JP2015182130A - Method of manufacturing welded joint and welded joint - Google Patents

Method of manufacturing welded joint and welded joint Download PDF

Info

Publication number
JP2015182130A
JP2015182130A JP2014063576A JP2014063576A JP2015182130A JP 2015182130 A JP2015182130 A JP 2015182130A JP 2014063576 A JP2014063576 A JP 2014063576A JP 2014063576 A JP2014063576 A JP 2014063576A JP 2015182130 A JP2015182130 A JP 2015182130A
Authority
JP
Japan
Prior art keywords
target region
welded joint
residual stress
manufacturing
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014063576A
Other languages
Japanese (ja)
Inventor
東輝 馬
Toki Ba
東輝 馬
芦田 吏史
Satoshi Ashida
吏史 芦田
幸嗣 北村
Yukitsugu Kitamura
幸嗣 北村
明人 合田
Akihito Goda
明人 合田
康宏 深井
Yasuhiro Fukai
康宏 深井
森田 寛之
Hiroyuki Morita
寛之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2014063576A priority Critical patent/JP2015182130A/en
Publication of JP2015182130A publication Critical patent/JP2015182130A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To improve fatigue life of a welded joint.SOLUTION: In manufacturing a welded joint 1, firstly, a first member 21 and a second member 22 are welded, such that a welded portion 3 is formed. Then, a predetermined target region 32 at a weld toe 31 of the welded portion 3 is subjected to surface melting treatment, so that a surface of the target region 32 is smoothed. The surface melting treatment is, for example, TIG welding without a welding rod. Further, burnishing of continuously rolling a ball along the surface of the target region 32 while pressing the ball against the surface the target region 32 is applied to the target region 32, so that compressive residual stress is imparted to the target region 32. Thus, stress concentration is decreased by smoothing the surface of the target region 32 and compressive residual stress is imparted to the smoothed target region 32, and thereby fatigue life of the welded joint 1 is improved.

Description

本発明は、溶接継手の製造方法および溶接継手に関する。   The present invention relates to a method for manufacturing a welded joint and a welded joint.

従来より、道路橋や圧力容器等の大型の鋼構造物には溶接が多用されている。このような構造物において、溶接部の溶接止端部に繰り返し負荷が作用すると、引張残留応力に起因する疲労亀裂が発生する。そこで、ショットピーニングやハンマーピーニングにより、溶接止端部に機械的処理を施して、圧縮残留応力を導入することが行われる。また、超音波衝撃処理(UIT処理)や、レーザピーニングによる疲労強度の向上も試みられている(レーザピーニングについて、例えば、特許文献1参照)。なお、非特許文献1では、溶接継手に対する止端部処理法として、TIG処理を用いることが記載されている。   Conventionally, welding is frequently used for large steel structures such as road bridges and pressure vessels. In such a structure, when a load is repeatedly applied to the weld toe portion of the welded portion, fatigue cracks due to tensile residual stress occur. Therefore, mechanical treatment is applied to the weld toe by shot peening or hammer peening to introduce compressive residual stress. In addition, improvement of fatigue strength by ultrasonic impact treatment (UIT treatment) or laser peening has been attempted (for example, see Patent Document 1 for laser peening). In Non-Patent Document 1, it is described that TIG processing is used as a toe portion processing method for a welded joint.

特開2012−153977号公報JP 2012-153777 A

穴見 健吾、三木 千寿、「高強度鋼溶接継手部の疲労強度向上〜特に低温層変態溶接棒による付加溶接」、第55回土木学会年次学術講演会講演概要集、公益社団法人土木学会、2000年、No.I-A076Kengo Anami, Chitoshi Miki, “Improvement of fatigue strength of welded joints of high-strength steel-especially additional welding with low-temperature layer transformation welding rods” Year, No.I-A076

ところで、上記手法による溶接継手の疲労寿命の向上では不十分な場合があり、溶接継手の疲労寿命を向上する新規な手法が求められている。   By the way, the improvement of the fatigue life of the welded joint by the above method may be insufficient, and a new method for improving the fatigue life of the welded joint is required.

本発明は上記課題に鑑みなされたものであり、溶接継手の疲労寿命を向上することを目的としている。   This invention is made | formed in view of the said subject, and aims at improving the fatigue life of a welded joint.

請求項1に記載の発明は、溶接継手の製造方法であって、a)第1部材と第2部材とを溶接して溶接部を形成する工程と、b)前記溶接部の溶接止端部における所定の対象領域に対する表面溶融処理または研削処理により、前記対象領域の表面を平滑化する工程と、c)前記溶接止端部の前記対象領域に対して圧縮残留応力を付与する工程とを備える。   Invention of Claim 1 is a manufacturing method of a welded joint, Comprising: a) The process of welding a 1st member and a 2nd member and forming a welding part, b) The welding toe part of the said welding part Smoothing the surface of the target region by surface melting treatment or grinding treatment on the predetermined target region, and c) applying compressive residual stress to the target region of the weld toe .

請求項2に記載の発明は、請求項1に記載の溶接継手の製造方法であって、前記c)工程において、ボールまたはローラを前記対象領域の前記表面に押し付けながら前記表面に沿って連続的に転がすことにより、前記対象領域に対して圧縮残留応力が付与される。   Invention of Claim 2 is a manufacturing method of the welded joint of Claim 1, Comprising: In the said c) process, while pressing a ball | bowl or a roller against the said surface of the said object area | region, it is continuous along the said surface. Compressive residual stress is applied to the target region.

請求項3に記載の発明は、請求項1に記載の溶接継手の製造方法であって、前記c)工程において、多数の粒子を前記対象領域に衝突させることにより、前記対象領域に対して圧縮残留応力が付与される。   Invention of Claim 3 is a manufacturing method of the welded joint of Claim 1, Comprising: In the said c) process, it compresses with respect to the said target area | region by making many particle | grains collide with the said target area | region. Residual stress is applied.

請求項4に記載の発明は、請求項1ないし3のいずれかに記載の溶接継手の製造方法であって、前記b)工程において、前記表面溶融処理により、前記対象領域の前記表面が平滑化され、前記表面溶融処理が、TIGなめ付けである。   Invention of Claim 4 is the manufacturing method of the welded joint in any one of Claim 1 thru | or 3, Comprising: In the said b) process, the said surface of the said object area | region is smoothed by the said surface melting process. The surface melting treatment is TIG tanning.

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の溶接継手の製造方法であって、前記溶接継手が、ガセット溶接継手である。   A fifth aspect of the present invention is the method for manufacturing a welded joint according to any one of the first to fourth aspects, wherein the welded joint is a gusset welded joint.

請求項6に記載の発明は、請求項1ないし5のいずれかに記載の溶接継手の製造方法によって製造されたものである。   The invention according to claim 6 is manufactured by the method for manufacturing a welded joint according to any one of claims 1 to 5.

本発明によれば、対象領域の表面の平滑化により応力集中を低減し、かつ、平滑化された対象領域に圧縮残留応力を付与することにより、溶接継手の疲労寿命を向上することができる。   According to the present invention, the fatigue life of a welded joint can be improved by reducing stress concentration by smoothing the surface of the target region and applying compressive residual stress to the smoothed target region.

溶接継手を示す平面図である。It is a top view which shows a welded joint. 溶接継手を示す正面図である。It is a front view which shows a welded joint. 溶接継手の一部を拡大して示す図である。It is a figure which expands and shows a part of welded joint. 溶接継手を製造する処理の流れを示す図である。It is a figure which shows the flow of the process which manufactures a welded joint. TIGなめ付け前の溶接止端部の対象領域近傍の表面形状を示す図である。It is a figure which shows the surface shape of the area | region vicinity of the welding toe part before TIG tanning. TIGなめ付け後の溶接止端部の対象領域近傍の表面形状を示す図である。It is a figure which shows the surface shape of the target area | region vicinity of the welding toe part after TIG tanning. バニシング装置の一部を示す図である。It is a figure which shows a part of burnishing apparatus. バニシングを説明するための図である。It is a figure for demonstrating burnishing. 対象領域の表面からの深さと当該深さにおける残留応力値との関係を示す図である。It is a figure which shows the relationship between the depth from the surface of an object area | region, and the residual stress value in the said depth. 比較例の処理が行われた溶接継手の対象領域近傍における断面の写真である。It is a photograph of the section in the neighborhood of the object field of the welded joint in which the processing of the comparative example was performed. 溶接継手の対象領域近傍における断面の写真である。It is a photograph of the section in the neighborhood of the object field of a welded joint. 溶接継手に対する疲労試験により得られるS−N線図である。It is a SN diagram obtained by the fatigue test with respect to a welded joint.

図1は、本発明の一の実施の形態に係る溶接継手1を示す平面図であり、図2は、溶接継手1を示す正面図である。図1および図2では、互いに直交する3方向をX方向、Y方向およびZ方向として矢印にて示している。なお、図1および図2に示す溶接継手1は、後述する疲労試験用の試験体であるため、ベースプレートである第1部材21において、Y方向における中央部のX方向の幅が細くなっているが、実際の溶接継手1では、各構成要素の形状が適宜変更されてよい。   FIG. 1 is a plan view showing a welded joint 1 according to an embodiment of the present invention, and FIG. 2 is a front view showing the welded joint 1. In FIG. 1 and FIG. 2, three directions orthogonal to each other are indicated by arrows as an X direction, a Y direction, and a Z direction. Since the welded joint 1 shown in FIGS. 1 and 2 is a specimen for a fatigue test to be described later, in the first member 21 that is a base plate, the width in the X direction of the central portion in the Y direction is narrowed. However, in the actual welded joint 1, the shape of each component may be changed as appropriate.

溶接継手1は、第1部材21と、第2部材22と、溶接部3とを備える。第1部材21は金属にて形成され、X方向およびY方向に平行な板状である。第2部材22も金属にて形成され、Y方向およびZ方向に平行な板状である。本実施の形態では、第1部材21および第2部材22は、同じ種類の金属にて形成され、具体的には、当該金属は高張力鋼(例えば、HT780)である。溶接部3は、後述する溶接処理により形成される溶接ビードであり、溶接中に主として溶加材が溶融凝固したものである。図1および図2に示すように、溶接継手1は、ベースプレートである第1部材21の(+Z)側の主面(以下、単に「主面」という。)から突出するように、ガセットプレートである第2部材22を第1部材21に対して隅肉溶接したものであり、いわゆる、ガセット溶接継手(面外ガセット溶接継手)である。   The welded joint 1 includes a first member 21, a second member 22, and a welded part 3. The first member 21 is made of metal and has a plate shape parallel to the X direction and the Y direction. The second member 22 is also made of metal and has a plate shape parallel to the Y direction and the Z direction. In the present embodiment, the first member 21 and the second member 22 are formed of the same type of metal, and specifically, the metal is high-tensile steel (for example, HT780). The welded portion 3 is a weld bead formed by a welding process to be described later, and is obtained by mainly melting and solidifying a filler material during welding. As shown in FIG. 1 and FIG. 2, the welded joint 1 is a gusset plate so as to protrude from the (+ Z) side main surface (hereinafter simply referred to as “main surface”) of the first member 21 that is a base plate. A certain second member 22 is fillet welded to the first member 21, and is a so-called gusset weld joint (out-of-plane gusset weld joint).

図3は、溶接継手1の一部を拡大して示す図であり、第2部材22のY方向の端部近傍を示す。溶接部3は、その表面が第1部材21の主面と交わる部位、および、その近傍である溶接止端部31を有する。Z方向に沿って見た場合に、溶接止端部31は第2部材22を囲む環状である。図3の溶接継手1では、溶接止端部31におけるY方向の各端部、すなわち、回し溶接にて形成される部分が対象領域32(図3中にて太い実線にて示す。)として定められている。溶接部3では、対象領域32を含む領域に対して、後述する表面溶融処理による第1処理痕33、および、後述するバニシングによる少なくとも1つ(図3では、3個)の第2処理痕34が形成されている。図3では、第1処理痕33および第2処理痕34に向きが異なる平行斜線を付している。   FIG. 3 is an enlarged view showing a part of the welded joint 1 and shows the vicinity of the end of the second member 22 in the Y direction. The welded portion 3 has a portion where the surface intersects with the main surface of the first member 21 and a weld toe portion 31 that is in the vicinity thereof. When viewed along the Z direction, the weld toe portion 31 has an annular shape surrounding the second member 22. In the welded joint 1 of FIG. 3, each end portion in the Y direction of the weld toe portion 31, that is, a portion formed by rotary welding is defined as a target region 32 (shown by a thick solid line in FIG. 3). It has been. In the welded portion 3, a region including the target region 32 is subjected to a first processing mark 33 by a surface melting process described later and at least one (three in FIG. 3) second processing marks 34 by a burnishing described later. Is formed. In FIG. 3, the first processing mark 33 and the second processing mark 34 are given parallel oblique lines having different directions.

図4は、溶接継手1を製造する処理の流れを示す図である。溶接継手1を製造する際には、まず、第1部材21の主面上に第2部材22を直立させた状態で、第1部材21と第2部材22とを隅肉溶接して溶接部3(図3参照)が形成される(ステップS11)。本実施の形態におけるステップS11の処理では、高張力鋼用マグ溶接ソリッドワイヤ(例えば、商品名:MGS−80(株式会社神戸製鋼所製))を溶加材として用いたアーク溶接が行われる。溶接部3は、主として当該溶加材が溶融した後、凝固したものである。続いて、溶接部3の溶接止端部31における対象領域32に対して表面溶融処理が施され、対象領域32の表面が平滑化される(ステップS12)。本実施の形態における表面溶融処理は、溶加材を使用しないTIG溶接により表面を溶融する処理、すなわち、TIGなめ付けである。TIGなめ付けにより、図3に示す第1処理痕33が形成される。   FIG. 4 is a diagram showing a flow of processing for manufacturing the welded joint 1. When manufacturing the welded joint 1, first, the first member 21 and the second member 22 are fillet welded in a state where the second member 22 is erected on the main surface of the first member 21. 3 (see FIG. 3) is formed (step S11). In the process of step S11 in the present embodiment, arc welding is performed using a high-strength steel mag welding solid wire (for example, trade name: MGS-80 (manufactured by Kobe Steel, Ltd.)) as a filler material. The welded portion 3 is one that is mainly solidified after the filler material has melted. Subsequently, a surface melting process is performed on the target region 32 in the weld toe portion 31 of the welded portion 3, and the surface of the target region 32 is smoothed (step S12). The surface melting process in the present embodiment is a process of melting the surface by TIG welding without using a filler material, that is, TIG tanning. The first processing mark 33 shown in FIG. 3 is formed by TIG tanning.

図5および図6は、YZ平面に平行な断面における溶接止端部31の対象領域32近傍の表面形状を示す図であり、図5は、TIGなめ付け前の表面形状を示し、図6は、TIGなめ付け後の表面形状を示す。図5および図6の横軸はY方向の位置を示し、縦軸はZ方向の位置を示す。ここで、図5および図6のそれぞれの表面形状において、対象領域32近傍を破線にて示す円弧A1にて近似した場合の当該円弧A1の曲率半径をρ、対象領域32の底部および傾斜部を破線にて示す2つの直線A2,A3にてそれぞれ近似した場合の当該2つの直線A2,A3がなす角度(すなわち、2つの直線A2,A3により区分される4つの領域のうち円弧A1がおよそ含まれる領域における当該2つの直線A2,A3がなす角度)である開き角度をθとして、対象領域32における応力集中係数Ktが数1にて求められる。   5 and 6 are diagrams showing a surface shape in the vicinity of the target region 32 of the weld toe 31 in a cross section parallel to the YZ plane, FIG. 5 shows a surface shape before TIG tanning, and FIG. The surface shape after TIG tanning is shown. 5 and 6, the horizontal axis indicates the position in the Y direction, and the vertical axis indicates the position in the Z direction. Here, in each of the surface shapes of FIGS. 5 and 6, when the vicinity of the target area 32 is approximated by an arc A1 indicated by a broken line, the radius of curvature of the arc A1 is represented by ρ, and the bottom and inclined portions of the target area 32 are defined. Angles formed by the two straight lines A2 and A3 when approximated by two straight lines A2 and A3 indicated by broken lines (that is, the arc A1 is roughly included in the four regions divided by the two straight lines A2 and A3). The stress concentration coefficient Kt in the target region 32 is obtained by Equation 1, where θ is an opening angle that is an angle formed by the two straight lines A2 and A3 in the region to be obtained.

図5に示すTIGなめ付け前の対象領域32では、曲率半径ρは0.6mm(ミリメートル)であり、開き角度θは135度であり、応力集中係数は3.8である。図6に示すTIGなめ付け後の対象領域32では、曲率半径ρは12mmであり、開き角度θは174度であり、応力集中係数は1.2である。このように、TIGなめ付けにより、溶接止端部31の対象領域32では、応力集中係数が低い表面形状が得られる。換言すると、TIGなめ付けは、対象領域32における応力集中を低減する処理である。ステップS12の処理では、応力集中係数が1.5以下となるように、対象領域32の表面が平滑化されることが好ましい。   In the target region 32 before TIG tanning shown in FIG. 5, the radius of curvature ρ is 0.6 mm (millimeters), the opening angle θ is 135 degrees, and the stress concentration factor is 3.8. In the target region 32 after TIG tanning shown in FIG. 6, the radius of curvature ρ is 12 mm, the opening angle θ is 174 degrees, and the stress concentration factor is 1.2. In this way, a surface shape with a low stress concentration factor is obtained in the target region 32 of the weld toe 31 by TIG tanning. In other words, the TIG tanning is a process for reducing the stress concentration in the target region 32. In the process of step S12, the surface of the target region 32 is preferably smoothed so that the stress concentration coefficient is 1.5 or less.

続いて、対象領域32に対して圧縮残留応力が付与される(ステップS13)。具体的には、図7に簡略化して示すバニシング装置81を用いたバニシングが対象領域32に対して行われる。バニシング装置81では、本体82の先端に設けられた凹部821に、例えば直径6mmのボール83が収容され、凹部821内には高圧の液体(例えば、40MPa(メガパスカル)に加圧された液体)が保持される。本実施の形態では、本体82が対象領域32に対しておよそ90度の角度にて直立するように、対象領域32に対する本体82の姿勢が設定される。なお、ボール83の直径や材料等については、溶接部3の材料等に合わせて適宜決定されてよい。   Subsequently, compressive residual stress is applied to the target region 32 (step S13). Specifically, burnishing using the burnishing device 81 shown in a simplified manner in FIG. In the burnishing device 81, for example, a ball 83 having a diameter of 6 mm is accommodated in a recess 821 provided at the tip of a main body 82, and a high-pressure liquid (for example, a liquid pressurized to 40 MPa (megapascal)) is stored in the recess 821. Is retained. In the present embodiment, the posture of the main body 82 with respect to the target region 32 is set so that the main body 82 stands upright at an angle of about 90 degrees with respect to the target region 32. Note that the diameter, material, and the like of the ball 83 may be appropriately determined according to the material of the welded portion 3 and the like.

図8は、バニシングを説明するための図であり、溶接継手1においてバニシングが行われる領域の平面図である。例えば、図8に示すように、X方向およびY方向に平行な辺を有する矩形の領域にバニシングを施す場合には、ボール83を対象領域32の表面に押し付けながら、本体82がX方向に所定の距離だけ、例えば毎分500mmの速度にて連続的に移動する(図8中にて符号B1を付す矢印参照)。本体82が当該距離だけ移動すると、X方向に垂直なY方向に所定の距離、例えば0.2mmだけ本体82が移動し(図8中にて符号B2を付す矢印参照)、続いて、X方向において直前の連続移動とは反対側に本体82が連続的に移動する(図8中にて符号B3を付す矢印参照)。上記のようにして、本体82のX方向への連続移動およびY方向への間欠移動を繰り返すことにより、対象領域32の少なくとも一部を含む領域に対してバニシングが施され、圧縮残留応力が付与される。本実施の形態では、上記バニシングを複数の領域に対して繰り返すことにより、図3に示す複数の第2処理痕34が形成され、対象領域32の全体に対して圧縮残留応力が付与される。以上の処理により、溶接継手1の製造が完了する。   FIG. 8 is a view for explaining burnishing, and is a plan view of a region where burnishing is performed in the welded joint 1. For example, as shown in FIG. 8, when burnishing is performed on a rectangular region having sides parallel to the X direction and the Y direction, the main body 82 is predetermined in the X direction while pressing the ball 83 against the surface of the target region 32. , For example, at a speed of 500 mm per minute (see the arrow labeled B1 in FIG. 8). When the main body 82 moves by the distance, the main body 82 moves by a predetermined distance, for example, 0.2 mm in the Y direction perpendicular to the X direction (see the arrow labeled B2 in FIG. 8). In FIG. 8, the main body 82 continuously moves to the side opposite to the immediately preceding continuous movement (see the arrow labeled B3 in FIG. 8). By repeating the continuous movement in the X direction and the intermittent movement in the Y direction as described above, the region including at least a part of the target region 32 is burned, and compressive residual stress is applied. Is done. In the present embodiment, the burnishing is repeated for a plurality of regions, whereby a plurality of second processing marks 34 shown in FIG. 3 are formed, and compressive residual stress is applied to the entire target region 32. With the above processing, the manufacture of the welded joint 1 is completed.

次に、ステップS13における他の処理例について述べる。本処理例では、ショットピーニング装置が用いられる。ショットピーニング装置は、例えばエアーを用いた直圧式の装置であり、比較的小さい多数の粒子(例えば、鋼球)を対象領域32に投射して衝突させる。これにより、対象領域32の全体を含む領域に対して圧縮残留応力が付与される。本実施の形態における粒子の平均粒径は、例えば0.3mmである。なお、ショットピーニング装置における投射速度、あるいは、粒子の粒径や材料等は溶接部3の材料等に合わせて適宜決定されてよい。   Next, another processing example in step S13 will be described. In this processing example, a shot peening apparatus is used. The shot peening apparatus is a direct pressure type apparatus using air, for example, and projects and collides a relatively large number of particles (for example, steel balls) onto the target region 32. As a result, compressive residual stress is applied to the region including the entire target region 32. The average particle diameter of the particles in the present embodiment is, for example, 0.3 mm. In addition, the projection speed in the shot peening apparatus, the particle size, the material, or the like of the particle may be appropriately determined according to the material of the welded portion 3 or the like.

ここで、上述の処理により対象領域32に付与される圧縮残留応力について述べる。図9は、対象領域32の表面からの深さと、当該深さの位置における残留応力値との関係を示す図である。図9では、対象領域32に対して、ステップS12におけるTIGなめ付けを行うことなく、ショットピーニングのみを行った比較例の処理の結果も示している。比較例の処理では、図9中に符号C1を付す線にて示すように、深さが0である表面における圧縮残留応力の大きさ(絶対値)が約200MPaとなり、深さ25μm近傍において、圧縮残留応力の大きさが約350MPaにて最大となる。圧縮残留応力は、深さ約200μmにてほぼ0となる。すなわち、圧縮残留応力が生じる圧縮深さは約200μmである。ステップS12にてTIGなめ付けを行い、かつ、ステップS13にてショットピーニングを行う場合には、図9中に符号C2を付す線にて示すように、深さと残留応力値との関係は、比較例の処理とほぼ同じとなる。ショットピーニングにおける各種条件によって、深さと圧縮応力値との関係は変化するが、ショットピーニングでは、圧縮残留応力の大きさの最大値が300MPa以上となり、圧縮深さ(圧縮残留応力層の厚さ)が200μm以上となるように、処理条件が設定されることが好ましい。   Here, the compressive residual stress applied to the target region 32 by the above-described processing will be described. FIG. 9 is a diagram illustrating a relationship between the depth from the surface of the target region 32 and the residual stress value at the position of the depth. FIG. 9 also shows the result of the process of the comparative example in which only the shot peening is performed on the target region 32 without performing the TIG tanning in step S12. In the process of the comparative example, as indicated by the line denoted by reference numeral C1 in FIG. 9, the magnitude (absolute value) of the compressive residual stress on the surface where the depth is 0 is about 200 MPa, and in the vicinity of the depth of 25 μm, The magnitude of the compressive residual stress becomes maximum at about 350 MPa. The compressive residual stress becomes almost zero at a depth of about 200 μm. That is, the compression depth at which compressive residual stress occurs is approximately 200 μm. When TIG tanning is performed in step S12 and shot peening is performed in step S13, the relationship between the depth and the residual stress value is compared as shown by the line labeled C2 in FIG. It is almost the same as the processing in the example. The relationship between depth and compressive stress value varies depending on various conditions in shot peening, but in shot peening, the maximum value of compressive residual stress is 300 MPa or more, and the compressive depth (compressed residual stress layer thickness) It is preferable that the processing conditions are set so that the thickness becomes 200 μm or more.

一方、ステップS12にてTIGなめ付けを行い、かつ、ステップS13にてバニシングを行う場合には、図9中に符号C3を付す線にて示すように、深さが0である表面における圧縮残留応力の大きさが約850MPaとなり、圧縮残留応力は、深さ約1500μmにて0となる。このように、バニシングを行うことにより、表面における圧縮残留応力が大きくなるとともに、圧縮深さを大きくすることが可能となる。バニシングにおける各種条件によって、深さと圧縮応力値との関係は変化するが、バニシングでは、圧縮残留応力の大きさの最大値が700MPa以上となり、圧縮深さが1300μm以上となるように、処理条件が設定されることが好ましい。   On the other hand, when TIG tanning is performed in step S12 and burnishing is performed in step S13, as shown by the line labeled C3 in FIG. The magnitude of the stress is about 850 MPa, and the compressive residual stress is zero at a depth of about 1500 μm. In this way, by performing burnishing, it is possible to increase the compressive residual stress on the surface and increase the compression depth. The relationship between depth and compressive stress value varies depending on various conditions in burnishing, but in burnishing, the processing conditions are such that the maximum value of the compressive residual stress is 700 MPa or more and the compression depth is 1300 μm or more. It is preferably set.

次に、図4の処理により得られる対象領域32の表面状態について述べる。ここで、ステップS12におけるTIGなめ付けを行うことなく、ニードルの先端(直径3mmの半球形)を対象領域の全体に亘って衝突させるピーニングにより対象領域に対して圧縮残留応力を付与する比較例の処理を行った。比較例の処理が行われた溶接継手の対象領域近傍における断面(溶接止端部に垂直な断面)を光学顕微鏡にて観察すると、図10の右側に示すように、表面において微小な亀裂が存在する。なお、比較例の処理におけるピーニングでは、対象領域の表面が多数の溝が配列された形状となる。これに対し、ステップS12にてTIGなめ付けを行い、かつ、ステップS13にてバニシングまたはショットピーニングを行う場合には、溶接継手1の対象領域32近傍における断面を光学顕微鏡にて観察しても、このような亀裂は存在しない。図11では、TIGなめ付け、および、バニシングの双方を行った対象領域32近傍における溶接継手1の断面の光学顕微鏡による写真を示している。   Next, the surface state of the target region 32 obtained by the process of FIG. 4 will be described. Here, a comparative example in which compressive residual stress is applied to the target region by peening that causes the tip of the needle (hemisphere having a diameter of 3 mm) to collide with the entire target region without performing TIG tanning in step S12. Processed. When a cross section in the vicinity of the target region of the welded joint subjected to the processing of the comparative example (cross section perpendicular to the weld toe) is observed with an optical microscope, there are minute cracks on the surface as shown on the right side of FIG. To do. In the peening in the processing of the comparative example, the surface of the target region has a shape in which a large number of grooves are arranged. On the other hand, when performing TIG tanning in step S12 and performing burnishing or shot peening in step S13, even if the cross section in the vicinity of the target region 32 of the welded joint 1 is observed with an optical microscope, There are no such cracks. In FIG. 11, the photograph by the optical microscope of the cross section of the weld joint 1 in the vicinity of the object area | region 32 which performed both TIG tanning and burnishing is shown.

図12は、試験体として形成された溶接継手1に対する疲労試験により得られるS−N線図である。図12の縦軸は疲労試験における応力範囲(公称応力範囲)を示し、横軸は破断に至る繰り返し数を示す。疲労試験では、第1部材21のY方向の両端を保持してY方向に応力が付与される。疲労試験における繰り返し周波数は10Hzである。   FIG. 12 is an SN diagram obtained by a fatigue test on the welded joint 1 formed as a test body. The vertical axis in FIG. 12 indicates the stress range (nominal stress range) in the fatigue test, and the horizontal axis indicates the number of repetitions leading to fracture. In the fatigue test, stress is applied in the Y direction while holding both ends of the first member 21 in the Y direction. The repetition frequency in the fatigue test is 10 Hz.

また、表1は、応力範囲が350MPaおよび300MPaのそれぞれである場合における試験体の破断時の繰り返し数を示す。図12および表1において、「未処理」はステップS12,S13の処理を省いた試験体を示し、「ショット」はTIGなめ付けを行うことなく、ショットピーニングのみを行った試験体を示し、「TIG+ショット」はTIGなめ付け、および、ショットピーニングの双方を行った試験体を示し、「TIG+バニシング」はTIGなめ付け、および、バニシングの双方を行った試験体を示す。なお、表1において「TIG」はTIGなめ付けのみを行い、ステップS13の処理を省いた試験体を示し、「TIG」に対する繰り返し数は、穴見 健吾、三木 千寿による「高強度鋼溶接継手部の疲労強度向上〜特に低温層変態溶接棒による付加溶接」(第55回土木学会年次学術講演会講演概要集、公益社団法人土木学会、2000年、No.I-A076)(非特許文献1)の図6に基づいて、強度等級Dとして算出したものである。また、応力範囲が300MPaである場合における「TIG+バニシング」では、繰り返し回数が5175772回でも破断に至らなかった。   Table 1 shows the number of repetitions when the specimen is broken when the stress ranges are 350 MPa and 300 MPa, respectively. In FIG. 12 and Table 1, “unprocessed” indicates a test body in which the processes of steps S12 and S13 are omitted, and “shot” indicates a test body in which only shot peening is performed without performing TIG tanning. “TIG + shot” indicates a specimen subjected to both TIG tanning and shot peening, and “TIG + burnishing” indicates a specimen subjected to both TIG tanning and burnishing. In Table 1, “TIG” indicates a test body in which only TIG tanning is performed and the processing in step S13 is omitted. Fatigue Strength Improvement-Especially Additive Welding with Low Temperature Layer Transformation Welding Rod " Based on FIG. 6, the strength class D is calculated. Further, in the case of “TIG + burnishing” in the case where the stress range is 300 MPa, the fracture did not occur even when the number of repetitions was 5157572 times.

表1から明らかなように、TIGなめ付け、および、ショットピーニングの双方を行った試験体、並びに、TIGなめ付け、および、バニシングの双方を行った試験体では、ショットピーニングのみを行った試験体、および、TIGなめ付けのみを行った試験体に比べて破断に至る繰り返し数、すなわち、疲労寿命が向上する。特に、TIGなめ付け、および、バニシングの双方を行った試験体では、応力範囲が300MPaである場合に、未処理の試験体に比べて疲労寿命が100倍以上となる。図12に示すように、TIGなめ付け、および、ショットピーニングの双方を行った試験体、並びに、TIGなめ付け、および、バニシングの双方を行った試験体では、疲労限度が一般社団法人日本鋼構造協会(JSSC)が規定する疲労強度等級(疲労設計曲線)におけるA等級を超えており、設計上、母材と同等の疲労強度を有するものとして扱うことが可能となる。   As is apparent from Table 1, the test specimens subjected to both TIG tanning and shot peening and the specimens subjected to both TIG tanning and burnishing were specimens subjected only to shot peening. In addition, the number of repetitions leading to breakage, that is, the fatigue life, is improved as compared with the specimen subjected only to TIG tanning. In particular, in a specimen subjected to both TIG tanning and burnishing, when the stress range is 300 MPa, the fatigue life is 100 times or more that of an untreated specimen. As shown in FIG. 12, in the specimen subjected to both TIG tanning and shot peening, and the specimen subjected to both TIG tanning and burnishing, the fatigue limit is determined by the Japan Steel Structure. It exceeds the A grade in the fatigue strength grade (fatigue design curve) stipulated by the Association (JSSC), and can be treated as having a fatigue strength equivalent to that of the base material in design.

以上に説明したように、溶接継手1の製造方法では、溶接部3の溶接止端部31における所定の対象領域32に対する表面溶融処理により、対象領域32の表面が平滑化され、続いて、溶接止端部31の対象領域32に対して圧縮残留応力が付与される。このように、対象領域32の表面の平滑化により対象領域32における応力集中を低減し、かつ、平滑化された対象領域32に圧縮残留応力を付与することにより、溶接継手1の疲労寿命を向上することができる。   As described above, in the method for manufacturing the welded joint 1, the surface of the target region 32 is smoothed by the surface melting process on the predetermined target region 32 in the weld toe 31 of the welded portion 3, and then welding is performed. A compressive residual stress is applied to the target region 32 of the toe 31. As described above, the fatigue life of the welded joint 1 is improved by reducing the stress concentration in the target region 32 by smoothing the surface of the target region 32 and applying compressive residual stress to the smoothed target region 32. can do.

また、ステップS12における表面溶融処理が、TIGなめ付けであることにより、表面溶融処理を容易に行うことが可能となる。さらに、ステップS13の処理では、ボール83を対象領域32の表面に押し付けながら当該表面に沿って連続的に転がすバニシング、または、多数の粒子を対象領域32に衝突させるショットピーニングが行われる。これにより、対象領域32の表面形状を大きく変化させることなく(応力集中を生じさせる形状とすることなく)、かつ、ハンマーピーニングや超音波衝撃処理等のような微小な亀裂(割れ)を伴う打撃処理を行うことなく、対象領域32に圧縮残留応力を付与することができ、溶接継手1の疲労寿命を大幅に向上することができる。ステップS13の処理において、バニシングを採用する場合、溶接継手1の疲労寿命を飛躍的に向上することができ、ショットピーニングを採用する場合、圧縮残留応力の付与を容易に行うことが可能となる。なお、バニシングではバニシング装置81の調整により、また、ショットピーニングでは、ショットピーニング装置の調整により、作業者の技量に依存することなく、圧縮残留応力の付与量を容易に調整することが可能である。   Further, since the surface melting process in step S12 is TIG tanning, the surface melting process can be easily performed. Further, in the process of step S13, burnishing that rolls continuously along the surface while pressing the ball 83 against the surface of the target region 32 or shot peening that causes a large number of particles to collide with the target region 32 is performed. Thereby, the surface shape of the target region 32 is not significantly changed (without a stress concentration shape), and the impact is accompanied by a minute crack (crack) such as hammer peening or ultrasonic impact treatment. Without performing the treatment, compressive residual stress can be applied to the target region 32, and the fatigue life of the welded joint 1 can be greatly improved. In the process of step S13, when burnishing is employed, the fatigue life of the welded joint 1 can be dramatically improved, and when shot peening is employed, compressive residual stress can be easily applied. It is possible to easily adjust the amount of compressive residual stress applied without depending on the skill of the operator by adjusting the burnishing device 81 for burnishing and by adjusting the shot peening device for shot peening. .

上記溶接継手1の製造では様々な変形が可能である。   Various modifications are possible in the manufacture of the weld joint 1.

対象領域32の表面の平滑化は、TIGなめ付け以外に、例えばレーザ光の照射による表面溶融処理(いわゆる、レーザなめ付け)であってもよい。レーザ光の照射による表面溶融処理では、TIGなめ付けに比べて、作業者間の技量の相違の影響を低減することが可能となる。また、対象領域32の表面の平滑化が研削処理(グラインディング)により実現されてもよい。この場合も、対象領域32における応力集中を低減する、すなわち、対象領域32を応力集中係数が低減された形状とすることが可能となる。   The smoothing of the surface of the target region 32 may be, for example, surface melting treatment (so-called laser tanning) by laser light irradiation other than TIG tanning. In the surface melting treatment by laser light irradiation, it is possible to reduce the influence of the skill difference between workers compared to TIG tanning. Further, the smoothing of the surface of the target region 32 may be realized by a grinding process (grinding). Also in this case, the stress concentration in the target region 32 can be reduced, that is, the target region 32 can have a shape with a reduced stress concentration coefficient.

バニシングにて用いられるバニシング装置81の設計によっては、バニシングにおいて、ローラを対象領域32の表面に押し付けながら当該表面に沿って連続的に転がすことにより、対象領域32に対して圧縮残留応力が付与されてもよい。また、ステップS13の処理において、バニシングおよびショットピーニングの双方が行われてもよい。   Depending on the design of the burnishing device 81 used in the burnishing, compressive residual stress is applied to the target region 32 by continuously rolling the roller along the surface while pressing the roller against the surface of the target region 32 in the burnishing. May be. Further, in the process of step S13, both burnishing and shot peening may be performed.

圧縮残留応力を付与するステップS13では、対象領域32の表面形状を大きく変化させることなく、かつ、微小な亀裂(割れ)を伴う打撃処理を行うことなく、対象領域32に圧縮残留応力を付与することができるのであるならば、バニシングおよびショットピーニング以外の処理が行われてもよい。   In step S13 for applying the compressive residual stress, the compressive residual stress is applied to the target region 32 without greatly changing the surface shape of the target region 32 and without performing a striking process involving a minute crack. If possible, processes other than burnishing and shot peening may be performed.

溶接継手1における第1部材21および第2部材22は、高張力鋼以外の金属であってよく、例えば、SM490等の溶接構造用圧延鋼材であってもよい。また、第1部材21と第2部材22とが異なる種類の金属であってよい。さらに、溶接部3の形成では、高張力鋼用マグ溶接ソリッドワイヤ以外の溶加材が用いられてよい。   The first member 21 and the second member 22 in the welded joint 1 may be metals other than high-tensile steel, and may be, for example, rolled steel for welded structures such as SM490. Further, the first member 21 and the second member 22 may be different types of metals. Furthermore, in the formation of the welded portion 3, a filler material other than the MAG welding solid wire for high-strength steel may be used.

溶接継手1の上記製造手法は、ガセット溶接継手以外の溶接継手(例えば、十字継手)の製造に用いられてよい。また、溶接止端部31における対象領域32は、回し溶接にて形成される部分以外であってよい。   The said manufacturing method of the welded joint 1 may be used for manufacture of welded joints (for example, a cross joint) other than a gusset welded joint. Moreover, the object area | region 32 in the welding toe part 31 may be other than the part formed by rotation welding.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。   The configurations in the above-described embodiments and modifications may be combined as appropriate as long as they do not contradict each other.

1 溶接継手
3 溶接部
21 第1部材
22 第2部材
31 溶接止端部
32 対象領域
83 ボール
S11〜S13 ステップ
DESCRIPTION OF SYMBOLS 1 Welded joint 3 Welding part 21 1st member 22 2nd member 31 Welding toe end part 32 Target area 83 Ball S11-S13 Step

Claims (6)

溶接継手の製造方法であって、
a)第1部材と第2部材とを溶接して溶接部を形成する工程と、
b)前記溶接部の溶接止端部における所定の対象領域に対する表面溶融処理または研削処理により、前記対象領域の表面を平滑化する工程と、
c)前記溶接止端部の前記対象領域に対して圧縮残留応力を付与する工程と、
を備えることを特徴とする溶接継手の製造方法。
A method for manufacturing a welded joint, comprising:
a) welding the first member and the second member to form a weld;
b) smoothing the surface of the target region by surface melting treatment or grinding treatment for a predetermined target region at the weld toe of the weld;
c) applying compressive residual stress to the target region of the weld toe;
A method for manufacturing a welded joint, comprising:
請求項1に記載の溶接継手の製造方法であって、
前記c)工程において、ボールまたはローラを前記対象領域の前記表面に押し付けながら前記表面に沿って連続的に転がすことにより、前記対象領域に対して圧縮残留応力が付与されることを特徴とする溶接継手の製造方法。
A method for producing a welded joint according to claim 1,
In the step c), the welding is characterized in that a compressive residual stress is applied to the target region by continuously rolling the ball or roller against the surface of the target region along the surface. A method for manufacturing a joint.
請求項1に記載の溶接継手の製造方法であって、
前記c)工程において、多数の粒子を前記対象領域に衝突させることにより、前記対象領域に対して圧縮残留応力が付与されることを特徴とする溶接継手の製造方法。
A method for producing a welded joint according to claim 1,
In the step c), a compressive residual stress is applied to the target region by causing a large number of particles to collide with the target region.
請求項1ないし3のいずれかに記載の溶接継手の製造方法であって、
前記b)工程において、前記表面溶融処理により、前記対象領域の前記表面が平滑化され、
前記表面溶融処理が、TIGなめ付けであることを特徴とする溶接継手の製造方法。
A method for producing a welded joint according to any one of claims 1 to 3,
In the step b), the surface of the target region is smoothed by the surface melting treatment,
The method for manufacturing a welded joint, wherein the surface melting treatment is TIG tanning.
請求項1ないし4のいずれかに記載の溶接継手の製造方法であって、
前記溶接継手が、ガセット溶接継手であることを特徴とする溶接継手の製造方法。
A method for manufacturing a welded joint according to any one of claims 1 to 4,
The method for manufacturing a welded joint, wherein the welded joint is a gusset welded joint.
請求項1ないし5のいずれかに記載の溶接継手の製造方法によって製造されたことを特徴とする溶接継手。   A welded joint manufactured by the method for manufacturing a welded joint according to claim 1.
JP2014063576A 2014-03-26 2014-03-26 Method of manufacturing welded joint and welded joint Pending JP2015182130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063576A JP2015182130A (en) 2014-03-26 2014-03-26 Method of manufacturing welded joint and welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063576A JP2015182130A (en) 2014-03-26 2014-03-26 Method of manufacturing welded joint and welded joint

Publications (1)

Publication Number Publication Date
JP2015182130A true JP2015182130A (en) 2015-10-22

Family

ID=54349295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063576A Pending JP2015182130A (en) 2014-03-26 2014-03-26 Method of manufacturing welded joint and welded joint

Country Status (1)

Country Link
JP (1) JP2015182130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468461B2 (en) 2021-06-09 2024-04-16 Jfeスチール株式会社 Box welded joint and box welding method having excellent fatigue strength

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982186A (en) * 1982-10-30 1984-05-12 Isuzu Motors Ltd Method and device for improving mechanical property of weld zone
JPH06270810A (en) * 1993-03-19 1994-09-27 Sumitomo Metal Ind Ltd Method for improving fatigue strength of rolling stock truck frame welding portion
JPH10296480A (en) * 1997-04-22 1998-11-10 Press Kogyo Co Ltd Pressure method and pressure device for weld toe part
US6622570B1 (en) * 2000-03-01 2003-09-23 Surface Technology Holdings Ltd. Method for reducing tensile stress zones in the surface of a part
US20050155203A1 (en) * 2004-01-17 2005-07-21 Prevey Paul S. Method and apparatus for improving the magnitude of compressive stress developed in the surface of a part
WO2011024784A1 (en) * 2009-08-24 2011-03-03 新日本製鐵株式会社 Out-of-plane gusset welded joint and fabrication method thereof
JP2011131260A (en) * 2009-12-25 2011-07-07 Jfe Steel Corp Method for increasing fatigue strength of weld zone, and weld joint

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982186A (en) * 1982-10-30 1984-05-12 Isuzu Motors Ltd Method and device for improving mechanical property of weld zone
JPH06270810A (en) * 1993-03-19 1994-09-27 Sumitomo Metal Ind Ltd Method for improving fatigue strength of rolling stock truck frame welding portion
JPH10296480A (en) * 1997-04-22 1998-11-10 Press Kogyo Co Ltd Pressure method and pressure device for weld toe part
US6622570B1 (en) * 2000-03-01 2003-09-23 Surface Technology Holdings Ltd. Method for reducing tensile stress zones in the surface of a part
US20050155203A1 (en) * 2004-01-17 2005-07-21 Prevey Paul S. Method and apparatus for improving the magnitude of compressive stress developed in the surface of a part
WO2011024784A1 (en) * 2009-08-24 2011-03-03 新日本製鐵株式会社 Out-of-plane gusset welded joint and fabrication method thereof
JP2011131260A (en) * 2009-12-25 2011-07-07 Jfe Steel Corp Method for increasing fatigue strength of weld zone, and weld joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468461B2 (en) 2021-06-09 2024-04-16 Jfeスチール株式会社 Box welded joint and box welding method having excellent fatigue strength

Similar Documents

Publication Publication Date Title
WO2021060176A1 (en) Double-sided friction stir welding method; cold-rolled steel strip and plated steel strip manufacturing method; double-sided friction stir welding device; and cold-rolled steel strip and plated steel strip manufacturing equipment
JP2014014831A (en) Fatigue strength improving method of weld zone and welded joint
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
WO2011024784A1 (en) Out-of-plane gusset welded joint and fabrication method thereof
JP6606730B2 (en) Weld reinforcement method
JP6319022B2 (en) Railway vehicle bogie frame and manufacturing method thereof
JP2015182130A (en) Method of manufacturing welded joint and welded joint
JP4441166B2 (en) Method for improving environmentally-assisted cracking resistance of steel structure products
JP5844551B2 (en) Manufacturing method of welded joint
JP2007283355A (en) Ultrasonic impact treatment method of weld toe and ultrasonic impact treated weld toe superior in fatigue resistant characteristic
JP4895407B2 (en) Peening method and welded joint using it
JP5898498B2 (en) Method for improving fatigue strength of welded part and welded joint
JP5440628B2 (en) Long rail manufacturing method
JP2013233590A (en) Welded joint superior in fatigue characteristic
JP5977077B2 (en) Welding peening method
JP2012228732A (en) Impact tip, hammer peening method, and weld joint using same
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP5821516B2 (en) Welded joint and method for producing welded joint
JP6339760B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP5955752B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
WO2012164774A1 (en) Welded joint
JP6051817B2 (en) Method for suppressing fatigue damage of welded structure, tool for forming impact mark used in the method, and welded structure
JP2013136094A (en) Weld structure of steel
JP6349785B2 (en) Ultrasonic shock treatment method
TW201718160A (en) Method of steel multi-pass temper bead welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181101