WO2012164774A1 - Welded joint - Google Patents

Welded joint Download PDF

Info

Publication number
WO2012164774A1
WO2012164774A1 PCT/JP2011/078223 JP2011078223W WO2012164774A1 WO 2012164774 A1 WO2012164774 A1 WO 2012164774A1 JP 2011078223 W JP2011078223 W JP 2011078223W WO 2012164774 A1 WO2012164774 A1 WO 2012164774A1
Authority
WO
WIPO (PCT)
Prior art keywords
weld
toe
tip
vibration terminal
less
Prior art date
Application number
PCT/JP2011/078223
Other languages
French (fr)
Japanese (ja)
Inventor
森影 康
聡 伊木
栗原 康行
浩文 大坪
土居 真
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011-120006 priority Critical
Priority to JP2011120006A priority patent/JP5844551B2/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2012164774A1 publication Critical patent/WO2012164774A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/04Welded or brazed overlays

Abstract

Provided is a welded joint which is excellent for steel structures such as steel bridges that require a superior fatigue property, and which improves fatigue strength by introducing compressive residual stress without imparting to the weld portion deformation that becomes a new stress concentration zone. Specifically, this is a welded joint of steel material having an impact mark that is formed continuously on a steel material surface along a weld bead by means of an oscillation element of hammer peening or an ultrasonic shock process, with the tip of the oscillation element having a length of 1 mm - 10 mm in the direction of advance, and the crowning of the tip of the oscillation element in a cross section perpendicular to the direction of advance being in the shape of an arc with a curvature radius of 1 mm - 10 mm, or the crowning in a cross section perpendicular to the direction of advance having chamfered parts with a curvature radius of 0.1 mm - 2 mm at either end of a 0.1 mm or less linear part, or the crowning in a cross section perpendicular to the direction of advance being in the shape of an arc on the major-axis side of an ellipse having a minor axis of 1 mm or greater. The impact mark is formed by the oscillation element 4 mm from the weld toe to the base material side, and preferably in a region of 0.5-4 mm, with a maximum depth of 0.03 mm or greater, but less than 0.50 mm.

Description

溶接継手Welded joint
 本発明は、鋼橋(steel bridge)など優れた疲労特性(fatigue property)が要求される鋼構造物(Steel Structures)に好適な溶接継手(weld joint)で、溶接部に新たな応力集中部(stress concentration zone)となる変形を与えずに圧縮残留応力(compressive residual stress)を導入し疲労強度(fatigue strength)を向上させたものに関する。 The present invention is a weld joint suitable for a steel structure (Steel Structures) that requires excellent fatigue properties such as a steel bridge, and a new stress concentration part (weld joint) ( The present invention relates to an improved fatigue strength by introducing a compressive residual stress without giving a deformation that becomes a stress concentration zone.
 近年、鋼橋の老朽化に伴い腐食や疲労に伴う損傷事例の報告が増加している。これらの防止にはまず検査体制(inspection system)を確立することが必要であるが、特に疲労損傷の場合は、通過車両などの作用外力を軽減したり、設計製作面からの溶接品質(weld quality)の向上が重要である。 In recent years, reports of damage caused by corrosion and fatigue have increased with the aging of steel bridges. In order to prevent these problems, it is necessary to establish an inspection system. In particular, in the case of fatigue damage, it is possible to reduce external forces such as passing vehicles and to improve the weld quality from the design and production aspects. ) Is important.
 溶接部は、割れ(crack)などの欠陥が存在したり、止端(toe)の形状が不適で応力集中部となると繰り返し応力に溶接残留応力(weld residual stress)の影響が重畳して疲労ノッチ(fatigue notch)が発生しやすく、疲労破壊(fatigue fracture)をもたらす場合があるため、その防止のため種々の観点からの提案がなされている。 If the weld has defects such as cracks, or if the shape of the toe is inappropriate and becomes a stress concentrated part, the effect of weld residual stress is superimposed on the repeated stress and fatigue notch Since (fatigue notch) is likely to occur and may cause fatigue fracture, proposals from various viewpoints have been made to prevent this.
 特許文献1は、溶接部の疲労強度向上方法およびそれを用いた溶接構造物に関し、溶接止端の近傍を超音波振動(ultrasonic oscillation)しながら打撃して塑性変形(plastic deformation)させる加工装置で、特定寸法の溝を所定の打撃条件で加工することで高速に作業者の熟練度(level of skill)に依存しないで安定して疲労強度を向上させることが記載されている。 Patent Document 1 relates to a method for improving the fatigue strength of a welded portion and a welded structure using the same, and a processing apparatus that performs plastic deformation by hitting the vicinity of a weld toe while being subjected to ultrasonic vibration. In addition, it is described that the fatigue strength is stably improved without depending on the skill level (level of skill) of the worker by processing a groove having a specific dimension under a predetermined striking condition.
 特許文献2は、レーザ衝撃ピーニング方法(laser shock peening)に関し、レーザ光源(laser source)からのパルスレーザビーム(pulsed laser beam)を使用して、表面の薄層もしくはプラズマ(plasma)を形成する表面のコーティング(coating)を瞬間的に気化させてその爆発力(explosion power)により表面の一部に局所的に圧縮力(compaction force)を発生させる方法で、ガスタービンエンジン(gas turbine engine)のファン動翼(fan rotating blade)に圧縮残留応力を導入させることが記載されている。 Patent Document 2 relates to a laser shock peening method, and uses a pulsed laser beam from a laser light source to form a thin layer or plasma on the surface. A gas turbine engine fan that instantaneously vaporizes the coating of the gas and generates a compression force locally on a part of the surface by its explosive power. It is described that compressive residual stress is introduced into a moving blade (fan rotating blade).
 特許文献3は、溶接継手の疲労特性改善の打撃処理方法及びその装置に関し、先端が特定寸法の打撃ピン(impact pin)を用いて、溶接止端に打撃痕(impact area)による特定寸法の溝部が形成されるように鋼板表面を圧縮して溶接部に圧縮残留応力を導入することが記載されている。 Patent Document 3 relates to an impact processing method for improving fatigue characteristics of welded joints and an apparatus therefor, using an impact pin having a specific dimension at the tip, and a groove having a specific dimension by an impact area at the weld toe. It is described that the surface of the steel sheet is compressed so that a compressive residual stress is introduced into the welded portion.
 非特許文献1は、ハンマーピーニング(hammer peening)及びTIG処理(tungsten inert gas dressing)による高強度鋼(High Tensile Strength Steel)(SM570)の溶接継手部の疲労強度の向上法に関し、ハンマーピーニングを施すと疲労強度が低下する場合があるため、溶接止端の応力集中や残留応力を低減させる新たなハンマーピーニング法について検討した結果が記載されている。 Non-Patent Document 1 performs hammer peening on a method for improving the fatigue strength of a welded joint of high strength steel (SM570) by hammer peening and TIG treatment (tungsten inert gas dressing). Since the fatigue strength may decrease, the results of studying a new hammer peening method for reducing the stress concentration and residual stress at the weld toe are described.
 通常、ハンマーピーニングは、作業者が手持ちのピーニング装置を溶接止端にチップ先端(tip)(チップは振動端子(transducer)とも称す)、チッパー(tipper)とも言う)が斜め上方から当たるように持って、ピーニング装置の荷重を溶接止端に預けるようにして作業を行い作業負荷を軽減している。 Normally, hammer peening is performed by an operator holding a peening apparatus on hand so that a tip of a tip (tip is also referred to as a vibration terminal or tipper) is hitting the welding toe from an oblique upper side. Therefore, the work is carried out so that the load of the peening device is entrusted to the weld toe, thereby reducing the work load.
 そのため、図13に示す母材1にリブ(rib)2を直立させた面外ガセット継手(out−of−plane gusset welded joint)にハンマーピーニングを施した場合、ピーニング装置のチッパー5の先端により溶接止端に応力集中箇所となる深い溝(打撃痕)が形成され、溶接ビード3の先端部から疲労き裂(fatigue crack)7が発生する場合がある。 Therefore, when hammer peening is performed on an out-of-plane gusset welded joint in which ribs 2 are upright on the base material 1 shown in FIG. 13, welding is performed at the tip of the chipper 5 of the peening apparatus. A deep groove (striking mark) that is a stress concentration point is formed at the toe, and a fatigue crack 7 may be generated from the tip of the weld bead 3.
 非特許文献1にはハンマーピーニングの前にグラインダ(grinder)で溶接止端の一部を予め研削すると疲労ノッチ(fatigue crack)(疲労き裂とも称す)の発生防止に有効であることが紹介され、ハンマーピーニングを3パス程度の複数回行うことを提案している。 Non-Patent Document 1 introduces that pre-grinding a part of the weld toe with a grinder before hammer peening is effective in preventing the occurrence of fatigue notches (also referred to as fatigue cracks). It proposes to perform hammer peening multiple times, about 3 passes.
特開2006−175512号公報JP 2006-175512 A 特開2006−159290公報JP 2006-159290 A 特開2010−29897号公報JP 2010-29897 A
 ところで、溶接構造物を製造する際、作業環境(work environment)、作業能率(operating efficiency)および溶接継手性能(weld join performance)を考慮した溶接方法が選定され、溶接部の疲労強度の向上のため、特許文献1等に記載の溶接部の疲労強度の向上方法が施されるが、疲労特性(fatigue property)に優れた溶接継手の特徴が明確であれば、溶接方法の選定と同様に最適な疲労強度の向上方法を選定することが可能となる。 By the way, when manufacturing a welded structure, a welding method is selected in consideration of the work environment, operating efficiency, and weld joint performance, in order to improve the fatigue strength of the welded portion. The method for improving the fatigue strength of the welded portion described in Patent Document 1 or the like is applied, but if the characteristics of the welded joint having excellent fatigue properties are clear, it is optimal as well as the selection of the welding method. It is possible to select a method for improving the fatigue strength.
 特許文献3には、耐疲労特性に優れた溶接構造物が記載され、疲労き裂の発生危険部の溶接部として好ましい溶接部が開示されているが、実構造物に適用した場合に当該溶接部を得るための装置の入手困難性や施工能率が懸念される。また、特許文献3記載の打撃処理方法は、ピン先端の曲率半径が金属材料の厚さの1/2以下かつ2~10mmの打撃ピンを用い、打撃ピンが打撃中に溶接金属に触れない範囲までの母材の金属材料の表面に打撃痕を与えるものであるが、効率的に圧縮残留応力を導入するのは困難である。 Patent Document 3 describes a welded structure having excellent fatigue resistance characteristics, and discloses a welded part that is preferable as a welded part of a fatigue crack-prone danger part. However, when applied to an actual structure, the welded part is disclosed. There are concerns about the difficulty of obtaining the equipment for obtaining the part and the construction efficiency. Further, the hitting processing method described in Patent Document 3 uses a hitting pin having a radius of curvature of the pin tip of 1/2 or less of the thickness of the metal material and 2 to 10 mm, and the hitting pin does not touch the weld metal during hitting. However, it is difficult to efficiently introduce a compressive residual stress.
 また、特許文献1記載の超音波によるピーニング方法は使用する装置が従来の空気圧(air pressure)でチップを駆動する装置と比較すると高価で入手も困難である。特許文献2記載のレーザ衝撃ピーニング方法は、素材の前処理が必要で、且つ装置が高価で大きく、鋼橋の製造に適用することは難しい。 Also, the ultrasonic peening method described in Patent Document 1 is expensive and difficult to obtain as compared with a conventional device that drives a chip with an air pressure. The laser shock peening method described in Patent Document 2 requires pretreatment of the material, and the apparatus is expensive and large, and is difficult to apply to the manufacture of steel bridges.
 そこで、本発明は、上記課題を解決するため、疲労特性に優れた溶接継手を提供することを目的とする。 Therefore, in order to solve the above problems, the present invention aims to provide a welded joint having excellent fatigue characteristics.
 本発明者らは溶接継手の疲労強度を向上させるため、特に疲労き裂が発生しやすい止端部の溶接による引張残留応力を軽減させる方法について鋭意検討し、ハンマーピーニングによる打撃痕を溶接止端より母材側に離した場合に、打撃による最大の圧縮残留応力を溶接止端に導入することが可能なことを見出した。本発明は上記知見をもとに更に検討を加えてなされたもので、すなわち、本発明は
1.ハンマーピーニングまたは超音波衝撃処理された、鋼材の溶接継手であって、振動端子によって溶接ビードに沿って鋼材表面に連続形成された打撃痕を有し、前記振動端子(transducer)は、その先端部が、進行方向の直角断面の頂部(crowning)が曲率半径(curvature radius):1mm以上10mm以下の円弧状で、進行方向に1mm以上10mm以下の長さを有し、前記打撃痕は、前記振動端子によって、打撃痕の端が、溶接止端より溶接止端側の打撃痕の端が母材側に4mmまでの領域において形成され、最大深さが0.03mm以上0.50mm未満に形成されたことを特徴とする溶接継手。
2.前記振動端子は、その先端部が、進行方向の直角断面の頂部が3mm以下の直線部の両端に曲率半径0.1mm以上2mm以下の面取り部(chamfer)を有し、進行方向に1mm以上10mm以下の長さを有することを特徴とする1記載の溶接継手。
3.前記振動端子は、その先端部が、進行方向の直角断面の頂部が短径(minor axis)が1mm以上の楕円形の長径(major axis)側の円弧状で、進行方向に1mm以上10mm以下の長さを有することを特徴とする1記載の溶接継手。
4.前記打撃痕(impact area)は、前記振動端子によって、打撃痕の端が、溶接止端より母材側に0.5mm離れた位置から4mmまでの領域に形成することを特徴とする1乃至3のいずれか一つに記載の溶接継手。
In order to improve the fatigue strength of the welded joint, the present inventors have intensively studied a method for reducing the tensile residual stress due to welding of the toe portion where fatigue cracks are likely to occur, and the hammering peening damage mark is welded to the weld toe. It has been found that the maximum compressive residual stress due to impact can be introduced into the weld toe when it is further away from the base metal side. The present invention has been made based on the above findings and further studies. A welded joint of steel material that has been hammer peened or subjected to ultrasonic impact treatment, and has a striking trace continuously formed on the surface of the steel material along the weld bead by the vibration terminal, and the vibration terminal (transducer) has a tip portion thereof. However, the crown of the cross section perpendicular to the direction of travel is a curvature radius of 1 mm to 10 mm and has a length of 1 mm to 10 mm in the direction of travel. By the terminal, the end of the hitting mark is formed in a region where the end of the hitting mark closer to the weld toe than the weld toe is 4 mm on the base material side, and the maximum depth is formed to be 0.03 mm or more and less than 0.50 mm. A welded joint characterized by that.
2. The vibration terminal has a chamfer with a radius of curvature of 0.1 mm or more and 2 mm or less at both ends of a straight portion having a top portion of a right-angle cross section of 3 mm or less in the traveling direction, and 1 mm or more and 10 mm in the traveling direction. The weld joint according to 1, which has the following length.
3. The tip of the vibration terminal has an elliptical shape with a minor axis of 1 mm or more on the top of a perpendicular cross section in the traveling direction and a circular axis on the major axis side of the ellipse, and is 1 mm or more and 10 mm or less in the traveling direction. 2. The weld joint according to 1, wherein the weld joint has a length.
4). The impact area is formed in an area from the position 0.5 mm away from the weld toe to the base metal side to 4 mm by the vibration terminal. The weld joint as described in any one of.
 本発明によれば、溶接部の疲労強度に優れた溶接継手が得られ、産業上、極めて有用である。 According to the present invention, a welded joint excellent in fatigue strength of the welded portion can be obtained, which is extremely useful industrially.
本発明に係る溶接継手により疲労特性が向上する原理を説明する概略図。Schematic explaining the principle that fatigue characteristics are improved by the welded joint according to the present invention. 本発明に係る溶接継手の打撃に用いる振動端子のX、Y、Z方向を説明する図The figure explaining the X, Y, Z direction of the vibration terminal used for the hit | damage of the welded joint which concerns on this invention 本発明に係る溶接継手の打撃に用いる振動端子を説明する図で(a)はXZ断面、(b)はYZ断面の形状を示す図。It is a figure explaining the vibration terminal used for the hit | damage of the welded joint which concerns on this invention, (a) is a XZ cross section, (b) is a figure which shows the shape of a YZ cross section. 本発明に係る溶接継手の打撃に用いる他の振動端子を説明する図で(a)はXZ断面、(b)はYZ断面の形状を示す図。It is a figure explaining the other vibration terminal used for the hit | damage of the welded joint which concerns on this invention, (a) is a XZ cross section, (b) is a figure which shows the shape of a YZ cross section. 本発明に係る溶接継手の打撃に用いる他の振動端子を説明する図で(a)はXZ断面、(b)はYZ断面の形状を示す図。It is a figure explaining the other vibration terminal used for the hit | damage of the welded joint which concerns on this invention, (a) is a XZ cross section, (b) is a figure which shows the shape of a YZ cross section. 種々の先端部の形状を有する振動端子の効果を示す図で、(a)は先端部の形状、(b)はFEM解析結果によるX方向の残留応力と変形部中央からの距離の関係を示す図。It is a figure which shows the effect of the vibration terminal which has the shape of various front-end | tip parts, (a) is a shape of a front-end | tip part, (b) shows the relationship between the residual stress of the X direction by the FEM analysis result, and the distance from a deformation | transformation center. Figure. 溶接止端と打撃痕の位置関係を示す平面図。The top view which shows the positional relationship of a welding toe and a hit | damage trace. 実施例の試験体の平面図。The top view of the test body of an Example. 実施例((a)は先端部の形状、(b)は振動端子の形状と残留応力測定結果を示す図)。Example ((a) is the shape of the tip portion, (b) is a diagram showing the shape of the vibration terminal and the measurement result of the residual stress). 実施例に用いた2体の溶接継手の寸法形状及び打撃痕の測定位置を示し、(a)は上面図、(b)は側面図。The dimensional shape of the two welded joints used in the examples and the measurement positions of the hitting marks are shown, (a) is a top view and (b) is a side view. 2体の溶接継手について、図10(a)に示す回し溶接部近傍の断面形状が得られる位置(長さ75mmのリブ(rib)の長さ方向の端部の位置)で、溶接金属から母材にかけてレーザ変位計(laser displacement sensor)を用いて0.5mmピッチで測定した断面の履歴を示す図で、(a)、(b)は各溶接継手での測定結果を示す。With respect to the two welded joints, at the position where the cross-sectional shape in the vicinity of the rotating weld shown in FIG. 10A is obtained (the position of the end in the length direction of the rib (rib) having a length of 75 mm), It is a figure which shows the log | history of the cross section measured at 0.5 mm pitch using the laser displacement meter (laser displacement sensor) over a material, (a), (b) shows the measurement result in each welding joint. 図11(a)、(b)に溶接部の断面形状を示した2体の溶接継手の疲労試験結果を示す図。The figure which shows the fatigue test result of the two welded joints which showed the cross-sectional shape of the welding part to Fig.11 (a), (b). ハンマーピーニングにより止端に生じる欠陥を説明する図。The figure explaining the defect which arises in a toe by hammer peening.
 本発明は鋼材の溶接継手であって、溶接金属や溶接止端を除いた、溶接止端周辺の鋼材表面に、溶接ビードに沿って打撃痕を連続形成することによって、溶接止端部に圧縮の残留応力を導入することを特徴とする。以下の説明において止端(溶接止端ということもある。)は部材の面と溶接金属の表面との交線とする(図解溶接用語辞典日刊工業昭和46年9月20日第4版)。 The present invention is a welded joint of steel material, and is compressed to the weld toe by continuously forming a striking trace along the weld bead on the surface of the steel material around the weld toe, excluding the weld metal and the weld toe. The residual stress is introduced. In the following description, the toe (sometimes referred to as a weld toe) is defined as the line of intersection between the surface of the member and the surface of the weld metal (the illustrated welding terminology dictionary, Nikkan Kogyo, September 20, 1971, 4th edition).
 図1は本発明に係る溶接継手により疲労特性が向上する原理を説明するための概略図で、母材1にリブ2を廻し溶接で溶接した溶接継手の側面図を示す。溶接ビード3の止端4から距離d離れた母材1の表面が、母材表面と垂直方向に幅Bのチップ(図示しない)で母材表面が加圧されて塑性変形(点線で表示)を生じた打撃痕となっている。 FIG. 1 is a schematic view for explaining the principle that fatigue characteristics are improved by a welded joint according to the present invention, and shows a side view of a welded joint welded by welding a rib 2 around a base material 1. The surface of the base material 1 at a distance d from the toe 4 of the weld bead 3 is plastically deformed (indicated by a dotted line) by pressing the base material surface with a tip (not shown) having a width B in a direction perpendicular to the base material surface. It is a blow mark that caused.
 母材1の表面において打撃痕の位置(止端4から打撃痕の端までの距離dで規定)は、幅Bのチップにより打撃痕を形成する際、母材1に生じる圧縮残留応力が止端4の溶接による引張残留応力を打消して、その結果、止端4が圧縮残留応力を有するように、規定する。打撃痕の端が止端に接して形成される場合(距離d=0)でも圧縮残留応力を止端に導入することが可能なため本発明範囲内とする。なお、打撃痕は、打撃痕の表面のZ座標が、母材の表面を0とした場合、マイナスの範囲を言う。また、打撃痕の端は,打撃痕の表面のZ座標が、母材の表面と同じZ座標となった位置と定義する。 The position of the impact mark on the surface of the base material 1 (specified by the distance d from the toe 4 to the end of the impact mark) is such that the compressive residual stress generated in the base material 1 is stopped when the impact mark is formed by the tip of the width B. The tensile residual stress due to the welding of the end 4 is canceled out, so that the toe 4 has a compressive residual stress. Even when the end of the hitting mark is formed in contact with the toe (distance d = 0), the compressive residual stress can be introduced into the toe, and therefore is within the scope of the present invention. The hitting mark is a negative range when the Z coordinate of the surface of the hitting mark assumes the surface of the base material to be zero. Further, the edge of the hitting mark is defined as a position where the Z coordinate of the surface of the hitting mark becomes the same Z coordinate as the surface of the base material.
 本発明に係る溶接継手では、止端4での引張残留応力に及ぼす、打撃痕を形成する際に母材1に生じる圧縮残留応力の影響の指標として、母材表面を加圧して、母材表面に打撃痕を形成するために用いる振動端子の形状と、溶接止端より母材側の領域における打撃痕の最大深さを用いる。尚、本発明に係る溶接継手では、溶接止端を含めて溶接ビードを打撃しないことを原則とするが、作業開始直前および直後の調整などで溶接ビード(weld bead)に塑性変形(plastic deformation)を与えない程度に一時的に打撃することは差し支えない。 In the welded joint according to the present invention, the base material surface is pressurized as an index of the influence of the compressive residual stress generated in the base material 1 when the impact mark is formed on the tensile residual stress at the toe 4. The shape of the vibration terminal used for forming the hitting mark on the surface and the maximum depth of the hitting mark in the region closer to the base material than the weld toe are used. In the welded joint according to the present invention, the weld bead including the weld toe is not struck in principle. However, the plastic deformation of the weld bead is made immediately before and after the operation. It is safe to hit the ball temporarily so as not to give any damage.
 図3~5に振動端子の先端の形状を示す。図2はこれらの図におけるX方向、Y方向を説明する図で、X方向は打撃の進行方向と直角方向、Y方向は打撃の進行方向とする。 Figures 3 to 5 show the shape of the tip of the vibration terminal. FIG. 2 is a diagram for explaining the X direction and the Y direction in these drawings. The X direction is a direction perpendicular to the striking direction, and the Y direction is the striking direction.
 図3に示す振動端子は、振動端子の先端部が、進行方向(Y方向)に対して直角となる断面(XZ断面)において、頂部に曲率半径(r):1mm以上10mm以下の円弧状の外周部を有し(図3(a))、進行方向と垂直方向(X方向)に1mm以上10mm以下の長さ(a),進行方向(Y方向)に1mm以上10mm以下の長さ(b)を有する、半円柱形状(half cylinder shape)のものである(図3(b))。 The vibration terminal shown in FIG. 3 has a circular arc shape with a radius of curvature (r) of 1 mm or more and 10 mm or less at the top in a cross section (XZ cross section) in which the tip of the vibration terminal is perpendicular to the traveling direction (Y direction). It has an outer periphery (FIG. 3 (a)), a length (a) of 1 mm to 10 mm in the direction perpendicular to the traveling direction (X direction), and a length of 1 mm to 10 mm in the traveling direction (Y direction) (b ) Having a semi-cylindrical shape (FIG. 3B).
 頂部に円弧状の外周部を有する振動端子の場合、円弧の曲率半径が1mm未満では止端に応力集中部となる変形が形成される可能性があり、一方、10mm超えの場合は接触面積が大きくなり、止端に十分な圧縮残留応力を付与することができないため、曲率半径(r):1mm以上10mm以下とする。 In the case of an oscillating terminal having an arcuate outer periphery at the top, if the radius of curvature of the arc is less than 1 mm, deformation that becomes a stress concentration part may be formed at the toe, whereas if it exceeds 10 mm, the contact area may be Since it becomes large and sufficient compressive residual stress cannot be applied to the toe, the radius of curvature (r) is set to 1 mm or more and 10 mm or less.
 図4は、本発明の他の例に係る振動端子の形状を示し、振動端子の先端部が、進行方向(Y方向)に対して直角となる断面(XZ断面)において、頂部に3mm以下の直線部aの両端に曲率半径(r)0.1mm以上2mm以下の面取り部を備えた外周部を有し(図4(a))、進行方向と垂直方向(X方向)に1mm以上10mm以下の長さ(c),進行方向(Y方向)に1mm以上10mm以下の長さ(b)を有する半円柱形状のものである(図4(b))。本発明例の振動端子の先端は平坦な矩形部となっている。 FIG. 4 shows the shape of a vibration terminal according to another example of the present invention, and the tip of the vibration terminal is 3 mm or less at the top in a cross section (XZ cross section) perpendicular to the traveling direction (Y direction). It has an outer peripheral portion with a chamfered portion having a radius of curvature (r) of 0.1 mm or more and 2 mm or less at both ends of the linear portion a (FIG. 4A), and is 1 mm or more and 10 mm or less in the direction perpendicular to the traveling direction (X direction). And a semi-cylindrical shape having a length (b) of 1 mm or more and 10 mm or less in the traveling direction (Y direction) (FIG. 4B). The tip of the vibration terminal of the example of the present invention is a flat rectangular portion.
 頂部の一部に直線部aのある外周部を有する振動端子の場合、その両側に打撃によるき裂発生を防止するため面取り部を設けることが必要となる。面取り部の曲率半径(r)が0.1mm未満では、面取り部により止端に応力集中部となる変形が形成される可能性があり、一方、2mmを超えると接触面積が大きくなり、止端に十分な圧縮残留応力を付与することができないため、曲率半径0.1mm以上2mm以下の面取り部とする。 In the case of a vibration terminal having an outer peripheral part with a straight part a at a part of the top part, it is necessary to provide a chamfered part on both sides to prevent the occurrence of cracks due to impact. If the radius of curvature (r) of the chamfered portion is less than 0.1 mm, the chamfered portion may form a deformation that becomes a stress concentrated portion at the toe, whereas if it exceeds 2 mm, the contact area increases, Therefore, a chamfered portion with a radius of curvature of 0.1 mm to 2 mm is used.
 面取り部によっても、圧縮残留応力が付与されるので、矩形部の直線部aの長さは3mm以下とする。矩形部の直線部aの長さが3mm超えの場合、止端に応力集中部となる変形が形成される。 Since the compressive residual stress is also applied by the chamfered portion, the length of the straight portion a of the rectangular portion is 3 mm or less. When the length of the straight part a of the rectangular part exceeds 3 mm, a deformation that becomes a stress concentration part is formed at the toe.
 図4に示した振動端子は、振動端子の先端に矩形部を有するので、先端が球状や円弧状のものに比べて、より少ない打撃回数で同一箇所を繰返し打撃することが可能で、能率良く、安定して深い打撃痕形状が得られる。 Since the vibration terminal shown in FIG. 4 has a rectangular portion at the tip of the vibration terminal, it is possible to repeatedly hit the same place with a smaller number of hits compared to a tip or a tip having a spherical shape, which is efficient. A stable and deep impact mark shape can be obtained.
 図5は、本発明の他の例に係る振動端子の形状を示し、振動端子の先端部が、進行方向(Y方向)に対して直角となる断面(XZ断面)において、頂部に楕円形長径側の円弧状の外周部を有し、前記楕円形の短径(r1)が1mm以上で(図5(a))、進行方向と垂直方向(X方向)に1mm以上10mm以下の長さ(a)、進行方向(Y方向)に1mm以上10mm以下の長さを有する半円柱形状に形成されたものである(図5(b))。 FIG. 5 shows the shape of a vibration terminal according to another example of the present invention, and the tip of the vibration terminal has an elliptical long diameter at the top in a cross section (XZ cross section) perpendicular to the traveling direction (Y direction). The elliptical minor axis (r1) is 1 mm or more (FIG. 5A), and a length of 1 mm or more and 10 mm or less in the direction perpendicular to the traveling direction (X direction) ( a), formed in a semi-cylindrical shape having a length of 1 mm or more and 10 mm or less in the traveling direction (Y direction) (FIG. 5B).
 頂部に楕円形の長径側の円弧状の外周部を有する振動端子の場合、楕円形の短径(r1)が1mm未満では長径側の円弧状の外周部による打撃で、止端に応力集中部となる変形が形成されるため、楕円形の短径(r1)は1mm以上とする。 In the case of an oscillating terminal having an elliptical long-diameter arc-shaped outer peripheral portion at the top, if the elliptical short diameter (r1) is less than 1 mm, it is hit by the long-circular arc-shaped outer peripheral portion, and the stress concentrated portion at the toe Therefore, the elliptical minor axis (r1) is 1 mm or more.
 図3~5に示した振動端子はいずれも進行方向と垂直方向(X方向)に1mm以上10mm以下の長さを有し、進行方向(Y方向)に1mm以上10mm以下の長さを有する。 3 to 5 all have a length of 1 mm to 10 mm in the direction perpendicular to the traveling direction (X direction) and a length of 1 mm to 10 mm in the traveling direction (Y direction).
 1mm未満の長さでは、止端に圧縮残留応力を付与することが出来ず、一方、10mm超えの長さの場合は、止端に応力集中部となる変形が形成されるため、1mm以上、10mm以下とする。 If the length is less than 1 mm, compressive residual stress cannot be applied to the toe, whereas if the length is more than 10 mm, a deformation that becomes a stress concentration portion is formed at the toe, so that it is 1 mm or more. 10 mm or less.
 図6に振動端子の先端部の形状が圧縮残留応力に及ぼす影響を調査した結果を示す。先端部が、図6に示す(1)(図の丸数字1を指し、以下同じとする)、(2)、(3)、(4)の形状の振動端子モデルを用い、母材(平板、降伏強さ294MPa・引張強さ445MPaの12mm厚鋼板)表面に対して振動端子の中心軸が垂直となるようにして、振動端子モデルに負荷を与えて母材を0.1mm押し込み、母材表面側に打撃痕(凹形状)の変形を与えた後、負荷を解除した場合をシミュレートして応力分布をFEM解析で求めたものである。図6(b)の横軸は、打撃痕の端からの距離、縦軸は残留応力を示す。 Fig. 6 shows the results of investigating the effect of the shape of the tip of the vibration terminal on the compressive residual stress. The tip portion is a base material (flat plate) using the vibration terminal model shown in FIG. 6 (1) (points to the circled numeral 1 in the figure, hereinafter the same), (2), (3), (4). 12 mm thick steel plate with a yield strength of 294 MPa and a tensile strength of 445 MPa) With the center axis of the vibration terminal perpendicular to the surface, a load was applied to the vibration terminal model and the base material was pushed in 0.1 mm. The stress distribution was obtained by FEM analysis by simulating the case where the load was released after the deformation of the impact mark (concave shape) was given to the surface side. The horizontal axis of FIG.6 (b) shows the distance from the edge of an impact mark, and a vertical axis | shaft shows a residual stress.
 (1)、(2)の振動端子は先端部の頂部がXZ断面(打撃進行方向に直角な断面)において、半径4.5mmの円弧状の外周部を有し、YZ断面(打撃進行方向の断面)の長さを1の振動端子は9mm、(2)の振動端子は4mmとした。 The vibration terminals of (1) and (2) have an arcuate outer periphery with a radius of 4.5 mm in the XZ cross section (cross section perpendicular to the striking direction) at the top of the tip, and the YZ cross section (in the striking direction) The length of the cross section) was 1 mm for the vibration terminal and 4 mm for the vibration terminal (2).
 (3)の振動端子は、先端部が、XZ断面(打撃進行方向に直角な断面)において、頂部に1mmの直線部の両端に曲率半径0.5mmの面取り部を備えた外周部を有し、YZ断面(打撃進行方向の断面)の長さを9mmとした。(4)の振動端子は先端部が曲率半径3mmの半球状とした。 The vibration terminal of (3) has an outer peripheral portion with a chamfered portion having a curvature radius of 0.5 mm at both ends of a linear portion of 1 mm at the top in the XZ cross section (cross section perpendicular to the striking direction). The length of the YZ cross section (cross section in the striking direction) was 9 mm. The vibration terminal (4) has a hemispherical shape with a radius of curvature of 3 mm at the tip.
 図6より、振動端子((1)、(2)、(3))の場合、先端部が半球状の振動端子((4))よりも、打撃痕の端から離れた位置でも大きな圧縮残留応力を付与することが可能で、より効率的に止端の残留応力(引張残留応力)を軽減することが可能である。特にその先端に矩形部を有する(3)の振動端子では、最も圧縮残留応力が大きく、先端が球状や円弧状のものに比べて、より少ない打撃回数で同一箇所を繰返し打撃することが可能で、能率良く、安定して深い打撃痕形状が得られる。 From FIG. 6, in the case of the vibration terminal ((1), (2), (3)), the compressive residual is larger even at a position farther from the end of the impact mark than the hemispherical vibration terminal ((4)). Stress can be applied, and the residual stress at the toe (tensile residual stress) can be reduced more efficiently. In particular, the vibration terminal of (3) having a rectangular portion at its tip has the largest compressive residual stress, and it is possible to repeatedly hit the same place with a smaller number of times of hitting than a tip having a spherical or arc shape at the tip. Efficient, stable and deep strike mark shape can be obtained.
 図6より、XZ断面の形状が異なる振動端子((1)、(2)は半径4.5mmの円弧状、(3)は頂部に1mmの直線部の両端に曲率半径0.5mmの面取り部)のいずれでも、打撃痕(変形部)の端から約1mm離れた位置で大きな圧縮残留応力が発生している。 From FIG. 6, the vibration terminals having different XZ cross-sectional shapes ((1), (2) are arc-shaped with a radius of 4.5 mm, and (3) is a chamfered portion with a radius of curvature of 0.5 mm at both ends of a linear portion of 1 mm at the top. In any case, a large compressive residual stress is generated at a position about 1 mm away from the end of the impact mark (deformed portion).
 また、図6より、先端部が半球状の振動端子((4))の場合、打撃痕の端から4mm離れた位置で圧縮残留応力が導入されなくなるが、(1)、(2)、(3)の振動端子の場合、打撃痕の端から4mm離れた位置においても100~200MPa程度の圧縮残留応力を導入することが可能である。従って、溶接止端側の打撃痕の端(あるいは、振動端子の溶接止端側の端部)がX方向(図2で定義する)で溶接止端より母材側に0.5mm離れた位置から4mmまでの領域に位置するように形成することが好ましい。特に、圧縮残留応力の大きい範囲を考慮すると、振動端子の溶接止端側の端部がX方向(図2で定義する)で溶接止端より母材側に0.5mm離れた位置から2mmまでの領域に形成することが好ましい。但し、打撃痕(変形部)の端でも圧縮残留応力(−50MPa程度)が発生しているので、本発明は溶接止端側の打撃痕の端が溶接止端より母材側に4mmまでの領域になるように、打撃痕を形成するものとする。 Further, from FIG. 6, in the case where the tip part is a hemispherical vibration terminal ((4)), the compressive residual stress is not introduced at a position 4 mm away from the end of the impact mark, but (1), (2), ( In the case of the vibration terminal 3), it is possible to introduce a compressive residual stress of about 100 to 200 MPa even at a position 4 mm away from the end of the impact mark. Therefore, the position of the impact mark on the weld toe side (or the end of the vibration terminal on the weld toe side) is 0.5 mm away from the weld toe in the X direction (defined in FIG. 2) to the base metal side. To 4 mm is preferable. In particular, considering the large range of compressive residual stress, the end on the weld toe side of the vibration terminal extends from the position 0.5 mm away from the weld toe to the base metal side in the X direction (defined in FIG. 2) to 2 mm. It is preferable to form in this area. However, since compressive residual stress (about -50 MPa) is also generated at the end of the hitting mark (deformed portion), the present invention is such that the end of the hitting mark on the weld toe side is up to 4 mm from the weld toe to the base metal side. A hitting mark is formed so as to be an area.
 (1)、(2)、(3)の振動端子の先端部を、進行方向直角断面(XZ断面)の頂部が短径が1mm以上の楕円形における長径側の円弧状とするとより圧縮残留応力が広い範囲で分布して好ましい。 If the tip of the vibration terminal of (1), (2), (3) has an arc shape on the major axis side of an ellipse having a minor axis of 1 mm or more at the top of the traveling direction perpendicular section (XZ section), the compressive residual stress Is preferably distributed over a wide range.
 打撃時は、振動端子先端の長辺側を止端に平行に打撃するのが好ましい。止端に平行な部分が長くなるほど、圧縮残留応力が広い範囲で分布するからである。 When hitting, it is preferable to hit the long side of the tip of the vibration terminal parallel to the toe. This is because the compressive residual stress is distributed in a wider range as the portion parallel to the toe becomes longer.
 打撃痕は、最大深さが0.03mm以上0.50mm未満とする。底部までの最大深さが0.03mm未満の場合は、止端に十分な圧縮残留応力を付与することができず、0.50mm以上では打撃痕周辺の塑性変形が過大となり新たな応力集中源となる可能性があるためである。上記打撃痕深さの範囲内であれば、母材強度が変化しても、溶接止端の引張残留応力を軽減する圧縮残留応力と、打撃痕から離れた位置で圧縮残留応力が最大値となる分布状態が得られる。 The maximum hit depth is 0.03 mm or more and less than 0.50 mm. If the maximum depth to the bottom is less than 0.03 mm, sufficient compressive residual stress cannot be applied to the toe, and if it is 0.50 mm or more, the plastic deformation around the impact mark becomes excessive and a new stress concentration source This is because there is a possibility of becoming. As long as the base metal strength changes, the compressive residual stress that reduces the tensile residual stress of the weld toe and the maximum compressive residual stress at a position away from the impact mark are within the range of the impact mark depth. A distribution state is obtained.
 尚、本発明に係る溶接継手では、溶接止端を含めて溶接ビードを打撃しないように、振動端子の先端部の形状と溶接止端より溶接止端側の打撃痕の端が母材側に4mmまでの位置になるように、より好ましくは溶接止端側の打撃痕の端が溶接止端より母材側に2mmまでの領域内になるように打撃痕を形成する位置を適宜組み合わせる。 In the welded joint according to the present invention, the shape of the tip of the vibration terminal and the end of the striking trace on the weld toe side from the weld toe are on the base metal side so as not to hit the weld bead including the weld toe. More preferably, the positions where the hitting marks are formed are appropriately combined so that the end of the hitting mark on the weld toe side is within the region of 2 mm from the weld toe to the base material side so that the position is up to 4 mm.
 例えば、(1)、(2)の振動端子の場合、打撃痕中心(XZ断面の幅中心)を溶接止端より母材側に0.5mmの位置に打撃痕を形成しようとすると、振動端子の幅が9mmのままでは振動端子の一部が溶接止端より溶接金属側となり溶接止端を覆うようになる。 For example, in the case of the vibration terminals of (1) and (2), if the striking trace is to be formed at a position 0.5 mm from the weld toe to the base metal side of the striking trace center (width center of the XZ cross section), the vibration terminal If the width is 9 mm, a part of the vibration terminal becomes the weld metal side from the weld toe and covers the weld toe.
 このような場合,溶接止端形状によっては振動端子が溶接止端を打撃することになるので,頂部の形状を保ったまま、図3のように頂部付近で幅をつめることも有用である。溶接止端より溶接止端側の打撃痕の端が母材側に4mmまでの位置になるように、より好ましくは溶接止端側の打撃痕の端が溶接止端より母材側に2mmまでの領域内で、溶接止端を打撃しない位置を選定して溶接止端に沿って連続的に打撃する。 In such a case, depending on the shape of the weld toe, the vibration terminal hits the weld toe, so it is also useful to narrow the width near the top as shown in FIG. 3 while maintaining the shape of the top. More preferably, the end of the impact mark on the weld toe side of the weld toe side is at a position up to 4 mm on the base metal side, more preferably the end of the impact mark on the weld toe side is 2 mm on the base material side from the weld toe end. In this area, a position not hitting the weld toe is selected, and the hammer is continuously hit along the weld toe.
 図7は溶接止端4と打撃痕6の位置関係を示す平面図で、本発明は、溶接止端側の打撃痕6の端が溶接止端4から母材1側に4mm以内であれば溶接止端4との距離によらず圧縮残留応力を溶接止端4に導入できるので、溶接方向における溶接止端4の形状に沿うことなく、当該範囲内に直線状に打撃痕6を形成することが可能で作業能率が向上する。(図7の訂正要) FIG. 7 is a plan view showing the positional relationship between the weld toe 4 and the hitting trace 6. In the present invention, the end of the hitting trace 6 on the weld toe side is within 4 mm from the weld toe 4 to the base metal 1 side. Since compressive residual stress can be introduced into the weld toe 4 regardless of the distance to the weld toe 4, the striking trace 6 is formed linearly within the range without following the shape of the weld toe 4 in the welding direction. It is possible to improve work efficiency. (Correction required for Fig. 7)
 溶接止端から溶接止端側の打撃痕の端が母材側に4mm離れた位置を打撃する場合は、施工直前に打撃面に接した振動端子先端の溶接止端側の辺を母材側に4mm離れた位置として打撃するので、打撃痕は母材側に4mmより更に母材側に形成されることになる。このように、打撃痕が母材側に4mmから更に打撃痕の幅だけ母材側に形成されても本発明の作用効果は損なわれない。 When striking the position where the end of the hammering mark on the weld toe side is 4 mm away from the weld toe on the base metal side, the side on the weld toe side of the vibration terminal tip in contact with the striking surface immediately before construction is the base material side. Therefore, the hitting marks are formed on the base material side further than 4 mm on the base material side. Thus, even if the hitting mark is formed on the base material side from 4 mm on the base material side by the width of the hitting mark, the effect of the present invention is not impaired.
 また、図6に示す関係を本発明範囲内で種々に押し込み量を変えた場合について予め求めておくと、実作業で打撃痕を形成する打撃力の調整と打撃する位置の選定が容易となり好ましい。 Further, it is preferable to obtain the relationship shown in FIG. 6 in advance when the amount of pushing is variously changed within the scope of the present invention, because it is easy to adjust the striking force to form a striking mark and select the striking position in actual work. .
 振動端子5で母材表面を加圧する前に、止端4と母材1の境界部にグラインダ研削などでr部を設けると母材表面の変形を止端4に及ばさずに、より大きな圧縮残留応力を止端4に導入させることが可能で好ましい。打撃痕は、互いが一部または全てが重なるように複数回の打撃によって形成することが好ましい。また、本発明による作用効果は、ハンマーピーニングまたは超音波衝撃処理のいずれであっても得られる。 If the r portion is provided by grinder grinding or the like at the boundary between the toe 4 and the base material 1 before pressurizing the base material surface with the vibration terminal 5, the deformation of the base material surface does not reach the toe end 4 and is larger. It is preferable that compressive residual stress can be introduced into the toe 4. The hitting trace is preferably formed by hitting a plurality of times so that part or all of the hitting marks overlap each other. In addition, the function and effect of the present invention can be obtained by either hammer peening or ultrasonic impact treatment.
 頂部の一部が扁平(直線部)で、その両側に打撃によるき裂発生を防止するため面取り部を有する振動端子(以下、先端形状Aの振動端子(本発明例))と、先端部が半球状の振動端子(以下、先端形状Bの振動端子(比較例))を用いて、幅150mm×長さ300mm×板厚12mmの母材(SM400)に、ハンマーピーニング(空気圧約6kg/cm、周波数90Hz、移動速度0.25mm/秒による)を振動端子を垂直に繰り返し打撃して行った(図8)。 A vibration terminal (hereinafter referred to as a vibration terminal having a tip shape A (example of the present invention)) having a chamfered portion to prevent a crack from being generated on both sides of the top part is flat (straight part), and the tip part is Using a hemispherical vibration terminal (hereinafter referred to as a vibration terminal having a tip shape B (comparative example)), a hammer peening (air pressure of about 6 kg / cm 2 ) was performed on a base material (SM400) having a width of 150 mm × a length of 300 mm × a plate thickness of 12 mm. (With a frequency of 90 Hz and a moving speed of 0.25 mm / second) was performed by repeatedly striking the vibration terminal vertically (FIG. 8).
 試験片はX線による残留応力測定に供した。X線を用いた残留応力測定は、ビーム径1mmφで行った。図9に振動端子の形状と残留応力測定結果を示す。本発明例の先端形状Aの振動端子は、残留応力が定常状態(約−120MPa)に比べて125%以上圧縮側(−150MPaより低い値)となっている範囲が約4mmあるが、比較例の先端形状Bの振動端子では、残留応力が圧縮側定常状態(約−80MPa)に比べて125%以上圧縮側(−100MPaより低い値)となっている範囲が約1.5mmと狭くなっている。 The test piece was subjected to residual stress measurement by X-ray. Residual stress measurement using X-rays was performed with a beam diameter of 1 mmφ. FIG. 9 shows the shape of the vibration terminal and the measurement result of the residual stress. The vibration terminal of the tip shape A of the present invention example has a range in which the residual stress is on the compression side (value lower than -150 MPa) by about 125% or more compared to the steady state (about -120 MPa), but is a comparative example. In the vibration terminal of the tip shape B, the range where the residual stress is 125% or more on the compression side (value lower than −100 MPa) compared to the compression side steady state (about −80 MPa) is narrowed to about 1.5 mm. Yes.
 次に、溶接継手を作成し、本発明法によりハンマーピーニングを施した後、疲労試験を実施した。図10は溶接継手の寸法形状及び打撃痕の測定位置を示し、(a)は上面図、(b)は側面図を示す。溶接継手は、280A−32V−25cpmの溶接条件にて2体を作製した。 Next, a welded joint was prepared, hammer peened according to the method of the present invention, and then a fatigue test was performed. FIG. 10 shows the dimension and shape of the welded joint and the measurement position of the impact mark, where (a) shows a top view and (b) shows a side view. Two welded joints were produced under welding conditions of 280A-32V-25cpm.
 各溶接継手に対して、先述の本発明例の先端形状Aの振動端子を用いて、ハンマーピーニング(空気圧約6kg/cm、周波数90Hz、移動速度0.25mm/秒による)を振動端子を垂直に繰り返し打撃して行い、打撃痕の寸法を測定した。 For each welded joint, hammer peening (with an air pressure of about 6 kg / cm 2 , a frequency of 90 Hz, and a moving speed of 0.25 mm / second) is made perpendicular to the vibration terminal by using the vibration terminal having the tip shape A of the above-described example of the present invention. The measurement was performed repeatedly, and the size of the hitting marks was measured.
 打撃痕の寸法は、図10(a)に示すように回し溶接部近傍の断面形状が得られる位置(長さ75mmのリブの長さ方向の端部の位置)で、溶接金属から母材にかけてレーザ変位計を用いて0.05mmピッチで測定した。 As shown in FIG. 10 (a), the size of the impact mark is rotated from the weld metal to the base metal at a position where the cross-sectional shape in the vicinity of the welded portion is obtained (position of the end portion in the length direction of the rib having a length of 75 mm). Measurements were made at a pitch of 0.05 mm using a laser displacement meter.
 図11(a)、(b)に2体の各溶接継手で得られた溶接部およびその近傍の断面形状をそれぞれ示す。各溶接継手について,疲労試験(周波数3~5Hz)を行った結果を図12に示す。本発明例の先端形状Aの振動端子を使ったものは,溶接ままの継手(図中、比較例)に比べて疲労寿命の向上が見られた。
 なお,図12には,日本鋼構造協会(Japan Society of Steel Construction,JSSC)による疲労設計曲線(疲労強度等級JSSC−A、JSSC−C、JSSC−D、JSSC−E、JSSC−F)も示した。今回用いた角回し溶接継手の疲労強度等級はF等級である。
FIGS. 11A and 11B show the welded portions obtained by the two welded joints and the cross-sectional shapes in the vicinity thereof. The results of a fatigue test (frequency 3 to 5 Hz) for each welded joint are shown in FIG. In the example of the present invention using the vibration terminal having the tip shape A, the fatigue life was improved as compared with the welded joint (comparative example in the figure).
FIG. 12 also shows fatigue design curves (fatigue strength classes JSSC-A, JSSC-C, JSSC-D, JSSC-E, JSSC-F) according to the Japan Society of Steel Construction (JSSC). It was. The fatigue strength grade of the square turn welded joint used this time is F grade.
 1  母材
 2  リブ
 3  溶接ビード
 4  止端
 5  チッパー
 6  打撃痕
 7  疲労亀裂
DESCRIPTION OF SYMBOLS 1 Base material 2 Rib 3 Weld bead 4 Toe 5 Chipper 6 Blow mark 7 Fatigue crack

Claims (4)

  1.  ハンマーピーニングまたは超音波衝撃処理された、鋼材の溶接継手であって、振動端子によって溶接ビードに沿って鋼材表面に連続形成された打撃痕を有し、前記振動端子は、その先端部が、進行方向直角断面の頂部が曲率半径:1mm以上10mm以下の円弧状で、進行方向に1mm以上10mm以下の長さを有し、前記打撃痕は、前記振動端子によって、溶接止端より溶接止端側の打撃痕の端が母材側に4mmまでの領域において形成され、最大深さが0.03mm以上0.50mm未満に形成されたことを特徴とする溶接継手。 Hammer peened or ultrasonic impact treated steel welded joint, having a striking trace continuously formed on the steel surface along the weld bead by the vibration terminal, the tip of the vibration terminal is advancing The top of the cross section perpendicular to the direction is an arc with a radius of curvature of 1 mm or more and 10 mm or less, and has a length of 1 mm or more and 10 mm or less in the direction of travel. The weld joint is characterized in that the end of the impact mark is formed in a region of up to 4 mm on the base material side, and the maximum depth is 0.03 mm or more and less than 0.50 mm.
  2.  前記振動端子は、その先端部が、進行方向直角断面の頂部が3mm以下の直線部の両端に曲率半径0.1mm以上2mm以下の面取り部を有し、進行方向に1mm以上10mm以下の長さを有することを特徴とする請求項1記載の溶接継手。 The vibration terminal has a chamfered portion with a radius of curvature of 0.1 mm or more and 2 mm or less at both ends of a linear portion whose top portion of the cross section perpendicular to the traveling direction is 3 mm or less, and a length of 1 mm or more and 10 mm or less in the traveling direction. The welded joint according to claim 1, comprising:
  3.  前記振動端子は、その先端部が、進行方向直角断面の頂部が短径が1mm以上の楕円形の長径側の円弧状で、進行方向に1mm以上10mm以下の長さを有することを特徴とする請求項1記載の溶接継手。 The tip of the vibration terminal has an elliptical arcuate shape with a short axis of 1 mm or more at the top of the cross section perpendicular to the traveling direction, and has a length of 1 mm or more and 10 mm or less in the traveling direction. The welded joint according to claim 1.
  4.  前記打撃痕は、前記振動端子によって、打撃痕の端が、溶接止端より母材側に0.5mm離れた位置から4mmまでの領域に形成することを特徴とする請求項1乃至3のいずれか一つに記載の溶接継手。 The said impact mark is formed in the area | region from the position 0.5mm away from the welding toe end to the base material side by the said vibration terminal to the end of the impact mark to 4 mm. A welded joint according to any one of the above.
PCT/JP2011/078223 2010-05-31 2011-11-30 Welded joint WO2012164774A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011-120006 2011-05-30
JP2011120006A JP5844551B2 (en) 2010-05-31 2011-05-30 Manufacturing method of welded joint

Publications (1)

Publication Number Publication Date
WO2012164774A1 true WO2012164774A1 (en) 2012-12-06

Family

ID=47262883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078223 WO2012164774A1 (en) 2010-05-31 2011-11-30 Welded joint

Country Status (1)

Country Link
WO (1) WO2012164774A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132793A (en) * 2017-09-27 2020-05-08 杰富意钢铁株式会社 Hammering method for lap fillet welded joint and welded structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130315A (en) * 2002-10-08 2004-04-30 Nippon Steel Corp Method for enhancing fatigue strength of butt weld joint
JP2004130313A (en) * 2002-10-08 2004-04-30 Nippon Steel Corp Method for increasing fatigue strength of lap fillet weld joint
JP2006320960A (en) * 2005-04-20 2006-11-30 Nippon Steel Corp Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
JP2010029897A (en) * 2008-07-28 2010-02-12 Nippon Steel Corp Peening method and apparatus for improving fatigue characteristic of welded joint, peening apparatus for improving the fatigue characteristics and welded structure excellent in fatigue resistance
JP2010142870A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Working method using ultrasonic impact treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130315A (en) * 2002-10-08 2004-04-30 Nippon Steel Corp Method for enhancing fatigue strength of butt weld joint
JP2004130313A (en) * 2002-10-08 2004-04-30 Nippon Steel Corp Method for increasing fatigue strength of lap fillet weld joint
JP2006320960A (en) * 2005-04-20 2006-11-30 Nippon Steel Corp Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
JP2010029897A (en) * 2008-07-28 2010-02-12 Nippon Steel Corp Peening method and apparatus for improving fatigue characteristic of welded joint, peening apparatus for improving the fatigue characteristics and welded structure excellent in fatigue resistance
JP2010142870A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Working method using ultrasonic impact treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132793A (en) * 2017-09-27 2020-05-08 杰富意钢铁株式会社 Hammering method for lap fillet welded joint and welded structure
EP3689531A4 (en) * 2017-09-27 2020-11-18 JFE Steel Corporation Peening processing method for overlapped fillet welded joint, and welded structure
CN111132793B (en) * 2017-09-27 2021-09-07 杰富意钢铁株式会社 Hammering method for lap fillet welded joint and welded structure

Similar Documents

Publication Publication Date Title
JP2014014831A (en) Fatigue strength improving method of weld zone and welded joint
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
JP5844551B2 (en) Manufacturing method of welded joint
KR101577261B1 (en) Method for preventing fatigue damage in welded structures, tool for forming impact area, and welded structure
JP4895407B2 (en) Peening method and welded joint using it
JP2013233590A (en) Welded joint superior in fatigue characteristic
JP5977077B2 (en) Welding peening method
WO2012164774A1 (en) Welded joint
JP5919986B2 (en) Hammer peening treatment method and welded joint manufacturing method using the same
JP5898498B2 (en) Method for improving fatigue strength of welded part and welded joint
JP6495569B2 (en) Tool for forming impact marks
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP5599653B2 (en) Welded joint
JP5599652B2 (en) Welded joint
JP5955752B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP6051817B2 (en) Method for suppressing fatigue damage of welded structure, tool for forming impact mark used in the method, and welded structure
JP6339760B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP5252112B1 (en) Peening construction method
JP5327567B1 (en) Peening method and welded joint
JP2013136092A (en) Method for suppressing fatigue damage of welded structure
KR102243326B1 (en) Method of peening lap fillet welded joint and welded structures
JP6696604B1 (en) Needle peening method
JP2021109283A (en) Strike processing terminal and impact processing method using it
JP2013136094A (en) Weld structure of steel
JP2019155470A (en) Method for peening processing of lap fillet-welded joint and weld structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 11866774

Country of ref document: EP

Kind code of ref document: A1