JP5433928B2 - Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics - Google Patents

Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics Download PDF

Info

Publication number
JP5433928B2
JP5433928B2 JP2007075212A JP2007075212A JP5433928B2 JP 5433928 B2 JP5433928 B2 JP 5433928B2 JP 2007075212 A JP2007075212 A JP 2007075212A JP 2007075212 A JP2007075212 A JP 2007075212A JP 5433928 B2 JP5433928 B2 JP 5433928B2
Authority
JP
Japan
Prior art keywords
layer
weld
welded
butt
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007075212A
Other languages
Japanese (ja)
Other versions
JP2008229692A (en
Inventor
忠 石川
裕治 橋場
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007075212A priority Critical patent/JP5433928B2/en
Publication of JP2008229692A publication Critical patent/JP2008229692A/en
Application granted granted Critical
Publication of JP5433928B2 publication Critical patent/JP5433928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、溶接継手に発生した脆性き裂の伝播を抑制するか又は止める特性、即ち、耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手と、該溶接継手を有する溶接構造体に関する。   The present invention relates to a multi-layer butt-welded joint that is excellent in suppressing or stopping the propagation of a brittle crack generated in a welded joint, that is, an excellent brittle crack propagation characteristic, and a welded structure having the welded joint.

鋼板を溶接して溶接構造体を建造する場合、建造コストの低減や、溶接施工能率の向上のため、通常、大入熱溶接方法を用いるが、大入熱溶接方法で形成した溶接継手においては、溶接熱影響部(以下「HAZ部」ということがある)の靭性が低下するし、また、HAZ部の幅が増大して、破壊靭性値Kc(脆性破壊に係る指標)も低下する。   When building a welded structure by welding steel plates, a large heat input welding method is usually used to reduce the construction cost and improve the welding efficiency, but in a welded joint formed by the large heat input welding method, In addition, the toughness of the weld heat affected zone (hereinafter sometimes referred to as “HAZ zone”) decreases, the width of the HAZ zone increases, and the fracture toughness value Kc (an index related to brittle fracture) also decreases.

溶接継手の破壊は、溶接時に形成された欠陥に応力が集中して、該欠陥を起点にき裂が発生し、このき裂が、継手内部を伝播して起きる。溶接継手の破壊靭性値Kcが低いと、き裂が発生し易く、かつ、き裂の伝播は速いので、突発的に、溶接継手の破壊が起きることになる。即ち、溶接継手が脆性破壊する。   Fracture of a welded joint occurs when stress concentrates on a defect formed at the time of welding and a crack is generated starting from the defect, and this crack propagates inside the joint. If the fracture toughness value Kc of the welded joint is low, cracks are likely to occur and the propagation of the cracks is fast, so that the welded joints are suddenly broken. That is, the welded joint breaks brittlely.

溶接継手の脆性破壊を防止するためには、(i)き裂の発生を抑制する、及び、(ii)発生したき裂の伝播を抑制するか又は止めることが必要である。そこで、本出願人は、上記(i)の観点に立ち、破壊靭性値Kcを充分に高める手法を見出し、耐脆性破壊発生特性に優れた大入熱突合せ溶接継手を提案し(特許文献1及び2、参照)、また、破壊靭性値Kcに基いて、大入熱突合せ溶接継手の耐脆性破壊発生特性を適確に検証する検証方法を提案した(特許文献2、参照)。   In order to prevent brittle fracture of a welded joint, it is necessary to (i) suppress the generation of cracks and (ii) suppress or stop the propagation of the generated cracks. In view of the above (i), the present applicant has found a technique for sufficiently increasing the fracture toughness value Kc, and has proposed a high heat input butt weld joint having excellent brittle fracture resistance (Patent Document 1 and 2), and a verification method for accurately verifying the brittle fracture resistance of the high heat input butt weld joint based on the fracture toughness value Kc was proposed (see Patent Document 2).

本出願人が提案した上記溶接継手は、脆性破壊が発生し難く、溶接構造物の安全性を高めることができる点で、有用なものであり、また、上記検証方法は、脆性破壊が発生し難い溶接継手を設計する上で、有用なものである。
しかし、通常の応力負荷環境でき裂が発生しないように設計した溶接継手においても、突発的又は衝撃的な応力や、不規則で複雑な応力を受けて、き裂が発生することがある。
The weld joint proposed by the present applicant is useful in that brittle fracture is unlikely to occur and the safety of the welded structure can be improved. In addition, the verification method described above causes brittle fracture. This is useful in designing difficult welded joints.
However, even in a welded joint designed so as not to generate a crack in a normal stress load environment, a crack may occur due to sudden or impact stress or irregular and complicated stress.

従来、板厚が25mm程度のTMCP鋼板の突合せ溶接継手において、脆性き裂は、溶接継手内部の残留応力の作用により、母材側に逸れていくので、母材の耐脆性き裂伝播特性を高めれば、溶接継手内部で発生した脆性き裂を母材に誘導して停止させることができると考えられていた。
しかしながら、近年、溶接構造物の大型化や、構造の簡素化に伴い、設計応力を高く設定することができることから使用され始めた高張力厚鋼板の場合、突合せ溶接継手で発生した脆性き裂は、溶接継手の破壊抵抗値の程度によっては、母材側に逸れず、HAZ部に沿って伝播することが、本発明者の破壊試験の結果、判明した(非特許文献1、参照)。
Conventionally, in butt welded joints of TMCP steel sheets with a plate thickness of about 25 mm, brittle cracks are deflected to the base metal due to the action of residual stress inside the welded joints, so the brittle crack propagation characteristics of the base metal are reduced. If increased, it was thought that a brittle crack generated inside the welded joint could be guided to the base metal and stopped.
However, the brittle cracks generated in butt welded joints in the case of high-strength thick steel plates that have started to be used because the design stress can be set high with the increase in the size and simplification of the welded structure in recent years. As a result of the inventor's destructive test, it was found that the weld joint does not deviate to the base metal side and propagates along the HAZ portion depending on the degree of the fracture resistance value of the welded joint (see Non-Patent Document 1).

また、本発明者は、板厚が、例えば、70mm以上の鋼板の場合、溶接継手には、板厚方向に大きな靭性分布が形成され、脆性き裂が、例え、溶接継手に交差して補強板を隅肉溶接していても、該補強板で捕捉されず、溶接金属部又はHAZ部に沿って伝播し、溶接継手が破壊に至ることが判明した。   Further, the present inventor has found that when a plate thickness is, for example, a steel plate of 70 mm or more, a large toughness distribution is formed in the welded joint, and a brittle crack crosses the welded joint to reinforce it. Even if the plate was welded with fillet, it was not captured by the reinforcing plate, but propagated along the weld metal part or the HAZ part, and the weld joint was found to be broken.

そこで、本発明者は、上記判明事実を踏まえ、垂直部材の突合せ溶接継手と水平部材の隅肉溶接継手が交差する領域の一部又は全部を除去し、補修溶接により圧縮残留応力を有するNi含有量が2.5質量%以上の靭性に優れた溶接金属(特許文献3、参照)、または、アレスト性能(KCa値)が2000N/mm1.5以上の破壊靭性の優れた溶接金属(特許文献4、参照)を形成し、脆性き裂が垂直部材の突合せ溶接部の長手方向に沿って伝播した場合でも、このき裂伝播方向を高靭性または高アレスト性能の溶接金属周囲に逸らし、水平部材の母材部で停止させる脆性き裂伝播停止能に優れた溶接継手および溶接方法を提案した。 Therefore, the present inventor, based on the above-mentioned facts, removes part or all of the region where the butt weld joint of the vertical member and the fillet weld joint of the horizontal member intersect, and contains Ni having compressive residual stress by repair welding A weld metal having a toughness of 2.5% by mass or more (see Patent Document 3) or a weld metal having a fracture toughness having an arrest performance (K Ca value) of 2000 N / mm 1.5 or more (Patent Document 4) Even if the brittle crack propagates along the longitudinal direction of the butt weld of the vertical member, the crack propagation direction is diverted around the weld metal with high toughness or arrest performance, and the horizontal member We proposed a welded joint and welding method with excellent brittle crack propagation stopping ability to stop at the base metal part.

これらの方法は主に1パス大入熱突合せ溶接継手においてFL(溶接金属と母材熱影響部との境界)に沿って伝播するき裂をアレスト性能が高い鋼板側に逸らして母材内で停止させることにより突合せ溶接継手の安全性を向上するものである。   These methods mainly displace cracks propagating along FL (the boundary between the weld metal and the base metal heat-affected zone) in the one-pass large heat input butt welded joint to the steel plate side where the arrest performance is high. By stopping, the safety of the butt weld joint is improved.

しかし、本発明者らは、多層盛突合せ溶接継手の大型破壊試験の結果から、多層盛突合せ溶接継手では、き裂が溶接金属内部で伝播するため、従来の1パス大入熱突合せ溶接継手で有効であった方法を適用しても多層盛突合せ溶接継手では十分な効果が得られない場合のあることを知見した。
このため、板厚50mm以上の鋼板の多層盛突合せ溶接継手において発生した脆性き裂を確実に停止し、突合せ溶接継手の大規模損傷を回避する技術が必要となる。
However, from the results of large-scale butt-welded joints, the inventors have found that in multi-layer butt-welded joints, cracks propagate inside the weld metal, so conventional one-pass large heat input butt-welded joints are used. It has been found that even if an effective method is applied, a sufficient effect may not be obtained with a multilayer butt-welded joint.
Therefore, there is a need for a technique for reliably stopping a brittle crack generated in a multi-layer butt welded joint of steel plates having a thickness of 50 mm or more and avoiding large-scale damage of the butt welded joint.

特開2005−144552号公報JP 2005-144552 A 特開2006−088184号公報JP 2006-088184 A 特開2005−111520号公報JP 2005-111520 A 特開2006−075874号公報JP 2006-078874 A 特開2004−130315号公報JP 2004-130315 A 米国特許第6467321号明細書US Pat. No. 6,467,321 溶接構造シンポジウム講演概要集2006、p.195〜202Welded Structure Symposium Abstracts 2006, p. 195-202

本発明は、鋼板を多パスで突合せ溶接する際、溶接継手に、万一、脆性き裂が発生しても、脆性き裂が溶接継手の長手方向に伝播し難く、かつ、伝播してもいずれ停止する特性、即ち、耐脆性き裂伝播特性に優れた溶接継手を形成することを課題とする。
そして、本発明は、上記課題を解決し、耐脆性き裂伝播特性に優れた溶接継手、及び、該溶接継手を有する溶接構造体を提供することを目的とする。
In the present invention, when a steel plate is butt welded in multiple passes, even if a brittle crack occurs in the welded joint, the brittle crack hardly propagates in the longitudinal direction of the welded joint, and even if it propagates. It is an object of the present invention to form a welded joint excellent in the characteristics to stop, that is, the brittle crack propagation resistance.
And this invention solves the said subject, and aims at providing the welded structure which has the welded joint which was excellent in the brittle crack propagation characteristic, and this welded joint.

本発明者は、上記判明事実を踏まえ、上記課題を解決する手法について鋭意研究した。その結果、多層盛溶接継手の表面溶接層と裏面溶接層の間に、他の溶接金属部より高靭性を有する層を形成し、その層によって溶接継手の板厚方向における靭性分布を分断しておけば、上記高靭性を有する層が破壊抵抗層として機能し、万一脆性き裂が発生しても、溶接継手の長手方向へのき裂の伝播を抑制するか、又は、止めることができることを見いだした。
本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
The present inventor has intensively studied a method for solving the above problems based on the above-mentioned facts. As a result, a layer having higher toughness than other weld metal parts is formed between the surface weld layer and the back surface weld layer of the multi-layer welded joint, and the toughness distribution in the plate thickness direction of the weld joint is divided by the layer. If this is the case, the layer having the high toughness functions as a fracture resistance layer, and even if a brittle crack occurs, the propagation of the crack in the longitudinal direction of the welded joint can be suppressed or stopped. I found.
This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)厚みが50mm以上の鋼板の突合せV開先を多パスで溶接して溶接層が連続的に形成された多層盛突合せ溶接継手において、表面溶接層と裏面溶接層間の中間溶接層に、超音波打撃処理により圧縮残留応力が付与された破壊挙動改質層が形成されており、該改質層は、前記溶接継手の長手方向において断続して形成され、断続した改質層の長手方向長さが200mm以上で、断続間隔が400mm以下であり、前記改質層は脆性き裂の伝播を抑制又は止める破壊抵抗層として機能することを特徴とする耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。
(2)前記改質層が、溶接継手の厚み方向に複数間隔を置いて形成されていることを特徴とする上記(1)に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。
(3)さらに、前記表面溶接層と裏面溶接層のいずれか一方または両方にも、超音波打撃処理により圧縮残留応力が付与された破壊挙動改質層が形成されていることを特徴とする上記(1)または(2)に記載の多層盛突合せ溶接継手。
(4)前記鋼板の多層盛突合せ溶接継手部を有する溶接構造体であって、前記溶接継手部の少なくとも脆性き裂が発生し、伝播する可能性のある溶接継手部を、上記(1)〜(3)のいずれかに記載の多層盛突合せ溶接継手としたことを特徴とする溶接構造体。
(1) In a multi-layer butt-welded joint in which welded layers are continuously formed by welding butt V-grooves of steel sheets having a thickness of 50 mm or more in multiple passes, an intermediate weld layer between the surface weld layer and the back surface weld layer, fracture modified layer compressive residual stress by ultrasonic striking treatment has been applied are the forms, reforming layer is formed intermittently in the longitudinal direction of the welded joint, the longitudinal direction of the intermittent reforming layer A multilayer having excellent brittle crack propagation characteristics, characterized in that the length is 200 mm or more, the intermittent interval is 400 mm or less, and the modified layer functions as a fracture resistance layer that suppresses or stops the propagation of brittle cracks. Butt weld joint.
(2) The multilayer butt-welded joint having excellent brittle crack propagation characteristics as described in (1) above, wherein the modified layer is formed at a plurality of intervals in the thickness direction of the welded joint. .
(3) Furthermore, a fracture behavior modified layer to which a compressive residual stress is applied by an ultrasonic impact treatment is formed on either one or both of the front surface weld layer and the back surface weld layer. The multilayer butt-welded joint according to (1) or (2).
(4) A welded structure having a multi-layer butt-welded joint portion of the steel sheet, wherein at least a brittle crack is generated in the weld joint portion, and the weld joint portion that is likely to propagate is the above (1) to (3) A welded structure having the multilayer butt-welded joint according to any one of (3).

本発明によれば、鋼板の多パス突合せ溶接において、耐脆性き裂伝播特性に優れた溶接継手を形成することができ、その結果、鋼板を用いて、耐脆性き裂伝播特性に優れた溶接構造体を建造することができる。   According to the present invention, in multi-pass butt welding of steel sheets, it is possible to form a welded joint having excellent brittle crack propagation characteristics, and as a result, using the steel sheet, welding having excellent brittle crack propagation characteristics. A structure can be built.

以下、本発明の実施の形態について、図面に基づいて説明する。
図1に、鋼板1の突合せV開先を多パスで溶接して形成した本発明の多層盛突合せ溶接継手の一態様を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of the multi-layer butt weld joint of the present invention formed by welding the butt V groove of the steel plate 1 by multiple passes.

図1に示した態様においては、各溶接層を、裏面溶接層2bを除いて複数のパスで形成し、多層盛溶接によりそのような溶接層を多層に順次積み上げたものである。
その際、表面溶接層2aと裏面溶接層2bの間の溶接層の中に、超音波打撃処理を施すことにより溶接層2a、2b及び中間の溶接層2cとは異なる脆性き裂伝播挙動を示す改質層3xを形成する。
In the embodiment shown in FIG. 1, each weld layer is formed by a plurality of passes except for the back surface weld layer 2b, and such weld layers are sequentially stacked in multiple layers by multi-layer welding.
At that time, the brittle crack propagation behavior different from that of the weld layers 2a, 2b and the intermediate weld layer 2c is exhibited by performing ultrasonic striking treatment in the weld layer between the front weld layer 2a and the back weld layer 2b. The modified layer 3x is formed.

超音波打撃処理を施すことにより圧縮残留応力が付与された改質層3xは、その他の引張残留応力状態にある溶接層2a、2b及び2cとは見かけ上異なるき裂伝播挙動を示し、高靭性を有する溶接層が形成されている場合と同様な効果を有する。なお、本発明では、この超音波打撃処理により溶接層に形成された改質層を、その他の溶接層の部分と区別するために「破壊挙動改質層」と定義する。   The modified layer 3x to which the compressive residual stress is applied by performing the ultrasonic striking treatment exhibits a crack propagation behavior apparently different from the weld layers 2a, 2b, and 2c in the other tensile residual stress states, and has high toughness. It has the same effect as the case where the weld layer which has this is formed. In the present invention, the modified layer formed on the weld layer by this ultrasonic striking treatment is defined as a “destructive behavior modified layer” in order to distinguish it from other weld layer portions.

超音波打撃処理は、特許文献5に示されているように、例えば、直径が2〜8mm程度の超音波振動端子を、振動数5〜60kHz、出力500W〜10kWの条件で機械的に振動させ、この超音波振動端子の前面で被処理部に打撃を加えることにより、被処理部の物理的性状を改質する処理で、例えば特許文献6に示すような装置によって実施される。   As shown in Patent Document 5, for example, the ultrasonic hitting process mechanically vibrates an ultrasonic vibration terminal having a diameter of about 2 to 8 mm under conditions of a frequency of 5 to 60 kHz and an output of 500 W to 10 kW. A process for modifying the physical properties of the treated part by striking the treated part at the front surface of the ultrasonic vibration terminal is performed by an apparatus as shown in Patent Document 6, for example.

このような超音波打撃処理を多層盛溶接の途中で、図2に示すように溶接ビード部に実施する。超音波振動端子4による打撃を受けた溶接ビードの表層には、図3に示すように板厚方向での深さが数ミリにおよぶ圧縮残留応力を付与することができる。この圧縮残留応力が付与された部分3x’は、次の上層の溶接の際、表面は再溶融して消滅するが、その下部は図1に示すように圧縮残留応力が付与された改質層3xとして残る。   Such ultrasonic striking treatment is performed on the weld bead as shown in FIG. A compressive residual stress having a depth of several millimeters in the plate thickness direction can be applied to the surface layer of the weld bead hit by the ultrasonic vibration terminal 4 as shown in FIG. In the portion 3x ′ to which the compressive residual stress is applied, the surface is remelted and disappears at the time of the next upper layer welding, but the lower portion is a modified layer to which the compressive residual stress is applied as shown in FIG. Remains as 3x.

一般に溶接により形成された溶接層は凝固後に冷却により熱収縮するが、この収縮が周囲から拘束される結果、溶接層に引張残留応力が導入される。溶接層の引張残留応力が導入された領域では、脆性き裂が発生しやすく、また脆性き裂の伝播成長も助長されやすい。これに対して、溶接層に超音波打撃処理が施された改質層3xでは表層から数ミリ程度の深さ範囲に圧縮残留応力が付与されるため、脆性破壊に対する大きな抵抗を有し、脆性き裂は発生しにくく、また脆性き裂が伝播しにくい特性を有する。このため、改質層3xではその他の溶接層よりも脆性き裂の伝播が遅れることになり、き裂の伝播を抑制するように作用する。   In general, a weld layer formed by welding is thermally contracted by cooling after solidification, and as a result of restraining this contraction from the surroundings, tensile residual stress is introduced into the weld layer. In the region where the tensile residual stress of the weld layer is introduced, a brittle crack is likely to occur, and the propagation growth of the brittle crack is also facilitated. On the other hand, in the modified layer 3x in which the ultrasonic wave is applied to the weld layer, a compressive residual stress is applied to a depth range of several millimeters from the surface layer, and thus has a large resistance to brittle fracture and is brittle. Cracks are unlikely to occur and brittle cracks are difficult to propagate. For this reason, in the modified layer 3x, the propagation of the brittle crack is delayed as compared with the other weld layers, and acts to suppress the propagation of the crack.

図7に示すように、溶接継手の溶接線の長手方向に脆性き裂が伝播成長する状況では、溶接継手に引張応力が作用するが、圧縮残留応力が付与された改質層3xの領域ではその主応力方向が通常の板厚に垂直な方向から傾いた方向となるため、その他の溶接層よりも傾いた破面を呈することとなる。
このため、万一溶接継手内部に脆性き裂が発生しても、次に説明するように、破壊挙動改質層3xによって、溶接継手長手方向のき裂の伝播を抑制するか又は止めることができる。
As shown in FIG. 7, in the situation where a brittle crack propagates and grows in the longitudinal direction of the weld line of the weld joint, tensile stress acts on the weld joint, but in the region of the modified layer 3x to which compressive residual stress is applied. Since the principal stress direction is inclined from a direction perpendicular to the normal plate thickness, a fracture surface inclined more than other weld layers is exhibited.
For this reason, even if a brittle crack occurs in the welded joint, the fracture behavior improved layer 3x can suppress or stop the propagation of the crack in the longitudinal direction of the welded joint, as will be described below. it can.

溶接継手を構成する多層盛溶接層の中に、破壊挙動改質層3xを配置することにより、溶接継手の板厚方向における靭性分布は、破壊挙動改質層3xのところで、急峻に変化するから、上下に分断された形となる。即ち、図1に示す溶接継手においては、破壊挙動改質層3xを挟み、上下に、相対的に低靭性の溶接層2cが存在する。   By disposing the fracture behavior modified layer 3x in the multi-layered weld layer constituting the weld joint, the toughness distribution in the plate thickness direction of the weld joint changes sharply at the fracture behavior modified layer 3x. The shape is divided up and down. That is, in the welded joint shown in FIG. 1, there are relatively low toughness weld layers 2c above and below the fracture behavior modified layer 3x.

溶接継手に、例えば、衝撃的な応力が作用すると、破壊挙動改質層3xは、脆性破壊し難いから、脆性き裂は、図6に示すように、板厚表面側の脆性き裂Xと板厚裏面側の脆性き裂Yに分岐して生成して、それぞれの側で、溶接層2c中を伝播する。
図6のように、脆性き裂Xは、その両端が継手表面と破壊挙動改質層3xに達しているが、脆性き裂Yは、まだ、溶接層2c中に存在しているような場合、2本の脆性き裂X、Yは、ともに、板厚方向に幅の狭いき裂のまま溶接継手の長手方向に伝播して行く。その結果、き裂先端の応力拡大係数が低下して、き裂を伝播させるドライビングフォースが小さくなるので、き裂の伝播が止まり易くなる。
For example, when impact stress is applied to the welded joint, the fracture behavior modified layer 3x is not easily brittle fractured. Therefore, the brittle crack is, as shown in FIG. It is generated by branching into a brittle crack Y on the back side of the plate thickness, and propagates through the weld layer 2c on each side.
As shown in FIG. 6, the brittle crack X has both ends reaching the joint surface and the fracture behavior modified layer 3x, but the brittle crack Y is still present in the weld layer 2c. Both the two brittle cracks X and Y propagate in the longitudinal direction of the welded joint while maintaining a narrow crack in the plate thickness direction. As a result, the stress intensity factor at the crack tip is reduced and the driving force for propagating the crack is reduced, so that the crack propagation is likely to stop.

脆性き裂Yが、徐々に、板厚方向に伝播し、図7に示すように、溶接層2cの脆性破壊領域を伝播し破壊挙動改質層3xに達すると、破壊挙動改質層3xにおける脆性き裂X、Y間の延性破壊領域Zで、塑性変形が生じ、延性破壊しながら、脆性き裂X、Yの伝播エネルギーを吸収する。
その結果、脆性き裂X、Yは、図8に示すように、板厚表面側及び板厚裏面側において、それぞれ、ある程度伝播したところで、停止することになる。
When the brittle crack Y gradually propagates in the plate thickness direction and propagates through the brittle fracture region of the weld layer 2c and reaches the fracture behavior modified layer 3x as shown in FIG. 7, in the fracture behavior modified layer 3x, Plastic deformation occurs in the ductile fracture region Z between the brittle cracks X and Y, and the propagation energy of the brittle cracks X and Y is absorbed while ductile fracture occurs.
As a result, as shown in FIG. 8, the brittle cracks X and Y are stopped when they are propagated to some extent on the plate thickness front side and the plate thickness rear surface side.

以上のような破壊挙動改質層3xは、図4に示すように、表面溶接層2aと裏面溶接層2bの間の複数の溶接層の中に、溶接層2a、2b及び2cの靭性より優れた靭性を備える破壊挙動改質層3xと3yを形成する。破壊挙動改質層3x、3yを形成する溶接層は、図4に示すように上下に連続する溶接層でもよいし、間に改質層を形成しない溶接層を挟んでその上下の溶接層でもよい。改質層を複数設けることにより、より脆性き裂の伝播を抑制する性能が高まる。 As shown in FIG. 4, the fracture behavior modified layer 3x as described above is superior to the toughness of the weld layers 2a, 2b and 2c among the plurality of weld layers between the front surface weld layer 2a and the back surface weld layer 2b. and that to form the fracture behavior modification layer 3x and 3y comprises a toughness. As shown in FIG. 4, the weld layers forming the fracture behavior modified layers 3x and 3y may be weld layers that are continuous in the vertical direction, or the weld layers that are above and below the weld layers that do not form the modified layer therebetween. Good. By providing a plurality of modified layers, the performance of suppressing the propagation of brittle cracks is enhanced.

さらに、溶接後、表面溶接層2aと裏面溶接層2bのいずれか一方の溶接層、または両方の溶接層にも超音波打撃処理を施し、それらの表層に圧縮残留応力が付与された破壊挙動改質層を形成してもよい。図5に、表面溶接層2aに破壊挙動改質層3zを形成した場合を示す。   Furthermore, after welding, either one of the surface weld layer 2a and the back surface weld layer 2b, or both weld layers are subjected to ultrasonic impact treatment, and the fracture behavior is improved by applying compressive residual stress to the surface layer. A quality layer may be formed. FIG. 5 shows a case where the fracture behavior modified layer 3z is formed on the surface weld layer 2a.

溶接継手の表面溶接層2aと裏面溶接層2bのいずれか一方の溶接層、または両方の溶接層に超音波打撃処理を施すと、圧縮残留応力を付与することによる前述した効果に加え、超音波打撃処理が施された表層及び/又は裏層の表層領域が超音波加工処理によって組織微細化がなされるため、より脆性破壊に対する抵抗が著しく向上する。そのため、脆性き裂を板厚内部に埋没させることができ、脆性き裂の伝播を抑制する性能が一層高まるとともに、超音波打撃処理による塑性流動により、溶接金属部表層の微小な溶接欠陥が消滅し、溶接止端部における形状不連続部や溶接欠陥が解消されるので、溶接継手からの疲労き裂の発生を遅らせることができるという効果も得られる。   In addition to the above-described effects due to the application of compressive residual stress when ultrasonic welding is applied to either one of the welded surface layer 2a and the welded surface layer 2b of the welded joint, or both welded layers, ultrasonic waves Since the surface layer region of the surface layer and / or the back layer subjected to the striking treatment is refined by ultrasonic processing, resistance to brittle fracture is significantly improved. Therefore, brittle cracks can be buried inside the plate thickness, and the ability to suppress the propagation of brittle cracks is further enhanced. And since the shape discontinuity part and welding defect in a weld toe part are eliminated, the effect that generation | occurrence | production of the fatigue crack from a welded joint can be delayed is also acquired.

なお、超音波打撃処理は、溶接ビードの温度が300℃以下の状態で行うことが好ましい。温度が300℃以上では、超音波振動端子による打撃時に、溶接金属の降伏応力が低くなっているため好ましくない。   In addition, it is preferable to perform an ultrasonic hit | damage process in the state whose temperature of a weld bead is 300 degrees C or less. A temperature of 300 ° C. or higher is not preferable because the yield stress of the weld metal is low when striking with an ultrasonic vibration terminal.

以上のような超音波打撃処理により形成された破壊挙動改質層は、溶接継手の長手方向に連続して存在することが望ましいが、断続的に存在していてもよい。溶接継手の長手方向において、200mm以上の長さの破壊挙動改質層が確保されていれば、破壊挙動改質層は、溶接継手内部に発生した脆性き裂を、板厚表面側及び板厚裏面側に分岐させ、き裂の溶接継手の長手方向への伝播を抑制するか又は止める機能を発揮する。
ただし、破壊挙動改質層を断続的に形成する場合、断続間隔が400mmを超えると、初期に生成したき裂が伝播して、最終的に形成される一本のき裂の長が400mm以上になる可能性がある。き裂の長さが400mm以上になると、き裂が有するエネルギーが過大となり、破壊挙動改質層が充分に機能せずに、破壊挙動改質層で脆性き裂を分岐させることが難しくなるので、断続間隔を400mm以下に限定する。
The fracture behavior modified layer formed by the ultrasonic hitting process as described above is desirably continuously present in the longitudinal direction of the welded joint, but may be present intermittently. If a fracture behavior modified layer having a length of 200 mm or more is ensured in the longitudinal direction of the welded joint, the fracture behavior modified layer can cause brittle cracks generated in the weld joint to Branches to the back surface side and exhibits the function of suppressing or stopping the propagation of cracks in the longitudinal direction of the welded joint.
However, in the case where the fracture behavior modified layer is intermittently formed, if the intermittent interval exceeds 400 mm, an initially generated crack propagates and the length of one finally formed crack is 400 mm or more. There is a possibility. When the crack length is 400 mm or more, the energy of the crack becomes excessive, and the fracture behavior modified layer does not function sufficiently, and it becomes difficult to branch a brittle crack in the fracture behavior modified layer. The intermittent interval is limited to 400 mm or less.

破壊挙動改質層が断続的に存在する場合の脆性き裂が停止する機構は、上記連続に存在する場合と同じである。即ち、破壊挙動改質層が存在しない継手部分に、脆性き裂が発生し、溶接継手の長さ方向に伝播しても、破壊挙動改質層に遭遇すると、板厚表面側及び板厚裏面側に分岐して、それぞれの側を伝播し、ある程度伝播したところで、停止することになる。   The mechanism by which the brittle crack stops when the fracture behavior modified layer is intermittently present is the same as that when the fracture behavior modified layer exists continuously. That is, even if a brittle crack occurs in the joint part where the fracture behavior modified layer does not exist and propagates in the length direction of the welded joint, if the fracture behavior modified layer is encountered, the plate thickness front side and plate thickness back side It branches to the side, propagates on each side, and stops when it propagates to some extent.

本発明で対象とする溶接継手は、鋼板を多層盛突合せ溶接したものである。本発明では、鋼板の多層盛突合せ溶接継手における複数の溶接層のうち、一層、または、複数の溶接層に超音波打撃処理を施すことにより破壊挙動改質層を形成することで、上述した溶接継手の長さ方向での脆性き裂の伝播停止特性を向上する効果が発揮される。この効果を充分に発揮させるためには、MIGまたはMAGの溶接方法による多層盛突合せ溶接では、3層以上の溶接層を確保するための鋼板の板厚として50mm以上が好ましい。また、TIG溶接法による多層盛突合せ溶接では、溶接層を数ミリ程度とすることが可能であるため、鋼板の板厚は10mm以上で十分な効果が発揮できる。   The welded joint that is the subject of the present invention is a multi-layer butt weld of steel plates. In the present invention, among the plurality of weld layers in the multi-layer butt-welded joint of steel sheets, one or a plurality of the weld layers are subjected to ultrasonic striking treatment to form the fracture behavior modified layer, whereby the above-described welding is performed. The effect of improving the propagation stopping characteristics of the brittle crack in the length direction of the joint is exhibited. In order to sufficiently exhibit this effect, in the multi-layer butt welding by the MIG or MAG welding method, the thickness of the steel plate for securing three or more weld layers is preferably 50 mm or more. Further, in multi-layer butt welding by the TIG welding method, since the weld layer can be about several millimeters, a sufficient effect can be obtained when the plate thickness of the steel plate is 10 mm or more.

の他、溶接継手を形成する際の、溶接姿勢、入熱量、パス数、多層盛溶接方法などについて、本発明は特に限定されるものではない。 As a further, in forming the welded joint, welding position, heat input, the number of paths, with such a multi-pass welding process, the present invention is not limited in particular.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この例に限定されるものではない。本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、本発明は種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions used to confirm the feasibility and effects of the present invention, and the present invention is limited to this example. It is not a thing. As long as the object of the present invention is achieved without departing from the gist of the present invention, the present invention can adopt various conditions.

表1に示す鋼板条件及び溶接パス条件で溶接継手を形成し、脆性き裂伝播試験で耐脆性き裂伝播特性を測定した。その結果を、表2に示す。なお、用いた鋼板鋼種の成分組成を表3に示す。   Welded joints were formed under the steel plate conditions and welding pass conditions shown in Table 1, and the brittle crack propagation characteristics were measured by a brittle crack propagation test. The results are shown in Table 2. In addition, Table 3 shows the component composition of the steel sheet steel used.

Figure 0005433928
Figure 0005433928

Figure 0005433928
Figure 0005433928

Figure 0005433928
Figure 0005433928

No.〜15の発明例において、脆性き裂は、伝播しても、その長さは短く、直ぐに停止していることが解る。
発明例のうち、No.10〜15は溶接継手の板厚内部に破壊挙動改質層をもうけた発明例であり、厚み方向において改質層の前後で脆性き裂の伝播経路が変わったため、分岐後の脆性きれつの数が3以上となり、溶接線の長手方向でのき裂の伝播は停止した。また、それ以外のNo.2、3、8は、溶接継手の表層部及び裏層部に連続的に複数の破壊挙動改質層を設けた発明例であり、表層部及び裏層部に延性破壊領域Zが形成され、厚み方向における脆性きれつの分岐はなく、き裂の数は1となり、溶接線の長手方向でのき裂の伝播は停止した。
一方、本発明の条件から外れた溶接継手であるNo.16〜25は、脆性き裂は、溶接線の長手方向での伝播を直ぐに停止することができなかった。
No. In the invention examples of 2 to 15, it can be seen that the brittle crack has a short length even if it propagates and stops immediately.
Of the inventive examples, No. Nos. 10 to 15 are examples of the invention in which a fracture behavior modified layer was provided inside the thickness of the welded joint, and the propagation path of the brittle crack changed before and after the modified layer in the thickness direction, so the number of brittle cracks after branching. Became 3 or more, and the propagation of cracks in the longitudinal direction of the weld line stopped. In addition, No. 2, 3, 8 are invention examples in which a plurality of fracture behavior modification layers are provided continuously on the surface layer portion and the back layer portion of the welded joint, and a ductile fracture region Z is formed on the surface layer portion and the back layer portion, There were no brittle crack branches in the thickness direction, the number of cracks was 1, and the propagation of cracks in the longitudinal direction of the weld line stopped.
On the other hand, Nos. 16 to 25, which are welded joints deviating from the conditions of the present invention, could not immediately stop the propagation of the brittle crack in the longitudinal direction of the weld line.

前述したように、本発明によれば、鋼板を用いて、耐脆性き裂伝播特性に優れた溶接継手を有する溶接構造体を建造することができる。したがって、本発明は、溶接構造物の建造分野において、利用可能性が大きいものである。   As described above, according to the present invention, a welded structure having a welded joint having excellent brittle crack propagation characteristics can be constructed using a steel plate. Therefore, the present invention has great applicability in the field of construction of welded structures.

本発明の多層盛突合せ溶接継手の一態様を示す図である。It is a figure which shows the one aspect | mode of the multilayer butt-welding joint of this invention. 多層盛突合せ溶接の途中で高靭性な改質層を形成する過程を説明する図である。It is a figure explaining the process in which a high toughness modified layer is formed in the middle of multilayer butt welding. 多層盛突合せ溶接の途中で高靭性な改質層が形成された状態を示す図である。It is a figure which shows the state in which the high toughness modified layer was formed in the middle of multilayer butt welding. 本発明の多層盛突合せ溶接継手の別の態様を示す図である。It is a figure which shows another aspect of the multilayer butt-welding joint of this invention. 本発明の多層盛突合せ溶接継手のさらに別の態様を示す図である。It is a figure which shows another aspect of the multilayer butt-welding joint of this invention. 本発明の溶接継手において、板厚表面側と板厚裏面側のそれぞれに、脆性き裂が生成した態様を示す図である。It is a figure which shows the aspect in which the brittle crack produced | generated in each of the plate | board thickness surface side and the plate | board thickness back surface side in the welded joint of this invention. 2本の脆性き裂間の領域で、塑性変形が生じ、延性破壊した態様を示す図である。It is a figure which shows the aspect which a plastic deformation produced and ductile fractured in the area | region between two brittle cracks. 板厚表面側及び板厚裏面側において、脆性き裂がある程度伝播し、停止する態様を示す図である。It is a figure which shows the aspect which a brittle crack propagates to some extent and stops on a plate | board thickness surface side and a plate | board thickness back surface side.

符号の説明Explanation of symbols

1 鋼板
2 溶接金属
2a 表面溶接層
2b 裏面溶接層
2c 多層盛溶接における中間の溶接層
3x’ 圧縮残留応力が付与された部分
3x、3y、3z 破壊挙動改質層
4 超音波振動端子
X、Y 脆性き裂
Z 延性破壊領域
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Weld metal 2a Surface weld layer 2b Back surface weld layer 2c Intermediate weld layer in multi-layer welding 3x 'Portions to which compressive residual stress is applied 3x, 3y, 3z Fracture behavior modified layer 4 Ultrasonic vibration terminal X, Y Brittle crack Z Ductile fracture region

Claims (4)

厚みが50mm以上の鋼板の突合せV開先を多パスで溶接して溶接層が連続的に形成された多層盛突合せ溶接継手において、
表面溶接層と裏面溶接層間の中間溶接層に、超音波打撃処理により圧縮残留応力が付与された破壊挙動改質層が形成されており、
該改質層は、前記溶接継手の長手方向において断続して形成され、断続した改質層の長手方向長さが200mm以上で、断続間隔が400mm以下であり、
前記改質層は脆性き裂の伝播を抑制又は止める破壊抵抗層として機能することを特徴とする耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。
In a multi-layer butt-welded joint in which welded layers are continuously formed by welding butt V-grooves of steel sheets having a thickness of 50 mm or more in multiple passes,
In the intermediate weld layer between the front surface weld layer and the back surface weld layer, a fracture behavior modified layer to which compressive residual stress is applied by ultrasonic impact treatment is formed,
Reforming layer is formed intermittently in the longitudinal direction of the welded joint, the longitudinal direction length of the intermittent reforming layer is more than 200 mm, intermittent interval is at 400mm or less,
A multilayer butt-welded joint excellent in brittle crack propagation characteristics, wherein the modified layer functions as a fracture resistance layer that suppresses or stops the propagation of brittle cracks.
前記改質層が、溶接継手の厚み方向に複数間隔を置いて形成されていることを特徴とする請求項1に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。   The multilayer butt weld joint having excellent brittle crack propagation characteristics according to claim 1, wherein the modified layer is formed at a plurality of intervals in the thickness direction of the weld joint. さらに、前記表面溶接層と裏面溶接層のいずれか一方または両方にも、超音波打撃処理により圧縮残留応力が付与された破壊挙動改質層が形成されていることを特徴とする請求項1または2に記載の多層盛突合せ溶接継手。   Furthermore, the fracture behavior improvement layer to which the compressive residual stress was given by ultrasonic striking treatment is formed in either one or both of the surface weld layer and the back surface weld layer. 2. A multi-layer butt-welded joint according to 2. 前記鋼板の多層盛突合せ溶接継手部を有する溶接構造体であって、前記溶接継手部の少なくとも脆性き裂が発生し、伝播する可能性のある溶接継手部を、請求項1〜3のいずれか1項に記載の多層盛突合せ溶接継手としたことを特徴とする溶接構造体。   It is a welded structure which has the multilayer butt-welding joint part of the said steel plate, Comprising: At least a brittle crack of the said weld joint part generate | occur | produces, The welded joint part which may propagate is any one of Claims 1-3. A welded structure characterized in that it is a multilayer butt-welded joint according to item 1.
JP2007075212A 2007-03-22 2007-03-22 Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics Expired - Fee Related JP5433928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075212A JP5433928B2 (en) 2007-03-22 2007-03-22 Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075212A JP5433928B2 (en) 2007-03-22 2007-03-22 Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics

Publications (2)

Publication Number Publication Date
JP2008229692A JP2008229692A (en) 2008-10-02
JP5433928B2 true JP5433928B2 (en) 2014-03-05

Family

ID=39903106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075212A Expired - Fee Related JP5433928B2 (en) 2007-03-22 2007-03-22 Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics

Country Status (1)

Country Link
JP (1) JP5433928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019732A2 (en) * 2011-07-29 2013-02-07 Applied Ultrasonics Surface contouring of a weld cap and adjacent base metal using ultrasonic impact treatment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621843B1 (en) * 1987-10-16 1990-03-09 Framatome Sa METHOD FOR FIXING BY WELDING A TUBING TO A WALL THICKNESS ELEMENT, SUCH AS A TUBE-HOLDING RUBBER OF A NUCLEAR REACTOR TANK
JP2865749B2 (en) * 1988-12-07 1999-03-08 株式会社日立製作所 Piping reforming method
JP3545610B2 (en) * 1997-10-29 2004-07-21 新日本製鐵株式会社 Welding wire and welding method
JP4220088B2 (en) * 1999-12-17 2009-02-04 Jfeスチール株式会社 Welded joint for steel structure and method for producing the same
JP2004066311A (en) * 2002-08-08 2004-03-04 Ishikawajima Harima Heavy Ind Co Ltd Peening device and reduction method of residual stress at welded part
JP3965106B2 (en) * 2002-11-19 2007-08-29 新日本製鐵株式会社 Girder structure reinforcement method
JP2007044698A (en) * 2005-08-05 2007-02-22 Toshiba Corp Welded structure, and welding method of structure

Also Published As

Publication number Publication date
JP2008229692A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
KR100671037B1 (en) Method of increasing toughness of heat-affected part of steel product welded joint
KR102020927B1 (en) Fillet Arc Welded Joints and Methods of Manufacturing the Same
JP4995066B2 (en) Butt multipass weld joint and welded structure with excellent brittle crack propagation characteristics
JP6690540B2 (en) Laser welded joint and laser welding method
JP5085743B2 (en) Out-of-plane gusset welded joint and manufacturing method thereof
JP4505368B2 (en) Welded steel structure excellent in brittle crack propagation stopping characteristics and method for producing the same
KR102001923B1 (en) Welded structure
JPWO2009104798A1 (en) Welded joint with excellent fatigue resistance and method for producing the same
JP6203647B2 (en) Laser welded joint of high-strength steel sheet and manufacturing method thereof
KR20110095390A (en) Weld dtructure having brittle fracture arresting characterstics
JP5088035B2 (en) Manufacturing method for welded joints with excellent fatigue resistance
JP5052918B2 (en) Welded joint, welded structure excellent in crack initiation propagation characteristics, and method for improving crack initiation propagation characteristics
JP4546995B2 (en) Butt multipass weld joint and welded structure with excellent brittle crack propagation characteristics
JP5052976B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP5433928B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP6693205B2 (en) Welding method and ship manufacturing method
KR102105614B1 (en) Welding structure
JP4767885B2 (en) Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics
JP2007283369A (en) Method for improving fatigability of fillet welded zone
JP6314670B2 (en) Structure with excellent fatigue characteristics
JP2019203356A (en) Steel plate floor and steel plate floor manufacturing method
JP4580220B2 (en) Fatigue performance improving structure of joint weld and fatigue performance improving method
WO2004046392A1 (en) Delayed fracture prevention method for steel structure and steel structure manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R151 Written notification of patent or utility model registration

Ref document number: 5433928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees