eng./Earthquake Eng.,JSCE,Vol.17,NO.1,57s−68s,2000 April)IMPROVING FATIGUE STRENGTH OF WELDED JOINTS BY HAMMER PEENING TIG-DRESSING / Earthquake Eng. , JSCE, Vol. 17, NO. 1,57s-68s, 2000 April)

しかしながら、鋼橋の場合、溶接部が多く、溶接長さも長いため、ハンマーピーニングを複数回行うことは作業者の負担となる場合があって好ましくない。   However, in the case of a steel bridge, since there are many welds and the weld length is long, it is not preferable to perform hammer peening a plurality of times because it may be a burden on the operator.

特許文献1記載の超音波によるピーニング方法は使用する装置が従来の空気圧でチッパーを駆動する装置と比較すると高価で入手も困難である。特許文献2記載のレーザ衝撃ピーニング方法は、素材の前処理が必要で、且つ装置が高価で大きく、鋼橋製造に適用することは難しい。   The ultrasonic peening method described in Patent Document 1 is expensive and difficult to obtain as compared with a conventional device that drives a chipper with air pressure. The laser shock peening method described in Patent Document 2 requires pretreatment of the material, and the apparatus is expensive and large, and is difficult to apply to steel bridge manufacturing.

そこで、本発明は、溶接止端部に変形をもたらして新たに応力集中部を形成させることなく、溶接止端部における溶接残留応力を低減させて疲労強度を向上させる溶接部の疲労強度向上方法を提供することを目的とする。   Therefore, the present invention provides a method for improving the fatigue strength of a welded portion by reducing the welding residual stress at the weld toe and improving the fatigue strength without causing a deformation to the weld toe and forming a new stress concentration portion. The purpose is to provide.

本発明の課題は以下の手段で達成可能である。
1.溶接止端部から離れた母材表面の一部を、母材表面に対して垂直に加圧して塑性変形させ、溶接止端部に圧縮の残留応力を導入することを特徴とする溶接部の疲労強度向上方法。
2.母材表面の一部を垂直に加圧する際、母材表面の変形が溶接止端部に及ばないように溶接止端部から離れた母材表面の一部を加圧することを特徴とする1記載の溶接部の疲労強度向上方法。
3.先端部の加圧方向に垂直な断面形状が略矩形状であって、先端部に幅が4mm以上の平坦部を有する加圧部材を用いて、前記母材表面の前記溶接止端部から3mmを超えた部位を塑性変形させることを特徴とする1または2記載の溶接部の疲労強度向上方法。
4.塑性変形領域をその一部が重なるように、加圧部位を前記溶接止端部近傍側から漸次外側に移動させるように加圧してゆくことを特徴とする1乃至3のいずれか一つに記載の溶接部の疲労強度向上方法。
5.加圧する前に、前記溶接止端部に予め曲率半径が1mm以上の窪みを形成することを特徴とする1乃至4のいずれか一つに記載の溶接部の疲労強度向上方法。
6.1乃至5のいずれか一つに記載の溶接部の疲労強度向上方法を施した溶接継手。
The object of the present invention can be achieved by the following means.
1. A portion of the base metal surface away from the weld toe is pressed perpendicularly to the base metal surface to cause plastic deformation, and compressive residual stress is introduced into the weld toe. Fatigue strength improvement method.
2. When pressurizing a part of the base material surface vertically, a part of the base material surface separated from the weld toe part is pressurized so that deformation of the base material surface does not reach the weld toe part. The method for improving the fatigue strength of the welded portion.
3. Using a pressure member having a cross-sectional shape perpendicular to the pressing direction of the distal end portion being substantially rectangular and having a flat portion with a width of 4 mm or more at the distal end portion, 3 mm from the weld toe portion on the surface of the base material. 3. The method for improving fatigue strength of a welded portion according to 1 or 2, wherein a portion exceeding the limit is plastically deformed.
4). 4. The method according to any one of 1 to 3, wherein pressurization is performed so as to gradually move the pressurization portion from the vicinity of the weld toe portion so as to partially overlap the plastic deformation region. To improve the fatigue strength of welds.
5. 5. The method for improving fatigue strength of a welded portion according to any one of 1 to 4, wherein a depression having a radius of curvature of 1 mm or more is previously formed in the weld toe before pressurization.
The welded joint which performed the fatigue strength improvement method of the welding part as described in any one of 6.1 thru | or 5.

本発明によれば、安定して溶接部の疲労強度を向上させることが可能で、産業上、極めて有用である。   According to the present invention, it is possible to improve the fatigue strength of the welded portion stably, which is extremely useful industrially.

本発明を説明するための模式図。The schematic diagram for demonstrating this invention. 本発明の原理を説明するためのFEM解析条件を示す図。The figure which shows the FEM analysis conditions for demonstrating the principle of this invention. 図2の条件によるFEM解析結果を3次元残留応力分布として示す図。The figure which shows the FEM analysis result by the conditions of FIG. 2 as three-dimensional residual stress distribution. 図2の条件によるFEM解析結果を母材表面の圧縮残留応力分布曲線として示す図。The figure which shows the FEM analysis result by the conditions of FIG. 2 as a compressive residual stress distribution curve of the base material surface. 図2の条件によるFEM解析結果を母材表面の圧縮残留応力分布と板表面の変形状態として示す図。The figure which shows the FEM analysis result by the conditions of FIG. 2 as a compressive residual stress distribution on the surface of a base material, and the deformation | transformation state of a plate surface. prandtlの理論を説明する図。The figure explaining the theory of brandtl. 本発明の効果を溶接止端部と母材における圧縮残留応力分布で説明する図。The figure explaining the effect of this invention by the compressive residual stress distribution in a weld toe part and a base material. 本発明の他の例を説明する図。The figure explaining the other example of this invention. 試験体形状を示す図。The figure which shows a test body shape. 疲労試験結果を示す図。The figure which shows a fatigue test result. 従来のハンマーピーニングによる溶接止端部の損傷例を示す図。The figure which shows the damage example of the weld toe part by the conventional hammer peening.

本発明は溶接止端部から離れた母材表面の一部を、母材表面に対して垂直に加圧して塑性変形させ、溶接止端部に圧縮の残留応力を導入することを特徴とする。   The present invention is characterized in that a part of the base material surface separated from the weld toe portion is pressed perpendicularly to the base material surface to be plastically deformed, and compressive residual stress is introduced into the weld toe portion. .

図1は本発明を説明する概念図で、母材1にリブ2を廻し溶接で溶接した部材の側面図において、溶接ビード3の溶接止端部(以下、止端部)4から距離d離れた母材1の表面を、母材表面と垂直方向に先端部(平坦部)の幅Bのチッパー5で母材表面を加圧して塑性変形(点線で表示)を生じさせる場合を示している。チッパー5による母材表面の加圧はプレス装置または繰り返し衝撃的な打撃を与える装置によって行う。   FIG. 1 is a conceptual diagram for explaining the present invention. In a side view of a member welded by welding a rib 2 around a base material 1, a distance d is separated from a weld toe portion (hereinafter, toe portion) 4 of a weld bead 3. The case where the surface of the base material 1 is plastically deformed (indicated by a dotted line) is generated by pressing the surface of the base material with a chipper 5 having a width B at the tip (flat portion) in the direction perpendicular to the surface of the base material. . Pressurization of the surface of the base material by the chipper 5 is performed by a press device or a device that repeatedly impacts.

なお、本発明において母材表面に対して垂直に加圧する際の垂直とは、厳密な意味での垂直に限るものではなく、加圧方向の傾き角が母材表面に対して80〜100°程度までであれば許容されるが、90°とすることが望ましい。   In the present invention, the term “perpendicular when pressing perpendicularly to the surface of the base material” is not limited to the strict sense of verticality, and the inclination angle in the pressing direction is 80 to 100 ° with respect to the surface of the base material. Although it is acceptable up to about 90 °, 90 ° is desirable.

本発明ではチッパー5(幅B)で母材1の表面を塑性変形させる位置(距離dで規定)を、塑性変形により母材1に生じる圧縮残留応力によって止端部4の溶接による引張残留応力が打消され、圧縮残留応力が導入されるように規定する。より好ましくは、止端部4に圧縮残留応力が導入され、且つ、止端部4に、母材1の表面を塑性変形させたことにより発生する母材表面の変形によって新たな応力集中が生じないように距離dを設定する。   In the present invention, the position at which the surface of the base material 1 is plastically deformed by the chipper 5 (width B) (specified by the distance d) is the tensile residual stress due to welding of the toe portion 4 by the compressive residual stress generated in the base material 1 due to plastic deformation. To cancel and compressive residual stress is introduced. More preferably, a compressive residual stress is introduced into the toe portion 4 and a new stress concentration is generated at the toe portion 4 due to the deformation of the base material surface caused by plastic deformation of the surface of the base material 1. The distance d is set so as not to exist.

なお、チッパー5で母材表面を加圧する前に、止端部4と母材1の境界部にグラインダ研削などで窪み(r部)、好ましくは曲率半径が1mm以上の窪み(r部)を設けると母材表面の変形を止端部4に及ばさずに、より大きな圧縮残留応力を止端部4に導入させることが可能で好ましい。   Before pressurizing the surface of the base material with the chipper 5, a recess (r portion), preferably a radius of curvature of 1 mm or more (r portion) is formed at the boundary between the toe portion 4 and the base material 1 by grinder grinding or the like. When it is provided, it is possible to introduce a larger compressive residual stress into the toe portion 4 without affecting the toe portion 4 without causing deformation of the surface of the base material.

図2〜5は、本発明の原理を説明する図で、母材1をチッパー5で母材表面に垂直方向に加圧して塑性変形を生じさせた場合における残留応力分布をFEM解析によってシミュレートした結果を示す。   2 to 5 are diagrams for explaining the principle of the present invention. Residual stress distribution is simulated by FEM analysis when the base material 1 is pressed in the direction perpendicular to the surface of the base material by the chipper 5 to cause plastic deformation. The results are shown.

図2にFEM解析条件を示す。SM490Y相当の母材1に、先端部の加圧面(圧縮応力を与える範囲)が4×4(mm2)の矩形状の平坦部を有するチッパー5で26kNの荷重を母材表面に垂直方向から与えて塑性変形させた場合について、4分の1対称モデルによる弾塑性解析を行った。 FIG. 2 shows FEM analysis conditions. A load of 26 kN is applied to the base material 1 corresponding to SM490Y from a direction perpendicular to the surface of the base material by a chipper 5 having a rectangular flat portion with a pressing surface (applying compressive stress) of 4 × 4 (mm 2 ). The elasto-plastic analysis was performed using a quarter-symmetric model for the case of plastic deformation.

図3〜5は解析結果で、図3は3次元表示した解析結果、図4は母材表面での応力分布、図5は母材表面の変形状態を示す。母材表面における応力分布(図4の曲線a)より、加圧した領域は50MPa程度の圧縮残留応力で、加圧面の中心から水平方向に4mm程度はなれた位置(図4の中心からの距離C)で350MPa程度の圧縮応力の最大値(図4の曲線aのb点)が発生した後、徐々に低下するが、中心から12mm程度の位置まで30MPa程度の大きな圧縮残留応力が発生していることが認められる。即ち、加圧した領域の端部から、10mm程度離れたところまで、30MPaを超える大きな圧縮残留応力が導入されている。   3 to 5 are analysis results, FIG. 3 is a three-dimensional analysis result, FIG. 4 is a stress distribution on the base material surface, and FIG. 5 is a deformation state of the base material surface. From the stress distribution on the surface of the base metal (curve a in FIG. 4), the pressed region is a compressive residual stress of about 50 MPa, and the position is about 4 mm away from the center of the pressing surface in the horizontal direction (distance C from the center in FIG. 4). ), A maximum value of compressive stress of about 350 MPa (point b of curve a in FIG. 4) is generated and then gradually decreases, but a large compressive residual stress of about 30 MPa is generated from the center to a position of about 12 mm. It is recognized that That is, a large compressive residual stress exceeding 30 MPa is introduced from the end of the pressurized region to a position about 10 mm away.

また、加圧された領域が塑性変形して凹部(残留へこみ量:0.06mm)となることで、その周辺は、当該領域の端部から約3mm幅の区間(中心からは5mm程度の範囲内)で多少変形する(図5)。   In addition, since the pressurized region is plastically deformed to form a recess (residual dent amount: 0.06 mm), the periphery thereof is a section having a width of about 3 mm from the end of the region (a range of about 5 mm from the center). Inner) is slightly deformed (FIG. 5).

従って、距離dは、母材表面における応力分布(図4の曲線a)と別途求めた止端部4の溶接残留応力分布を重畳して、止端部4で圧縮残留応力が得られるように、規定すれば良い。より好ましくは、止端部4で圧縮残留応力が得られ、且つ、止端部4に母材表面の変形が導入されて新たな応力集中が生じることを防止するために母材表面が変形した部分の外側となるように距離dを設定する。   Accordingly, the distance d overlaps the stress distribution on the surface of the base material (curve a in FIG. 4) and the weld residual stress distribution of the toe part 4 separately obtained so that a compressive residual stress can be obtained at the toe part 4. Stipulate. More preferably, a compressive residual stress is obtained at the toe portion 4 and the base material surface is deformed to prevent a new stress concentration from occurring due to the deformation of the base material surface at the toe portion 4. The distance d is set so as to be outside the portion.

図2のFEM解析条件を満足する条件で母材表面を加圧して塑性変形させる場合、安定した疲労強度向上を実現させるためには、距離dを3mm超え、10mm以下(幅Bの2.5倍以下:本解析では幅Bは4mm)までとすることで、30MPaを超える比較的大きな圧縮残留応力が導入され(図4)、止端部の形状にも加圧による母材表面の変形の影響が及ばない(図5)。   When the base metal surface is pressed and plastically deformed under the conditions satisfying the FEM analysis conditions of FIG. 2, in order to realize stable fatigue strength improvement, the distance d exceeds 3 mm and is 10 mm or less (2.5 B of width B). Double or less: In this analysis, the width B is up to 4 mm), so that a relatively large compressive residual stress exceeding 30 MPa is introduced (FIG. 4). There is no impact (Figure 5).

母材表面をハンマーピーニングによって加圧(打撃)して塑性変形を導入する場合は、チッパーの先端部の平坦部の加圧方向に垂直な断面の形状を矩形状とし、その幅4mm以上の辺が溶接線に対して直角となるようにして母材表面を略垂直に打撃することが望ましい。チッパーの先端部の平端部の断面形状は、矩形状または矩形の角部にrを付けた略矩形状とすることが望ましいが、円形、楕円形等の他の形状であってもよい。   When plastic deformation is introduced by pressing (striking) the surface of the base material by hammer peening, the shape of the cross section perpendicular to the pressing direction of the flat portion at the tip of the chipper is rectangular, and the side having a width of 4 mm or more It is desirable to strike the surface of the base material substantially perpendicularly so that is perpendicular to the weld line. The cross-sectional shape of the flat end portion of the tip portion of the chipper is preferably a rectangular shape or a substantially rectangular shape with r added to a corner portion of the rectangle, but may be another shape such as a circle or an ellipse.

なお、母材表面を加圧(打撃)する場合、図5に示す母材表面の変形状態に影響が生じなければ、前述のように厳密に加圧(打撃)方向が母材表面に垂直である必要はない。   When pressurizing (striking) the surface of the base material, if the deformation state of the base material surface shown in FIG. 5 is not affected, the pressurization (striking) direction is strictly perpendicular to the base material surface as described above. There is no need.

前述の図2には、平板状の母材表面を加圧し塑性変形させた際のFEM解析結果を示したが、溶接ビード3を備えた構造の溶接止端部4の近傍の母材表面を加圧(打撃)した際の残留応力分布のFEM解析結果の一例を図7に示す。圧縮残留応力分布は、溶接ビード3が存在しても平板の場合と同様な分布形態、大きさを示すことがわかる。   FIG. 2 described above shows the FEM analysis results when the flat base metal surface is pressed and plastically deformed. The base metal surface in the vicinity of the weld toe 4 of the structure having the weld bead 3 is shown. An example of the FEM analysis result of the residual stress distribution at the time of pressurization (striking) is shown in FIG. It can be seen that the compressive residual stress distribution shows the same distribution form and size as in the case of the flat plate even when the weld bead 3 is present.

なお、母材表面の一部を打撃、または加圧して塑性変形を付与した場合に、母材表面における前述のような応力分布(図4の曲線a)が得られる理由は、prandtlの理論(非特許文献 金属塑性加工学 加藤健三著 丸善 より図を抜粋)で説明される(図6)。   The reason why the stress distribution (curve a in FIG. 4) on the surface of the base material is obtained when a part of the surface of the base material is blown or pressed to impart plastic deformation is that the principle of the brandtl ( Non-Patent Document Metal Plasticity Processing (excerpted by Kenzo Kato, Maruzen) (Figure 6).

平板に圧縮応力qを導入すると、その直下に鋭角が45°である直角三角形ABC,扇型のADC,BCEで示される、すべり線が発生する。その結果、圧縮応力を与えた長さと同じ長さの斜辺からなる直角三角形ADF,BEGに外側に押し出す力が作用し,圧縮応力が除荷された後も圧縮残留応力として板に作用する。   When compressive stress q is introduced into a flat plate, a slip line is generated immediately below it, as indicated by a right triangle ABC having a 45 ° acute angle, a fan-shaped ADC, and BCE. As a result, a force pushing outward acts on the right triangles ADF and BEG having hypotenuses having the same length as the length to which the compressive stress is applied, and acts on the plate as a compressive residual stress even after the compressive stress is unloaded.

本発明によって、母材1の表面の一部に塑性変形を生じさせる場合、図8に示すように圧縮残留応力の最大値(図4の曲線aで示される圧縮残留応力分布のb点での最大圧縮残留応力)が止端部4に導入されるように距離dを規定し、塑性変形領域をその一部が重なるように止端部4近傍側から漸次外側に移動させるように加圧してゆくと、変動の小さな圧縮残留応力分布が得られ、より安定して疲労強度を向上させることが可能である。   When plastic deformation is caused on a part of the surface of the base material 1 according to the present invention, as shown in FIG. 8, the maximum value of the compressive residual stress (at the point b of the compressive residual stress distribution shown by the curve a in FIG. 4). The distance d is defined so that the maximum compressive residual stress) is introduced into the toe portion 4, and the plastic deformation region is pressurized so as to gradually move outward from the vicinity of the toe portion 4 so that a part thereof overlaps. As a result, a compressive residual stress distribution with small fluctuation can be obtained, and the fatigue strength can be improved more stably.

ハンマーピーニングに本発明を適用する場合、ハンマーピーニング実機のチッパー寸法(幅B)と加圧力、母材特性(鋼橋の場合、SS400〜SM570が用いられ、降伏応力215N/mm〜450N/mmとなる。)を用いて図2の解析を行い、母材表面における圧縮残留応力分布(図4の曲線a)を求め、予め求めておいた止端部4の溶接残留応力分布に重畳させた場合に止端部4で圧縮残留応力が得られるように、距離dを規定すれば良い。 When the present invention is applied to hammer peening, the chipper size (width B) of the actual hammer peening machine, pressurizing force, base material characteristics (in the case of a steel bridge, SS400 to SM570 are used, yield stress 215 N / mm 2 to 450 N / mm 2 is used to obtain a compressive residual stress distribution (curve a in FIG. 4) on the surface of the base material and superimpose it on the weld residual stress distribution of the toe portion 4 obtained in advance. In this case, the distance d may be defined so that a compressive residual stress can be obtained at the toe portion 4.

幅150mm×長さ500mm×板厚12mmの母材1(SM490Y)に,75mm×50mm×板厚12mmのリブ2(SM490Y)を廻し溶接(ワイヤーMXZ200−1.2Φ,100%CO2,240A,30V,40CPM,10.8KJ/cm)にて溶接した試験体に、ハンマーピーニング(IIW推薦条件:空気圧約6kg/cm、ハンマー荷重1.7kg、周波数43Hz、移動速度1.2mm/秒による)を行った後、疲労試験に供した。ハンマーピーニング条件は本発明を適用し、下記の条件(1),(2)で行った。
(1)先端が4mm角の平坦部を有するチッパーで、溶接止端部から3mm以内となる領域を除いて、母材表面を垂直に繰り返し打撃し、幅6mm程度、最大深さ0.1mm程度の窪み状の塑性変形が生じるように加工した(本発明その1)。
(2)ハンマーピーニングを行う前に、廻し溶接部をグラインダーにより曲率半径1mm以上の窪みが形成されるように仕上げた後、(1)の条件で打撃した(本発明その2)。
A rib 2 (SM490Y) of 75 mm × 50 mm × plate thickness 12 mm is wound on a base material 1 (SM490Y) of width 150 mm × length 500 mm × plate thickness 12 mm and welded (wire MXZ200-1.2Φ, 100% CO2, 240A, 30V). , 40 CPM, 10.8 KJ / cm), and hammer peening (IIW recommended conditions: air pressure of about 6 kg / cm 2 , hammer load of 1.7 kg, frequency of 43 Hz, moving speed of 1.2 mm / second) After going on, it was subjected to a fatigue test. The hammer peening conditions were performed under the following conditions (1) and (2) by applying the present invention.
(1) A tipper having a flat portion with a 4 mm square at the tip, except for a region that is within 3 mm from the weld toe, repeatedly hitting the surface of the base material vertically, with a width of about 6 mm and a maximum depth of about 0.1 mm It processed so that the hollow plastic deformation of this might arise (this invention 1).
(2) Before hammer peening, the turned welded part was finished with a grinder so that a recess with a radius of curvature of 1 mm or more was formed, and then struck under the condition (1) (the present invention No. 2).

疲労試験は、試験体に対して、母材1の両端をチャッキングし、リブ2の長手方向に繰返し応力を与えて行った。比較のため、ハンマーピーニングを行わない溶接まま試験体についても疲労実験を実施した。   The fatigue test was performed by chucking both ends of the base material 1 and repeatedly applying stress to the longitudinal direction of the rib 2 with respect to the test body. For comparison, a fatigue test was also performed on a specimen that was welded without hammer peening.

図9に試験体の平面図と側面図を、図10に疲労試験結果を示す。ハンマーピーニング条件(1)を施した継手試験体は、溶接まま試験体に比べ、日本鋼構造協会に示される疲労設計曲線(非特許文献 鋼構造物の疲労設計指針・同解説 日本鋼構造協会 参照)の3等級程度の疲労強度向上効果が認められた(本発明その1)。また、ハンマーピーニング条件(2)を施した継手試験体は、日本鋼構造協会に示される疲労設計曲線の4等級程度の疲労強度向上効果が認められた(本発明その2)。   FIG. 9 shows a plan view and a side view of the specimen, and FIG. 10 shows the fatigue test results. The joint specimen subjected to hammer peening condition (1) has a fatigue design curve shown by the Japan Steel Structure Association as compared to the as-welded specimen (see Non-Patent Document: Japan Steel Structure Association ) Of 3 grades of fatigue strength was confirmed (Invention No. 1). Further, the joint specimen subjected to the hammer peening condition (2) was confirmed to have an effect of improving the fatigue strength of about 4 grades of the fatigue design curve shown in the Japan Steel Structure Association (the present invention No. 2).

1 母材
2 リブ
3 溶接ビード
4 溶接止端部
5 チッパー
1 Base Material 2 Rib 3 Weld Bead 4 Weld Toe 5 Chipper

Claims (6)

溶接止端部から離れた母材表面の一部を、母材表面に対して垂直に加圧して塑性変形させ、溶接止端部に圧縮の残留応力を導入することを特徴とする溶接部の疲労強度向上方法。   A portion of the base metal surface away from the weld toe is pressed perpendicularly to the base metal surface to cause plastic deformation, and compressive residual stress is introduced into the weld toe. Fatigue strength improvement method. 母材表面の一部を垂直に加圧する際、母材表面の変形が溶接止端部に及ばないように溶接止端部から離れた母材表面の一部を加圧することを特徴とする請求項1記載の溶接部の疲労強度向上方法。   When pressurizing a part of the base material surface vertically, a part of the base material surface separated from the weld toe part is pressurized so that deformation of the base material surface does not reach the weld toe part. Item 2. The method for improving fatigue strength of welds according to Item 1. 先端部の加圧方向に垂直な断面形状が略矩形状であって、先端部に幅が4mm以上の平
坦部を有する加圧部材を用いて、前記母材表面の前記溶接止端部から3mmを超えた部位を塑性変形させることを特徴とする請求項1または2記載の溶接部の疲労強度向上方法。
Using a pressure member having a cross-sectional shape perpendicular to the pressing direction of the distal end portion being substantially rectangular and having a flat portion with a width of 4 mm or more at the distal end portion, 3 mm from the weld toe portion on the surface of the base material. The method for improving fatigue strength of a welded portion according to claim 1, wherein a portion exceeding the limit is plastically deformed.
塑性変形領域をその一部が重なるように、加圧部位を前記溶接止端部近傍側から漸次外側に移動させるように加圧してゆくことを特徴とする請求項1乃至3のいずれか一つに記載の溶接部の疲労強度向上方法。   4. The pressurization is performed such that the pressurization portion is gradually moved outward from the vicinity of the weld toe portion so that a part thereof overlaps the plastic deformation region. 5. The method for improving fatigue strength of welds as described in 1. 加圧する前に、前記溶接止端部に予め曲率半径が1mm以上の窪みを形成することを特徴とする請求項1乃至4のいずれか一つに記載の溶接部の疲労強度向上方法。   The method for improving fatigue strength of a welded portion according to any one of claims 1 to 4, wherein a depression having a radius of curvature of 1 mm or more is formed in advance at the weld toe before pressurization. 請求項1乃至5のいずれか一つに記載の溶接部の疲労強度向上方法を施した溶接継手。   The welded joint which gave the fatigue strength improvement method of the welding part as described in any one of Claims 1 thru | or 5.
JP2009294674A 2009-12-25 2009-12-25 Method for increasing fatigue strength of weld zone, and weld joint Pending JP2011131260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294674A JP2011131260A (en) 2009-12-25 2009-12-25 Method for increasing fatigue strength of weld zone, and weld joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294674A JP2011131260A (en) 2009-12-25 2009-12-25 Method for increasing fatigue strength of weld zone, and weld joint

Publications (1)

Publication Number Publication Date
JP2011131260A true JP2011131260A (en) 2011-07-07

Family

ID=44344559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294674A Pending JP2011131260A (en) 2009-12-25 2009-12-25 Method for increasing fatigue strength of weld zone, and weld joint

Country Status (1)

Country Link
JP (1) JP2011131260A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136095A (en) * 2011-11-29 2013-07-11 Jfe Steel Corp Method for suppressing fatigue damage of welded structure and tool for forming impact trace
JP2013136090A (en) * 2011-11-29 2013-07-11 Jfe Steel Corp Method for suppressing fatigue damage of welded structure and tool for forming impact trace
JP5252112B1 (en) * 2012-11-13 2013-07-31 Jfeエンジニアリング株式会社 Peening construction method
JP2015163406A (en) * 2014-02-28 2015-09-10 新日鐵住金株式会社 ultrasonic impact treatment method
JP2015182130A (en) * 2014-03-26 2015-10-22 日立造船株式会社 Method of manufacturing welded joint and welded joint
JP2015221451A (en) * 2014-05-22 2015-12-10 株式会社神戸製鋼所 Manufacturing method of welded structure
JP2017068310A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Method of predicting nugget diameter of resistance spot welding, computer program, and computer-readable recording medium having recorded the program
CN114761169A (en) * 2019-12-11 2022-07-15 株式会社Posco Prestressed steel plate and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569128A (en) * 1991-09-12 1993-03-23 Nippon Steel Corp Method for improving fatigue strength of fillet welding joint
JPH06270810A (en) * 1993-03-19 1994-09-27 Sumitomo Metal Ind Ltd Method for improving fatigue strength of rolling stock truck frame welding portion
JP2006167724A (en) * 2004-12-13 2006-06-29 Nippon Steel Corp Machining method and structure using ultrasonic peening apparatus
JP2006320960A (en) * 2005-04-20 2006-11-30 Nippon Steel Corp Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
JP2008213021A (en) * 2007-03-07 2008-09-18 Nippon Steel Corp Weld joint and welded structure having excellent brittle crack propagation stop characteristic and method of improving this characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569128A (en) * 1991-09-12 1993-03-23 Nippon Steel Corp Method for improving fatigue strength of fillet welding joint
JPH06270810A (en) * 1993-03-19 1994-09-27 Sumitomo Metal Ind Ltd Method for improving fatigue strength of rolling stock truck frame welding portion
JP2006167724A (en) * 2004-12-13 2006-06-29 Nippon Steel Corp Machining method and structure using ultrasonic peening apparatus
JP2006320960A (en) * 2005-04-20 2006-11-30 Nippon Steel Corp Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
JP2008213021A (en) * 2007-03-07 2008-09-18 Nippon Steel Corp Weld joint and welded structure having excellent brittle crack propagation stop characteristic and method of improving this characteristic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136095A (en) * 2011-11-29 2013-07-11 Jfe Steel Corp Method for suppressing fatigue damage of welded structure and tool for forming impact trace
JP2013136090A (en) * 2011-11-29 2013-07-11 Jfe Steel Corp Method for suppressing fatigue damage of welded structure and tool for forming impact trace
JP5252112B1 (en) * 2012-11-13 2013-07-31 Jfeエンジニアリング株式会社 Peening construction method
JP2015163406A (en) * 2014-02-28 2015-09-10 新日鐵住金株式会社 ultrasonic impact treatment method
JP2015182130A (en) * 2014-03-26 2015-10-22 日立造船株式会社 Method of manufacturing welded joint and welded joint
JP2015221451A (en) * 2014-05-22 2015-12-10 株式会社神戸製鋼所 Manufacturing method of welded structure
JP2017068310A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Method of predicting nugget diameter of resistance spot welding, computer program, and computer-readable recording medium having recorded the program
CN114761169A (en) * 2019-12-11 2022-07-15 株式会社Posco Prestressed steel plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
JP2014014831A (en) Fatigue strength improving method of weld zone and welded joint
JP5088035B2 (en) Manufacturing method for welded joints with excellent fatigue resistance
KR101577261B1 (en) Method for preventing fatigue damage in welded structures, tool for forming impact area, and welded structure
KR102243326B1 (en) Method of peening lap fillet welded joint and welded structures
JP5844551B2 (en) Manufacturing method of welded joint
JP4895407B2 (en) Peening method and welded joint using it
JP5898498B2 (en) Method for improving fatigue strength of welded part and welded joint
JP5919986B2 (en) Hammer peening treatment method and welded joint manufacturing method using the same
JP2009034696A (en) Butt welded joint excellent in fatigue characteristics, and its manufacturing method
JP6756241B2 (en) Ultrasonic impact treatment method
JP6495569B2 (en) Tool for forming impact marks
JP2013233590A (en) Welded joint superior in fatigue characteristic
JP5327567B1 (en) Peening method and welded joint
JP2007283355A (en) Ultrasonic impact treatment method of weld toe and ultrasonic impact treated weld toe superior in fatigue resistant characteristic
JP5977077B2 (en) Welding peening method
JP6314670B2 (en) Structure with excellent fatigue characteristics
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP5599652B2 (en) Welded joint
WO2012164774A1 (en) Welded joint
JP6339760B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP5955752B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP6017938B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP6051817B2 (en) Method for suppressing fatigue damage of welded structure, tool for forming impact mark used in the method, and welded structure
JP2013136094A (en) Weld structure of steel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20120321

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Effective date: 20130822

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130827

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224

A521 Written amendment

Effective date: 20140324

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140408

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140613