JP6314670B2 - Structure with excellent fatigue characteristics - Google Patents

Structure with excellent fatigue characteristics Download PDF

Info

Publication number
JP6314670B2
JP6314670B2 JP2014116816A JP2014116816A JP6314670B2 JP 6314670 B2 JP6314670 B2 JP 6314670B2 JP 2014116816 A JP2014116816 A JP 2014116816A JP 2014116816 A JP2014116816 A JP 2014116816A JP 6314670 B2 JP6314670 B2 JP 6314670B2
Authority
JP
Japan
Prior art keywords
toe
main plate
stress
weld metal
welded joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014116816A
Other languages
Japanese (ja)
Other versions
JP2015229183A (en
Inventor
島貫 広志
広志 島貫
鉄平 大川
鉄平 大川
昌彦 木下
昌彦 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014116816A priority Critical patent/JP6314670B2/en
Publication of JP2015229183A publication Critical patent/JP2015229183A/en
Application granted granted Critical
Publication of JP6314670B2 publication Critical patent/JP6314670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、鋼部材の溶接継手を有する疲労特性に優れた構造物に関する。   The present invention relates to a structure having excellent fatigue characteristics having a welded joint of steel members.

従来から、鋼部材の溶接継手の疲労特性を向上するために、溶接継手の止端部(以下「止端」と称する)に対してピーニング処理が行われている。例えば、下記特許文献1および非特許文献1には、空気圧式工具を用いたハンマーピーニング処理を行うことが記載されている。また、非特許文献2には、UIT(Ultrasonic Impact Treatment)装置を用いた超音波ピーニング処理(超音波衝撃処理)を行うことが記載されている。   Conventionally, in order to improve the fatigue characteristics of a welded joint of steel members, a peening process has been performed on the toe end portion (hereinafter referred to as “toe end”) of the welded joint. For example, the following Patent Document 1 and Non-Patent Document 1 describe performing hammer peening using a pneumatic tool. Non-Patent Document 2 describes performing ultrasonic peening treatment (ultrasonic impact treatment) using a UIT (Ultrasonic Impact Treatment) apparatus.

これらのピーニング処理は、1mm〜10mm程度の曲率半径を有する硬質の先端を持つ振動端子で止端を繰り返し打撃して塑性加工させることにより実施される。一般に、止端には溶接の際の局所的な加熱・冷却により引張残留応力が発生している。そこで、止端に対してこのようなピーニング処理を行うと、止端の近傍に圧縮残留応力を導入すると共に、止端の表面の形状を滑らかにすることができる。これにより、止端における応力集中を緩和することができ、溶接継手の疲労強度を向上させることができる。   These peening processes are performed by repeatedly striking the toe end with a vibration terminal having a hard tip having a radius of curvature of about 1 mm to 10 mm and plastic processing. Generally, tensile residual stress is generated at the toe due to local heating and cooling during welding. Thus, when such a peening process is performed on the toe, compressive residual stress is introduced in the vicinity of the toe and the shape of the surface of the toe can be made smooth. Thereby, the stress concentration at the toe can be relaxed and the fatigue strength of the welded joint can be improved.

また、超音波ピーニング処理など、圧縮残留応力を用いた耐疲労技術は、引張側にのみ負荷が作用する場合、溶接構造物の疲労強度改善に極めて有効である。しかし、圧縮方向に大きな負荷がかかった際には疲労特性の改善効果が消失することがあるため、その対策として、鋼材の圧縮降伏応力を想定負荷応力の10/9倍とする技術が提案されている(例えば、下記特許文献2参照)。   Further, fatigue resistance technology using compressive residual stress such as ultrasonic peening treatment is extremely effective in improving the fatigue strength of a welded structure when a load acts only on the tension side. However, when a large load is applied in the compression direction, the effect of improving the fatigue characteristics may disappear. Therefore, as a countermeasure, a technique for increasing the compressive yield stress of steel materials to 10/9 times the assumed load stress has been proposed. (For example, see Patent Document 2 below).

この特許文献2は、ホットスポット応力(溶接ビード形状の影響を無視し、構造的不連続の影響による応力の上昇を考慮した止端位置における応力)の圧縮応力の最大値を、鋼材の圧縮降伏応力の90%以下とするものである。しかし、更に過大な圧縮負荷の作用が想定される部位の疲労特性を高める技術の提案が必要である。   In this patent document 2, the maximum value of the compressive stress of hot spot stress (stress at the toe position considering the increase in stress due to the effect of structural discontinuity, ignoring the effect of the weld bead shape) The stress is 90% or less. However, it is necessary to propose a technique for improving the fatigue characteristics of a portion where an excessive compressive load action is assumed.

特開平4−21717号公報JP-A-4-21717 特開2012−23818号公報JP 2012-23818 A

IIW Commission XIII, IIW recommendation Post Weld Improvement of Steel and Aluminum Structures, Revised March 2009, p.20〜27IIW Commission XIII, IIW recommendation Post Weld Improvement of Steel and Aluminum Structures, Revised March 2009, p.20-27 野瀬哲郎著、「疲労強度向上向け超音波ピーニング方法」、溶接学会誌、第77巻(2008)、第3号、p.210〜213Nose Tetsuro, “Ultrasonic Peening Method for Fatigue Strength Improvement”, Journal of the Japan Welding Society, Vol. 77 (2008), No. 3, pages 210-213

以上のように、従来の技術では、鋼部材の溶接継手を有する構造物の使用中に、過大な圧縮負荷の作用によって、ピーニング処理により導入した圧縮残留応力が低下、喪失する虞があるという問題点があった。   As described above, in the conventional technology, there is a possibility that the compressive residual stress introduced by the peening process may be reduced or lost due to the action of an excessive compressive load during the use of the structure having the welded joint of the steel member. There was a point.

本発明は、以上のような問題点に鑑みてなされたものであり、主板と副板との溶接継手を有する構造物の使用中に、過大な圧縮負荷の作用が想定される部位の疲労特性を高めることを目的とする。   The present invention has been made in view of the above problems, and the fatigue characteristics of a portion where an excessive compressive load is assumed during use of a structure having a welded joint between a main plate and a sub plate. The purpose is to increase.

本発明の疲労特性に優れた構造物は、主板と副板との溶接継手を有し、上記主板と連結される周囲の鋼材を含む構造物であって、上記溶接継手を形成する溶接金属の降伏強度が上記周囲の鋼材の1.2倍以上であり、上記溶接継手の止端から溶接金属と逆側に主板板厚tの3倍以上の領域Wにおける主板の降伏強度が上記周囲の鋼材の1.5倍以上であり、上記溶接継手の止端から溶接金属側に主板板厚tの1/3以上の領域Lにおける止端角度θが20度以下であり、上記領域Lにおける溶接の段差部に、曲率半径Rが主板板厚tの1/20以上、深さDが1mm以下の打撃痕が形成されていることを特徴とする。 A structure excellent in fatigue characteristics of the present invention has a welded joint between a main plate and a sub-plate, and is a structure including a surrounding steel material connected to the main plate, and is a weld metal that forms the welded joint. yield strength of not less than 1.2 times the steel surrounding the steel product as yield strength above around the main plate in the more than three times the area W of the welded joint of the stop thick main plate plate weld metal the opposite side from the end t The toe angle θ in the region L that is 1/3 or more of the main plate thickness t from the toe of the weld joint to the weld metal side is 20 degrees or less. A striking mark having a radius of curvature R of 1/20 or more of the main plate thickness t and a depth D of 1 mm or less is formed in the stepped portion.

また、上記構造物は、繰り返し荷重を受ける構造物であることが好ましい。 Further, the structure is preferably a structure that receives the Ri return load Repetitive.

本発明によれば、主板と副板との溶接継手を有する構造物の使用中に、ピーニング処理により導入した圧縮残留応力が喪失することを抑制し、過大な圧縮負荷の作用が想定される部位の疲労特性を高めることができるなど、産業上有用な著しい効果を奏する。   According to the present invention, during use of a structure having a welded joint between a main plate and a sub-plate, the loss of compressive residual stress introduced by the peening process is suppressed, and an excessive compressive load action is assumed. It is possible to enhance the fatigue properties of the steel, and there are significant industrially useful effects.

本発明の実施の形態に係る疲労特性に優れた構造物を示す断面図である。It is sectional drawing which shows the structure excellent in the fatigue characteristic which concerns on embodiment of this invention. 図1の溶接継手の部分拡大図である。It is the elements on larger scale of the weld joint of FIG. 本発明の実施の形態における打撃痕を示す図である。It is a figure which shows the hit | damage trace in embodiment of this invention. 本発明の実施の形態における主板板厚tが100mmの場合の領域Lの範囲を例示する図である。It is a figure which illustrates the range of the area | region L in case main board board thickness t in embodiment of this invention is 100 mm. 本発明の実施の形態における主板板厚tが100mmの場合の打撃痕の曲率半径Rの範囲を例示する図である。It is a figure which illustrates the range of the curvature radius R of the hit | damage trace when the main board plate | board thickness t in embodiment of this invention is 100 mm. 本発明の実施の形態における主板板厚tが20mmの場合の領域Lの範囲を例示する図である。It is a figure which illustrates the range of the area | region L in case main board plate | board thickness t in embodiment of this invention is 20 mm. 本発明の実施の形態における主板板厚tが20mmの場合の打撃痕の曲率半径Rの範囲を例示する図であるIt is a figure which illustrates the range of the curvature radius R of the hit | damage trace when the main board board thickness t in embodiment of this invention is 20 mm. H形構造物に対して行った、本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention performed with respect to the H-shaped structure. 円柱構造物に対して行った、本発明の実施例2の説明図である。It is explanatory drawing of Example 2 of this invention performed with respect to the cylindrical structure.

本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の実施の形態に係る疲労特性に優れた構造物を示す断面図であり、図2は、図1の溶接継手の部分拡大図であり、図3は、打撃痕を示す図である。
Embodiments of the present invention will be described with reference to the drawings.
1 is a cross-sectional view showing a structure excellent in fatigue characteristics according to an embodiment of the present invention, FIG. 2 is a partially enlarged view of the welded joint of FIG. 1, and FIG. FIG.

図1に示すように、本実施の形態に係る構造物は、主板1と副板2との溶接継手3を有する。ここに、主板1は、周囲の鋼材4より強度を高めた鋼板であり、溶接継手3の止端8から溶接金属3と逆側に主板板厚tの3倍以上の領域Wにおける主板1の降伏強度が周囲の鋼材の1.5倍以上である。これにより、過大な圧縮負荷の作用が想定される部位の疲労特性を高めることができる。なお、本実施の形態において、副板2とは、主板1に溶接接合する鋼板をいい、溶接継手3とは、主板1と副板2との溶接継手をいう。   As shown in FIG. 1, the structure according to the present embodiment has a welded joint 3 of a main plate 1 and a sub plate 2. Here, the main plate 1 is a steel plate whose strength is higher than that of the surrounding steel material 4, and the main plate 1 in the region W is more than three times the main plate thickness t from the toe 8 of the weld joint 3 to the opposite side of the weld metal 3. Yield strength is 1.5 times or more of surrounding steel materials. Thereby, the fatigue characteristic of the site | part by which the effect | action of an excessive compression load is assumed can be improved. In the present embodiment, the secondary plate 2 refers to a steel plate that is welded to the main plate 1, and the welded joint 3 refers to a welded joint between the main plate 1 and the secondary plate 2.

一般に、鋼部材の疲労に対する設計応力は、鋼部材の降伏応力が公称応力の2/3であると設定して算定する。一方、ホットスポット応力は、止端8から主板板厚tの1.5倍の距離までの応力分布から求められる。また、構造的応力集中が十分に緩和できる長さは、ホットスポット応力計算に用いられる領域の2倍以上である。そこで、本実施の形態においては、主板板厚tの3倍以上の領域Wに、降伏強度が周囲の鋼材4の1.5倍以上である主板1を用いることとした。これにより、主板1に過大な圧縮応力が作用する場合でも、十分な疲労強度が確保できる。   Generally, the design stress for fatigue of a steel member is calculated by setting the yield stress of the steel member to be 2/3 of the nominal stress. On the other hand, the hot spot stress is obtained from the stress distribution from the toe 8 to a distance 1.5 times the main plate thickness t. Further, the length that can sufficiently relax the structural stress concentration is at least twice as long as the region used for hot spot stress calculation. Therefore, in the present embodiment, the main plate 1 whose yield strength is 1.5 times or more that of the surrounding steel material 4 is used in the region W that is three times or more the main plate thickness t. Thereby, even when an excessive compressive stress acts on the main plate 1, sufficient fatigue strength can be ensured.

本実施形態において、溶接金属3は、第1の溶接金属31に加えて、追加の溶接金属である第2の溶接金属32を有しており、この溶接継手3を形成する第1溶接金属31および第2溶接金属32の降伏強度は周囲の鋼材4の1.2倍以上である。これにより、溶接継手3からの破断を防止することができる。   In the present embodiment, the weld metal 3 includes a second weld metal 32 that is an additional weld metal in addition to the first weld metal 31, and the first weld metal 31 that forms the weld joint 3. The yield strength of the second weld metal 32 is 1.2 times or more that of the surrounding steel material 4. Thereby, the fracture | rupture from the welded joint 3 can be prevented.

図2は、図1の溶接継手の部分拡大図である。図2に示すように、本実施の形態において、上記溶接継手3の止端8から溶接金属側に主板板厚tの1/3以上の領域Lにおける止端角度θが20度以下である。止端8から溶接金属側に主板板厚tの1/3以上の領域Lに止端角度20度以下の傾斜を設けることにより、止端8における応力集中を緩和することができる。ホットスポット応力が高いと、疲労強度が得られる応力領域が狭くなるため、高強度溶接材料を用いて溶接ビード幅を通常よりも大きくし、止端角度θを小さくする。これにより、止端8の位置を変更し、ホットスポット応力を低減させることができる。ここに、止端角度θとは、止端8における主板1の表面と溶接ビートの表面との成す角度をいう。   FIG. 2 is a partially enlarged view of the weld joint of FIG. As shown in FIG. 2, in the present embodiment, the toe angle θ in the region L of 1/3 or more of the main plate thickness t from the toe 8 of the weld joint 3 to the weld metal side is 20 degrees or less. By providing a slope with a toe angle of 20 degrees or less in a region L of 1/3 or more of the main plate thickness t from the toe 8 to the weld metal side, stress concentration at the toe 8 can be relaxed. When the hot spot stress is high, the stress region in which fatigue strength can be obtained is narrowed. Therefore, the weld bead width is made larger than usual by using a high-strength welding material, and the toe angle θ is made smaller. Thereby, the position of the toe 8 can be changed and hot spot stress can be reduced. Here, the toe angle θ means an angle formed by the surface of the main plate 1 at the toe 8 and the surface of the welding beat.

また、「ホットスポット応力」は、溶接ビード形状の影響を無視し、構造的不連続の影響による応力の上昇を考慮した溶接止端位置における応力である。ホットスポット応力の算定に際し、二次的な曲げ応力の影響を無視することができない場合には、この影響を考慮する。ホットスポット応力は、有限要素法による直接解析や、公称応力に応力集中係数を乗じることにより求めることができる。尚、ホットスポット応力は、「財団法人日本海事協会、疲労強度評価ガイドライン、2002年8月」や「CSR−B(Common Structural Rules for Bulk Carriers)のSection4」や「International Institue of Welding、Fatigue design of welded joints and components」等に記載されているので、ここでは、その詳細な説明を省略する。   The “hot spot stress” is a stress at the weld toe position that ignores the effect of the weld bead shape and considers the increase in stress due to the effect of structural discontinuity. When calculating the hot spot stress, if the influence of secondary bending stress cannot be ignored, this effect is taken into account. The hot spot stress can be obtained by direct analysis by a finite element method or by multiplying the nominal stress by a stress concentration factor. Note that the hot spot stress is “Japan Maritime Association, Fatigue Strength Evaluation Guideline, August 2002”, “Section 4 of Common Structural Rules for Bulk Carriers (CSR-B)”, “International Institute of Welding, Fatigue design of”. detailed description thereof is omitted here, since it is described in “welded joints and components” and the like.

さらに、本実施の形態においては、上記領域Lにおける溶接の段差部に、図3に示すような、曲率半径Rが主板板厚tの1/20以上、深さDが1mm以下の打撃痕が形成されている。領域Lにおける溶接の段差部を打撃処理することで、応力集中による溶接金属3からの亀裂発生を防止し、溶接部全体としての疲労強度を高めることができる。なお、本実施の形態においては、主板1と周囲の鋼材4との溶接止端にも、打撃処理を施している。これにより、さらに、疲労強度を向上させることができる。   Further, in the present embodiment, a striking mark having a radius of curvature R of 1/20 or more of the main plate thickness t and a depth D of 1 mm or less as shown in FIG. Is formed. By performing the hit processing on the stepped portion of the welding in the region L, it is possible to prevent the occurrence of cracks from the weld metal 3 due to stress concentration and to increase the fatigue strength of the entire welded portion. In the present embodiment, a hammering process is also applied to the weld toe between the main plate 1 and the surrounding steel material 4. Thereby, fatigue strength can be further improved.

本実施の形態における打撃痕は、ハンマーピーニングや超音波衝撃処理等の高周波機械衝撃により形成された圧痕である。この打撃痕の曲率半径Rを主板板厚tの1/20以上、深さDが1mm以下とすることにより、応力集中を十分に小さくすることができる。ここに、溶接の段差部とは、多層盛溶接部の境界や溶接ビードの終始端に形成される凹凸をいう。また、曲率半径Rとは、打撃痕の円相当半径をいう。   The impact mark in the present embodiment is an impression formed by high-frequency mechanical impact such as hammer peening or ultrasonic impact treatment. The stress concentration can be sufficiently reduced by setting the radius of curvature R of the hitting mark to 1/20 or more of the main plate thickness t and the depth D to 1 mm or less. Here, the level difference part of welding means the unevenness | corrugation formed in the boundary of a multilayer build-up weld part, and the starting end of a weld bead. Further, the curvature radius R is a circle-equivalent radius of the hitting mark.

また、本実施の形態における打撃痕10の曲率半径Rは、主板板厚tの1/20である。打撃痕10の断面における曲率半径Rが主板板厚tの1/20未満であると、止端8への応力集中を緩和することが不十分であり、耐疲労特性の向上を期待できない一方、曲率半径Rが10.0mmを超えても、応力集中を緩和する効果は飽和し、耐疲労特性のさらなる向上は得られず、また処理時間もより長く必要となる。尚、打撃痕10は、領域Lにおける溶接の段差部を中心として形成するが、止端8にも形成する。これを勘案して打撃位置と、打撃痕10の曲率半径を選定する。このような打撃痕10が形成された止端8では、止端の線は消滅する。これにより、疲労き裂の起点となり難くなり、耐疲労特性が向上する。   Further, the radius of curvature R of the hitting mark 10 in the present embodiment is 1/20 of the main plate thickness t. When the radius of curvature R in the cross section of the hitting mark 10 is less than 1/20 of the main plate thickness t, it is insufficient to relax the stress concentration on the toe 8, and improvement in fatigue resistance cannot be expected. Even if the radius of curvature R exceeds 10.0 mm, the effect of relaxing the stress concentration is saturated, further improvement in fatigue resistance is not obtained, and a longer processing time is required. The hitting mark 10 is formed around the welding step in the region L, but is also formed at the toe 8. Considering this, the striking position and the radius of curvature of the striking scar 10 are selected. In the toe 8 where the hitting mark 10 is formed, the line of the toe disappears. Thereby, it becomes difficult to become a starting point of a fatigue crack, and fatigue resistance characteristics are improved.

また、本実施の形態における打撃痕10の厚み方向の深さDは1.0mm以下である。これにより、打撃処理部7における応力集中を十分に緩和することができる。また、打撃痕10の厚み方向の深さDを大きくするには、打撃痕10を形成するための時間を要することから効率的ではないので、0.5mm以下とする。   In addition, the depth D in the thickness direction of the hitting mark 10 in the present embodiment is 1.0 mm or less. Thereby, the stress concentration in the impact processing unit 7 can be sufficiently relaxed. Further, increasing the depth D in the thickness direction of the hitting mark 10 is not efficient because it takes time to form the hitting mark 10, and therefore is 0.5 mm or less.

ピーニング処理や超音波衝撃処理等の高周波機械衝撃を行う打撃装置は、振動端子と、振動装置とを備える。この打撃装置は、溶接線方向に沿って移動しながら、溶接継手に対して打撃を行い、前述した形状を有する打撃痕10を形成する。高周波機械衝撃処理の方法は、前述した形状を有する打撃痕10を形成することができれば、どのような方法であってもよい。例えば、ハンマーピーニング法、ニードルピーニング法、超音波ピーニング法等の方法を採用することができる。   A striking device that performs high-frequency mechanical impact such as peening processing or ultrasonic impact processing includes a vibration terminal and a vibration device. This striking device strikes the welded joint while moving along the weld line direction, and forms the striking trace 10 having the shape described above. The high frequency mechanical shock treatment method may be any method as long as the hitting mark 10 having the shape described above can be formed. For example, methods such as hammer peening, needle peening, and ultrasonic peening can be employed.

このとき、打撃装置により振動端子を、10Hz以上50kHz以下の範囲の振動周波数で振動させ、且つ、0.01kW以上4kW以下の範囲の仕事率(出力)で打撃処理を施す。このような範囲で打撃処理を施すことによって、溶接金属の表面の金属が塑性流動し、溶接の際の局所的な加熱・冷却に伴って形成されていた引張残留応力を解放し、圧縮残留応力場を形成することができるからである。さらに、このような範囲で打撃処理を施すことによって、止端の表面が加工発熱し、この加工発熱が散逸しない断熱状態で繰り返し打撃処理を与えることにより、熱間鍛造と同じような作用を止端の近傍に及ぼすことができ、結晶組織を微細化することができるからである。   At this time, the striking device vibrates the vibration terminal at a vibration frequency in the range of 10 Hz to 50 kHz and performs a striking process with a power (output) in the range of 0.01 kW to 4 kW. By performing the striking treatment in such a range, the metal on the surface of the weld metal plastically flows, releasing the tensile residual stress formed by local heating and cooling during welding, and compressing residual stress. This is because a field can be formed. Furthermore, by applying a hammering treatment in such a range, the surface of the toe heats up due to processing, and by giving repeated hammering treatment in a heat-insulating state where this heat generation of heat does not dissipate, the same action as hot forging is stopped. This is because it can be applied to the vicinity of the edge and the crystal structure can be refined.

ここで、振動端子の振動周波数を10Hz以上とするのは、振動周波数が10Hz未満であると、処理効率が低く実用性が低くなるからである。一方、振動周波数を50kHz以下とするのは超音波等、工業的に適用できる振動装置によって得られる周波数が一般に50kHz以下であるからである。   Here, the reason why the vibration frequency of the vibration terminal is 10 Hz or more is that when the vibration frequency is less than 10 Hz, the processing efficiency is low and the practicality is low. On the other hand, the reason why the vibration frequency is 50 kHz or less is that the frequency obtained by an industrially applicable vibration device such as an ultrasonic wave is generally 50 kHz or less.

また、振動端子の仕事率を0.01kW以上とするのは、仕事率が0.01kW未満であると、打撃処理に要する時間が長くかかり過ぎるからである。一方、仕事率を4kW以下とするのは、これを超える仕事率で打撃処理をしても効果が飽和するため経済性が低下するからである。   Moreover, the reason why the power of the vibration terminal is set to 0.01 kW or more is that when the power is less than 0.01 kW, the time required for the hitting process is too long. On the other hand, the reason why the work rate is set to 4 kW or less is that the effect is saturated even if the hitting process is performed at a work rate exceeding this value, so that the economy is lowered.

なお、本発明の疲労特性に優れた構造物は、船舶、海洋構造物、洋上風力発電機などの繰り返し荷重を受ける様々な構造物に適用することができる。   In addition, the structure excellent in the fatigue characteristics of the present invention can be applied to various structures that receive repeated loads such as ships, offshore structures, offshore wind power generators and the like.

図4は、本発明の実施の形態における主板板厚tが100mmの場合の領域Lの範囲を例示する図である。図4に示すように、止端角度θ、止端からの距離Lと溶接金属部の応力/公称応力との関係を調査した結果、止端角度θが20度以下、領域Lが主板板厚tの1/3である33mm以上の場合の溶接金属部の応力/公称応力は0.9以下であることが分かった。   FIG. 4 is a diagram illustrating the range of the region L when the main plate thickness t is 100 mm in the embodiment of the present invention. As shown in FIG. 4, as a result of investigating the relationship between the toe angle θ, the distance L from the toe and the stress / nominal stress of the weld metal part, the toe angle θ is 20 degrees or less, and the region L is the main plate thickness. It was found that the stress / nominal stress of the weld metal part in the case of 33 mm or more, which is 1/3 of t, was 0.9 or less.

図5は、本発明の実施の形態における主板板厚tが100mmの場合の打撃痕の曲率半径Rの範囲を例示する図である。図5に示すように、止端角度θ、打撃痕の曲率半径Rと溶接金属部の応力集中係数との関係を調査した結果、止端角度θが20度以下、打撃痕の曲率半径Rが主板板厚tの1/20である5mm以上の場合の応力集中係数は1.5以下であることが分かった。   FIG. 5 is a diagram illustrating a range of the radius of curvature R of the hitting trace when the main plate thickness t is 100 mm in the embodiment of the present invention. As shown in FIG. 5, as a result of investigating the relationship between the toe angle θ, the radius of curvature R of the hitting mark, and the stress concentration factor of the weld metal part, the toe angle θ is 20 degrees or less, and the radius of curvature R of the hitting mark is It was found that the stress concentration coefficient in the case of 5 mm or more, which is 1/20 of the main plate thickness t, is 1.5 or less.

図6は、本発明の実施の形態における主板板厚tが20mmの場合の領域Lの範囲を例示する図である。図6に示すように、止端角度θ、止端からの距離Lと溶接金属部の応力/公称応力との関係を調査した結果、止端角度θが20度以下、領域Lが主板板厚tの1/3である6.7mm以上の場合の溶接金属部の応力/公称応力は0.9以下であることが分かった。   FIG. 6 is a diagram illustrating the range of the region L when the main plate thickness t is 20 mm in the embodiment of the present invention. As shown in FIG. 6, as a result of investigating the relationship between the toe angle θ, the distance L from the toe and the stress / nominal stress of the weld metal part, the toe angle θ is 20 degrees or less, and the region L is the main plate thickness. It was found that the stress / nominal stress of the weld metal part in the case of 1 / mm or more, which is 1/3 of t, was 0.9 or less.

図7は、本発明の実施の形態における主板板厚tが20mmの場合の打撃痕の曲率半径Rの範囲を例示する図である。図7に示すように、止端角度θ、打撃痕の曲率半径Rと溶接金属部の応力集中係数との関係を調査した結果、止端角度θが20度以下、打撃痕の曲率半径Rが主板板厚tの1/20である1mm以上の場合の応力集中係数は1.5以下であることが分かった。   FIG. 7 is a diagram illustrating the range of the radius of curvature R of the hitting trace when the main plate thickness t is 20 mm in the embodiment of the present invention. As shown in FIG. 7, as a result of investigating the relationship between the toe angle θ, the radius of curvature R of the hitting mark, and the stress concentration factor of the weld metal part, the toe angle θ is 20 degrees or less, and the radius of curvature R of the hitting mark is It was found that the stress concentration factor in the case of 1 mm or more, which is 1/20 of the main plate thickness t, is 1.5 or less.

次に、本発明の実施例について説明する。
図8は、H形構造物に対して行った、本発明の実施例1における荷重載荷の方法を説明する図である。
SM490Bの厚み19mmの鋼材を、H形構造物モデルのフランジ(周囲の鋼材4)として用い、中央部の補剛板と下に張り出した部分(副板2)を板厚40mm、その他を厚み12mmで溶接組み立てにより、H形試験体を作製した。
また、SBHS500の鋼板を高強度部材(主板1)として上下フランジの中央部に用い、溶接材料は鋼材強度に合わせて選定し、FCAW溶接により構造物モデル試験体を作製した。
なお、組み立て溶接はすべてすみ肉溶接にて行い、本発明を適用する○部を除いてすべての溶接止端は、グラインダ処理と下記の超音波衝撃処理を併用して疲労強度を高めた。
<超音波衝撃処理条件>
打撃ピンの先端部の曲率半径:0.9〜2.0mm
振動周波数:27kHz
出力:約1000kW
Next, examples of the present invention will be described.
FIG. 8 is a diagram for explaining the load loading method in the first embodiment of the present invention performed on the H-shaped structure.
Using SM490B steel material with a thickness of 19 mm as a flange of H-type structure model (surrounding steel material 4), the central stiffener plate and the projecting part (sub-plate 2) are 40 mm thick, the others are 12 mm thick An H-shaped specimen was prepared by welding assembly.
Further, a SBHS500 steel plate was used as a high-strength member (main plate 1) in the central portion of the upper and lower flanges, and a welding material was selected according to the strength of the steel material, and a structural model specimen was prepared by FCAW welding.
In addition, all the assembly weldings were performed by fillet welding, and all the weld toes except for the portion ○ where the present invention was applied were combined with a grinder process and the following ultrasonic impact process to increase the fatigue strength.
<Ultrasonic impact treatment conditions>
The radius of curvature of the tip of the hitting pin: 0.9 to 2.0 mm
Vibration frequency: 27 kHz
Output: about 1000kW

疲労試験は4点曲げ試験によって行った。はじめに試験体を上下逆にし、4点曲げにより中央部の材軸方向公称応力がSM490Bの降伏応力に等しい340MPaとなるように負荷して除荷した。この後、若干曲げによるひずみが残ったまま試験体を上下反対にして、疲労試験を行った。この時、上下フランジの公称応力による応力範囲が130MPaとなるように設定して、応力比0.05の試験を行った。この試験結果を表1に示す。   The fatigue test was conducted by a 4-point bending test. First, the test body was turned upside down, and loaded and unloaded by 4-point bending so that the nominal stress in the axial direction at the center was 340 MPa, which was equal to the yield stress of SM490B. Thereafter, a fatigue test was conducted with the specimen upside down with some bending strain remaining. At this time, a stress ratio of 0.05 was tested by setting the stress range by the nominal stress of the upper and lower flanges to be 130 MPa. The test results are shown in Table 1.

Figure 0006314670
Figure 0006314670

表1に示すように、本発明の条件を全て満足するH形構造体No.3〜6、8、11、14〜17は、破断までの繰り返し数が300万回以上であり、十分な疲労強度が認められた。
一方、H形構造物No.1、2は、主板と周囲の鋼材との繋ぎ溶接継手部の構造的応力集中の影響が発生し、繋ぎ溶接の止端で破断した。
H形構造物No.7は、第2溶接金属の強度不足による補強不足のため、第2溶接金属の下から二段目で破断した。
H形構造物No.9,10は、第2溶接金属の体積不足のため、止端で破断した。
H形構造物No.12は、打撃処理する領域Lの不足のため、第2溶接金属の下から三段目で破断した。
H形構造物No.13は、打撃痕の曲率半径Rが小さく応力集中のため、止端で破断した。
H形構造物No.18は、打撃痕の深さDが大きく応力集中のため、止端で破断した。
H形構造物No.19は、主板の強度不足による止端の塑性化のため、止端で破断した。
H形構造物No.20は、打撃処理がなされなかったので、止端で破断した。
以上により、本発明の効果が確認された。
As shown in Table 1, an H-shaped structure No. 1 that satisfies all the conditions of the present invention. In Nos. 3-6, 8, 11, 14-17, the number of repetitions until breakage was 3 million times or more, and sufficient fatigue strength was observed.
On the other hand, the H-shaped structure No. Nos. 1 and 2 were affected by the structural stress concentration of the joint welded joint between the main plate and the surrounding steel material, and fractured at the toe of joint welding.
H-shaped structure No. No. 7 was broken at the second stage from the bottom of the second weld metal due to insufficient reinforcement due to insufficient strength of the second weld metal.
H-shaped structure No. Nos. 9 and 10 were broken at the toe because of the insufficient volume of the second weld metal.
H-shaped structure No. No. 12 was broken at the third stage from the bottom of the second weld metal due to the lack of the region L to be hit.
H-shaped structure No. In No. 13, the radius of curvature R of the hitting mark was small and the stress was concentrated, so it broke at the toe.
H-shaped structure No. No. 18 was broken at the toe because the depth D of the hitting mark was large and the stress was concentrated.
H-shaped structure No. No. 19 broke at the toe because of the plasticity of the toe due to insufficient strength of the main plate.
H-shaped structure No. Since No. 20 was not hit, it broke at the toe.
From the above, the effect of the present invention was confirmed.

図9は、円柱構造物に対して行った、本発明の実施例2における荷重載荷の方法を説明する図である。
X46の厚み22mmの鋼材を主管(周囲の鋼材4)として用い、X70の鋼管を高強度部材(主板1)として用い、溶接材料は鋼管強度に合わせて選定し、FCAW溶接により円筒柱構造物モデル試験体を作製した。
なお、ベースプレート(副板2)への取り付けについては完全溶け込み溶接にて行い、止端はグラインダ処理と下記の超音波衝撃処理を併用して疲労強度を高めた。
<超音波衝撃処理条件>
打撃ピンの先端部の曲率半径:0.9〜2.0mm
振動周波数:27kHz
出力:約1000kW
FIG. 9 is a diagram for explaining a load loading method in the second embodiment of the present invention performed on a cylindrical structure.
The steel material of X46 22mm in thickness is used as the main pipe (surrounding steel material 4), the steel pipe of X70 is used as the high-strength member (main plate 1), the welding material is selected according to the steel pipe strength, and the cylindrical column structure model is obtained by FCAW welding. A test specimen was prepared.
The base plate (sub-plate 2) was attached by full penetration welding, and the toe was combined with a grinder process and the following ultrasonic impact process to increase the fatigue strength.
<Ultrasonic impact treatment conditions>
The radius of curvature of the tip of the hitting pin: 0.9 to 2.0 mm
Vibration frequency: 27 kHz
Output: about 1000kW

疲労試験は円筒柱構造物モデル基部の予め、材料力学的な応力振幅が鋼材X46の降伏応力を超す370MPaでの両振りを5回行い、中心軸が元の位置に戻るように調整した後、疲労試験を行った。この時、円筒柱構造物モデル基部の材料力学的な応力範囲が1300MPaとなるように設定して、両振りの試験を行った。この試験結果を表2に示す。   In the fatigue test, after adjusting the cylindrical column structure model base in advance so that the material dynamic stress amplitude is 370MPa, which exceeds the yield stress of the steel material X46, the center axis returns to the original position. A fatigue test was performed. At this time, the swing test was performed by setting the material mechanical stress range of the cylindrical column structure model base to 1300 MPa. The test results are shown in Table 2.

Figure 0006314670
Figure 0006314670

表2に示すように、本発明の条件を全て満足するH形構造物No.3〜5、8、11、14〜17は、破断までの繰り返し数が300万回以上であり、十分な疲労強度が認められた。
一方、H形構造物No.1、2は、主板と周囲の鋼材との繋ぎ溶接継手部の構造的応力集中の影響が発生して破断した。
円柱構造物No.7は、第2溶接金属の強度不足のため、第2溶接金属の下から二段目で破断した。
円柱構造物No.9,10は、第2溶接金属の体積不足のため、止端で破断した。
円柱構造物No.12は、打撃する領域Lの不足のため、第2溶接金属の下から三段目で破断した。
破断した。
円柱構造物No.13は、打撃痕の曲率半径Rが小さく応力集中のため、止端で破断した。
円柱構造物No.18は、打撃痕の深さDが大きく応力集中のため、止端で破断した。
円柱構造物No.19は、主板強度不足による止端の塑性化のため、止端で破断した。
円柱構造物No.20は、打撃処理がなされなかったので、止端で破断した。
以上により、本発明の効果が確認された。
As shown in Table 2, an H-shaped structure No. 1 that satisfies all the conditions of the present invention. In 3-5, 8, 11, 14-17, the number of repetitions until breakage was 3 million times or more, and sufficient fatigue strength was recognized.
On the other hand, the H-shaped structure No. Nos. 1 and 2 were fractured due to the effect of structural stress concentration in the welded joint between the main plate and the surrounding steel.
Cylindrical structure No. No. 7 broke at the second stage from the bottom of the second weld metal due to insufficient strength of the second weld metal.
Cylindrical structure No. Nos. 9 and 10 were broken at the toe because of the insufficient volume of the second weld metal.
Cylindrical structure No. No. 12 was broken at the third stage from the bottom of the second weld metal due to the lack of the hitting region L.
It broke.
Cylindrical structure No. In No. 13, the radius of curvature R of the hitting trace was small and the stress concentrated, so it broke at the toe.
Cylindrical structure No. No. 18 was broken at the toe because the depth D of the hitting mark was large and the stress was concentrated.
Cylindrical structure No. No. 19 broke at the toe because of the plasticity of the toe due to insufficient strength of the main plate.
Cylindrical structure No. Since No. 20 was not hit, it broke at the toe.
From the above, the effect of the present invention was confirmed.

1 主板
2 副板
3 溶接継手
31 第1溶接金属
32 第2溶接金属
4 周囲の鋼材
5 繋ぎ溶接部
6、7 打撃処理部
8 止端
9 段差部
10 打撃痕
θ 止端角度
t 主板板厚
R 曲率半径
D 深さ
DESCRIPTION OF SYMBOLS 1 Main plate 2 Sub plate 3 Welded joint 31 1st weld metal 32 2nd weld metal 4 Surrounding steel material 5 Joint welding part 6 and 7 Impact treatment part 8 Toe 9 Step part 10 Impact mark θ Toe angle t Main board plate thickness R Radius of curvature D depth

Claims (2)

主板と副板との溶接継手を有し、上記主板と連結される周囲の鋼材を含む構造物であって、上記溶接継手を形成する溶接金属の降伏強度が上記周囲の鋼材の1.2倍以上であり、上記溶接継手の止端から溶接金属と逆側に主板板厚tの3倍以上の領域Wにおける主板の降伏強度が上記周囲の鋼材の1.5倍以上であり、上記溶接継手の止端から溶接金属側に主板板厚tの1/3以上の領域Lにおける止端角度θが20度以下であり、上記領域Lにおける溶接の段差部に、曲率半径Rが主板板厚tの1/20以上、深さDが1mm以下の打撃痕が形成されていることを特徴とする疲労特性に優れた構造物。 Has a welded joint between the main plate and the sub plate, a structure comprising a steel around which are connected with the main plate, 1.2 times the steel yield strength above the surrounding weld metal forming the welded joint above, and the yield strength of the main plate at least three times the area W of the main plate thickness t in the weld metal and the opposite side from the toe of the welded joint is at least 1.5 times the steel surrounding the said welded joint The toe angle θ in the region L of 1/3 or more of the main plate thickness t from the toe to the weld metal side is 20 degrees or less, and the curvature radius R is the main plate thickness t in the stepped portion of the welding in the region L. A structure excellent in fatigue characteristics, characterized in that a striking mark having a depth of 1/20 or more and a depth D of 1 mm or less is formed. 上記構造物は、繰り返し荷重を受ける構造物であることを特徴とする請求項1に記載の疲労特性に優れた構造物。 The above structure, excellent structure fatigue properties according to claim 1, characterized in that the structures under Ri return load Repetitive.
JP2014116816A 2014-06-05 2014-06-05 Structure with excellent fatigue characteristics Active JP6314670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116816A JP6314670B2 (en) 2014-06-05 2014-06-05 Structure with excellent fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116816A JP6314670B2 (en) 2014-06-05 2014-06-05 Structure with excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2015229183A JP2015229183A (en) 2015-12-21
JP6314670B2 true JP6314670B2 (en) 2018-04-25

Family

ID=54886267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116816A Active JP6314670B2 (en) 2014-06-05 2014-06-05 Structure with excellent fatigue characteristics

Country Status (1)

Country Link
JP (1) JP6314670B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841042B2 (en) * 2017-01-06 2021-03-10 日本製鉄株式会社 Welded joint manufacturing method and welded joint
JP7339511B2 (en) * 2019-08-09 2023-09-06 日本製鉄株式会社 Welded joint and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247239B2 (en) * 1994-01-20 2002-01-15 新日本製鐵株式会社 Prevention method of bend defect at toe of Uranami weld bead root with asymmetric throat thickness
JP4303159B2 (en) * 2004-05-11 2009-07-29 バブコック日立株式会社 Stainless steel pipe welding method and joint structure
JP5364981B2 (en) * 2007-05-25 2013-12-11 新日鐵住金株式会社 Ships with excellent fatigue durability and methods for improving ship fatigue durability
JP5657873B2 (en) * 2009-09-14 2015-01-21 新日鐵住金株式会社 Welded structure with excellent fracture prevention characteristics after brittle crack arrest
JP2013071140A (en) * 2011-09-27 2013-04-22 Nippon Steel & Sumitomo Metal Corp Welded joint excellent in fatigue resistance and method for manufacturing the same
JP5831286B2 (en) * 2012-02-22 2015-12-09 新日鐵住金株式会社 Ultrasonic impact treatment pin for weld toe and ultrasonic impact treatment method for weld toe

Also Published As

Publication number Publication date
JP2015229183A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP4189201B2 (en) Method for improving toughness of heat-affected zone in steel welded joints
JP4719297B2 (en) Welded joint with excellent fatigue resistance and method for producing the same
TWI396600B (en) Out-of-plane gusset weld joints and manufacturing method therefor
JP2006320960A (en) Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
JP2013099764A (en) Welding method and weld joint
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
JP6314670B2 (en) Structure with excellent fatigue characteristics
JP2013087432A (en) Steel plate floor for bridge, and method of manufacturing steel plate floor for bridge
JP4757697B2 (en) Method for improving fatigue performance of fillet welds
KR100606312B1 (en) Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure
JP6756241B2 (en) Ultrasonic impact treatment method
JP5364981B2 (en) Ships with excellent fatigue durability and methods for improving ship fatigue durability
JP2004130313A (en) Method for increasing fatigue strength of lap fillet weld joint
Kudryavtsev et al. Fatigue life improvement of tubular welded joints by ultrasonic peening
JP2009034696A (en) Butt welded joint excellent in fatigue characteristics, and its manufacturing method
JP5919986B2 (en) Hammer peening treatment method and welded joint manufacturing method using the same
JP5910258B2 (en) Structure with excellent fatigue characteristics
JP5440628B2 (en) Long rail manufacturing method
JP2003001477A (en) Steel column base part and reinforcing method therefor
JP2008000802A (en) Method for improving fatigue strength of lap welded metal joint
JP2006142367A (en) Structure and method for enhancing fatigue performance of weld joint
JP5433928B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP3872742B2 (en) UOE steel pipe manufacturing method with excellent formability
JP3843059B2 (en) Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics
JP2023162132A (en) Method for suppressing fatigue crack initiation of weld zone and method for manufacturing weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6314670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350