JP6606730B2 - Weld reinforcement method - Google Patents

Weld reinforcement method Download PDF

Info

Publication number
JP6606730B2
JP6606730B2 JP2014161492A JP2014161492A JP6606730B2 JP 6606730 B2 JP6606730 B2 JP 6606730B2 JP 2014161492 A JP2014161492 A JP 2014161492A JP 2014161492 A JP2014161492 A JP 2014161492A JP 6606730 B2 JP6606730 B2 JP 6606730B2
Authority
JP
Japan
Prior art keywords
friction stir
weld
welded portion
welded
stir processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014161492A
Other languages
Japanese (ja)
Other versions
JP2015127063A (en
Inventor
英俊 藤井
和博 伊藤
林太郎 上路
千晃 志賀
好昭 森貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2014161492A priority Critical patent/JP6606730B2/en
Publication of JP2015127063A publication Critical patent/JP2015127063A/en
Application granted granted Critical
Publication of JP6606730B2 publication Critical patent/JP6606730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は溶接部の補強方法及びそれにより得られる溶接構造物に関し、より具体的には、種々の鋼材に適用可能な、溶接部の疲労強度を飛躍的に向上させることができる溶接部の簡便かつ効果的な補強方法、及びそれにより得られる溶接構造物に関する。   The present invention relates to a method for reinforcing a welded portion and a welded structure obtained thereby, and more specifically, a simple welded portion that can be applied to various steel materials and can dramatically improve the fatigue strength of the welded portion. The present invention also relates to an effective reinforcing method and a welded structure obtained thereby.

近年、船舶、海洋構造物及び橋梁等の大型溶接構造物への高張力鋼の適用が進んでいる。ここで、鋼材の高張力化によって母材の疲労強度は向上するが、溶接構造物全体としての信頼性・安全性は、最も疲労強度が低い溶接部の特性によって律速されてしまう。   In recent years, application of high-strength steel to large-sized welded structures such as ships, offshore structures and bridges has progressed. Here, although the fatigue strength of the base material is improved by increasing the tensile strength of the steel material, the reliability and safety of the entire welded structure are limited by the characteristics of the welded portion having the lowest fatigue strength.

これに対し、溶接部の改質手段として摩擦攪拌処理が注目され、主として溶接部の欠陥(ブローホール及び割れ等)を除去する方法が検討されている。例えば、特許文献1(特開2006−239734号公報)では、溶接金属部が摩擦攪拌接合用工具のプローブを用いて摩擦攪拌されている溶接継手が提案されている。   On the other hand, friction stir processing is attracting attention as a means for modifying the welded part, and a method for removing defects (blowholes, cracks, etc.) mainly in the welded part has been studied. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-239734) proposes a welded joint in which a weld metal part is friction stir using a probe of a friction stir welding tool.

そして、前記特許文献1に記載されている溶接継手においては、溶接金属部のブローホール、溶接不良、割れ等の溶接欠陥が少なくなっているとともに、溶接金属部の結晶粒が、例えば20μm程度にまで微細化され、溶接継手の疲労強度、伸び等の疲労特性が向上するとしている。   And in the welded joint described in the said patent document 1, while the weld defect, such as the blowhole of a weld metal part, a welding defect, and a crack, has decreased, the crystal grain of a weld metal part is about 20 micrometers, for example. It is said that the fatigue characteristics such as fatigue strength and elongation of the welded joint will be improved.

また、特許文献2(特開2008−246501号公報)では、ニッケル基合金またはオーステナイト系ステンレス鋼製の溶接材からなる溶接部で部材を接合して構成された溶接構造物において、溶接部の表面、又は溶接部と溶接部近傍の部材との表面に、回転するツールを表面垂直方向の荷重負荷により圧着させた状態で移動させて摩擦攪拌処理を行い、摩擦攪拌処理を行った摩擦攪拌処理部の柱状晶方向を表面面内方向とすることを特徴とする溶接構造物の応力腐食割れ進展性の改善方法が提案されている。   Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 2008-246501), in the welding structure comprised by joining the member by the welding part which consists of a welding material made from a nickel base alloy or austenitic stainless steel, the surface of a welding part Or, the friction stir processing unit that performs the friction stir processing by moving the rotating tool in a state of being crimped to the surface of the welded portion and the member in the vicinity of the weld portion by a load load in the surface vertical direction There has been proposed a method for improving the progress of stress corrosion cracking of a welded structure, characterized in that the columnar crystal direction is the in-plane direction.

前記特許文献2に記載の溶接構造物の応力腐食割れ進展性の改善方法においては、摩擦攪拌処理部の柱状晶方向を表面面内方向とすることにより、溶接部での応力腐食割れの発生を抑制し、また、溶接部に応力腐食割れが発生しても、深さ方向のき裂進展は、柱状晶方向が応力腐食割れ方向と垂直になっているので、応力腐食割れのき裂進展速度を応力腐食割れが柱状晶方向に沿って発生する場合と比べ1/10程度に減速させることが可能となる。これにより、溶接部の耐用年数を長くすることができ、溶接構造物の寿命を長くすることができるとしている。   In the method for improving the progress of stress corrosion cracking of a welded structure described in Patent Document 2, the occurrence of stress corrosion cracking in the welded portion is caused by setting the columnar crystal direction of the friction stir processing portion to the in-surface direction. Even if stress corrosion cracking occurs in the weld zone, the crack growth rate in the depth direction is such that the columnar crystal direction is perpendicular to the stress corrosion cracking direction. Can be reduced to about 1/10 compared with the case where stress corrosion cracking occurs along the columnar crystal direction. Thereby, it is supposed that the service life of a welding part can be lengthened and the lifetime of a welded structure can be lengthened.

特開2006−239734号公報JP 2006-239734 A 特開2008−246501号公報JP 2008-246501 A

しかしながら、上記特許文献1に開示されている溶接継手は基本的にアルミニウムを対象材としており、鋼材等に関する効果については全く開示されていない。加えて、摩擦攪拌接合用工具のプローブを溶接部に圧入し、好ましくは被接合材の肉厚の1/2以上の部分を摩擦攪拌する必要があるため、実用上適用可能な対象材は摩擦攪拌が容易な軽金属材に限定されてしまう。   However, the welded joint disclosed in Patent Document 1 basically uses aluminum as a target material, and does not disclose any effects related to steel materials. In addition, it is necessary to press-fit the probe of the friction stir welding tool into the welded portion, and preferably to friction stir a portion of more than half the thickness of the material to be joined. It is limited to light metal materials that can be easily stirred.

また、上記特許文献2に開示されている溶接構造物の応力腐食割れ進展性の改善方法は、溶接部の柱状晶方向を表面面内方向とすることを特徴としており、効果を奏する対象材がニッケル基合金及びオーステナイト系ステンレス鋼製の溶接材からなる溶接部に限定されている。加えて、腐食環境下にない場合の疲労強度に関する効果については全く開示されていない。また、摩擦攪拌処理を施す深さは深いほど望ましく、好ましくは2mm以上であるとされているため、ツール寿命等の制約によって実用上適用可能な範囲は極めて限定されてしまう。加えて、全ての溶接部に対して摩擦攪拌処理を施す必要がある場合においては、やはりツール寿命等の制約によって実用上適用可能な範囲が極めて限定されてしまう。   Further, the method for improving the stress corrosion cracking progress of the welded structure disclosed in Patent Document 2 is characterized in that the columnar crystal direction of the welded portion is the surface in-plane direction, and the effective target material is It is limited to welds made of nickel-base alloy and austenitic stainless steel welds. In addition, no effect on fatigue strength when not in a corrosive environment is disclosed. Moreover, since the depth which performs a friction stirring process is so deep that it is desirable, Preferably it is 2 mm or more, The range applicable practically will be very limited by restrictions, such as a tool lifetime. In addition, when it is necessary to apply friction stir processing to all welds, the practically applicable range is extremely limited due to constraints such as tool life.

更に、上記特許文献1及び特許文献2に開示されている技術の基本的態様においては、摩擦攪拌処理の終端部に工具のプローブを引き抜いた際に形成される穴が残存してしまう。当該引き抜き穴は外観上問題があるだけでなく、穴の深さによっては溶接構造物の強度及び信頼性を大幅に低下させてしまう。   Furthermore, in the basic aspect of the technique disclosed in Patent Document 1 and Patent Document 2, a hole formed when the tool probe is pulled out at the end of the friction stirring process remains. The drawn hole not only has a problem in appearance, but also greatly decreases the strength and reliability of the welded structure depending on the depth of the hole.

以上のような従来技術における問題点に鑑み、本発明の目的は、溶接部の補強方法及びそれにより得られる溶接構造物を提供し、より具体的には、種々の鋼材に適用可能な、溶接部の疲労強度を飛躍的に向上させることができる溶接部の簡便かつ効果的な補強方法、及びそれにより得られる溶接構造物を提供することにある。   In view of the problems in the prior art as described above, an object of the present invention is to provide a welding portion reinforcing method and a welded structure obtained thereby, and more specifically, welding that can be applied to various steel materials. An object of the present invention is to provide a simple and effective method for reinforcing a welded portion capable of dramatically improving the fatigue strength of the welded portion, and a welded structure obtained thereby.

本発明者は上記目的を達成すべく、疲労強度の向上に効果的な溶接部の摩擦攪拌処理条件等について鋭意研究を重ねた結果、特定の溶接部の一部分に薄い摩擦攪拌処理領域を形成させることが極めて有効であることを見出し、本発明に到達した。   In order to achieve the above object, the present inventor conducted extensive research on the friction stir processing conditions and the like of the welded portion effective in improving fatigue strength, and as a result, a thin friction stir processing region is formed in a part of a specific welded portion. Has been found to be extremely effective, and the present invention has been achieved.

即ち、本発明は、
2つの金属製被溶接材の溶融溶接によって形成された溶接部に対して摩擦攪拌処理を施す溶接部の補強方法であって、
前記摩擦攪拌処理を施す領域が前記溶接部の引張残留応力集中部を含み、
前記摩擦攪拌処理に用いる摩擦攪拌用工具の底面が略平面又は長さが1mm以下のプローブを有していること、
を特徴とする溶接部の補強方法を提供する。
That is, the present invention
A method of reinforcing a welded portion that performs friction stir processing on a welded portion formed by fusion welding of two metal workpieces,
The region where the friction stir treatment is performed includes a tensile residual stress concentration portion of the weld,
The bottom surface of the friction stir tool used for the friction stir processing has a substantially flat surface or a probe having a length of 1 mm or less;
A method for reinforcing a welded portion is provided.

一般的に、継手形状によらず、溶接部には溶接熱応力に起因する引張残留応力が存在し、溶接状態によっては当該残留応力が集中する領域が存在する。特に、溶接止端部等においては当該溶接熱応力に加えて、断面形状変化に起因する応力集中が生じる。これらの応力等が重畳する結果、溶接止端部等においては局部的に引張残留応力が高くなる領域が形成される場合が多い。   Generally, regardless of the joint shape, there is a tensile residual stress due to welding thermal stress in the weld, and there is a region where the residual stress is concentrated depending on the welding state. In particular, in the weld toe portion or the like, in addition to the welding thermal stress, stress concentration caused by the cross-sectional shape change occurs. As a result of superimposing these stresses or the like, a region where the tensile residual stress is locally increased is often formed in the weld toe portion or the like.

溶接部における引張残留応力集中部の特定には、従来公知の種々の手法を用いることができるが、例えば、X線や中性子の回折による残留応力測定及びFEM有限要素解析の応力解析等を用いることができる。   Various methods known in the art can be used for specifying the tensile residual stress concentration portion in the welded portion. For example, residual stress measurement by X-ray or neutron diffraction, stress analysis of FEM finite element analysis, or the like is used. Can do.

本発明の溶接部の補強方法おいて形成させる摩擦攪拌処理領域は溶接部の表面近傍のみであるため、底面が略平面又は長さが1mm以下のプローブを有する摩擦攪拌用工具を用いて処理を行うことが好ましい。当該摩擦攪拌用工具を用いることで、摩擦攪拌処理の終端部に工具のプローブを引き抜いた際に形成される穴による、溶接構造物の強度及び信頼性の低下を抑制することができる。なお、貫通穴を有する部材(ショルダ部)の当該貫通穴に摩擦攪拌用工具が挿入され、当該摩擦攪拌用工具を高速回転させて被処理部に圧入させる態様(所謂、ステーショナリーツール)の場合は、摩擦攪拌用工具の圧入深さが1mm以下であればよい。   Since the friction stir processing region formed in the welding portion reinforcement method of the present invention is only in the vicinity of the surface of the welded portion, the processing is performed using a friction stir tool having a probe whose bottom surface is substantially flat or whose length is 1 mm or less. Preferably it is done. By using the friction stir tool, it is possible to suppress a decrease in strength and reliability of the welded structure due to a hole formed when the probe of the tool is pulled out at the end of the friction stir processing. In the case of a mode in which a friction stir tool is inserted into the through hole of a member having a through hole (shoulder portion) and the friction stir tool is rotated at a high speed and press-fitted into the processing target portion (so-called stationary tool) The press-fitting depth of the friction stir tool may be 1 mm or less.

本発明の溶接部の補強方法においては、前記摩擦攪拌処理を施す領域がT字継手の角廻し溶接部であること、が好ましい。T字継手の角廻し溶接部は残留応力集中部(疲労強度を律速する部位)の存在が他の溶接部と比較して顕著であり、当該残留応力集中に対して摩擦攪拌処理を施すことによって、極めて効果的に溶接部の疲労強度を向上させることができる。   In the method for reinforcing a welded portion of the present invention, it is preferable that the region to be subjected to the friction stir processing is a corner welded portion of a T-shaped joint. The corner welded part of the T-joint has a residual stress concentration part (part that determines the fatigue strength) as compared with other welds, and by applying friction stir processing to the residual stress concentration The fatigue strength of the welded portion can be improved extremely effectively.

摩擦攪拌処理は溶接部の全域に施してもよいが、残留応力集中部を含む限定された領域のみに施すことで、1本の摩擦攪拌用工具で処理できる被処理材の数を大幅に向上させることができる。特に、摩擦攪拌用工具の寿命が十分でないことによって実用化が遅れている鋼材に対しては、極めて効果的な実施態様である。   Friction stir processing may be applied to the entire welded part, but by applying it only to a limited area including the residual stress concentration part, the number of materials that can be processed with one friction stirrer tool is greatly improved. Can be made. In particular, this is an extremely effective embodiment for a steel material that has been put into practical use due to insufficient life of the friction stir tool.

また、摩擦攪拌処理は、溶接部における溶融凝固部と、当該溶融凝固部と熱影響部の境界と、の両方に対して施すことが好ましい。加えて、摩擦攪拌処理によって溶接部に凸部が形成される場合は、当該凸部に対して再度の摩擦攪拌処理を行い、溶接部を平滑化することが好ましい。   Moreover, it is preferable to perform a friction stirring process with respect to both the fusion | melting solidification part in a welding part, and the boundary of the said fusion | melting solidification part and a heat affected zone. In addition, when a convex part is formed in a welding part by a friction stirring process, it is preferable to perform a friction stirring process again with respect to the said convex part, and to smooth a welding part.

溶接部に施す摩擦攪拌処理の回数は特に制限されず、1回の摩擦攪拌処理でも問題ないが、複数回の摩擦攪拌処理を施すことで溶接部の組織がより微細化される場合は、2回以上の摩擦攪拌処理を重畳させることが好ましい。溶接部の組織微細化によって当該領域の剛性が高くなる結果、外部応力が印加された場合における溶接部全体の変位が小さくなり、疲労寿命が増加することとなる。   The number of friction stir treatments applied to the welded portion is not particularly limited, and there is no problem even with one friction stir processing. However, when the structure of the welded portion is further refined by applying a plurality of friction stir processings, 2 It is preferable to superimpose the friction agitation process more than once. As a result of the structure refinement of the welded portion, the rigidity of the region is increased. As a result, when the external stress is applied, the displacement of the entire welded portion is reduced, and the fatigue life is increased.

また、本発明の溶接部の補強方法においては、前記2つの金属製被溶接材の少なくとも一方が溶融溶接中に変態を生じる鋼材であることが好ましく、高張力鋼材を含むことがより好ましい。本発明の溶接部の補強方法は種々の金属製被溶接材に対して有効であるが、オーステナイト鋼のように溶接中に変態を生じない鋼と比較して、変態を生じる鋼の溶接部には引張残留応力が発生しやすいため、摩擦攪拌処理が効果的である。更に、抗張力が高く、母材の疲労強度が高い高張力鋼材に対しては、摩擦攪拌処理が特に効果的である。   In the method for reinforcing a welded portion according to the present invention, at least one of the two metal workpieces is preferably a steel material that undergoes transformation during fusion welding, and more preferably includes a high-tensile steel material. The method for reinforcing a welded portion of the present invention is effective for various metal welds, but in a welded portion of a steel that causes transformation compared to steel that does not undergo transformation during welding, such as austenitic steel. Since tensile residual stress is likely to occur, friction stir processing is effective. Further, the friction stir processing is particularly effective for high-tensile steel materials having high tensile strength and high fatigue strength of the base material.

本発明の溶接部の補強方法は、本発明の溶接部の補強方法によって補強された溶接部を有する溶接構造物も提供する。溶接構造物全体の機械的特性を律速する溶接部が補強されていることで、用いた構造用材の機械的特性を十分に発揮し得る溶接構造物を得ることができる。   The welded portion reinforcing method of the present invention also provides a welded structure having a welded portion reinforced by the welded portion reinforcing method of the present invention. Since the welded portion that controls the mechanical properties of the entire welded structure is reinforced, a welded structure that can sufficiently exhibit the mechanical properties of the structural material used can be obtained.

本発明によれば、溶接部の補強方法及びそれにより得られる溶接構造物を提供し、より具体的には、種々の鋼材に適用可能な、溶接部の疲労強度を飛躍的に向上させることができる溶接部の簡便かつ効果的な補強方法、及びそれにより得られる溶接構造物を提供することができる。   According to the present invention, a method for reinforcing a welded portion and a welded structure obtained thereby are provided, and more specifically, the fatigue strength of a welded portion that can be applied to various steel materials can be dramatically improved. It is possible to provide a simple and effective reinforcing method for a welded portion, and a welded structure obtained thereby.

本発明の溶接部の補強方法の工程図である。It is process drawing of the reinforcement method of the welding part of this invention. 摩擦攪拌用工具の概略正面図である。It is a schematic front view of the tool for friction stirring. T字継手の平面図である。It is a top view of a T-shaped joint. T字継手の側面図である。It is a side view of a T-shaped joint. 摩擦攪拌処理を施したT字継手における角廻し溶接部の平面図である。It is a top view of the corner turning welding part in the T-shaped joint which performed the friction stirring process. 摩擦攪拌処理を施したT字継手における角廻し溶接部の側面図である。It is a side view of the corner turning welding part in the T-shaped joint which performed the friction stirring process. 実施例で用いた供試材のSEM写真である。It is a SEM photograph of the sample material used in the example. (a)TIG溶接部の表面に摩擦攪拌処理を施した供試材の断面のSEM写真及び(b)TIG溶接後の供試材の断面のSEM写真である。(A) The SEM photograph of the cross section of the test material which gave the friction stirring process to the surface of the TIG welding part, and (b) The SEM photograph of the cross section of the test material after TIG welding. TIG溶接部の表面に摩擦攪拌処理を施した供試材及びTIG溶接後の供試材の断面のEBSDマッピングである。It is EBSD mapping of the cross section of the test material which gave the friction stirring process to the surface of the TIG welding part, and the test material after TIG welding. (a)引張試験片の正面図及び(b)切り出し位置を示した概略図である。(A) Front view of tensile test piece and (b) Schematic showing cut-out position. 引張特性を示すグラフである。It is a graph which shows a tensile characteristic. (a)曲げ試験及び曲げ疲労試験用の試験片の概略斜視図及び(b)切り出し位置を示した概略図である。(A) The schematic perspective view of the test piece for a bending test and a bending fatigue test, (b) The schematic which showed the cutting-out position. 曲げ試験の様子を示した概略図である。It is the schematic which showed the mode of the bending test. 曲げ特性を示すグラフである。It is a graph which shows a bending characteristic. 曲げ疲労特性を示すグラフである。It is a graph which shows a bending fatigue characteristic. 疲労試験時におけるサイクル数と試験片の変位の関係を表したグラフである。3 is a graph showing the relationship between the number of cycles and the displacement of a test piece during a fatigue test. 曲げ疲労試験後の試験片の外観写真である((a)TIG溶接及び摩擦攪拌処理、(b)TIG溶接のみ)。It is an external appearance photograph of the test piece after a bending fatigue test ((a) TIG welding and friction stirring process, (b) TIG welding only). 硬度分布を示すグラフである((a)TIG溶接及び摩擦攪拌処理、(b)TIG溶接のみ)。It is a graph which shows hardness distribution ((a) TIG welding and friction stirring process, (b) TIG welding only). 実施例2で得られた溶接補強部のEBSDマッピングである。4 is an EBSD mapping of a weld reinforcement obtained in Example 2. 曲げ疲労特性を示すグラフである。It is a graph which shows a bending fatigue characteristic. 疲労試験時におけるサイクル数と試験片の変位の関係を表したグラフである。3 is a graph showing the relationship between the number of cycles and the displacement of a test piece during a fatigue test.

以下、図面を参照しながら本発明の溶接部の補強方法の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。   Hereinafter, representative embodiments of the method for reinforcing a welded portion of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.

(A)溶接部の補強方法
図1は、本発明の溶接部の補強方法の工程図である。本発明の溶接部の補強方法は、溶接部の引張残留応力集中部を特定するための第一工程(S01)と、第一工程(S01)で特定した引張残留応力集中部を含む領域に対して摩擦攪拌処理を施す第二工程(S02)と、を有している。
(A) Method for reinforcing welded portion FIG. 1 is a process diagram of a method for reinforcing a welded portion according to the present invention. In the method for reinforcing a welded portion of the present invention, the first step (S01) for specifying the tensile residual stress concentration portion of the welded portion and the region including the tensile residual stress concentration portion specified in the first step (S01) And a second step (S02) for applying a friction stirring process.

≪第一工程:引張残留応力集中部の特定≫
溶接部における引張残留応力集中部の特定は、従来公知の種々の方法を用いることができる。当該特定には、上述のとおり、例えば、X線や中性子の回折による残留応力測定及びFEM有限要素解析の応力解析等を用いることができる。
≪First step: Identification of tensile residual stress concentration part≫
The conventionally known various methods can be used for specifying the tensile residual stress concentration portion in the welded portion. For the identification, for example, as described above, residual stress measurement by X-ray or neutron diffraction, stress analysis of FEM finite element analysis, or the like can be used.

また、従来経験的に、特定の継手に対する破壊進展の起点となる引張残留応力集中部が公知の場合は、当該知見を利用して第一工程(S01)を省略してもよい。例えば、T字継手におけるガセット板の角廻し溶接部では、溶接止端部において断面形状変化に起因する応力集中度が大きいことに加えて、溶接熱応力に起因する引張残留応力の生成が重なり、当該溶接止端部において引張残留応力が局部的に非常に高くなることが知られている。よって、T字継手の角廻し溶接部は、本発明の引張残留応力集中部となり得る。   Moreover, when the tensile residual stress concentration part used as the starting point of the fracture progress with respect to a specific joint is known conventionally, the 1st process (S01) may be abbreviate | omitted using the said knowledge. For example, in a corner weld of a gusset plate in a T-shaped joint, in addition to a large stress concentration due to a change in cross-sectional shape at the weld toe, generation of tensile residual stress due to welding thermal stress overlaps, It is known that the tensile residual stress is extremely high locally at the weld toe. Therefore, the corner welded portion of the T-shaped joint can be the tensile residual stress concentration portion of the present invention.

≪第二工程:摩擦攪拌処理≫
第二工程(S02)は、第一工程(S01)で特定した溶接部の引張残留応力集中部を含む領域に対して摩擦攪拌処理を施す工程である。摩擦攪拌処理領域は溶接部の全てに対して施す必要はなく、引張残留応力集中部を含んでいればよい。また、摩擦攪拌処理領域を必要以上に深くする必要はなく、溶接部の表面近傍に摩擦攪拌処理領域が形成されていればよい。
≪Second process: Friction stirring process≫
The second step (S02) is a step of subjecting the region including the tensile residual stress concentration portion of the weld specified in the first step (S01) to friction stir processing. The friction stir processing region does not need to be applied to all of the welded portions, and may include a tensile residual stress concentration portion. Further, it is not necessary to make the friction stir processing region deeper than necessary, and it is sufficient that the friction stir processing region is formed in the vicinity of the surface of the weld.

摩擦攪拌処理とは、摩擦攪拌接合(FSW:Friction Stir Welding)を金属材の表面改質に応用したものであり、用いる工具の形状等が異なる場合がある他は、基本的には摩擦攪拌接合と同様の技術である。具体的には、回転工具の先端に設けられた突起部(プローブ)を被処理材に挿入し、回転工具を回転させつつ移動させることによって、摩擦攪拌処理領域を得る方法である。   Friction stir processing is the application of Friction Stir Welding (FSW: Friction Stir Welding) to surface modification of metal materials. Basically, friction stir welding is performed except that the shape of the tool used may differ. Is the same technology. Specifically, it is a method of obtaining a friction stir processing region by inserting a protrusion (probe) provided at the tip of the rotary tool into the material to be processed and moving the rotary tool while rotating it.

図2は、本発明の溶接部の補強方法で用いる摩擦攪拌用工具の概略正面図である。本発明の溶接部の補強方法で用いる摩擦攪拌用工具1の底面は略平面(図2(b))又は長さが1mm以下のプローブ2を有していることが好ましい(図2(a))。ここで、より好ましいのは底面が略平面の、プローブ2を有さない摩擦攪拌用工具1である(図2(b))。プローブ2を有する摩擦攪拌用工具1を、高い融点及び高温変形抵抗を有する鋼材に圧入して移動させる場合、プローブ2の根本から破断して摩擦攪拌用工具1の寿命となることが多い。これに対し、底面が略平面の摩擦攪拌用工具1を用いることで、プローブ2の破断による工具寿命を考慮する必要がなくなる。   FIG. 2 is a schematic front view of a friction stir tool used in the method for reinforcing a weld according to the present invention. The bottom surface of the friction stir tool 1 used in the method for reinforcing a welded portion of the present invention preferably has a probe 2 having a substantially flat surface (FIG. 2 (b)) or a length of 1 mm or less (FIG. 2 (a)). ). Here, it is more preferable to use the friction stir tool 1 having a substantially flat bottom surface and no probe 2 (FIG. 2B). When the friction stir tool 1 having the probe 2 is press-fitted and moved into a steel material having a high melting point and high temperature deformation resistance, the friction stir tool 1 often breaks from the base of the probe 2 and reaches the life of the friction stir tool 1. In contrast, by using the friction stirring tool 1 having a substantially flat bottom surface, it is not necessary to consider the tool life due to the fracture of the probe 2.

また、プローブ2の長さを1mm以下とすることで、摩擦攪拌処理中におけるプローブ2の破断確率を大幅に低減することができる。プローブ2の形状は特に限定されず、単純な円柱状や根本が太く先端が細いテーパー状等を用いることができる。プローブ2にはネジ加工や面取り加工等を施してもよいが、工具寿命の観点からはそれらの加工を施さない方が好ましい。   In addition, by setting the length of the probe 2 to 1 mm or less, it is possible to greatly reduce the probability of the probe 2 being broken during the friction stir processing. The shape of the probe 2 is not particularly limited, and a simple columnar shape, a taper shape with a thick root, and a thin tip can be used. The probe 2 may be threaded or chamfered, but it is preferable not to perform such machining from the viewpoint of tool life.

摩擦攪拌用工具1の底面を略平面とすることで、摩擦攪拌用工具1の素材として用いることができる材料の範囲を広くすることができる。プローブ2を有さない場合、摩擦攪拌用工具1の形状は基本的に円柱状であるため、難焼結材や難加工材を用いることも可能である。なお、本発明で用いることができる摩擦攪拌用工具1には、底面が凹形状を有するものも含まれる。   By making the bottom surface of the friction stir tool 1 substantially flat, the range of materials that can be used as the material of the friction stir tool 1 can be widened. In the case where the probe 2 is not provided, the shape of the friction stir tool 1 is basically a cylindrical shape, so that it is also possible to use a hardly-sinterable material or a difficult-to-work material. The friction stir tool 1 that can be used in the present invention includes one having a concave bottom surface.

摩擦攪拌用工具1の材質は、例えば、JISに規格されているSKD61鋼等の工具鋼や、タングステンカーバイト(WC)、コバルト(Co)、ニッケル(Ni)からなる超硬合金、コバルト(Co)基合金、イリジウム(Ir)等の高融点金属及びその合金、またはSi34等のセラミックスからなるものとすることができる。ここで、金属製被溶接材が高張力鋼等の鋼材である場合、タングステンカーバイト(WC)、コバルト(Co)からなる超硬合金、コバルト(Co)基合金、イリジウム(Ir)等の高融点金属及びその合金、またはSi34等のセラミックスならなるものを使用することが好ましい。 The material of the friction stir tool 1 is, for example, tool steel such as SKD61 steel standardized by JIS, cemented carbide made of tungsten carbide (WC), cobalt (Co), nickel (Ni), cobalt (Co ) A base alloy, a refractory metal such as iridium (Ir) and its alloy, or a ceramic such as Si 3 N 4 . Here, when the metal workpiece is a steel material such as high-tensile steel, tungsten carbide (WC), cemented carbide made of cobalt (Co), cobalt (Co) -based alloy, iridium (Ir), etc. It is preferable to use a melting point metal and its alloy, or ceramics such as Si 3 N 4 .

本発明における摩擦攪拌処理とは、(1)摩擦攪拌用工具1を回転させつつ処理方向に向けて移動させる態様、(2)摩擦攪拌用工具1を回転させつつ処理位置で移動させない態様、(3)(1)で形成される処理領域を重畳させる態様、(4)(2)で形成される処理領域を重畳させる態様、及び(5)(1)〜(4)の処理を任意に組み合わせる態様、が含まれる。   The friction stir processing in the present invention includes (1) a mode in which the friction stir tool 1 is rotated and moved in the processing direction, (2) a mode in which the friction stir tool 1 is rotated and not moved at the processing position, 3) A mode in which the processing regions formed in (1) are overlapped, a mode in which the processing regions formed in (4) and (2) are overlapped, and the processing in (5) (1) to (4) are arbitrarily combined. Embodiments.

本発明の溶接部の補強方法を適用することができる金属製被溶接材は特に限定されず、摩擦攪拌処理が可能な範囲で従来公知の種々の金属材を用いることができるが、2つの金属製被溶接材の少なくとも一方が溶融溶接中に変態を生じる鋼材であることが好ましく、溶接部の疲労強度と母材の疲労強度との差が大きく、本発明の溶接部の補強方法の効果が明瞭に表れるという観点から、高張力鋼材を用いることがより好ましい。   The metal welded material to which the method for reinforcing a welded portion of the present invention can be applied is not particularly limited, and various conventionally known metal materials can be used as long as friction stir processing is possible. It is preferable that at least one of the workpieces to be welded is a steel material that undergoes transformation during fusion welding. From the viewpoint of clearly appearing, it is more preferable to use a high-tensile steel material.

高張力鋼材は合金成分の添加及び組織制御等によって、一般構造用鋼材よりも強度を向上させた鋼材である。一般的なSS400材の引張強度の保証値が400MPaであるのに対し、引張強度が概ね490MPa以上のものが高張力鋼材と称呼されており、本発明においても、高張力鋼材は引張強度が490MPa以上の鋼材を意味する。   High-strength steel is a steel whose strength is improved over that of general structural steel by addition of alloy components and structure control. While the guaranteed value of the tensile strength of a general SS400 material is 400 MPa, a tensile strength of approximately 490 MPa or more is called a high-tensile steel material. In the present invention, a high-strength steel material has a tensile strength of 490 MPa. It means the above steel materials.

図3及び図4に、T字継手の平面図及び側面図をそれぞれ示す。T字継手10は、従来の溶融溶接を用いて、平板12に対してガセット板14が垂直に溶接されており、溶接部はガセット板14の下部側面の溶接部16と角廻し溶接部18から構成されている。   3 and 4 show a plan view and a side view of the T-shaped joint, respectively. In the T-shaped joint 10, a gusset plate 14 is welded perpendicularly to the flat plate 12 by using conventional fusion welding. It is configured.

角廻し溶接部18の溶接止端部20において断面形状変化に起因する応力集中度が大きくなることに加えて、溶接熱応力に起因する引張残留応力の生成の影響が重畳し、溶接止端部20において引張力が局部的に非常に高くなる。つまり、T字継手10においては、角廻し溶接部32の溶接止端部20が引張残留応力集中部となる。   In addition to an increase in the stress concentration due to the change in the cross-sectional shape at the weld toe 20 of the corner weld 18, the effect of the generation of tensile residual stress due to the welding thermal stress is superimposed, resulting in a weld toe. At 20 the tensile force is very high locally. That is, in the T-shaped joint 10, the weld toe portion 20 of the corner welding portion 32 becomes a tensile residual stress concentration portion.

図5及び図6に、摩擦攪拌処理を施したT字継手における角廻し溶接部の平面図及び側面図をそれぞれ示す。上述のとおり、T字継手においては角廻し溶接部18の溶接止端部20が引張残留応力集中部となるため、溶接止端部20が摩擦攪拌処理領域22に含まれるように摩擦攪拌処理が施されている。   5 and 6 are a plan view and a side view, respectively, of a corner welded portion in a T-shaped joint subjected to the friction stir processing. As described above, in the T-shaped joint, the weld toe 20 of the corner welded portion 18 becomes a tensile residual stress concentration portion, so that the friction stir processing is performed so that the weld toe 20 is included in the friction stir processing region 22. It has been subjected.

摩擦攪拌処理領域22は溶接止端部20を含んでいればよく、摩擦攪拌処理領域22に平板12が含まれていてもよい。摩擦攪拌処理は溶接止端部20を含む角廻し溶接部18に対して前処理なしで施してもよいが、摩擦攪拌処理を施す領域に研磨等を施し、略平面状に加工する前処理を施してもよい。   The friction stir processing region 22 only needs to include the weld toe 20, and the friction stir processing region 22 may include the flat plate 12. The friction stir processing may be performed without any pre-treatment on the corner welded portion 18 including the weld toe portion 20, but the pre-processing is performed such that the region where the friction stir processing is performed is polished and processed into a substantially flat shape. You may give it.

上述のとおり、摩擦攪拌処理領域22の深さは必要以上に深くする必要はなく、摩擦攪拌用工具1の寿命及び処理のし易さの観点から、100〜1000μmの深さとすることが好ましく、100〜500μmの深さとすることがより好ましい。なお、底面が略平面の直径10〜15mm程度の摩擦攪拌用工具1を用いた場合、処理条件にも依存するが、100〜500μmの深さを有する摩擦攪拌処理領域2を好適に得ることができる。   As described above, it is not necessary to make the depth of the friction stir processing region 22 unnecessarily deep. From the viewpoint of the life of the friction stir tool 1 and ease of processing, it is preferable to set the depth to 100 to 1000 μm. More preferably, the depth is 100 to 500 μm. In addition, when the friction stirring tool 1 having a substantially flat bottom surface with a diameter of about 10 to 15 mm is used, it is possible to suitably obtain the friction stirring processing region 2 having a depth of 100 to 500 μm, depending on processing conditions. it can.

(B)溶接部が補強された溶接構造物
本発明の溶接構造物は、上記本発明の溶接部の補強方法によって補強された溶接部を有する溶接構造物を提供する。溶接構造物全体の機械的特性を律速する溶接部が補強されていることで、用いた構造用材の機械的特性を十分に発現し得る溶接構造物を得ることができる。
(B) Welded structure in which welded part is reinforced The welded structure of the present invention provides a welded structure having a welded part reinforced by the method for reinforcing a welded part of the present invention. Since the welded portion that controls the mechanical characteristics of the entire welded structure is reinforced, it is possible to obtain a welded structure that can sufficiently exhibit the mechanical characteristics of the structural material used.

本発明の溶接構造物においては、全ての溶接部が補強されている必要はないが、溶接構造物の機械的特性を律速する溶接部、例えば、T字継手の角廻し溶接部の溶接止端部に摩擦攪拌処理が施されていることが好ましい。また、摩擦攪拌処理領域の深さは、100〜1000μmの深さとすることが好ましく、100〜500μmの深さとすることがより好ましい。ここで、溶接部が厚い場合、摩擦攪拌処理領域の深さを相対的に深くすることが好ましい。例えば、溶接部(溶融部)の厚みが5mm以上の場合、摩擦攪拌処理領域の深さを溶接部の厚さの10〜40%とすることが好ましく、20〜30%とすることがより好ましい。   In the welded structure of the present invention, it is not necessary that all welds be reinforced, but a weld toe that controls the mechanical properties of the welded structure, for example, a weld toe of a round welded part of a T-joint. It is preferable that the part is subjected to a friction stirring process. The depth of the friction stir processing region is preferably 100 to 1000 μm, and more preferably 100 to 500 μm. Here, when the weld is thick, it is preferable to relatively deepen the depth of the friction stir processing region. For example, when the thickness of the welded portion (molten portion) is 5 mm or more, the depth of the friction stir treatment region is preferably 10 to 40% of the thickness of the welded portion, and more preferably 20 to 30%. .

また、本発明の溶接構造物においては、摩擦攪拌処理に起因する摩擦攪拌用工具1の引き抜き穴が存在しないことが好ましい。但し、当該引き抜き穴の深さが約1mm以下の場合は許容され得る。   Moreover, in the welded structure of the present invention, it is preferable that there is no pull-out hole of the friction stir tool 1 due to the friction stir processing. However, it is acceptable if the depth of the extraction hole is about 1 mm or less.

更に、本発明の溶接構造物においては、摩擦攪拌処理を施す溶接部を形成する2つの金属製被溶接材の少なくとも一方が、高張力鋼材であることが好ましい。金属製被溶接材の少なくとも一方が高張力鋼材である溶接部に摩擦攪拌処理を施すことで、高張力鋼材が本来有する優れた機械的特性を発現し得る溶接構造物を得ることができる。   Furthermore, in the welded structure of the present invention, it is preferable that at least one of the two metal workpieces forming the welded portion subjected to the friction stir processing is a high-tensile steel material. By performing friction stir processing on the welded portion in which at least one of the metal workpieces is a high-tensile steel material, a welded structure that can express the excellent mechanical properties inherent in the high-tensile steel material can be obtained.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。   As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these, Various design changes are possible and these design changes are all contained in the technical scope of this invention. It is.

≪実施例1≫
SS400鋼板(150mm×150mm×5mm)に溶接を施し、溶接部を有する鋼板を作製した。用いた鋼材の組成を表1に、断面のSEM写真を図7にそれぞれ示す。なお、溶接にはTIG溶接を用い、溶接条件はアーク長:2mm、溶接電流:150A、溶接速度:2mm/s、雰囲気:Arとした。
Example 1
An SS400 steel plate (150 mm × 150 mm × 5 mm) was welded to produce a steel plate having a weld. The composition of the steel material used is shown in Table 1, and the SEM photograph of the cross section is shown in FIG. TIG welding was used for welding, and welding conditions were arc length: 2 mm, welding current: 150 A, welding speed: 2 mm / s, and atmosphere: Ar.

次に、ショルダ径:12mm、プローブ径:4mm、プローブ長:0.8mmの超硬合金製の摩擦攪拌用工具を用い、上記溶接部に対して摩擦攪拌処理を施して、本発明の実施例である補強溶接部を得た。摩擦攪拌条件は、工具荷重:1500kg、工具回転数:400rpm、工具移動速度:140mm/s、工具前進角:3°、雰囲気:Arとした。   Next, using a friction stir tool made of cemented carbide having a shoulder diameter of 12 mm, a probe diameter of 4 mm, and a probe length of 0.8 mm, the welded portion was subjected to a friction stir treatment, and an embodiment of the present invention was performed. A reinforced weld was obtained. The friction stirring conditions were as follows: tool load: 1500 kg, tool rotation speed: 400 rpm, tool movement speed: 140 mm / s, tool advance angle: 3 °, atmosphere: Ar.

[評価]
(1)組織観察
上記のようにして作製した補強溶接部について、断面のSEM観察を行った。得られたSEM写真を図8(a)に示す。また、当該断面において、最表面、深さ1mm、及び深さ2mmの位置においてEBSDマッピングを取得した。得られた結果を図9(a)〜(c)に示す。なお、EBSD測定にはTSL社製のOIM data Collection ver5.31を用い、加速電圧15kV、ステップサイズ0.25μmの条件で測定を行った。
[Evaluation]
(1) Microstructure observation About the reinforcement weld part produced as mentioned above, the cross-sectional SEM observation was performed. The obtained SEM photograph is shown in FIG. Moreover, EBSD mapping was acquired in the position of the outermost surface, the depth of 1 mm, and the depth of 2 mm in the said cross section. The obtained results are shown in FIGS. The EBSD measurement was performed under the conditions of an acceleration voltage of 15 kV and a step size of 0.25 μm using OIM data Collection ver 5.31 manufactured by TSL.

(2)引張試験
上記のようにして作製した補強溶接部について、引張特性の評価を行った。用いた引張試験片の正面図及び切り出し位置を示した概略図を図10に示す。試験片の平行部は全て摩擦攪拌処理部に含まれており、摩擦攪拌処理部の引張特性を評価し得る形状となっている。なお、引張試験のひずみ速度は1×10-3/sとした。得られた応力‐ひずみ曲線を図11に示す。
(2) Tensile test Tensile characteristics were evaluated for the reinforced welded part produced as described above. A front view of the tensile test piece used and a schematic diagram showing the cut-out position are shown in FIG. All the parallel parts of the test piece are included in the friction stir processing unit, and have a shape capable of evaluating the tensile properties of the friction stir processing unit. The strain rate in the tensile test was 1 × 10 −3 / s. The obtained stress-strain curve is shown in FIG.

(3)3点曲げ試験
上記のようにして作製した補強溶接部について、曲げ特性の評価を行った。用いた試験片の概略斜視図及び切り出し位置を示した概略図を図12に示す。試験片の中央部が摩擦攪拌処理部となっており、摩擦攪拌処理部の曲げ特性を評価し得る形状となっている。なお、曲げ試験のひずみ速度は5×10-5/sとした。曲げ試験の様子を示した概略図を図13に示す。摩擦攪拌処理部を下にして試験片を治具に配置し、摩擦攪拌処理部の反対側から応力を印加する態様で測定を行っている。得られた応力‐ひずみ曲線を図14に示す。
(3) Three-point bending test The bending characteristics of the reinforced welded part produced as described above were evaluated. FIG. 12 shows a schematic perspective view of the test piece used and a schematic view showing the cut-out position. The central part of the test piece is a friction stir processing part, and has a shape that can evaluate the bending characteristics of the friction stir processing part. The strain rate in the bending test was 5 × 10 −5 / s. A schematic diagram showing the bending test is shown in FIG. Measurement is performed in such a manner that a test piece is placed on a jig with the friction stir processing section down and stress is applied from the opposite side of the friction stir processing section. The obtained stress-strain curve is shown in FIG.

(4)3点曲げ疲労試験
上記のようにして作製した補強溶接部について、疲労特性の評価を行った。用いた試験片及び試験片の配置状況等は上記3点曲げ試験の場合と同様である。疲労試験は負荷周波数20Hz、制御モード:応力制御、応力比:0.1、応力範囲:600〜800MPaの条件で行った。得られた曲げ疲労特性を図15に示す。また、疲労試験時におけるサイクル数と試験片の変位の関係を表したグラフを図16に、試験後の試験片の外観形状を図17に、それぞれ示す。
(4) Three-point bending fatigue test Fatigue properties of the reinforced welded part produced as described above were evaluated. The test pieces used and the arrangement of the test pieces are the same as in the case of the three-point bending test. The fatigue test was performed under the conditions of a load frequency of 20 Hz, a control mode: stress control, a stress ratio: 0.1, and a stress range: 600 to 800 MPa. The obtained bending fatigue characteristics are shown in FIG. Further, a graph showing the relationship between the number of cycles and the displacement of the test piece during the fatigue test is shown in FIG. 16, and the external shape of the test piece after the test is shown in FIG.

(5)硬さ試験
上記のようにして作製した補強溶接部について、断面の硬度測定を行った。硬度測定は荷重:0.1kgf、荷重負荷時間:15sとした。なお、測定位置は最表面、深さ2mm、及び深さ4mmとし、それぞれの深さにおける水平方向の硬度プロファイルを測定した。得られた結果を図18に示す。
(5) Hardness test The cross section hardness of the reinforced welded part produced as described above was measured. The hardness was measured with a load of 0.1 kgf and a load time of 15 s. The measurement position was the outermost surface, the depth was 2 mm, and the depth was 4 mm, and the horizontal hardness profile at each depth was measured. The obtained result is shown in FIG.

≪実施例2≫
490MPa級の高張力鋼板(KA36鋼板,150mm×150mm×20mm)の表面にMAG溶接を用いて溶接ビードを形成させた。溶接ワイヤには株式会社神戸製鋼所製のMX−Z200を用いた。余盛り除去後、残留応力を溶接金属中に再度内在させるため、当該溶接部に対してTIG溶接を施して再溶融・凝固させた。用いた鋼材の組成を表2に示す。なお、TIG溶接条件はアーク長:2mm、溶接電流:150A、溶接速度:2mm/s、雰囲気:Arとした。
<< Example 2 >>
A weld bead was formed on the surface of a 490 MPa class high-tensile steel plate (KA36 steel plate, 150 mm × 150 mm × 20 mm) using MAG welding. MX-Z200 manufactured by Kobe Steel, Ltd. was used as the welding wire. After removing the surplus, in order to make residual stress again in the weld metal, the weld was subjected to TIG welding and remelted and solidified. Table 2 shows the composition of the steel materials used. The TIG welding conditions were arc length: 2 mm, welding current: 150 A, welding speed: 2 mm / s, and atmosphere: Ar.

次に、ショルダ径:12mm、プローブ径:4mm、プローブなしの超硬合金製の摩擦攪拌用工具を用い、上記溶接部の幅手中央に対して摩擦攪拌処理を施して、本発明の実施例である補強溶接部を得た(以後、Crown FSP溶接補強部と称する)。摩擦攪拌条件は、工具荷重:1500kg、工具回転数:400rpm、工具移動速度:140mm/s、工具前進角:3°、雰囲気:Arとした。   Next, using a friction stirrer tool made of cemented carbide with a shoulder diameter of 12 mm, a probe diameter of 4 mm, and without a probe, a friction stirrer is applied to the center of the width of the welded portion, and the embodiment of the present invention A reinforcement weld was obtained (hereinafter referred to as a Crown FSP weld reinforcement). The friction stirring conditions were as follows: tool load: 1500 kg, tool rotation speed: 400 rpm, tool movement speed: 140 mm / s, tool advance angle: 3 °, atmosphere: Ar.

更に、摩擦攪拌処理を施す場所が疲労特性に及ぼす影響を検討するため、溶接部の溶融凝固部と熱影響部との境界2つに対してそれぞれ摩擦攪拌処理を施し、本発明の実施例である補強溶接部を得た(以後、Toe FSP溶接補強部と称する)。加えて、Toe FSP溶接補強部の摩擦攪拌処理の重畳部分に対して更に摩擦攪拌処理を施し、本発明の実施例である溶接補強部を得た(以後、Toe+Crown FSP溶接補強部と称する)。   Further, in order to examine the influence of the place where the friction stir processing is performed on the fatigue characteristics, the friction stir processing is performed on each of the two boundaries between the melt-solidified portion and the heat affected zone of the welded portion. A reinforcement weld was obtained (hereinafter referred to as Toe FSP weld reinforcement). In addition, the friction stir processing was further performed on the overlapped portion of the friction stir processing of the Toe FSP weld reinforcing portion to obtain a weld reinforcing portion which is an example of the present invention (hereinafter referred to as Toe + Crown FSP weld reinforcing portion).

[評価]
(1)組織観察
上記のようにして作製した補強溶接部の表層約50μmの領域について、断面のSEM−EBSD観察を行った。Crown FSP溶接補強部およびToe+Crown FSP溶接補強部のEBSDマッピングを図19(a)および(b)にそれぞれ示す。なお、EBSD測定にはTSL社製のOIM data Collection ver5.31を用い、加速電圧15kV、ステップサイズ0.25μmの条件で測定を行った。
[Evaluation]
(1) Microstructure observation About the area | region of about 50 micrometers of surface layers of the reinforcement welding part produced as mentioned above, the cross-sectional SEM-EBSD observation was performed. FIGS. 19A and 19B show EBSD mapping of the Crown FSP weld reinforcement and the Toe + Crown FSP weld reinforcement, respectively. The EBSD measurement was performed under the conditions of an acceleration voltage of 15 kV and a step size of 0.25 μm using OIM data Collection ver 5.31 manufactured by TSL.

(2)3点曲げ疲労試験
上記のようにして作製した各補強溶接部について、疲労特性の評価を行った。用いた試験片及び試験片の配置状況等は上記実施例1の3点曲げ試験の場合と同様である。疲労試験は負荷周波数20Hz、制御モード:応力制御、応力比:0.1、応力範囲:600〜800MPaの条件で行った。得られた曲げ疲労特性を図20に示す。また、疲労試験時におけるサイクル数と試験片の変位の関係を表したグラフを図21に示す。なお、比較として、溶接部に対してTIG溶接を施して再溶融・凝固させたのみの溶接部(摩擦攪拌処理無し)に関する結果をMAG+TIGとして示した。更に、Toe FSP溶接補強部に関しては、荷重点が溶接部中央の場合(Load point:WM)と熱影響部の場合(Load point:HAZ)で評価を行った。
(2) Three-point bending fatigue test Fatigue characteristics were evaluated for each reinforced welded part produced as described above. The test pieces used and the arrangement of the test pieces are the same as in the three-point bending test of Example 1 above. The fatigue test was performed under the conditions of a load frequency of 20 Hz, a control mode: stress control, a stress ratio: 0.1, and a stress range: 600 to 800 MPa. The obtained bending fatigue characteristics are shown in FIG. FIG. 21 shows a graph showing the relationship between the number of cycles and the displacement of the test piece during the fatigue test. For comparison, the results regarding a welded portion (without friction stirring treatment) in which the welded portion was subjected to TIG welding and remelted and solidified were shown as MAG + TIG. Further, the Toe FSP weld reinforcement was evaluated when the load point was in the center of the weld (Load point: WM) and in the case of a heat affected zone (Load point: HAZ).

≪比較例≫
摩擦攪拌処理を施さない以外は実施例と同様にして、本発明の比較例である溶接部を得た。加えて、実施例と同様にして各種評価を行った。溶接部断面のSEM写真を図8(b)に、EBSDマッピングを図9(d)〜(f)に、引張試験の応力‐ひずみ曲線を図11に、曲げ試験の応力‐ひずみ曲線を図14に、疲労特性を図15に、疲労試験時におけるサイクル数と試験片の変位の関係を表したグラフを図16に、試験後の試験片の外観形状を図17に、硬度プロファイルを図18に、それぞれ示す。
≪Comparative example≫
A welded portion, which is a comparative example of the present invention, was obtained in the same manner as in the example except that the friction stirring treatment was not performed. In addition, various evaluations were performed in the same manner as in the examples. The SEM photograph of the weld cross section is shown in FIG. 8B, the EBSD mapping is shown in FIGS. 9D to 9F, the stress-strain curve of the tensile test is shown in FIG. 11, and the stress-strain curve of the bending test is shown in FIG. FIG. 15 shows the fatigue characteristics, FIG. 16 is a graph showing the relationship between the number of cycles and the displacement of the test piece in the fatigue test, FIG. 17 shows the external shape of the test piece after the test, and FIG. 18 shows the hardness profile. , Respectively.

実施例1において、摩擦攪拌処理領域の最大深さは約0.8mmとなっており、用いた摩擦攪拌用工具のプローブ長とほぼ同じ深さとなっている(図8)。また、摩擦攪拌処理領域における母材の平均結晶粒径は1.5μmとなっており、摩擦攪拌処理を施していない領域と比較して、顕著に微細化されていることが分かる(図9)。   In Example 1, the maximum depth of the friction stir processing region is about 0.8 mm, which is substantially the same depth as the probe length of the friction stir tool used (FIG. 8). Further, the average crystal grain size of the base material in the friction stir processing region is 1.5 μm, and it can be seen that it is remarkably refined as compared with the region not subjected to the friction stir processing (FIG. 9). .

引張特性に関しては、摩擦攪拌処理の有無で明瞭な差異は認められない(図11)。これは、本発明においては摩擦攪拌処理が溶接部の極表層部に限られているためである。一方、曲げ特性に関しては、摩擦攪拌処理によって曲げ強度が約30%向上している。なお、曲げ試験においては溶接部に引張応力が印加されるように試験片をセットしており、実際の溶接構造物の信頼性及び機械的特性を評価し得る態様となっている。   Regarding the tensile properties, no clear difference is observed with or without the friction stir treatment (FIG. 11). This is because in the present invention, the friction stir processing is limited to the extreme surface layer portion of the welded portion. On the other hand, regarding bending characteristics, the bending strength is improved by about 30% by the friction stir processing. In the bending test, a test piece is set so that a tensile stress is applied to the welded portion, and the reliability and mechanical characteristics of an actual welded structure can be evaluated.

また、疲労特性に関しては、摩擦攪拌処理によって明瞭な特性向上が認められる。応力振幅が270MPaの場合において破断繰り返し数が170%増加しており、破断繰り返し数が2.1×105の場合において応力振幅が13%増加している。 In addition, regarding the fatigue characteristics, a clear improvement in characteristics is recognized by the friction stir processing. When the stress amplitude is 270 MPa, the number of repetitions of fracture is increased by 170%, and when the number of repetitions of fracture is 2.1 × 10 5 , the stress amplitude is increased by 13%.

疲労試験時におけるサイクル数と試験片の変位の関係において、同じ応力振幅を付与した場合であっても、摩擦攪拌処理を施した試験片は摩擦攪拌処理を施していない試験片と比較して変位量が抑えられている(図16)。これは、母材結晶粒の微細化によって溶接部表面近傍の強度が向上したことに起因するものである。また、硬度プロファイルにおいて、摩擦攪拌処理領域の大幅な硬度上昇が認められる(図18)。   In the relationship between the number of cycles in the fatigue test and the displacement of the test piece, even when the same stress amplitude is applied, the test piece subjected to the friction stir treatment is displaced compared to the test piece not subjected to the friction stir treatment. The amount is suppressed (FIG. 16). This is due to the fact that the strength in the vicinity of the surface of the welded portion has been improved by the refinement of the base material crystal grains. In the hardness profile, a significant increase in hardness is recognized in the friction stir processing region (FIG. 18).

疲労試験後の試験片において、摩擦攪拌処理を施さない場合は亀裂が直線的に進展しているのに対し、摩擦攪拌処理を施した場合は亀裂がジグザグに進展している。つまり、摩擦攪拌処理を施した場合は、亀裂伝搬の偏向が生じ、疲労特性が向上することを示している。   In the test piece after the fatigue test, the crack progresses linearly when the friction stir treatment is not performed, whereas the crack progresses zigzag when the friction stir treatment is performed. That is, when the friction stir processing is performed, the crack propagation is deflected and the fatigue characteristics are improved.

また、図20に示されているとおり、実施例2において、MAG+TIG材(△)では、応力振幅の減少に従い疲労寿命が増加し、最も低い応力振幅292.5MPa(最大応力650MPa、最小応力65MPa)では約4×105回で破断した。これに対し、Crown FSP溶接補強部(○)では応力振幅が315MPaより低い場合は1.5×106回でも破断せず、MAG+TIG材と比較して約一桁程度の疲労寿命増加が得られた。 Further, as shown in FIG. 20, in Example 2, in the MAG + TIG material (Δ), the fatigue life increases as the stress amplitude decreases, and the lowest stress amplitude is 292.5 MPa (maximum stress 650 MPa, minimum stress 65 MPa). Then, it broke in about 4 × 10 5 times. On the other hand, when the stress amplitude is lower than 315 MPa in the Crown FSP weld reinforcement (◯), it does not break even 1.5 × 10 6 times, and an increase in fatigue life of about an order of magnitude is obtained compared to the MAG + TIG material. It was.

引張試験の結果、溶接金属と熱影響部の境界付近から破断したため、その部分に摩擦攪拌処理を施したToe FSP溶接補強部(◇)では、104回台で破断した。1パス目の摩擦攪拌処理と2パス目の摩擦攪拌処理との交差部で生じる突起部(曲げ荷重点近傍)から亀裂が進展しており、Toe FSPで形成した表面形状に起因する結果であると考えられる。事実、荷重点を摩擦攪拌処理領域の中心にシフトした結果(◆)では、Crown FSP(○)材と同等の結果を示している。 As a result of the tensile test, the fracture occurred from the vicinity of the boundary between the weld metal and the heat-affected zone. Therefore, the Toe FSP weld reinforcement ()) in which the friction stir treatment was applied to that portion broke at 10 4 times. Cracks have progressed from the protrusion (near the bending load point) that occurs at the intersection of the first pass friction stir processing and the second pass friction stir processing, which is the result of the surface shape formed by Toe FSP. it is conceivable that. In fact, the result of shifting the load point to the center of the friction stir processing region (♦) shows the same result as that of the Crown FSP (◯) material.

Toe+Crown FSP溶接補強部(□)では、応力振幅が337.5MPaより低いと1.5×106回でも破断せず、高い応力振幅である337.5MPaでMAG+TIG材と比較して一桁以上の疲労寿命増加が得られている。 In the Toe + Crown FSP weld reinforcement (□), when the stress amplitude is lower than 337.5 MPa, it does not break even 1.5 × 10 6 times, and at a high stress amplitude of 337.5 MPa, it is one digit or more compared with the MAG + TIG material. Increased fatigue life is obtained.

図21は、実施例2に関して、応力振幅337.5MPaにおける最大応力と最少応力での、繰り返し回数に対する変位をプロットしたものである。溶接部に摩擦攪拌処理を複数パターンで施したもの(白抜きプロット)では、Crown FSP溶接補強部(○)とToe FSP溶接補強部(◇)でMAG+TIG材(△)より変位が減少し、Toe+Crown FSP溶接補強部(□)では更に変位が減少し、摩擦攪拌処理による表面改質が当該改質領域の剛性を向上させて疲労寿命を著しく増加させることが分かる。なお、Toe FSP溶接補強部(◆)は荷重点を溶接部中央から熱影響部へと柔らかい領域にシフトしているため、他の評価材と比較して変位が大きくなっているものと思われる。つまり、外部応力の印加に対して変位が大きくなる領域に対して摩擦攪拌処理を施すことで、効果的に疲労特性を向上させることができる。   FIG. 21 is a plot of displacement with respect to the number of repetitions for the maximum stress and the minimum stress at a stress amplitude of 337.5 MPa with respect to Example 2. In the case where the friction stir processing is applied to the welded portion in a plurality of patterns (open plot), the displacement is reduced from the MAG + TIG material (△) in the Crown FSP weld reinforcing portion (◯) and the Toe FSP weld reinforcing portion (◇), and Toe + Crown. It can be seen that the displacement is further reduced in the FSP weld reinforcement (□), and the surface modification by the friction stir treatment improves the rigidity of the modified region and significantly increases the fatigue life. Note that the Toe FSP weld reinforcement (♦) shifts the load point from the center of the weld to the heat-affected zone in a soft region, so the displacement seems to be larger than other evaluation materials. . In other words, the fatigue characteristics can be effectively improved by applying the friction stir processing to the region where the displacement increases with the application of the external stress.

Crown FSP溶接補強部の表層約50μmの領域では、均一な結晶粒微細化が生じており、当該結晶粒の平均結晶粒径は約1.6μmとなっている(図19(a))。一方で、Toe+Crown FSP溶接補強部では、超微細粒と6μm程度の結晶粒が混在した不均一な微細組織となっている(図19(b))。ここで、6μm程度の結晶粒の粒内もコントラストの異なるいくつかの領域に分割されており、摩擦攪拌処理を複数回重複させることで、より微細な組織が形成されることが示唆されている。当該組織微細化により、Toe+Crown FSP溶接補強部の表層はより剛性が高くなり、当該領域の特性が溶接部全体の疲労寿命を改善するものと考えられる。   In the area of the surface layer of about 50 μm of the Crown FSP weld reinforcement, uniform crystal grain refinement occurs, and the average crystal grain size of the crystal grains is about 1.6 μm (FIG. 19A). On the other hand, the Toe + Crown FSP weld reinforcement has a non-uniform microstructure in which ultrafine grains and crystal grains of about 6 μm are mixed (FIG. 19B). Here, the inside of the crystal grain of about 6 μm is also divided into several regions having different contrasts, and it is suggested that a finer structure is formed by overlapping the friction stir processing a plurality of times. . It is considered that the surface layer of the Toe + Crown FSP weld reinforcement becomes more rigid due to the refinement of the structure, and the characteristics of the region improve the fatigue life of the entire weld.

以上の結果より、溶接部の表面近傍のみに、また、一部の領域のみに摩擦攪拌処理領域を施すことによって、溶接部の機械的特性(曲げ強度、疲労強度等)が大幅に向上することが分かる。よって、溶接構造物全体の機械的特性を律速するT字継手の角廻し溶接部の溶接止端部等に摩擦攪拌処理を施すことによって、構造用材の機械的特性を十分に発揮し得る溶接構造物を極めて効率的に得ることができる。   From the above results, the mechanical properties (bending strength, fatigue strength, etc.) of the welded portion are greatly improved by applying the friction stir treatment region only to the vicinity of the surface of the welded portion or only to a part of the region. I understand. Therefore, a welded structure that can fully exhibit the mechanical properties of structural materials by applying friction stir processing to the welded toe of the T-joint that controls the mechanical properties of the entire welded structure. Things can be obtained very efficiently.

1・・・摩擦攪拌用工具、
2・・・プローブ、
10・・・T字継手、
12・・・金属板、
14・・・ガセット板、
16・・・下部側面の溶接部、
18・・・角廻し溶接部、
20・・・溶接止端部、
22・・・摩擦攪拌処理領域。
1 ... Tool for friction stirring,
2 ... Probe,
10 ... T-shaped joint,
12 ... Metal plate,
14 ... Gusset board,
16: welded portion on the lower side surface,
18 ... cornering weld,
20 ... weld toe,
22: Friction stir processing region.

Claims (5)

2つの金属製被溶接材の溶融溶接によって形成された溶接部に対して摩擦攪拌処理を施す溶接部の補強方法であって、
前記2つの金属製被溶接材の少なくとも一方が鋼材であり、
前記摩擦攪拌処理を施す領域が前記溶接部の引張残留応力集中部を含む前記溶接部の一部分であり、
前記摩擦攪拌処理に用いる摩擦攪拌用工具の底面が略平面又は長さ1mm以下のプローブを有し、
前記摩擦攪拌処理によって形成される摩擦攪拌処理領域の母材結晶粒が未処理領域よりも微細化した等軸粒であり、
前記摩擦攪拌処理領域の深さが100〜1000μmであること、
を特徴とする溶接部の補強方法。
A method for reinforcing welds subjected to friction stir processing to weld formed by the two molten weld metal workpieces,
At least one of the two metal workpieces is a steel material,
The region where the friction stir treatment is performed is a part of the weld including the tensile residual stress concentration portion of the weld,
The bottom surface of the friction stir tool used for the friction stir processing has a probe that is substantially flat or 1 mm or less in length,
The base material crystal grains of the friction stir processing region formed by the friction stir processing are equiaxed grains that are finer than the untreated region,
The friction stir processing region has a depth of 100 to 1000 μm,
A method for reinforcing a welded portion characterized by the above.
前記摩擦攪拌処理を施す領域がT字継手の角廻し溶接部であること、
を特徴とする請求項1に記載の溶接部の補強方法。
The region to be subjected to the friction stir processing is a corner weld of a T-shaped joint;
The method for reinforcing a welded portion according to claim 1.
前記2つの金属製被溶接材の少なくとも一方が溶融溶接中に変態を生じる鋼材であること、
を特徴とする請求項1又は2に記載の溶接部の補強方法。
At least one of the two metal workpieces is a steel material that undergoes transformation during fusion welding;
The method for reinforcing a welded portion according to claim 1, wherein:
前記2つの金属製被溶接材の少なくとも一方が高張力鋼であること、
を特徴とする請求項1〜3のいずれかに記載の溶接部の補強方法。
At least one of said two metal workpieces are high-tensile steel material,
The method for reinforcing a welded portion according to any one of claims 1 to 3.
請求項1〜4のいずれかに記載の溶接部の補強方法によって補強された溶接部を有する溶接構造物。   A welded structure having a welded portion reinforced by the method for reinforcing a welded portion according to claim 1.
JP2014161492A 2013-11-26 2014-08-07 Weld reinforcement method Active JP6606730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014161492A JP6606730B2 (en) 2013-11-26 2014-08-07 Weld reinforcement method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013244294 2013-11-26
JP2013244294 2013-11-26
JP2014161492A JP6606730B2 (en) 2013-11-26 2014-08-07 Weld reinforcement method

Publications (2)

Publication Number Publication Date
JP2015127063A JP2015127063A (en) 2015-07-09
JP6606730B2 true JP6606730B2 (en) 2019-11-20

Family

ID=53837317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161492A Active JP6606730B2 (en) 2013-11-26 2014-08-07 Weld reinforcement method

Country Status (1)

Country Link
JP (1) JP6606730B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6840383B2 (en) * 2017-03-17 2021-03-10 国立大学法人大阪大学 Weld modification method
CN111867777B (en) 2018-03-20 2022-04-19 杰富意钢铁株式会社 Rotating tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method
KR20220047652A (en) 2019-09-25 2022-04-18 제이에프이 스틸 가부시키가이샤 Double-sided friction stir welding method, cold-rolled steel strip and plated steel strip manufacturing method, double-sided friction stir welding device, and cold-rolled steel strip and plated steel strip manufacturing facility
WO2023037785A1 (en) 2021-09-13 2023-03-16 Jfeスチール株式会社 Friction stir welding method for electromagnetic steel strip, and method for manufacturing electromagnetic steel strip
CN115555861A (en) * 2022-09-29 2023-01-03 哈尔滨工业大学(威海) Device and method for improving fatigue performance of aluminum alloy fusion welding joint

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310150A (en) * 1996-05-22 1997-12-02 Kawasaki Steel Corp Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
JP3915146B2 (en) * 1996-09-05 2007-05-16 Jfeスチール株式会社 Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance
JP2003053586A (en) * 2001-08-14 2003-02-26 Hitachi Constr Mach Co Ltd Welding bead shaping method for welded joint and welded joint
JP4134837B2 (en) * 2003-07-15 2008-08-20 マツダ株式会社 Friction welding method and friction welding structure
JP4419605B2 (en) * 2004-02-26 2010-02-24 Jfeスチール株式会社 Steel sheet for double-wound pipe and manufacturing method thereof
JP4691735B2 (en) * 2004-05-20 2011-06-01 国立大学法人 名古屋工業大学 Grain refiner for casting and method for producing the same
JP4751625B2 (en) * 2005-03-03 2011-08-17 昭和電工株式会社 Formation method of welded joint
TW200946270A (en) * 2008-02-19 2009-11-16 Nippon Steel Corp Welded joint with excellent fatigue-resistance characteristics, and method for producing same
JP5998325B2 (en) * 2011-03-29 2016-09-28 公立大学法人大阪府立大学 Friction stir processing tool and friction stir processing method using the same
JP5538337B2 (en) * 2011-09-29 2014-07-02 株式会社日立製作所 Moving blade

Also Published As

Publication number Publication date
JP2015127063A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP6606730B2 (en) Weld reinforcement method
Mahto et al. Characterizations of weld defects, intermetallic compounds and mechanical properties of friction stir lap welded dissimilar alloys
Ilangovan et al. Microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints
Da Silva et al. Friction stir spot welding of AA 1050 Al alloy and hot stamped boron steel (22MnB5)
Han et al. AA7075 bit for repairing AA2219 keyhole by filling friction stir welding
Amini et al. Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy
Radisavljevic et al. Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints
Singh et al. Experimental comparison of friction stir welding process and TIG welding process for 6082-T6 Aluminium alloy
Carlone et al. Characterization of TIG and FSW weldings in cast ZE41A magnesium alloy
Mabuwa et al. Effect of friction stir processing on gas tungsten arc-welded and friction stir-welded 5083-H111 aluminium alloy joints
Chowdhury et al. Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints
Sharma et al. Mechanical properties of friction stir welded armor grade Al–Zn–Mg alloy joints
Asibeluo et al. Effect of arc welding current on the mechanical properties of A36 carbon steel weld joints
KR100772729B1 (en) High heat input butt welding joint exhibiting excellent characteristics in resistance to occurrence of brittle fracture
Fall et al. Effect of process parameters on microstructure and mechanical properties of friction stir-welded Ti–6Al–4V joints
Hou et al. Dissimilar friction stir welding of aluminum alloys adopting a novel dual-pin tool: Microstructure evolution and mechanical properties
Hejazi et al. Mechanical and metallurgical characterization of AA6061 friction stir welded joints using microhardness map
Singh et al. An experimental approach to study the effect of welding parameters on similar friction stir welded joints of AZ31B-O Mg alloy
Wang et al. Comparison of fatigue property between friction stir and TIG welds
Lim et al. Effect of residual stress on the mechanical properties of FSW joints with SUS409L
Devuri et al. Effect of shoulder surface dimension and geometries on FSW of AA7039
Harikrishna et al. Friction stir welding of magnesium alloy ZM21
Pixner et al. Tailoring the alloy composition for wire arc additive manufacturing utilizing metal-cored wires in the cold metal transfer process
Wu et al. Microstructure characterization and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy
JP6840383B2 (en) Weld modification method

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20140926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190927

R150 Certificate of patent or registration of utility model

Ref document number: 6606730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250