JP5052976B2 - Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics - Google Patents

Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics Download PDF

Info

Publication number
JP5052976B2
JP5052976B2 JP2007177460A JP2007177460A JP5052976B2 JP 5052976 B2 JP5052976 B2 JP 5052976B2 JP 2007177460 A JP2007177460 A JP 2007177460A JP 2007177460 A JP2007177460 A JP 2007177460A JP 5052976 B2 JP5052976 B2 JP 5052976B2
Authority
JP
Japan
Prior art keywords
layer
weld
welded
welding
welded joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007177460A
Other languages
Japanese (ja)
Other versions
JP2009012049A (en
Inventor
忠 石川
裕治 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007177460A priority Critical patent/JP5052976B2/en
Publication of JP2009012049A publication Critical patent/JP2009012049A/en
Application granted granted Critical
Publication of JP5052976B2 publication Critical patent/JP5052976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶接継手に発生した脆性き裂の伝播を抑制するか又は止める特性、即ち、耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手と、該溶接継手を有する溶接構造体に関する。   The present invention relates to a multi-layer butt-welded joint that is excellent in suppressing or stopping the propagation of a brittle crack generated in a welded joint, that is, an excellent brittle crack propagation characteristic, and a welded structure having the welded joint.

鋼板を溶接して溶接構造体を建造する場合、建造コストの低減や、溶接施工能率の向上のため、通常、大入熱溶接方法を用いるが、大入熱溶接方法で形成した溶接継手においては、溶接熱影響部(以下「HAZ部」ということがある)の靭性が低下するし、また、HAZ部の幅が増大して、破壊靭性値Kc(脆性破壊に係る指標)も低下する。   When building a welded structure by welding steel plates, a large heat input welding method is usually used to reduce the construction cost and improve the welding efficiency, but in a welded joint formed by the large heat input welding method, In addition, the toughness of the weld heat affected zone (hereinafter sometimes referred to as “HAZ zone”) decreases, the width of the HAZ zone increases, and the fracture toughness value Kc (an index related to brittle fracture) also decreases.

溶接継手の破壊は、溶接時に形成された欠陥に応力が集中して、該欠陥を起点にき裂が発生し、このき裂が、継手内部を伝播して起きる。溶接継手の破壊靭性値Kcが低いと、き裂が発生し易く、かつ、き裂の伝播は速いので、突発的に、溶接継手の破壊が起きることになる。即ち、溶接継手が脆性破壊する。   Fracture of a welded joint occurs when stress concentrates on a defect formed at the time of welding and a crack is generated starting from the defect, and this crack propagates inside the joint. If the fracture toughness value Kc of the welded joint is low, cracks are likely to occur and the propagation of the cracks is fast, so that the welded joints are suddenly broken. That is, the welded joint breaks brittlely.

溶接継手の脆性破壊を防止するためには、(i)き裂の発生を抑制する、及び、(ii)発生したき裂の伝播を抑制するか又は止めることが必要である。そこで、本出願人は、上記(i)の観点に立ち、破壊靭性値Kcを充分に高める手法を見出し、耐脆性破壊発生特性に優れた大入熱突合せ溶接継手を提案し(特許文献1及び2、参照)、また、破壊靭性値Kcに基いて、大入熱突合せ溶接継手の耐脆性破壊発生特性を適確に検証する検証方法を提案した(特許文献2、参照)。   In order to prevent brittle fracture of a welded joint, it is necessary to (i) suppress the generation of cracks and (ii) suppress or stop the propagation of the generated cracks. In view of the above (i), the present applicant has found a technique for sufficiently increasing the fracture toughness value Kc, and has proposed a high heat input butt weld joint having excellent brittle fracture resistance (Patent Document 1 and 2), and a verification method for accurately verifying the brittle fracture resistance of the high heat input butt weld joint based on the fracture toughness value Kc was proposed (see Patent Document 2).

本出願人が提案した上記溶接継手は、脆性破壊が発生し難く、溶接構造物の安全性を高めることができる点で、有用なものであり、また、上記検証方法は、脆性破壊が発生し難い溶接継手を設計する上で、有用なものである。
しかし、通常の応力負荷環境でき裂が発生しないように設計した溶接継手においても、突発的又は衝撃的な応力や、不規則で複雑な応力を受けて、き裂が発生することがある。
The weld joint proposed by the present applicant is useful in that brittle fracture is unlikely to occur and the safety of the welded structure can be improved. In addition, the verification method described above causes brittle fracture. This is useful in designing difficult welded joints.
However, even in a welded joint designed so as not to generate a crack in a normal stress load environment, a crack may occur due to sudden or impact stress or irregular and complicated stress.

従来、板厚が25mm程度のTMCP鋼板の突合せ溶接継手において、脆性き裂は、溶接継手内部の残留応力の作用により、母材側に逸れていくので、母材の耐脆性き裂伝播特性を高めれば、溶接継手内部で発生した脆性き裂を母材に誘導して停止させることができると考えられていた。
しかしながら、近年、溶接構造物の大型化や、構造の簡素化に伴い、設計応力を高く設定することができることから使用され始めた高張力厚鋼板の場合、突合せ溶接継手で発生した脆性き裂は、溶接継手の破壊抵抗値の程度によっては、母材側に逸れず、HAZ部に沿って伝播することが、本発明者の破壊試験の結果、判明した(非特許文献1、参照)。
Conventionally, in butt welded joints of TMCP steel sheets with a plate thickness of about 25 mm, brittle cracks are deflected to the base metal due to the action of residual stress inside the welded joints, so the brittle crack propagation characteristics of the base metal are reduced. If increased, it was thought that a brittle crack generated inside the welded joint could be guided to the base metal and stopped.
However, the brittle cracks generated in butt welded joints in the case of high-strength thick steel plates that have started to be used because the design stress can be set high with the increase in the size and simplification of the welded structure in recent years. As a result of the inventor's destructive test, it was found that the weld joint does not deviate to the base metal side and propagates along the HAZ portion depending on the degree of the fracture resistance value of the welded joint (see Non-Patent Document 1).

また、本発明者は、板厚が、例えば、70mm以上の鋼板の場合、溶接継手には、板厚方向に大きな靭性分布が形成され、脆性き裂が、例え、溶接継手に交差して補強板を隅肉溶接していても、該補強板で捕捉されず、溶接金属部又はHAZ部に沿って伝播し、溶接継手が破壊に至ることが判明した。   Further, the present inventor has found that when a plate thickness is, for example, a steel plate of 70 mm or more, a large toughness distribution is formed in the welded joint, and a brittle crack crosses the welded joint to reinforce it. Even if the plate was welded with fillet, it was not captured by the reinforcing plate, but propagated along the weld metal part or the HAZ part, and the weld joint was found to be broken.

そこで、本発明者は、上記判明事実を踏まえ、垂直部材の突合せ溶接継手と水平部材の隅肉溶接継手が交差する領域の一部又は全部を除去し、補修溶接により圧縮残留応力を有するNi含有量が2.5質量%以上の靭性に優れた溶接金属(特許文献3、参照)、または、アレスト性能(KCa値)が2000 N/mm1.5以上の破壊靭性の優れた溶接金属(特許文献4、参照)を形成し、脆性き裂が垂直部材の突合せ溶接部の長手方向に沿って伝播した場合でも、このき裂伝播方向を高靭性または高アレスト性能の溶接金属周囲に逸らし、水平部材の母材部で停止させる脆性き裂伝播停止能に優れた溶接継手および溶接方法を提案した。 Therefore, the present inventor, based on the above-mentioned facts, removes part or all of the region where the butt weld joint of the vertical member and the fillet weld joint of the horizontal member intersect, and contains Ni having compressive residual stress by repair welding Weld metal with excellent toughness with an amount of 2.5 mass% or more (see Patent Document 3) or weld metal with excellent fracture toughness with arrest performance (K Ca value) of 2000 N / mm 1.5 or more (Patent Document) 4), and even if the brittle crack propagates along the longitudinal direction of the butt weld of the vertical member, the crack propagation direction is diverted around the weld metal with high toughness or arrest performance, and the horizontal member We proposed a welded joint and welding method with excellent brittle crack propagation stopping ability to stop at the base metal part.

これらの方法は主に1パス大入熱突合せ溶接継手においてFL(溶接金属と母材熱影響部との境界)に沿って伝播するき裂をアレスト性能が高い鋼板側に逸らして母材内で停止させることにより突合せ溶接継手の安全性を向上するものである。   These methods mainly displace cracks propagating along FL (the boundary between the weld metal and the base metal heat-affected zone) in the one-pass large heat input butt welded joint to the steel plate side where the arrest performance is high. By stopping, the safety of the butt weld joint is improved.

しかし、本発明者らは、多層盛突合せ溶接継手の大型破壊試験の結果から、多層盛突合せ溶接継手では、き裂が溶接金属内部で伝播するため、従来の1パス大入熱突合せ溶接継手で有効であった方法を適用しても多層盛突合せ溶接継手では十分な効果が得られないことを確認した。
このため、板厚50mm以上の鋼板の多層盛突合せ溶接継手において発生した脆性き裂を確実に停止し、突合せ溶接継手の大規模損傷を回避する技術が必要となる。
However, from the results of large-scale butt-welded joints, the inventors have found that in multi-layer butt-welded joints, cracks propagate inside the weld metal, so conventional one-pass large heat input butt-welded joints are used. It was confirmed that even if an effective method was applied, a sufficient effect could not be obtained with a multilayer butt-welded joint.
Therefore, there is a need for a technique for reliably stopping a brittle crack generated in a multi-layer butt welded joint of steel plates having a thickness of 50 mm or more and avoiding large-scale damage of the butt welded joint.

特開2005−144552号公報JP 2005-144552 A 特開2006−088184号公報JP 2006-088184 A 特開2005−111520号公報JP 2005-111520 A 特開2006−075874号公報JP 2006-078874 A 溶接構造シンポジウム講演概要集2006、p.195〜202Welded Structure Symposium Abstracts 2006, p. 195-202

本発明は、板厚50mm以上の鋼板を多パスで突合せ溶接する際、溶接継手に、万一、脆性き裂が発生しても、脆性き裂が溶接継手の長手方向に伝播し難く、かつ、伝播してもいずれ停止する特性、即ち、耐脆性き裂伝播特性に優れた溶接継手を形成することを課題とする。
そして、本発明は、上記課題を解決し、耐脆性き裂伝播特性に優れた溶接継手、及び、該溶接継手を有する溶接構造体を提供することを目的とする。
In the present invention, when a steel plate having a thickness of 50 mm or more is butt welded in multiple passes, even if a brittle crack occurs in the welded joint, the brittle crack is difficult to propagate in the longitudinal direction of the welded joint, and It is an object of the present invention to form a welded joint excellent in properties that will stop even if propagated, that is, in brittle crack propagation properties.
And this invention solves the said subject, and aims at providing the welded structure which has the welded joint which was excellent in the brittle crack propagation characteristic, and this welded joint.

本発明者は、上記判明事実を踏まえ、上記課題を解決する手法について鋭意研究した。その結果、多層盛溶接継手の表面溶接層と裏面溶接層の間に、他の溶接層より優れた靭性を有する溶接層を少なくとも一層形成しておけば、この靭性に優れた溶接層が破壊抵抗層として機能し、万一脆性き裂が発生しても、溶接継手の長手方向へのき裂の伝播を抑制するか、又は、伝播を止めることができることを見いだした。
本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
The present inventor has intensively studied a method for solving the above problems based on the above-mentioned facts. As a result, if at least one weld layer having better toughness than the other weld layers is formed between the front surface weld layer and the back surface weld layer of the multi-layer welded joint, the weld layer having excellent toughness will have a fracture resistance. It has been found that even if a brittle crack occurs, it functions as a layer, and the propagation of the crack in the longitudinal direction of the welded joint can be suppressed or the propagation can be stopped.
This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)板厚50mm以上の鋼板の多層盛突合せ溶接継手において、表面溶接層と裏面溶接層間の溶接層のうち、少なくとも一つの溶接層の層全体が、その上層の溶接層の溶接の際に焼戻し効果を付与されてより優れた靭性を有し、溶接継手の長手方向の脆性き裂の伝播を抑制又は止める破壊抵抗層として機能する溶接層として形成されていることを特徴とする耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。
(2)前記破壊抵抗層として機能する溶接層が、溶接継手の厚み方向に複数間隔を置いて形成されていることを特徴とする前記(1)に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。
(3)前記破壊抵抗層として機能する溶接層が、溶接継手の長手方向において連続して形成されていることを特徴とする前記(1)または(2)に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。
(4)前記破壊抵抗層として機能する溶接層が、溶接継手の長手方向において断続して形成されていることを特徴とする前記(1)または(2)に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。
(5)前記破壊抵抗層として機能する溶接層の長さが200mm以上であり、断続間隔が400mm以下であることを特徴とする前記(4)に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。
(6)鋼板を多層盛突合せ溶接した溶接継手部を有する溶接構造体であって、前記溶接継手部のうち、少なくとも脆性き裂が発生し、溶接継手の長手方向に伝播する可能性のある溶接継手部を、前記(1)〜(5)のいずれかに記載の多層盛突合せ溶接継手としたことを特徴とする溶接構造体。
In multi-pass butt welded joint (1) thickness 50mm or more of the steel sheet, of the surface weld layer and back surface weld layers of weld layer, the entire layer of at least one welding layer is, during the welding of the upper layer of the welding layer A brittle-proof flaw characterized by being formed as a welded layer that has a better tempering effect and has better toughness, and functions as a fracture-resistant layer that suppresses or stops the propagation of brittle cracks in the longitudinal direction of welded joints. Multi-layer butt weld joint with excellent crack propagation characteristics.
(2) The weld layer functioning as the fracture resistance layer is formed at a plurality of intervals in the thickness direction of the welded joint, and has excellent brittle crack propagation characteristics as described in (1) above Multi-layer butt weld joint.
(3) The weld layer functioning as the fracture resistance layer is formed continuously in the longitudinal direction of the welded joint, and has the brittle crack propagation characteristics as described in (1) or (2) above Excellent multi-layer butt weld joint.
(4) The weld layer functioning as the fracture resistance layer is formed intermittently in the longitudinal direction of the welded joint, with the brittle crack propagation characteristics as described in (1) or (2) above Excellent multi-layer butt weld joint.
(5) The multi-layer excellent in brittle crack propagation characteristics according to (4) above, wherein the weld layer functioning as the fracture resistance layer has a length of 200 mm or more and an intermittent interval of 400 mm or less. Butt weld joint.
(6) A welded structure having a welded joint part obtained by multi-layer butt welding of steel plates, wherein at least a brittle crack is generated in the welded joint part and may be propagated in the longitudinal direction of the welded joint A welded structure characterized in that the joint portion is the multilayer butt-welded joint according to any one of (1) to (5).

本発明によれば、板厚50mm以上の鋼板の多パス突合せ溶接において、耐脆性き裂伝播特性に優れた溶接継手を形成することができ、その結果、板厚50mm以上の鋼板を用いて、耐脆性き裂伝播特性に優れた溶接構造体を建造することができる。   According to the present invention, in multi-pass butt welding of steel plates having a thickness of 50 mm or more, a welded joint having excellent brittle crack propagation characteristics can be formed.As a result, using a steel plate having a thickness of 50 mm or more, A welded structure with excellent brittle crack propagation characteristics can be constructed.

以下、本発明の実施の形態について、図面に基づいて説明する。
図1に、鋼板1の突合せV開先を多パスで溶接して形成した本発明の多層盛突合せ溶接継手の一態様を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of the multi-layer butt weld joint of the present invention formed by welding the butt V groove of the steel plate 1 by multiple passes.

図1に示した態様においては、各溶接層を、裏面溶接層2bを除いて複数のパスで形成し、多層盛溶接によりそのような溶接層を順次積み上げたものである。
その際、表面溶接層2aと裏面溶接層2bの間の溶接層の中に、溶接層2a、2b及び他の中間の溶接層2cよりも優れた靭性を備える溶接層(以下、高靭性溶接層ともいう。)2xを形成する。
本発明では、そのような高靭性溶接層2xを、その上層の溶接層2cの溶接の際に焼戻し効果を付与されてより優れた靭性を有するようになった層とする。
In the embodiment shown in FIG. 1, each weld layer is formed by a plurality of passes except for the back surface weld layer 2b, and such weld layers are sequentially stacked by multi-layer welding.
At that time, a weld layer (hereinafter referred to as a high toughness weld layer) having toughness superior to the weld layers 2a, 2b and other intermediate weld layers 2c in the weld layer between the front surface weld layer 2a and the back surface weld layer 2b. Also referred to as)) 2x is formed.
In the present invention, such a high toughness weld layer 2x is a layer that has been given a tempering effect during welding of the upper weld layer 2c and has a better toughness.

高靭性溶接層2xを形成するには、まず、その層の各溶接パス(以下、特定溶接パスというときもある。)の入熱を、通常の溶接パスの入熱の70%以下として溶接する。そうすると、図2に示すように、その溶接層は、のど厚Lxが、通常の溶接パス(他の中間の溶接パス)ののど厚Lcより小さい溶接パスで形成される。そして、その層に引き続いてその上層2cを溶接する場合は、各溶接パスを通常の入熱量に戻して、Lxよりも大きいのど厚Lcで溶接する。
これにより、のど厚を小さく形成された溶接パスは、その上層の溶接パスの熱影響により層全体が焼戻される。
In order to form the high toughness weld layer 2x, first, the heat input of each weld pass of the layer (hereinafter sometimes referred to as a specific weld pass) is welded to 70% or less of the heat input of the normal weld pass. . Then, as shown in FIG. 2, the weld layer is formed by a weld pass having a throat thickness Lx smaller than a throat thickness Lc of a normal weld pass (other intermediate weld pass). Then, when the upper layer 2c is welded subsequently to the layer, each welding pass is returned to the normal heat input, and welding is performed with a thickness Lc that is larger than Lx.
As a result, the entire layer of the welding path formed with a small throat thickness is tempered by the heat effect of the upper layer welding path.

このように、溶接層2xは、その上層の溶接パスの熱影響を受けて焼戻され、その焼戻し効果によって他の層より靭性が向上するため、脆性破壊に対する大きな抵抗を有している。
このため、万一溶接継手内部に脆性き裂が発生しても、次に説明するように、高靭性な溶接層2xによって、溶接継手長手方向のき裂の伝播を抑制するか又は止めることができる。
As described above, the weld layer 2x is tempered under the influence of the heat of the upper layer weld path, and the toughness is improved by the tempering effect, so that the weld layer 2x has a large resistance to brittle fracture.
For this reason, even if a brittle crack is generated inside the welded joint, it is possible to suppress or stop the propagation of the crack in the longitudinal direction of the welded joint by the high-toughness weld layer 2x as described below. it can.

溶接継手を構成する多層盛溶接層の中に、高靭性溶接層2xを配置することにより、溶接継手の板厚方向における靭性分布は、溶接層2xのところで、急峻に変化するから、上下に分断された形となる。即ち、図1に示す溶接継手においては、高靭性溶接層2xを挟み、上下に、相対的に低靭性の溶接層2cが存在する。   By disposing the high toughness weld layer 2x in the multilayer weld layer constituting the weld joint, the toughness distribution in the plate thickness direction of the weld joint changes sharply at the weld layer 2x, so it is divided vertically. It becomes the shape that was made. That is, in the welded joint shown in FIG. 1, there are relatively low toughness weld layers 2c above and below the high toughness weld layer 2x.

溶接継手に、例えば、衝撃的な応力が作用すると、高靭性溶接層2xは、脆性破壊し難いから、脆性き裂は、図4に示すように、板厚表面側の脆性き裂Xと板厚裏面側の脆性き裂Yに分岐して生成して、それぞれの側で、溶接層2c中を伝播する。
図4のように、脆性き裂Xは、その両端が継手表面と高靭性溶接層2xに達しているが、脆性き裂Yは、まだ、溶接層2c中に存在しているような場合、2本の脆性き裂X、Yは、ともに、板厚方向に幅の狭いき裂のまま溶接継手の長手方向に伝播して行く。その結果、き裂先端の応力拡大係数が低下して、き裂を伝播させるドライビングフォースが小さくなるので、き裂の伝播が止まり易くなる。
For example, when impact stress acts on the welded joint, the high toughness weld layer 2x is difficult to brittle fracture, so that the brittle crack is composed of the brittle crack X on the plate thickness surface side and the plate as shown in FIG. It splits into a brittle crack Y on the thick back surface side, and propagates through the weld layer 2c on each side.
As shown in FIG. 4, when both ends of the brittle crack X reach the joint surface and the high toughness weld layer 2x, the brittle crack Y still exists in the weld layer 2c. Both the two brittle cracks X and Y propagate in the longitudinal direction of the welded joint while maintaining a narrow crack in the plate thickness direction. As a result, the stress intensity factor at the crack tip is reduced and the driving force for propagating the crack is reduced, so that the crack propagation is likely to stop.

脆性き裂Yが、徐々に、板厚方向に伝播し、図5に示すように、溶接層2cの脆性破壊領域を伝播し高靭性溶接層2xに達すると、溶接層2xにおける脆性き裂X、Y間の延性破壊領域Zで塑性変形が生じ、延性破壊しながら、脆性き裂X、Yの伝播エネルギーを吸収する。
その結果、脆性き裂X、Yは、図6に示すように、板厚表面側及び板厚裏面側において、それぞれ、ある程度伝播したところで、停止することになる。
When the brittle crack Y gradually propagates in the plate thickness direction and propagates through the brittle fracture region of the weld layer 2c and reaches the high toughness weld layer 2x as shown in FIG. 5, the brittle crack X in the weld layer 2x. Plastic deformation occurs in the ductile fracture region Z between Y and Y, and the propagation energy of the brittle cracks X and Y is absorbed while ductile fracture occurs.
As a result, as shown in FIG. 6, the brittle cracks X and Y stop when they propagate to some extent on the plate thickness front side and plate thickness back side.

このため、多層盛突合せ溶接した溶接継手部のうち、少なくとも脆性き裂が発生し、溶接継手の長手方向に伝播する可能性のある溶接継手部に、高靭性溶接層2xを形成しておくことにより、脆性き裂が発生した場合でも、この高靭性溶接層2xが破壊抵抗層として機能し、溶接継手長手方向に沿うき裂の伝播を抑制するかあるいは止めることができるので、多層盛突合せ溶接した溶接継手部を有する溶接構造体の耐脆性き裂伝播特性を向上することができる。   For this reason, the high toughness weld layer 2x is formed in the welded joint part which has a possibility that at least a brittle crack occurs and propagates in the longitudinal direction of the welded joint among the welded joint parts welded by multi-layer butt welding. Thus, even when a brittle crack occurs, this high toughness weld layer 2x functions as a fracture resistance layer, and can suppress or stop the propagation of the crack along the longitudinal direction of the welded joint. The brittle crack propagation characteristics of the welded structure having the welded joint portion can be improved.

以上のような高靭性溶接層2xは、図1に示すような1層のみに限らず、図3に示すように、表面溶接層2aと裏面溶接層2bの間の複数の溶接層の中に、溶接層2a、2b及び2cの靭性より優れた靭性を備える高靭性溶接層2xと2yが、間に溶接層2cを挟んで形成することもできる。この場合にはより脆性き裂の伝播を抑制する性能が高まる。   The high toughness weld layer 2x as described above is not limited to only one layer as shown in FIG. 1, but as shown in FIG. 3, among the plurality of weld layers between the front surface weld layer 2a and the back surface weld layer 2b. The high toughness weld layers 2x and 2y having toughness superior to the toughness of the weld layers 2a, 2b, and 2c can be formed with the weld layer 2c interposed therebetween. In this case, the ability to suppress the propagation of brittle cracks is enhanced.

また、高靭性溶接層は、溶接継手の長手方向に連続して存在することが望ましいが、溶接継手の長手方向において200mm以上の長さが確保されていれば、溶接継手内部に発生した脆性き裂の伝播を抑制するか又は止める機能を発揮するので、溶接継手の長手方向に断続的に存在することも可能である。断続的に形成する場合は、その都度、溶接条件を切り替える必要があり、また、層の途中で層厚が変化することにもなるので、溶接継手の長手方向全長にわたって高靭性溶接層とするのがより好ましい。   In addition, it is desirable that the high toughness weld layer is continuously present in the longitudinal direction of the welded joint. However, if a length of 200 mm or more is secured in the longitudinal direction of the welded joint, the brittleness generated inside the welded joint is ensured. Since it exhibits the function of suppressing or stopping the propagation of cracks, it can also exist intermittently in the longitudinal direction of the welded joint. When forming intermittently, it is necessary to switch the welding conditions each time, and the layer thickness may change in the middle of the layer, so a high toughness weld layer should be formed over the entire length in the longitudinal direction of the welded joint. Is more preferable.

さらに、断続的にする場合には、高靭性溶接層としない部分の長さは400mm以下とする必要がある。断続間隔が400mmを超えると、初期に生成したき裂が伝播して、最終的に形成される一本のき裂の長が400mm以上になる可能性がある。き裂の長さが400mm以上になると、き裂が有するエネルギーが過大となり、高靭性溶接層が充分に機能せずに、高靭性溶接層で脆性き裂を分岐させることが難しくなる。   Furthermore, when making it intermittent, the length of the part which does not become a high toughness weld layer needs to be 400 mm or less. If the intermittent interval exceeds 400 mm, the crack generated at the initial stage may propagate and the length of one finally formed crack may be 400 mm or more. When the crack length is 400 mm or more, the energy of the crack becomes excessive, and the high toughness weld layer does not function sufficiently, and it becomes difficult to branch the brittle crack in the high toughness weld layer.

本発明で対象とする溶接継手は、板厚50mm以上の鋼板を突合せ溶接したものである。溶接継手の開先底部からの板厚方向の高さが50mm以上あれば、複数の溶接層の中に高靭性溶接層を形成しておくことにより、より好ましくは、間に他の溶接層を挟んで複数の高靭性溶接層を形成しておくことにより、高靭性溶接層の上記機能を充分に発揮せしめることができる。特に、鋼板の板厚が70mm以上の場合には高靭性溶接層の機能をより充分に発揮することができる。   The welded joint that is the subject of the present invention is a butt welded steel plate having a thickness of 50 mm or more. If the height in the plate thickness direction from the groove bottom portion of the welded joint is 50 mm or more, it is more preferable to form a high toughness weld layer in the plurality of weld layers, and more preferably to put another weld layer in between. By forming a plurality of high-toughness weld layers by sandwiching them, the above-described function of the high-toughness weld layer can be fully exhibited. In particular, when the thickness of the steel plate is 70 mm or more, the function of the high toughness weld layer can be more fully exhibited.

なお、本発明では、溶接継手を形成する開先形状については、V型、X型、K型、レ型など、特にその種類を限定するものではない。また、溶接継手を形成する際の、溶接姿勢、パス数、多層盛溶接方法などについても、本発明は特に限定されるものではない。   In the present invention, the shape of the groove forming the welded joint is not particularly limited, such as a V-type, an X-type, a K-type, and a ladle. Further, the present invention is not particularly limited with respect to the welding posture, the number of passes, the multi-layer welding method, and the like when forming the welded joint.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この例に限定されるものではない。本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、本発明は種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions used to confirm the feasibility and effects of the present invention, and the present invention is limited to this example. It is not a thing. As long as the object of the present invention is achieved without departing from the gist of the present invention, the present invention can adopt various conditions.

表1に示す鋼板条件及び溶接パス条件で形成した溶接継手を有する試験体を作製し、脆性き裂伝播試験で耐脆性き裂伝播特性を測定した。その結果を、表2に示す。なお、その際に用いた鋼板鋼種の組成を表3に、溶接材料の組成を表4にそれぞれ示した。   Test specimens having welded joints formed under the steel plate conditions and welding pass conditions shown in Table 1 were prepared, and the brittle crack propagation characteristics were measured by a brittle crack propagation test. The results are shown in Table 2. In addition, the composition of the steel plate steel type used at that time is shown in Table 3, and the composition of the welding material is shown in Table 4, respectively.

溶接継手の作製にあたっては、板厚が50mm〜100mmの鋼板を用い、すべての溶接パスを同一の溶接材料を用いて炭酸ガスアーク溶接によって行った。
なお、表4に示す溶接材料としては、溶接金属の降伏強度が36kg/mmおよび47kg/mmを十分満足するように設計された化学組成を有する2種類のフラックス入りワイヤを用いた。
溶接時の開先は、鋼板の板厚と降伏強度に応じて、鋼板端部に、V、XあるいはK型の開先を機械加工により施し、表1に示す入熱量を適用し、溶接長を2500mmとする溶接継手を形成した。
In producing the welded joint, a steel plate having a thickness of 50 mm to 100 mm was used, and all the welding passes were performed by carbon dioxide arc welding using the same welding material.
As the welding material shown in Table 4, two types of flux cored wires having chemical compositions designed so that the yield strength of the weld metal sufficiently satisfies 36 kg / mm 2 and 47 kg / mm 2 were used.
The groove at the time of welding is formed by applying a V, X or K type groove to the end of the steel sheet by machining according to the thickness and yield strength of the steel sheet, applying the heat input shown in Table 1, and welding length A weld joint with a thickness of 2500 mm was formed.

表1中、特定溶接パスが、高靭性溶接層を形成する溶接パスであり、特定溶接パスとそれ以外の基本溶接パスについて、それぞれの溶接時の入熱量を表1に記載した。
また、基本溶接パスの中でも、特定溶接パス層の直上の層を形成する溶接パスは、特定溶接パス層に焼戻し効果(熱影響)を与えてその層の靭性を向上させるため、そのパスの入熱量とパス間温度をそれ以外の溶接パスと区別して記載した。
なお、すべてのパスのパス間温度は、80℃から150℃の範囲となるように溶接施工を行った。
In Table 1, the specific welding pass is a welding pass for forming a high toughness weld layer, and the heat input amount during each welding is shown in Table 1 for the specific welding pass and the other basic welding passes.
Also, among the basic welding passes, the welding pass that forms a layer immediately above the specific welding pass layer gives a tempering effect (thermal effect) to the specific welding pass layer and improves the toughness of that layer. The amount of heat and the temperature between passes are shown separately from other welding passes.
Note that the welding was performed so that the temperature between all the passes was in the range of 80 ° C to 150 ° C.

特定溶接パスは、その溶接ビードの領域全体にわたり、直上の層のパスから十分な熱容量を受ける必要があることから、のど厚Lxが大きくなりすぎないように抑制した。本実施例では、入熱量に加え、溶接ビードの大きさ、すなわち、のど厚Lxを決定する要因となるパス間温度も特に80℃を超えないように制限した。
また、特定溶接パスの直上の層を形成する溶接パスのパス間温度は、特定溶接パスに十分な焼戻し(熱影響)を与えるべく、すべての継手で本実施例での上限のパス間温度である150℃とした。
Since the specific welding pass needs to receive a sufficient heat capacity from the pass of the layer immediately above the entire region of the weld bead, the throat thickness Lx was suppressed from becoming too large. In this example, in addition to the amount of heat input, the size of the weld bead, that is, the temperature between passes, which is a factor for determining the throat thickness Lx, is particularly limited not to exceed 80 ° C.
In addition, the interpass temperature of the weld pass that forms a layer immediately above the specific weld pass is the upper limit pass temperature in this embodiment for all joints in order to give sufficient tempering (thermal effect) to the specific weld pass. It was set to 150 ° C.

高靭性溶接層を形成するために実施する特定溶接パスは、1つの継手中に1層から5層の範囲とした。
表1において、長手方向長さが「連続」とは、高靭性溶接層を形成する溶接ビードを全溶接長である2500mmにわたり施していることを示している。また、長手方向長さおよび長手方向間隔の欄に記載した数値は、それぞれ、高靭性溶接層が継手の溶接長手方向に存在する長さ、および、隣り合う高靭性溶接層どうしの長手方向の間隔を示している。
The specific welding pass performed to form the high toughness weld layer was in the range of 1 to 5 layers in one joint.
In Table 1, the length in the longitudinal direction is “continuous” indicates that the weld bead forming the high toughness weld layer is applied over the entire weld length of 2500 mm. Further, the numerical values described in the columns of the longitudinal length and the longitudinal interval are respectively the length at which the high toughness weld layer exists in the weld longitudinal direction of the joint, and the longitudinal interval between adjacent high toughness weld layers. Is shown.

Figure 0005052976
Figure 0005052976

Figure 0005052976
Figure 0005052976

Figure 0005052976
Figure 0005052976

Figure 0005052976
Figure 0005052976

表1において、No.1〜8は、本発明に従い高靭性溶接層を導入した継手であり、導入にあたり、高靭性溶接層の継手長手方向の分布形態をさまざまに変化させたものである。
このNo.1〜8の発明例において、脆性き裂は、伝播してもその長さは短く、直ぐに停止(アレスト)していることが解る。
In Table 1, Nos. 1 to 8 are joints into which a high toughness weld layer is introduced in accordance with the present invention, and the distribution form in the joint longitudinal direction of the high toughness weld layer is variously changed upon introduction.
This No. In the inventive examples 1 to 8, it can be seen that the brittle crack has a short length even if it propagates and is immediately stopped (arrested).

一方、No.9〜18は比較例であり、特に、No.9〜13及びNo.16〜18は、本発明に係る高靭性溶接層を全く形成していない継手である。また、No.14、15は、継手中に高靭性溶接層を2層あるいは3層形成させたものの、その長手方向長さを200mmまでとし、かつその間隔が400mmを超えている継手である。
No.9〜18の比較例では、すべての場合において、継手全長にわたり脆性き裂が容易に伝播し、アレストされることなく試験体が破断した。
On the other hand, Nos. 9 to 18 are comparative examples, and in particular, Nos. 9 to 13 and Nos. 16 to 18 are joints in which the high toughness weld layer according to the present invention is not formed at all. Nos. 14 and 15 are joints in which two or three high-toughness weld layers are formed in the joint, but the length in the longitudinal direction is up to 200 mm and the interval exceeds 400 mm.
In the comparative examples of Nos. 9 to 18, in all cases, the brittle crack easily propagated over the entire length of the joint, and the specimen was broken without being arrested.

前述したように、本発明によれば、板厚50mm以上の鋼板を用いて、耐脆性き裂伝播特性に優れた溶接継手を有する溶接構造体を建造することができる。したがって、本発明は、溶接構造物の建造分野において、利用可能性が大きいものである。   As described above, according to the present invention, a welded structure having a welded joint having excellent brittle crack propagation characteristics can be constructed using a steel plate having a thickness of 50 mm or more. Therefore, the present invention has great applicability in the field of construction of welded structures.

本発明の多層盛突合せ溶接継手の一態様を示す図である。It is a figure which shows the one aspect | mode of the multilayer butt-welding joint of this invention. 本発明の多層盛突合せ溶接継手を形成する過程を説明する図である。It is a figure explaining the process in which the multilayer butt-welding joint of this invention is formed. 本発明の多層盛突合せ溶接継手の別の態様を示す図である。It is a figure which shows another aspect of the multilayer butt-welding joint of this invention. 本発明の溶接継手において、板厚表面側と板厚裏面側のそれぞれに、脆性き裂が生成した態様を示す図である。It is a figure which shows the aspect in which the brittle crack produced | generated in each of the plate | board thickness surface side and the plate | board thickness back surface side in the welded joint of this invention. 2本の脆性き裂間の領域で、塑性変形が生じ、延性破壊した態様を示す図である。It is a figure which shows the aspect which a plastic deformation produced and ductile fractured in the area | region between two brittle cracks. 板厚表面側及び板厚裏面側において、脆性き裂がある程度伝播し、停止する態様を示す図である。It is a figure which shows the aspect which a brittle crack propagates to some extent and stops on a plate | board thickness surface side and a plate | board thickness back surface side.

符号の説明Explanation of symbols

1 鋼板
2 溶接金属部
2a 表面溶接層
2b 裏面溶接層
2c 多層盛溶接における中間の溶接層
2x、2y 高靭性溶接層
Lx 高靭性溶接層ののど厚
Lc 中間の溶接層ののど厚
X、Y 脆性き裂
Z 延性破壊領域
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Welded metal part 2a Surface weld layer 2b Back surface weld layer 2c Middle weld layer in multi-layer welding 2x, 2y High toughness weld layer Lx High toughness weld layer throat thickness Lc Middle weld layer throat thickness X, Y Brittleness Crack Z Ductile fracture region

Claims (6)

板厚50mm以上の鋼板の多層盛突合せ溶接継手において、表面溶接層と裏面溶接層間の溶接層のうちの少なくとも一つの溶接層の層全体が、その上層の溶接層の溶接の際に焼戻し効果を付与されてより優れた靭性を有し、溶接継手の長手方向の脆性き裂の伝播を抑制又は止める破壊抵抗層として機能する溶接層として形成されていることを特徴とする耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。 In multi-pass butt welded joint having a thickness of 50mm or more of the steel sheet, the whole layer of at least one welding layer of the surface weld layer and back surface weld layers of welding layer, a tempering effect during the welding of the upper layer of the welding layer Brittle crack propagation characteristics characterized by being formed as a welded layer that has a superior toughness and that functions as a fracture resistant layer that suppresses or stops the propagation of brittle cracks in the longitudinal direction of welded joints Multi-layer butt-welded joint with excellent resistance. 前記破壊抵抗層として機能する溶接層が、溶接継手の厚み方向に間隔を置いて複数形成されていることを特徴とする請求項1に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。   The multi-layer butt welding having excellent brittle crack propagation characteristics according to claim 1, wherein a plurality of weld layers functioning as the fracture resistance layer are formed at intervals in the thickness direction of the weld joint. Fittings. 前記破壊抵抗層として機能する溶接層が、溶接継手の長手方向において連続して形成されていることを特徴とする請求項1または2に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。   The multi-layer butt welding with excellent brittle crack propagation characteristics according to claim 1 or 2, wherein the weld layer functioning as the fracture resistance layer is formed continuously in the longitudinal direction of the weld joint. Fittings. 前記破壊抵抗層として機能する溶接層が、溶接継手の長手方向において断続して形成されていることを特徴とする請求項1または2に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。   The multi-layer butt welding having excellent brittle crack propagation characteristics according to claim 1 or 2, wherein the weld layer functioning as the fracture resistance layer is formed intermittently in the longitudinal direction of the weld joint. Fittings. 前記破壊抵抗層として機能する溶接層の長さが200mm以上であり、断続間隔が400mm以下であることを特徴とする請求項4に記載の耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手。   The multilayer butt-welded joint having excellent brittle crack propagation resistance according to claim 4, wherein the weld layer functioning as the fracture resistance layer has a length of 200 mm or more and an intermittent interval of 400 mm or less. . 鋼板を多層盛突合せ溶接した溶接継手部を有する溶接構造体であって、前記溶接継手部のうち、少なくとも脆性き裂が発生し、溶接継手の長手方向に伝播する可能性のある溶接継手部を、請求項1〜5のいずれかに記載の多層盛突合せ溶接継手としたことを特徴とする溶接構造体。   A welded structure having a welded joint part obtained by multi-layer butt welding of steel plates, wherein at least a brittle crack is generated in the welded joint part and a welded joint part that may propagate in the longitudinal direction of the welded joint is provided. A welded structure comprising the multilayer butt-welded joint according to any one of claims 1 to 5.
JP2007177460A 2007-07-05 2007-07-05 Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics Expired - Fee Related JP5052976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177460A JP5052976B2 (en) 2007-07-05 2007-07-05 Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177460A JP5052976B2 (en) 2007-07-05 2007-07-05 Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics

Publications (2)

Publication Number Publication Date
JP2009012049A JP2009012049A (en) 2009-01-22
JP5052976B2 true JP5052976B2 (en) 2012-10-17

Family

ID=40353605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177460A Expired - Fee Related JP5052976B2 (en) 2007-07-05 2007-07-05 Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics

Country Status (1)

Country Link
JP (1) JP5052976B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485022B (en) * 2012-12-28 2015-05-21 China Steel Corp Method of welding steel plates
KR102043520B1 (en) * 2017-12-22 2019-11-12 주식회사 포스코 Welded joint having excellent ctod properties
KR102046952B1 (en) * 2019-01-04 2019-11-20 주식회사 포스코 Welded joint with excellent ctod properties in welding heat affected zone
CN110778804A (en) * 2019-12-04 2020-02-11 中国石油集团渤海石油装备制造有限公司 Oil and gas conveying pipe and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277746A (en) * 1997-04-03 1998-10-20 Babcock Hitachi Kk Tig welded joint and its welding method
JP3811479B2 (en) * 2003-10-08 2006-08-23 新日本製鐵株式会社 Weld metal for welded structure having excellent brittle fracture propagation resistance, its construction method, and welded structure

Also Published As

Publication number Publication date
JP2009012049A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5522317B2 (en) Fillet arc welded joint and method for forming the same
JP4995066B2 (en) Butt multipass weld joint and welded structure with excellent brittle crack propagation characteristics
JP4505368B2 (en) Welded steel structure excellent in brittle crack propagation stopping characteristics and method for producing the same
KR101163350B1 (en) Weld structure having brittle fracture arresting characterstics
JP6203647B2 (en) Laser welded joint of high-strength steel sheet and manufacturing method thereof
JP4733955B2 (en) Welding method of welded structure with excellent brittle crack propagation resistance
JP5052976B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP4546995B2 (en) Butt multipass weld joint and welded structure with excellent brittle crack propagation characteristics
CN102712063B (en) Weld structure having resistance to brittle crack propagation
KR101197884B1 (en) Weld Structure
KR102105614B1 (en) Welding structure
JP2018069323A (en) Producing method of welding joint and repairing method of welding joint
JP5935395B2 (en) Welding assembly groove part for square welding of four-sided box section
KR101187972B1 (en) Weld Structure and Method for Manufacturing The Same
JP4858936B2 (en) Method of imparting brittle crack propagation to welded structures
JP5433928B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
KR20120111436A (en) Weld structure and method for manufacturing the same
JP3811479B2 (en) Weld metal for welded structure having excellent brittle fracture propagation resistance, its construction method, and welded structure
JP5044928B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength
KR101228679B1 (en) Weld Structure and Method for Manufacturing The Same
JP2007262518A (en) Fatigue crack resistant steel sheet for welding having excellent joint fatigue strength
JP6740805B2 (en) Welding method, manufacturing method of welded joint, and welded joint
KR101253955B1 (en) Welding structure
JP5073526B2 (en) Laser welding method for structural members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R151 Written notification of patent or utility model registration

Ref document number: 5052976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees