JP2007283369A - Method for improving fatigability of fillet welded zone - Google Patents
Method for improving fatigability of fillet welded zone Download PDFInfo
- Publication number
- JP2007283369A JP2007283369A JP2006114344A JP2006114344A JP2007283369A JP 2007283369 A JP2007283369 A JP 2007283369A JP 2006114344 A JP2006114344 A JP 2006114344A JP 2006114344 A JP2006114344 A JP 2006114344A JP 2007283369 A JP2007283369 A JP 2007283369A
- Authority
- JP
- Japan
- Prior art keywords
- weld bead
- toe
- bead
- welding
- welded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
本発明は、橋梁、タンク、船舶など隅肉溶接部を含んで構成される鋼構造物において、溶接部の疲労性能を向上させる方法に関する。 The present invention relates to a method for improving fatigue performance of a welded part in a steel structure including a fillet welded part such as a bridge, a tank, and a ship.
橋梁、タンク、船舶などの鋼構造物は、多くの鋼部材を溶接により組み合わせて製作されることが主流である。これらの鋼構造物は、溶接においては疲労強度を勘案して疲労設計されている。
溶接部に発生する疲労亀裂は構造物全体の信頼性に重大な影響を及ぼすため、疲労特性を向上させる種々の手法が試みられてきた。疲労亀裂の発生しやすい部分は溶接部であるが、これには、溶接部に応力集中部が存在していること、引っ張りの残留応力が生じていること、などの理由が挙げられる。
これらに対して、非特許文献1では機械的な方法で溶接部を平滑にする方法、或いはTIG溶接により溶接部に化粧溶接(ドレッシング)を施す方法などにより応力集中を低減することが開示されている。
また、溶接部にピーニングを施して、疲労が発生する部位に圧縮応力を導入し、あわせて応力集中を低減する方法も提案されている(例えば、特許文献1参照)。
また、最近では、溶接金属の変態膨張を利用して残留応力を低減させ、疲労強度を向上させる方法が提案されている(特許文献2、3参照)。
Steel structures such as bridges, tanks, ships, etc. are mainly manufactured by combining many steel members by welding. These steel structures are fatigue designed in consideration of fatigue strength in welding.
Since fatigue cracks occurring in welds have a significant effect on the reliability of the entire structure, various methods for improving fatigue characteristics have been attempted. The portion where fatigue cracks are likely to occur is a welded portion, and this includes reasons such as the presence of a stress concentration portion in the welded portion and the occurrence of residual tensile stress.
On the other hand,
In addition, a method has also been proposed in which peening is applied to a welded portion to introduce compressive stress into a portion where fatigue occurs, and stress concentration is reduced at the same time (see, for example, Patent Document 1).
Recently, a method has been proposed in which residual stress is reduced by utilizing transformation expansion of a weld metal to improve fatigue strength (see
これらの鋼構造物の溶接においては、ルート部のない完全溶け込み(フルペネトレーション)溶接は作業量が多くコストがかかるため、図8に示すように、基材1と被溶接材料2を隅肉溶接する方法が採られおり、本溶接ビード5、止端部3、及びルート部4が存在する溶接形態となっている。そしてこのような隅肉溶接においては、疲労による亀裂は、ルート部4又は止端部3から発生するものが大半である。
また、鋼構造物の疲労性能としては、例えば、橋梁では、日本鋼構造協会(JSSC)の「鋼構造物の疲労設計指針および同解説」(JSSC疲労設計指針と呼称する)にて定められている、疲労寿命曲線(等級毎に、ある量の応力に対し、繰り返し何回まで耐えられるかをプロットした曲線、S−N曲線とも言う)の基準で疲労性能等級Dレベル以上を確保していればフランジとウエブの首溶接の疲労強度を上回るために十分であるとされている。
なお、基材1は主構造材、被溶接材料2はこれに溶接されるものと一応区別されるが、この関係は相対的なものであり、構造物の形態によっては逆転することもあり、便宜上のものである。
In the welding of these steel structures, full penetration welding without a root portion requires a large amount of work and is expensive, and as shown in FIG. 8, the
In addition, the fatigue performance of steel structures, for example, for bridges, is determined by the Japan Steel Structure Association (JSSC) “Fatigue Design Guidelines and Explanations for Steel Structures” (referred to as JSSC fatigue design guidelines). Fatigue performance grade D level or higher should be secured on the basis of the fatigue life curve (a curve that plots how many times it can withstand a certain amount of stress repeatedly for each grade, also called SN curve) This is sufficient to surpass the fatigue strength of flange welds and web neck welds.
In addition, although the
このような状況から、上述のピーニング類による方法のみでは、止端部を含む溶接部表面に対しては疲労強度の改善効果はあるものの、ルート部疲労強度は向上させることができない。そのため、疲労性能レベルD等級以上を確実に達成することが常に可能であるとは言えない。
また、TIGドレッシングでは、止端部を完全に平滑なものとすることは困難であり、引張残留応力も残るために、止端の疲労性能が向上したとしても疲労性能レベルF等級を確保するのが限界である。もちろん、ルートの疲労性能を向上することも不可能である。
一方、低温変態溶接材料を用いる方法では、止端部の疲労強度の向上が不十分で安定的ではなく、疲労性能レベルD等級を確保するのがやっとであり、場合によってはE等級となる場合もある。特に、ビードを付加した場合は、本溶接ビードと増し盛り溶接ビードとの境界部分がかえって弱点となりやすい。
Under such circumstances, the root part fatigue strength cannot be improved only by the method using the above-described peenings, although the effect of improving the fatigue strength is provided on the surface of the welded portion including the toe portion. For this reason, it is not always possible to reliably achieve the fatigue performance level D grade or higher.
In addition, with TIG dressing, it is difficult to make the toe part completely smooth, and tensile residual stress remains. Therefore, even if the toe fatigue performance is improved, the fatigue performance level F grade is ensured. Is the limit. Of course, it is impossible to improve the fatigue performance of the route.
On the other hand, in the method using the low temperature transformation welding material, the improvement of the fatigue strength of the toe portion is insufficient and not stable, and it is finally possible to secure the fatigue performance level D grade, and in some cases, the E grade is obtained. There is also. In particular, when a bead is added, the boundary portion between the main weld bead and the additional weld bead tends to be a weak point.
このように、従来から鋼構造物に適用されている隅肉溶接においては、溶接部のルート部及び止端部の双方の疲労強度を同時に確実には向上させることができず、疲労性能レベルD等級以上を安定して確保することは困難であった。
本発明は、上記の状況に鑑み、隅肉溶接において、既設の溶接部(本溶接ビード)のルート部及び止端部の双方の疲労強度を補修により向上させ、疲労性能レベルD等級以上を安定して確保できる疲労性能の向上方法を提供することを課題とする。
Thus, in fillet welding conventionally applied to steel structures, the fatigue strength of both the root part and the toe part of the welded part cannot be improved at the same time, and the fatigue performance level D It was difficult to ensure a grade higher than that stably.
In view of the above situation, the present invention improves the fatigue strength of both the root part and the toe part of the existing welded part (main weld bead) by repairing and stabilizes the fatigue performance level D grade or higher. It is an object of the present invention to provide a method for improving the fatigue performance that can be ensured.
本発明者らは上記の課題を鑑みて、以下の技術思想に至った。
すなわち、既設の隅肉溶接における溶接部の疲労性能を、補修により、止端部とルート部の双方において向上させる際、溶接部の各部位に応じた向上対策を講じることが適切であると考えた。
まず、止端部の疲労性能を向上させるためには、止端部への応力集中を緩和すると共に圧縮応力を付加することが適切と考え、溶接ビードの止端部に超音波衝撃処理を施すこととした。
次に、ルート部の疲労強度は、のど厚の大きさにより左右されると考え、のど厚を大きくすることによりルート部の疲労強度の向上を図ることとした。
このためには、既設の隅肉溶接により形成された本溶接ビードに加えて、この本溶接ビードの一部または全部に、新たに重複して増し盛り溶接を行うものとした。(以下、この増し盛り溶接により形成された溶接ビードを増し盛り溶接ビードと記載する)。
In view of the above problems, the present inventors have reached the following technical idea.
In other words, when improving the fatigue performance of welds in existing fillet welds at both the toe and root parts by repair, it is considered appropriate to take measures to improve each part of the welds. It was.
First, in order to improve the fatigue performance of the toe part, it is considered appropriate to reduce the stress concentration at the toe part and to apply compressive stress, so that the toe part of the weld bead is subjected to ultrasonic impact treatment. It was decided.
Next, it was considered that the fatigue strength of the root portion depends on the size of the throat thickness, and the fatigue strength of the root portion was improved by increasing the throat thickness.
For this purpose, in addition to the main welding bead formed by the existing fillet welding, a part of or the whole of the main welding bead is newly overlapped and additionally welded. (Hereinafter, the weld bead formed by the incremental build-up welding is referred to as an additional build-up weld bead).
上記の考えに基づき、検討を重ねた結果、以下の解決手段に至った。
その要旨とするところは、
(1)隅肉溶接における溶接部の疲労性能向上方法において、基材と被溶接部材とを隅肉溶接して形成された既設の本溶接ビードの少なくとも一方の止端部を含むビードに、新たに増し盛り溶接ビードを形成した後、前記本溶接ビード及び前記増し盛り溶接ビードの表面に現れている本溶接ビードの止端部、増し盛り溶接ビードの止端部、及び本溶接ビードと増し盛り溶接ビードとの境界止端部に超音波衝撃処処理を施すことを特徴とするものであり、
また、(2)(1)記載の隅肉溶接における溶接部の疲労性能向上方法において、前記増し盛り溶接ビードが、前記本溶接ビードにおける前記基板側止端部及び前記被溶接部材側止端部の両方に形成されていることを特徴とするものであり、
また、(3)(1)記載の隅肉溶接における溶接部の疲労性能向上方法において、前記増し盛り溶接ビードが、前記本溶接ビードにおける前記基板側止端部又は前記被溶接部材側止端部の一方側にのみ形成され、前記増し盛り溶接ビードが形成されていない側の前記本溶接ビードの脚長をLとし、前記境界止端部から前記増し盛り溶接ビードが形成された側の前記基板又は前記被溶接部材への垂線の距離をL’としたとき、L’≧1/3Lとなるように前記増し盛り溶接ビードを形成することを特徴とするものである。
As a result of repeated studies based on the above idea, the following solution has been reached.
The gist is that
(1) In the method for improving fatigue performance of a welded part in fillet welding, a new bead including at least one toe part of an existing main weld bead formed by fillet welding a base material and a member to be welded is newly added. After forming the increased weld bead, the main weld bead and the toe portion of the main weld bead appearing on the surface of the additional weld bead, the toe portion of the additional weld bead, and the main weld bead It is characterized by applying ultrasonic shock treatment to the boundary toe with the weld bead,
(2) In the method for improving fatigue performance of a welded part in fillet welding according to (1), the increased weld bead includes the board side toe part and the welded member side toe part of the main weld bead. It is characterized by being formed in both
(3) In the method for improving fatigue performance of a welded part in fillet welding according to (1), the increased weld bead is the board side toe part or the welded member side toe part of the main weld bead. The length of the main weld bead on the side where the increased weld bead is not formed is L, and the substrate on the side where the increased weld bead is formed from the boundary toe, or The increased weld bead is formed so that L ′ ≧ 1 / 3L, where L ′ is a perpendicular distance to the member to be welded.
既設の隅肉溶接において、本発明の方法により、溶接部のルート部及び止端部の双方の疲労強度を向上させ、疲労性能レベルD等級以上を安定して確保できる。 In the existing fillet welding, the fatigue strength of both the root portion and the toe portion of the welded portion can be improved by the method of the present invention, and the fatigue performance level D grade or higher can be secured stably.
本発明の実施形態を、図面を用いて説明する。
図1は、橋梁等における既設の隅肉溶接部の断面模式図である。基板1と被溶接部材2とは、その隅角部において隅肉溶接がなされ、本溶接ビード5が形成されている。これにより、基板1側と被溶接部材2側にそれぞれ止端部3(31、32)が形成される。図中のLは本溶接ビード5の脚長、aはのど厚を表す。尚、本溶接ビード5は、前記隅角部に沿って、基板1と被溶接部材2の接触している箇所に亘って(図の紙面に対して垂直方向)形成されている。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of an existing fillet weld in a bridge or the like. The
図2は、本発明の第一実施形態を示す溶接部の断面模式図である。本実施形態においては、基材1と被溶接部材2とを隅肉溶接して形成された既設の本溶接ビード5の基板1側の止端部31を含むビードに、新たに増し盛り溶接ビード6を形成している。更に、本溶接ビード5及び増し盛り溶接ビード6の表面に現れている、本溶接ビード5の止端部32、増し盛り溶接ビード6の止端部33、及び本溶接ビード5と増し盛り溶接ビード6との境界止端部34に超音波衝撃処処理を施している。なお、増し盛り溶接ビード6の形成及びし端部への超音波処理は、隅角部に沿って隅肉溶接がなされている基板1と被溶接部材2の接触している範囲に亘って行われる。
これにより、元ののど厚aはのど厚a’に増加し、ルート部の疲労亀裂の発生を抑制することが出来ると共に、ビード表面に現れた止端部を超音波衝撃処理することで、止端部の疲労亀裂の発生も抑制することができるようになる。
なお、増し盛り溶接を行う前に、本溶接ビード5の基板1側の止端部31にも、超音波衝撃処理を施しておくと、疲労性能がより向上する場合があり好ましい。
FIG. 2 is a schematic cross-sectional view of a welded portion showing the first embodiment of the present invention. In the present embodiment, a newly increased weld bead is added to the bead including the toe 31 on the
As a result, the original throat thickness a increases to the throat thickness a ′, and the occurrence of fatigue cracks in the root portion can be suppressed, and the toe portion appearing on the bead surface is subjected to ultrasonic impact treatment, so that The occurrence of fatigue cracks at the end can also be suppressed.
It should be noted that it is preferable to perform an ultrasonic impact treatment on the toe end 31 on the
図3は、本発明の第二実施形態を示す溶接部の断面模式図である。本形態においては、増し盛り溶接ビード6が、本溶接ビード5における基板1側止端部31及び被溶接部材2側止端部32の両方に形成される。ここに更に、本溶接ビード5及び増し盛り溶接ビード6の表面に現れている止端部に超音波衝撃処処理を施すが、図3の実施形態では本溶接ビード5全面を増し盛り溶接ビード6で覆っているため、表面に現れている止端部は、基板1側の増し盛り溶接ビード35と、被溶接部材2側の増し盛り溶接ビードの止端部36の2箇所であり、この2箇所に超音波衝撃処処理を施している。
これにより、元ののど厚aはのど厚a”に増加し、ルート部の疲労亀裂の発生を抑制することが出来ると共に、ビード表面に現れた止端部を超音波衝撃処理することで、止端部の疲労亀裂の発生も抑制することができるようになる。
なお、増し盛り溶接を行う前に、本溶接ビード5における基板1側の止端部31及び被溶接部材2側の止端部32にも、超音波衝撃処理を施しておくと、疲労性能がより向上する場合があり好ましい。
FIG. 3 is a schematic cross-sectional view of a welded portion showing a second embodiment of the present invention. In this embodiment, the increased weld bead 6 is formed on both the
As a result, the original throat thickness a is increased to the throat thickness a ″, and the occurrence of fatigue cracks at the root portion can be suppressed, and the toe portion appearing on the bead surface is subjected to ultrasonic impact treatment. The occurrence of fatigue cracks at the end can also be suppressed.
In addition, if performing the ultrasonic impact treatment on the toe end 31 on the
ここで、隅肉溶接における本溶接ビードの多くは、図1に示すように、脚長Lが、基板1側と被溶接部材2側とで、等脚となっていることが多い。
一方、止端部3から本溶接ビード5への応力の拡がりは、45度よりも狭角となっているケースが多く、そのため、本溶接ビード5の有するのど厚の全ての部位が必ずしも有効に働いていないことがある。
例えば、図4(a)に示すような、脚長L=6mmで等脚の本溶接ビードの場合を考えると、のど厚aは4.2mmとなるが、応力の拡がりが30度であるとすると、図4(b)に示すように、実際に有効に働くのど厚(有効のど厚と呼ぶ)a2は3mmに減少してしまう。
Here, as shown in FIG. 1, most of the main weld beads in fillet welding have leg lengths L that are equal on both the
On the other hand, the spread of stress from the
For example, as shown in FIG. 4 (a), when considering the case of a regular weld bead with a leg length L = 6 mm and an equal leg, the throat thickness a is 4.2 mm, but the stress spread is 30 degrees. As shown in FIG. 4B, the throat thickness (referred to as the effective throat thickness) a 2 that actually works effectively decreases to 3 mm.
従って、この有効のど厚a2を、疲労性能を十分に向上するに足る厚みとすべく、増し盛り溶接ビードを形成することが重要である。
例えば、応力の拡がりが30度であるとすると、図1の本溶接ビード5においては、有効のど厚a2は3mmであるのに対して、図2のように基板1の止端31側に増し盛り溶接ビード6を30度の角度で形成したとすると、有効のど厚a2は、のど厚a’と略等しくなるため、a2>4.2mmと40%以上厚くなる。
Therefore, it is important to form an increased weld bead so that this effective throat thickness a 2 is sufficient to sufficiently improve the fatigue performance.
For example, if the stress spread is 30 degrees, the effective throat thickness a 2 is 3 mm in the
対称とする溶接部の条件によってまちまちである応力の拡がりにも対応可能な、増し盛り溶接ビードの形成条件を検討した結果、脚長Lと増し盛り溶接ビードの形成位置との関係を調整することによる解決手段を見出した。
図2を用いて詳細を説明する。
As a result of examining the formation condition of the increased weld bead that can cope with the spread of stress that varies depending on the condition of the welded portion that is symmetric, by adjusting the relationship between the leg length L and the formation position of the increased weld bead I found a solution.
Details will be described with reference to FIG.
すなわち、増し盛り溶接ビード6が、本溶接ビード5における基板1側止端部31又は被溶接部材2側止端部32側の一方側にのみ形成され(図では31側に形成)、増し盛り溶接ビード6が形成されていない側の本溶接ビード5の脚長をLとし、境界止端部34から増し盛り溶接ビード6が形成された側の基板1又は被溶接部材2への垂線の距離をL’としたとき(図では1への垂線)、L’≧1/3Lとなるように増し盛り溶接ビード6を形成することである。
これにより、有効のど厚a’を、疲労性能を十分に向上するに足る厚みとすることができ、境界止端部34やルート部4における疲労亀裂の発生を抑制可能となる。
That is, the increased build-up weld bead 6 is formed only on one side of the
Accordingly, the effective throat thickness a ′ can be set to a thickness sufficient to sufficiently improve the fatigue performance, and the occurrence of fatigue cracks at the
(比較例1、2):本溶接ビードのままの例、及び、本溶接ビードの止端部に超音波衝撃処理のみを施した例。
I形断面を持つ疲労試験体を製作し、疲労試験を行った。すなわち、図5は、疲労試験の試験体の概要を示す図であり、(a)は側面図、(b)は、平面図、(c)は断面図である。
図5に示すように、橋梁の桁として使用される基板となるI形鋼11に、被溶接部材となる複数の面内ガセット12を、隅肉溶接により本溶接した。
I形鋼のサイズは、700mm(A)×200mm(B)×9mm(t1)×25mm(t2)×5500mm(L)、面内ガセット12のサイズは、いずれも50(w)×200mm(L)×9mm(t)とした。I形鋼は引張強度400MPa級の鋼板を用いて溶接組立を行ったものである。
また、本溶接の条件は、溶接材料は最も一般的な500MPa級鋼用を用い、溶接脚長6mmとしてCO2アーク溶接を用いた。その結果、図1に示すような断面形状の本溶接ビード5が形成された。この脚長は強度設計により求められたものであり、等脚長であるためのど厚aは約4.2mmであった。また、本溶接ビード5の有効のど厚a2は30度の本ケースにおける応力の拡がりを考慮するので3mm程度と考えられる。
(Comparative Examples 1 and 2): Examples in which the actual welding bead is used, and examples in which only the ultrasonic impact treatment is applied to the toe portion of the main welding bead.
A fatigue test body having an I-shaped cross section was manufactured and subjected to a fatigue test. That is, FIG. 5 is a figure which shows the outline | summary of the test body of a fatigue test, (a) is a side view, (b) is a top view, (c) is sectional drawing.
As shown in FIG. 5, a plurality of in-
The size of the I-shaped steel is 700 mm (A) × 200 mm (B) × 9 mm (t1) × 25 mm (t2) × 5500 mm (L), and the size of the in-
The main welding was performed using the most common 500 MPa class steel as the welding material, and using CO 2 arc welding with a welding leg length of 6 mm. As a result, a
次に、本溶接した本溶接ビードの止端部に超音波衝撃処理を行った。この超音波衝撃処理(以下、UIT(Ultrasonic Impact Treatment)とも記載する)は、超音波で先端のピンを振幅20〜60μm、周波数15kHz〜60kHzで振動させる装置を用いて対象物を打撃する処理(Ultrasonic Impact Treatment)であり、この装置としては例えば、超音波を発生させるトランスデューサーと、このトランスデューサーの前方に取り付けられたウエーブガイドと、ウエーブガイドの先端に取り付けられた超音波により振動するピンを備えたヘッドとから構成される。
この処理装置を用いて、1kwの出力の電力からトランスデューサーに27kHzの超音波振動を発生させ、1分間あたりおよそ15cmの速度で処理を行った。
Next, ultrasonic impact treatment was performed on the toe portion of the main weld bead that was main welded. This ultrasonic impact treatment (hereinafter also referred to as UIT (Ultrasonic Impact Treatment)) is a process of hitting an object using a device that vibrates ultrasonically the tip pin with an amplitude of 20 to 60 μm and a frequency of 15 kHz to 60 kHz ( This device includes, for example, a transducer that generates ultrasonic waves, a wave guide that is attached to the front of the transducer, and a pin that is vibrated by ultrasonic waves that is attached to the tip of the wave guide. The head is equipped with.
Using this processing apparatus, ultrasonic vibration of 27 kHz was generated in the transducer from the output power of 1 kw, and processing was performed at a speed of about 15 cm per minute.
この処理を行ったあと、疲労試験を行った。疲労試験は、上記試験体を4点曲げ、135MPaの振幅条件(試験体の中央部1500mmの等曲げ区間での下フランジの発生応力が135MPa)として行った。これを比較例1とする。
また、UITを施さなかった以外は全て、比較例1と同条件の実験も行い、比較例2とした。その結果を図6に示す。
After this treatment, a fatigue test was performed. The fatigue test was performed by bending the above-mentioned test body at four points and setting an amplitude condition of 135 MPa (the generated stress of the lower flange in the equal bending section of the
In addition, an experiment under the same conditions as Comparative Example 1 was also performed except that UIT was not applied, and Comparative Example 2 was obtained. The result is shown in FIG.
UITを施さなかった比較例2は、1×105サイクルで亀裂が発生しており、疲労性能等級G〜Fレベルであった。
一方、UITを施した比較例1は、試験体中で発生応力の低い面内ガセットについては疲労性能等級Dレベルのものもあったが、4×105サイクルで亀裂が発生している疲労性能等級Eレベルのものが多かった。
止端部のUITによりある程度は疲労性能の向上の効果が認められものの、疲労性能等級Dレベルを安定して達成できていなかった。
図6の結果において、比較例2については、亀裂は全て止端から発生しており、UIT処理した比較例1については、亀裂は全てルートから発生していた。
In Comparative Example 2 where the UIT was not applied, cracks occurred at 1 × 10 5 cycles, and the fatigue performance grades were GF levels.
On the other hand, in Comparative Example 1 to which UIT was applied, some in-plane gussets with low generated stress in the test specimens had fatigue performance grade D level, but fatigue performance in which cracks occurred in 4 × 10 5 cycles. There were many grade E grades.
Although the effect of improving the fatigue performance was recognized to some extent by the UIT of the toe portion, the fatigue performance grade D level could not be achieved stably.
In the results shown in FIG. 6, all the cracks occurred from the toe in Comparative Example 2, and all the cracks occurred from the root in Comparative Example 1 subjected to the UIT process.
(実施例1)
次に、実施例として、本溶接ビードの上に増し盛り溶接を行い、更に、ビード表面の止端部にUIT処理を施した試験を行った。
すなわち、上記の止端部のUITによる疲労性能の向上効果を確認した試験の場合と同じように、橋梁の桁として使用されるI形鋼を用いて、複数の面内ガセット12を隅肉溶接により本溶接した。試験体10および面内ガセット12の寸法は、図5の場合と同様である。
また、本溶接の条件も図5の場合と同じとして、本溶接ビード5を形成した。
さらに、この本溶接ビードの上に、増し盛り溶接を施した。増し盛り溶接の溶接条件は、手棒の最も一般的な500MPa級鋼材用の低水素系溶接棒を用いて1.7kJ/mmの入熱条件で溶接を行った。
本溶接と増し盛り溶接により、図2に示すような本溶接ビード5と増し盛り溶接ビード6を形成した。
なお、増し盛り溶接ビード6を形成するにあたっては、図2に示すように、L’を4mmとして形成した。
Example 1
Next, as an example, a test was performed in which heap welding was performed on the main welding bead, and further, the toe end portion of the bead surface was subjected to UIT treatment.
That is, as in the case of the test for confirming the effect of improving the fatigue performance by the UIT of the toe part, a plurality of in-
Also, the
Further, an additional build-up welding was performed on the main welding bead. Welding was performed under a heat input condition of 1.7 kJ / mm using the most common 500 MPa class steel low hydrogen welding rod for welding.
A
In forming the increased build-up weld bead 6, L ′ was formed to 4 mm as shown in FIG.
次いで、ビード表面に現れている本溶接ビード5の止端部32、増し盛り溶接ビード6の止端部33、及び、境界止端部34に超音波衝撃処理を施した。この超音波衝撃処理は、1kwの出力の電力からトランスデューサーに27kHzの超音波振動を発生させ、1分間あたりおよそ15cmの速度で処理を行った。
この処理を行ったあと、この試験体を上記と同様の条件で、疲労試験を行った。
Next, ultrasonic impact treatment was applied to the
After this treatment, the specimen was subjected to a fatigue test under the same conditions as described above.
その結果、2×106を超えても亀裂の発生はなく、平均応力(公称応力)も高いレベルであり、疲労性能等級D以上であることが確認できた。
なお、増し盛り溶接ビード6の形成のみで、UITを施さなかった場合は、1.2×105サイクルで、本溶接ビード5の止端部32、増し盛り溶接ビード6の止端部33、境界止端部34のいずれかから亀裂が発生していた。
以上のことから、増し盛り溶接ビードの形成と超音波衝撃処理を組み合わせることにより、隅肉溶接における溶接部のルート部の疲労性能、及び止端部の疲労性能を共に向上させることができることが確認された。
As a result, even if it exceeded 2 × 10 6 , cracks did not occur, the average stress (nominal stress) was also at a high level, and it was confirmed that the fatigue performance grade was D or higher.
In addition, when only the formation of the increased weld bead 6 is performed and no UIT is applied, the
Based on the above, it was confirmed that the fatigue performance of the root portion of the welded portion and the fatigue performance of the toe portion can be improved by combining the formation of the increased weld bead and ultrasonic impact treatment. It was done.
(実施例2)
上記の実施例1においては、増し盛り溶接により、L’=4mmとしたが、L’の長さを変えた試験を行った。
図7(a)〜(c)に示すような面外ガセット13を持つ試験体を製作した。この試験体は主板15が100mm×600mm×t12mmで100mm×50mm×t9mmのガセットが隅肉溶接で接合されたものである。材料は引張強度400MPa級鋼である。
この試験体について、図2示した重なり厚さL’を変えて、増し盛り溶接ビードを形成した。なお、本溶接ビードは等脚長とし、脚長Lは6mmとした。
次いで、これらの溶接部、即ち本溶接ビード及び増し盛り溶接ビードの少なくとも止端部に超音波衝撃処理を施した。この超音波衝撃処理(UIT)は、1kwの出力の電力からトランスデューサーに27kHzの超音波振動を発生させ、1分間あたりおよそ15cmの速度で処理と、上記の試験と同じ条件とした。上記試験体を4点曲げ、135MPaの振幅条件で疲労試験した。
疲労試験後、亀裂または破断の箇所を目視観察により調査した。その結果を表1に示す。
(Example 2)
In Example 1 described above, L ′ = 4 mm was obtained by incremental welding, but a test was performed in which the length of L ′ was changed.
A test body having an out-of-
About this test body, the overlap thickness L 'shown in FIG. 2 was changed, and the increased welding bead was formed. In addition, this welding bead was made into equal leg length and leg length L was 6 mm.
Next, an ultrasonic impact treatment was performed on at least the toe ends of these welds, that is, the main weld bead and the increased weld bead. In this ultrasonic impact treatment (UIT), 27 kHz ultrasonic vibration was generated in the transducer from the output power of 1 kw, the treatment was performed at a speed of about 15 cm per minute, and the same conditions as in the above test were used. The specimen was bent at four points and subjected to a fatigue test under an amplitude condition of 135 MPa.
After the fatigue test, cracks or fractures were examined by visual observation. The results are shown in Table 1.
このように、L’が2mm未満となると、本溶接ビード5と増し盛り溶接ビード6の境界止端部34から破断していた。一方、L’が2mm以上となると、境界止端部で破断することはなく、疲労性能は向上した。
すなわち、L’が、L(=6mm)の1/3以上となると疲労性能の向上効果が顕著となることが判る。
Thus, when L ′ was less than 2 mm, the
That is, it can be seen that when L ′ is 1/3 or more of L (= 6 mm), the effect of improving the fatigue performance becomes remarkable.
1 基材
2 被溶接材
3 止端部
31 本溶接ビードにおける基板側止端部
32 本溶接ビードにおける被溶接部材側止端部
33、35 増し盛り溶接ビードにおける基板側止端部
36 増し盛り溶接ビードにおける被溶接部材側止端部
34 境界止端部
4 ルート部
5 本溶接ビード
6 増し盛り溶接ビード
7 ルート亀裂
8 止端部亀裂
9 溶接部
10 試験体
11 I形鋼(基材)
12 面内ガセット
13 面外ガセット
14 リブ
DESCRIPTION OF
12 In-
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006114344A JP4757697B2 (en) | 2006-04-18 | 2006-04-18 | Method for improving fatigue performance of fillet welds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006114344A JP4757697B2 (en) | 2006-04-18 | 2006-04-18 | Method for improving fatigue performance of fillet welds |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007283369A true JP2007283369A (en) | 2007-11-01 |
JP4757697B2 JP4757697B2 (en) | 2011-08-24 |
Family
ID=38755609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006114344A Active JP4757697B2 (en) | 2006-04-18 | 2006-04-18 | Method for improving fatigue performance of fillet welds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4757697B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4441641B1 (en) * | 2008-11-25 | 2010-03-31 | 国立大学法人名古屋大学 | Fatigue crack repair method for steel structures |
JP2012086259A (en) * | 2010-10-21 | 2012-05-10 | Daihatsu Motor Co Ltd | Welding structure of exhaust manifold |
JP2013031878A (en) * | 2011-07-05 | 2013-02-14 | Jfe Steel Corp | Welded joint of fillet welding |
JP2014004609A (en) * | 2012-06-25 | 2014-01-16 | Jfe Steel Corp | Weld joint and method for forming the same |
JP2017167080A (en) * | 2016-03-18 | 2017-09-21 | Jxtgエネルギー株式会社 | Welded part inspection device and welded part automatic inspection device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53140245A (en) * | 1977-05-14 | 1978-12-07 | Nippon Steel Corp | Improving method for fatiuge strength of fillet welded joint |
JPS53147643A (en) * | 1977-05-30 | 1978-12-22 | Nippon Steel Corp | Fillet weld coupling method with excellence in fatigue characteristic |
JPH09122906A (en) * | 1995-10-30 | 1997-05-13 | Sakurada:Kk | Reinforcing method for increasing joint strength in inserting joint fitting into slit for welding |
JP2003001476A (en) * | 2001-06-19 | 2003-01-08 | Nippon Steel Corp | Steel column base part and reinforcing method therefor |
JP2005262281A (en) * | 2004-03-19 | 2005-09-29 | Sumitomo Metal Ind Ltd | Welded joint excellent in fatigue life |
JP2006055899A (en) * | 2004-08-23 | 2006-03-02 | Nippon Steel Corp | Method for improving fatigue life of welded joint |
-
2006
- 2006-04-18 JP JP2006114344A patent/JP4757697B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53140245A (en) * | 1977-05-14 | 1978-12-07 | Nippon Steel Corp | Improving method for fatiuge strength of fillet welded joint |
JPS53147643A (en) * | 1977-05-30 | 1978-12-22 | Nippon Steel Corp | Fillet weld coupling method with excellence in fatigue characteristic |
JPH09122906A (en) * | 1995-10-30 | 1997-05-13 | Sakurada:Kk | Reinforcing method for increasing joint strength in inserting joint fitting into slit for welding |
JP2003001476A (en) * | 2001-06-19 | 2003-01-08 | Nippon Steel Corp | Steel column base part and reinforcing method therefor |
JP2005262281A (en) * | 2004-03-19 | 2005-09-29 | Sumitomo Metal Ind Ltd | Welded joint excellent in fatigue life |
JP2006055899A (en) * | 2004-08-23 | 2006-03-02 | Nippon Steel Corp | Method for improving fatigue life of welded joint |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4441641B1 (en) * | 2008-11-25 | 2010-03-31 | 国立大学法人名古屋大学 | Fatigue crack repair method for steel structures |
JP2010125534A (en) * | 2008-11-25 | 2010-06-10 | Nagoya Univ | Method for repairing fatigue cracking of steel structure |
JP2012086259A (en) * | 2010-10-21 | 2012-05-10 | Daihatsu Motor Co Ltd | Welding structure of exhaust manifold |
JP2013031878A (en) * | 2011-07-05 | 2013-02-14 | Jfe Steel Corp | Welded joint of fillet welding |
JP2014004609A (en) * | 2012-06-25 | 2014-01-16 | Jfe Steel Corp | Weld joint and method for forming the same |
JP2017167080A (en) * | 2016-03-18 | 2017-09-21 | Jxtgエネルギー株式会社 | Welded part inspection device and welded part automatic inspection device |
Also Published As
Publication number | Publication date |
---|---|
JP4757697B2 (en) | 2011-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI396600B (en) | Out-of-plane gusset weld joints and manufacturing method therefor | |
KR102001923B1 (en) | Welded structure | |
JP5881055B2 (en) | Welding method and welded joint | |
JP4757697B2 (en) | Method for improving fatigue performance of fillet welds | |
JP2011131260A (en) | Method for increasing fatigue strength of weld zone, and weld joint | |
JP5052918B2 (en) | Welded joint, welded structure excellent in crack initiation propagation characteristics, and method for improving crack initiation propagation characteristics | |
JP5130478B2 (en) | Butt weld joint with excellent fatigue characteristics and method for producing the same | |
JP4837428B2 (en) | Ultrasonic impact treatment method for weld toe | |
JP2006175512A (en) | Method for increasing fatigue strength of weld zone and welded structure using the same | |
JP6662399B2 (en) | Turning welding joint and turning welding method excellent in fatigue strength | |
JP2017094396A (en) | Ultrasonic impact treatment method | |
JP2008290125A (en) | Ship having excellent fatigue durability and method of improving fatigue durability of ship | |
JP5919986B2 (en) | Hammer peening treatment method and welded joint manufacturing method using the same | |
JP6314670B2 (en) | Structure with excellent fatigue characteristics | |
JP2003001477A (en) | Steel column base part and reinforcing method therefor | |
JP4767885B2 (en) | Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics | |
JP2006055899A (en) | Method for improving fatigue life of welded joint | |
JP7468461B2 (en) | Box welded joint and box welding method having excellent fatigue strength | |
JP2003001476A (en) | Steel column base part and reinforcing method therefor | |
JP5433928B2 (en) | Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics | |
JP6017938B2 (en) | Method for suppressing fatigue damage of welded structure and tool for forming hitting marks | |
JP6339760B2 (en) | Method for suppressing fatigue damage of welded structure and tool for forming hitting marks | |
JP2017205796A (en) | Manufacturing method of welding structure, and welding structure | |
JP2022188324A (en) | Turning weld joint with excellent fatigue strength and turning welding method | |
JP6613591B2 (en) | Ultrasonic shock treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110524 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110601 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4757697 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |