JPH10277746A - Tig welded joint and its welding method - Google Patents

Tig welded joint and its welding method

Info

Publication number
JPH10277746A
JPH10277746A JP9084919A JP8491997A JPH10277746A JP H10277746 A JPH10277746 A JP H10277746A JP 9084919 A JP9084919 A JP 9084919A JP 8491997 A JP8491997 A JP 8491997A JP H10277746 A JPH10277746 A JP H10277746A
Authority
JP
Japan
Prior art keywords
welding
pass
welded joint
weld metal
tig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9084919A
Other languages
Japanese (ja)
Inventor
Yoshiteru Abe
吉輝 阿部
Koji Tamura
広治 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9084919A priority Critical patent/JPH10277746A/en
Publication of JPH10277746A publication Critical patent/JPH10277746A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a TIG welded joint part with high toughness having an impact value of 50 J/cm<2> or over at 20 deg.C, at which a brittle fracture is said avoidabl, to the welded joint part of refining type low alloy steels manufactured by singly adding or adding after mixing W, V or Nb to 1 to 2.25 CrMo steel, and its welding method. SOLUTION: In this welding, the number of the layers of welded metal layers (average depositing quantity of one pass) is three layers or more, and the welded metal layers other than a final welded metal layer have the fine martensite structure of a grain size No.6 or over. And, the TIB welded joint whose impact value is 50 J/cm<2> or over at 20 deg.C, which is measured with a 2 mmV notch test piece, is obtained, and the welding speed of the welded metal layers on and after a second pass is made to be 7 cm/min or below. The deposition quantity per pass is adjusted to a rage of 0.7 g/cm to 2.5g/cm, or the height of a deposition layer per pass is adjusted to a range of 1.0 mm-3.6 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱交換器や圧力容器
に使用される1〜2.25CrMo鋼にW、VまたはN
bを単独もしくは複合添加した調質型フェライト鋼のT
IG溶接(イナートガスタングステンアーク溶接)継手
およびその溶接方法に関する。
TECHNICAL FIELD The present invention relates to a W, V or N steel for 1-2.25CrMo steel used for heat exchangers and pressure vessels.
b of tempered ferritic steel with or without b added
The present invention relates to an IG welding (inert gas tungsten arc welding) joint and a welding method thereof.

【0002】[0002]

【従来の技術】熱交換器や圧力容器等においては、プラ
ント効率を向上させるために使用圧力や使用温度が高く
なってきている。使用温度の高温化や使用圧力の高圧化
に伴い、耐圧部では高温強度特性と耐食性の優れた材料
が必要となる。近年、こうした要求に応えるため、これ
まで一般的に使用されてきたオーステナイト鋼あるいは
フェライト鋼に、VあるいはNbといった元素を単独ま
たは複合添加して高温強度を高めた材料が開発されてい
る。その代表例の一つがアメリカのORNLで開発され
たMod.9Cr−1Mo鋼であり、この材料は従来から使
用されているCrMo鋼に、VとNbを複合添加し、焼
ならし、焼もどし熱処理等の、いわゆる調質熱処理によ
ってクリープ破断強度を飛躍的に高めることに成功して
いる。この材料はすでに実用化され、多くの発電用ボイ
ラに使用されている。こうした流れを受けて、Mod.9C
r−1Mo鋼といった高Cr鋼だけでなく、1〜2.2
5CrMo鋼のような低合金鋼においてもW、Vまたは
Nbを添加した調質型の高強度フェライト鋼が開発され
ている。上記したようなCrMo鋼に、W、VまたはN
bを単独もしくは複合添加して、調質した高強度フェラ
イト鋼を構造部材として適用する場合に、使用材料の強
度に見合った溶接材料を用い、MIG溶接、MAG溶
接、被覆アーク溶接あるいはTIG溶接といったアーク
溶接法によって、複数のパス(pass:溶接の進行方
向に沿って行う1回の溶接操作)からなる、いわゆる多
層盛り溶接が行われる。 溶接継手部は、一般的な検査
としてX線検査等で内在する欠陥の有無を調べるが、発
電用ボイラのように、高圧で使用される構造物の場合に
は、通常、完成後または使用中の供用検査時に、水圧試
験等の耐圧試験により溶接部の健全性が確認される。こ
のとき溶接部(溶接金属部および熱影響部)の靱性が著
しく低いと、X線検査で見過ごされた欠陥や、表面の鋭
い凹凸を起点とする脆性破壊が起こる恐れがあるため、
溶接部は耐圧試験に耐え得る靱性を有する必要がある。
要求される靱性の目安として、一般に、20℃で50J
/cm2以上の衝撃値(2mmVノッチ試験片基準)が
必要とされている。Mod.9Cr-1Mo鋼の溶接部の場
合、その溶接金属の20℃の衝撃値は、通常、50J/
cm2以上の値が得られることが確認されている。しか
し、1〜2.25CrMo鋼に、W、VまたはNbを単
独もしくは複合添加して、調質した高強度フェライト鋼
の溶接継手部の溶接金属は、強化のために添加される成
分の影響のため、その硬さは、従来の1〜2.25Cr
Mo鋼の溶接継手部の溶接金属に比べて硬くなり易く、
結果的に脆くなって、必要とされる衝撃値を満足しない
ことが分かり始めてきた。具体的に説明すると、アーク
溶接法によって作製された溶接継手部の溶接金属の衝撃
特性は、溶接法と溶接材料によって異なり、従来の知見
では、TIG溶接法による溶接金属の衝撃特性は他の溶
接法と比較して優れているとされているものの、1〜
2.25CrMo鋼に、W、VまたはNbを単独もしく
は複合添加した調質型の低合金鋼を、実際にTIG溶接
法で溶接して、その溶接金属の衝撃値を測定すると、通
常は20℃で45J/cm2以下となることが知られて
いる。TIG溶接法においては、通常20〜30kJ程
度の入熱量を、10kJ程度に抑えて、1パスの溶着量
を少なくし、後続のパスからの熱影響によって溶着金属
の改質(凝固組織の破壊と微細化等)を狙った、いわゆ
る低入熱溶接法と呼ばれる方法が採用されることがある
(以下、10kJ程度の入熱で溶接する場合を低入熱溶
接法と呼ぶ)。上述したMod.9Cr-1Mo鋼において
は、Cr量が多いため、焼きが入り易く凝固組織はマル
テンサイト組織に近くなる。この鋼を低入熱溶接法で溶
接した場合、マルテンサイト組織は、その後のパスから
の熱影響を受けて微細化され、靱性が改善される。この
ような例として、特開平1−237074号公報が挙げ
られるが、これは溶着量を2mm以下に抑えることによ
り靱性を確保することができるとしている。しかし、1
〜2.25CrMo鋼に、W、VまたはNbを単独、も
しくは複合添加した調質型の低合金鋼の場合は、通常、
溶接金属の大部分が凝固組織となる。しかもW、Vまた
はNb等の強化元素の影響により凝固組織が破壊されに
くいため、低入熱TIG溶接法では焼もどしを受けにく
く、溶接金属の衝撃値は20℃で30J/cm2程度に
しかならない。溶接金属の靱性を向上させる他の手段と
して、溶接継手部に対して長時間の溶接後の熱処理を行
う方法がある。これは、凝固のままに近い溶接金属の硬
い組織を、溶接後の熱処理によって軟化することで靱性
の向上をはかったものである。しかし、焼ならし焼もど
し熱処理等の調質熱処理によって高強度化したフェライ
ト鋼は、焼もどし条件が厳しくなると、析出した炭化物
の分解あるいは凝集等によって母材強度が低下する恐れ
があるため、こうした溶接後の熱処理による靱性の改善
法には限界があった。
2. Description of the Related Art In a heat exchanger, a pressure vessel and the like, a working pressure and a working temperature are increasing in order to improve plant efficiency. As the operating temperature is increased and the operating pressure is increased, materials having excellent high-temperature strength characteristics and corrosion resistance are required in the pressure-resistant portion. In recent years, in order to meet such a demand, a material has been developed in which an element such as V or Nb is added singly or in combination with an element such as V or Nb to an austenitic steel or a ferritic steel which has been generally used so far, to increase the high-temperature strength. One of the representative examples is Mod.9Cr-1Mo steel developed by ORNL in the United States. This material is a CrMo steel that has been used in the past, and V and Nb are added in combination, normalizing and tempering heat treatment. And so on, and succeeded in dramatically increasing the creep rupture strength by so-called tempering heat treatment. This material has already been put into practical use and is used in many power generation boilers. In response to this trend, Mod.9C
Not only high Cr steel such as r-1Mo steel but also 1-2.
Even in low alloy steels such as 5CrMo steel, tempered high-strength ferritic steels to which W, V or Nb is added have been developed. W, V or N is applied to CrMo steel as described above.
b, alone or in combination, when tempered high-strength ferritic steel is applied as a structural member, use a welding material suitable for the strength of the material used, such as MIG welding, MAG welding, coated arc welding or TIG welding. By the arc welding method, so-called multi-layer welding, which includes a plurality of passes (pass: one welding operation performed in the welding direction), is performed. As a general inspection, weld joints are inspected for the presence of internal defects by X-ray inspection or the like. In the case of structures used at high pressure, such as boilers for power generation, they are usually completed or in use. During service inspection, the soundness of the weld is confirmed by a pressure test such as a water pressure test. At this time, if the toughness of the welded portion (welded metal portion and heat-affected zone) is extremely low, there is a risk that defects overlooked in X-ray inspection and brittle fracture starting from sharp irregularities on the surface may occur.
The weld must have toughness to withstand the pressure test.
As a guide for required toughness, generally 50J at 20 ° C
/ Cm 2 or more ( 2 mm V notch test piece standard) is required. In the case of a Mod.9Cr-1Mo steel weld, the impact value of the weld metal at 20 ° C. is typically 50 J /
It has been confirmed that a value of not less than cm 2 can be obtained. However, by adding W, V or Nb alone or in combination to 1-2.25CrMo steel, the weld metal of the welded joint of the tempered high-strength ferritic steel is affected by the effect of the components added for strengthening. Therefore, its hardness is the conventional 1-2.25Cr
It is easy to be harder than the weld metal of the weld joint of Mo steel,
As a result, it has become apparent that the material becomes brittle and does not satisfy the required impact value. More specifically, the impact characteristics of the weld metal in the weld joint produced by the arc welding method differ depending on the welding method and the welding material. According to conventional knowledge, the impact characteristics of the weld metal by the TIG welding method are different from those of other welding methods. Although it is said to be superior to the law,
When a tempered low alloy steel obtained by adding W, V or Nb alone or in combination with 2.25CrMo steel is actually welded by the TIG welding method and the impact value of the weld metal is measured, it is usually 20 ° C. Is known to be 45 J / cm 2 or less. In the TIG welding method, the heat input of about 20 to 30 kJ is normally suppressed to about 10 kJ, the amount of welding in one pass is reduced, and the reforming of the deposited metal by the influence of heat from the subsequent pass (the destruction of the solidified structure and A method called so-called low heat input welding method aiming at miniaturization or the like may be adopted (hereinafter, a case where welding is performed with a heat input of about 10 kJ is called a low heat input welding method). In the above-mentioned Mod.9Cr-1Mo steel, since the amount of Cr is large, it is easy to be quenched and the solidification structure is close to the martensite structure. When this steel is welded by a low heat input welding method, the martensitic structure is refined under the influence of heat from a subsequent pass, and the toughness is improved. Japanese Patent Application Laid-Open No. 1-237074 is an example of such an example, which states that toughness can be ensured by suppressing the amount of welding to 2 mm or less. However, 1
In the case of a tempered low alloy steel obtained by adding W, V, or Nb alone or in combination to ~ 2.25CrMo steel,
Most of the weld metal has a solidified structure. In addition, since the solidified structure is not easily destroyed by the influence of reinforcing elements such as W, V or Nb, it is hard to be tempered by the low heat input TIG welding method, and the impact value of the weld metal is only about 30 J / cm 2 at 20 ° C. No. As another means for improving the toughness of the weld metal, there is a method of performing a heat treatment after welding for a long time on the welded joint. This is to improve the toughness by softening the hard structure of the weld metal which is almost solidified by heat treatment after welding. However, ferritic steels that have been strengthened by tempering heat treatment such as normalizing and tempering heat treatment, when the tempering conditions are severe, may reduce the base metal strength due to decomposition or aggregation of precipitated carbides. There is a limit to the method of improving toughness by heat treatment after welding.

【0003】[0003]

【発明が解決しようとする課題】1〜2.25CrMo
鋼に、W、VまたはNbを単独もしくは複合添加した調
質型の低合金鋼同士の溶接継手部の溶接金属は、いわゆ
る低入熱溶接法を用いても、靱性を向上させることは事
実上不可能に近く、溶接部に欠陥が存在すると耐圧試験
の時に溶接継手部で脆性破壊が生じる恐れがある。
SUMMARY OF THE INVENTION 1-2.25CrMo
It is virtually impossible to improve the toughness of a weld metal of a welded joint between tempered low-alloy steels in which W, V, or Nb is added alone or in combination with steel, even when a so-called low heat input welding method is used. Nearly impossible, if there is a defect in the weld, brittle fracture may occur in the weld joint during the pressure test.

【0004】本発明の目的は、1〜2.25CrMo鋼
に、W、VまたはNbを単独、もしくは複合添加した調
質型の低合金鋼同士の溶接継手部に対し、脆性破壊が避
けられるとされている20℃で50J/cm2以上の衝
撃値を有する高靱性のTIG溶接継手部が得られる溶接
方法を提供することにある。
An object of the present invention is to prevent brittle fracture of a welded joint between tempered low alloy steels obtained by adding W, V or Nb alone or in combination to 1-2.25CrMo steel. Another object of the present invention is to provide a welding method capable of obtaining a high toughness TIG welded joint having an impact value of 50 J / cm 2 or more at 20 ° C.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、本発明は請求項1に記
載のように、1〜2.25CrMo鋼に、W、Vまたは
Nbの単独添加もしくは複合添加した調質型のフェライ
ト鋼同士を溶接する溶接継手であって、少なくともパス
数が3回以上、すなわち溶接金属層の層数が3層以上で
あり、最終の溶接金属層以外の溶接金属層が、結晶粒度
番号6以上の微細なマルテンサイト組織を有し、かつ2
mmVノッチ衝撃試験片で測定される衝撃値が20℃で
50J/cm2以上有するTIG溶接継手とするもので
ある。また、本発明は請求項2に記載のように、請求項
1に記載のTIG溶接継手を溶接する方法であって、第
2パス以降の溶接金属層の溶接速度を7cm/min以
下とし、かつ1パス当たりの溶着量を0.7g/cmか
ら2.5g/cmの範囲に調整して溶接を行うTIG溶
接方法とするものである。また、本発明は請求項3に記
載のように、請求項1に記載のTIG溶接継手を溶接す
る方法であって、第2パス以降の溶接金属層の溶接速度
を7cm/min以下とし、かつ1パス当たりの溶着層
の高さが1.0mm以上、かつ3.6mm以下の範囲に調
整して溶接を行うTIG溶接方法とするものである。本
発明のTIG溶接継手は、請求項1に記載のように、1
〜2.25CrMo鋼に、W、VまたはNbを単独もし
くは複合添加した調質型の低合金鋼のTIG溶接継手で
あって、パス数が3回以上、すなわち溶接金属層の層数
を3層以上として、最終の溶接金属層以外の溶接金属層
が、結晶粒度番号6以上の微細なマルテンサイト組織と
することにより、2mmVノッチ衝撃試験片で測定され
る衝撃値が20℃で50J/cm2以上有する高靱性の
溶接金属を容易に得ることができ、例えば、ボイラ等の
構造物の脆性破壊を防止することが可能となり、構造物
の安全性および信頼性が向上できる効果がある。また、
本発明のTIG溶接方法は、請求項2に記載のように、
溶接速度は7cm/min以下とし、溶着量0.7
g/cm以上、2.5g/cm以下の溶接条件とする
か、もしくは請求項3に記載のように、溶接速度を7
cm/min以下とし、1パスの積層高さを1mm以
上、3.6mm以下の範囲となるように溶接条件を調整
するだけで高靱性の溶接金属が得られる効果がある。
Means for Solving the Problems In order to achieve the object of the present invention, the present invention is configured as described in the claims. That is, as described in claim 1, the present invention is a welded joint for welding tempered ferritic steels to which only W, V or Nb has been added alone or in combination to 1-2.25CrMo steel, The number of passes is at least three times, that is, the number of weld metal layers is three or more, and the weld metal layers other than the final weld metal layer have a fine martensite structure with a crystal grain size of 6 or more, and 2
This is a TIG welded joint having an impact value of not less than 50 J / cm 2 at 20 ° C. measured with a mmV notch impact test piece. Also, the present invention provides a method for welding a TIG welded joint according to claim 1, wherein the welding speed of the weld metal layer after the second pass is 7 cm / min or less, and This is a TIG welding method in which welding is performed by adjusting the amount of deposition per pass from 0.7 g / cm to 2.5 g / cm. Also, the present invention provides a method for welding a TIG welded joint according to claim 1, wherein the welding speed of the weld metal layer after the second pass is 7 cm / min or less, and This is a TIG welding method in which the height of the welded layer per pass is adjusted to 1.0 mm or more and 3.6 mm or less to perform welding. The TIG welded joint according to the present invention has the following features.
A TIG welded joint of a tempered low alloy steel in which W, V or Nb is added alone or in combination to 2.25CrMo steel, the number of passes is three or more, that is, the number of weld metal layers is three. As described above, by setting the weld metal layers other than the final weld metal layer to have a fine martensite structure having a crystal grain size number of 6 or more, the impact value measured with a 2 mm V notch impact test piece at 50 ° C. at 20 ° C. is 50 J / cm 2. The high-toughness weld metal having the above properties can be easily obtained, and for example, it is possible to prevent brittle fracture of a structure such as a boiler, which has the effect of improving the safety and reliability of the structure. Also,
According to the TIG welding method of the present invention,
The welding speed is 7 cm / min or less, and the welding amount is 0.7
g / cm or more and 2.5 g / cm or less, or a welding speed of 7 g / cm or less.
cm / min or less, the effect of obtaining a high toughness weld metal is obtained only by adjusting the welding conditions so that the lamination height of one pass is in the range of 1 mm to 3.6 mm.

【0006】ここで、本発明のTIG溶接継手およびそ
の溶接方法において、溶接条件範囲を決定した根拠につ
いて説明する。一般に、溶接金属は、溶融直後は凝固組
織を示し、その後のパスからの熱影響を受けて、オース
テナイト化温度以上に加熱された領域では凝固組織が破
壊され、冷却速度が早い場合には、マルテンサイト組織
を示すようになる。さらに、その後のパスからの熱影響
を受けて、オーステナイト化温度直下に加熱されたマル
テンサイト組織の領域は微細化される。通常の1〜2.
25CrMo鋼の溶接継手部の溶接金属は、凝固組織が
後パスからの熱影響によって容易に微細化されることに
より靱性は改善されるが、1〜2.25CrMo鋼に、
W、VまたはNbを単独もしくは複合添加した調質型の
低合金鋼では、強化のために添加されたV等の元素の影
響によって容易には焼もどしされないので、凝固組織は
微細化されにくい。以上のことから、溶接入熱を有効に
活用できるように溶接条件を調整して、凝固組織を微細
化させることで靱性の改善をはかることができる。ま
ず、溶接速度に制限を設けた理由について説明する。図
1は、衝撃値に及ぼす溶接速度と、各パスの平均溶着量
の影響を示したものである。溶接速度が7cm/min
以下のものは、熱源の移動速度が遅いため、後パスから
の加熱時間が長くなり、前パスの組織は十分に焼もどし
される。この場合、溶着量にもよるが、衝撃値の要求値
である20℃で50J/cm2以上を満たす。 しか
し、7cm/minより速い場合は、加熱時間が短いた
め、前パスの組織は十分に焼もどしされない。そのた
め、溶着量によらず、衝撃値の必要値を満足させない。
以上のことから、溶接速度は7cm/min以下である
ことが必要である。次に、溶着量に制限を設けた理由を
示す。溶着した直後の溶接金属も一つの熱源と考えられ
るので、1パスあたりの溶着量が少ないと、溶着した溶
接金属の熱容量が小さくなるため冷却され易く、前パス
の溶接金属を十分に焼もどしするに至らない。そのため
には、ある程度の溶着量が必要となるが、図1に示した
結果によると、溶着量の下限は、溶着量が0.7g/c
m以上であれば衝撃値の要求値を満足させることができ
る。このことから、本発明では1パスあたりの溶着量の
下限を0.7g/cmとした。この本発明の範囲で溶接
を行った場合、溶接速度が遅くても、溶着量は十分に多
いので、溶接作業時間は従来の条件と同等となる。しか
し、1パスあたりの溶着量が多くなると、溶着した溶接
金属の底部と表面部との温度差が大きくなり、高温割れ
が発生する場合がある。図1に示した結果では、溶着量
が2.5g/cmよりも多くなると、高温割れが発生し
やすくなる。したがって、本発明では1パスあたりの溶
着量の上限を2.5g/cm以下とした。次に、1パス
の積層高さに制限を設けた理由を示す。靱性を決定する
因子の一つにミクロ組織があるが、1〜2.25CrM
o鋼にW、VまたはNbを単独、もしくは複合添加した
調質型の低合金鋼を低入熱溶接法で溶接した場合は、溶
接金属の組織に凝固組織が多く残存している。1〜2.
25CrMo鋼にW、VまたはNbを単独、もしくは複
合添加した調質型の低合金鋼は、V等の添加元素の影響
によって焼もどしされにくい組成であり、この成分系の
溶接材料は低入熱溶接法では十分に前パスの溶接金属を
焼もどすことができない。
Here, the basis for determining the welding condition range in the TIG welded joint and the method for welding the same according to the present invention will be described. In general, the weld metal shows a solidified structure immediately after melting, and the solidified structure is destroyed in a region heated to a temperature higher than the austenitizing temperature due to the influence of heat from a subsequent pass. Start to show site organization. Further, under the influence of heat from the subsequent pass, the region of the martensite structure heated just below the austenitizing temperature is refined. Normal 1-2.
The toughness of the weld metal of the 25CrMo steel weld joint is improved because the solidification structure is easily refined by the influence of heat from the rear pass.
A tempered low alloy steel to which W, V or Nb is added alone or in combination is not easily tempered due to the effect of elements such as V added for strengthening, so that the solidified structure is hard to be refined. From the above, it is possible to improve the toughness by adjusting the welding conditions so as to effectively utilize the welding heat input and making the solidification structure finer. First, the reason why the welding speed is limited will be described. FIG. 1 shows the influence of the welding speed on the impact value and the average welding amount of each pass. 7cm / min welding speed
In the following, since the moving speed of the heat source is slow, the heating time from the rear pass becomes longer, and the structure of the front pass is sufficiently tempered. In this case, at 20 ° C., which is the required impact value, it satisfies 50 J / cm 2 or more, although it depends on the amount of welding. However, when the speed is higher than 7 cm / min, the heating time is short, so that the structure of the previous pass is not sufficiently tempered. Therefore, the required impact value is not satisfied regardless of the welding amount.
From the above, the welding speed needs to be 7 cm / min or less. Next, the reason why the welding amount is limited will be described. Since the weld metal immediately after welding is also considered to be one heat source, if the amount of welding per pass is small, the heat capacity of the weld metal that has been welded becomes small, so that it is easy to cool, and the weld metal of the previous pass is sufficiently tempered. Does not reach. For this purpose, a certain amount of welding is required, but according to the results shown in FIG. 1, the lower limit of the welding amount is that the welding amount is 0.7 g / c.
If m or more, the required impact value can be satisfied. For this reason, in the present invention, the lower limit of the amount of welding per pass is set to 0.7 g / cm. When welding is performed within the range of the present invention, the welding operation time is equivalent to the conventional condition because the welding amount is sufficiently large even if the welding speed is low. However, when the amount of welding per pass increases, the temperature difference between the bottom and the surface of the weld metal that has been welded increases, and hot cracking may occur. According to the results shown in FIG. 1, when the amount of welding exceeds 2.5 g / cm, hot cracking is likely to occur. Therefore, in the present invention, the upper limit of the amount of welding per pass is set to 2.5 g / cm or less. Next, the reason why a limit is imposed on the stack height of one pass will be described. One of the factors that determine toughness is microstructure.
In the case where a tempered low alloy steel obtained by adding W, V, or Nb alone or in combination with the steel is welded by a low heat input welding method, a large solidified structure remains in the structure of the weld metal. 1-2.
A tempered low alloy steel obtained by adding W, V, or Nb alone or in combination to 25CrMo steel has a composition that is not easily tempered by the influence of additional elements such as V. The welding material of this component system has a low heat input. In the welding method, the weld metal of the previous pass cannot be sufficiently tempered.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【表2】 [Table 2]

【0009】表2の比較例の溶接条件に示す通り、積層
高さ(パス高さ)で、1.0mm未満のものは衝撃値の
要求値を満足させないことから、本発明では1パスの積
層高さの下限値を1mm以上と定めた。また、1パスの
積層高さが高すぎると、前パスからの熱影響を受けられ
ず凝固組織のまま残存する領域が増える結果、靱性の改
善はできない。表1に示すとおり、1パスの積層高さが
3.6mm以下のとき、必要とされる衝撃値を満足する
ことから、本発明では1パスの積層高さの上限を3.6
mmとした。本発明において、溶接速度と溶着量を独立
に制御することが可能であるホットワイヤTIG溶接法
を用いると、通常のTIG溶接よりもさらに大入熱が得
られ、より靱性を向上することが可能となる。
As shown in the welding conditions of the comparative example in Table 2, a lamination height (pass height) of less than 1.0 mm does not satisfy the required impact value. The lower limit of the height was set to 1 mm or more. On the other hand, if the lamination height in one pass is too high, the region that is not affected by the heat from the previous pass and remains as a solidified structure increases, so that the toughness cannot be improved. As shown in Table 1, when the lamination height of one pass is 3.6 mm or less, the required impact value is satisfied. Therefore, in the present invention, the upper limit of the lamination height of one pass is 3.6.
mm. In the present invention, by using a hot wire TIG welding method capable of independently controlling the welding speed and the welding amount, a larger heat input can be obtained than in normal TIG welding, and the toughness can be further improved. Becomes

【0010】[0010]

【発明の実施の形態】次に、本発明の実施の形態の一例
を挙げ、さらに具体的に説明する。図2は、溶接継手の
断面を模式的に示したものである。母材1の開先を突合
せて、溶接材料2によって、パス3を盛る。パス3は、
後続のパス3′からの熱影響を受けて、一部が焼もどし
された組織4となる。そして、複数のパス3によって溶
接継手5が作製される。なお、hは1パスの積層高さを
示す。上記の表1に、本実施の形態で示す溶接法の溶接
条件、衝撃値、パス高さhを示す。上記の表2は、比較
例としての溶接条件を示す。表1および表2に示す母材
1である供試材の化学成分は、表3および表5にまとめ
て示す。
Next, an example of an embodiment of the present invention will be described in more detail. FIG. 2 schematically shows a cross section of the welded joint. The groove of the base material 1 is butted, and the pass 3 is formed by the welding material 2. Pass 3 is
Under the influence of heat from the subsequent pass 3 ', a partially tempered structure 4 is formed. Then, the welded joint 5 is manufactured by the plurality of passes 3. In addition, h shows the lamination | stacking height of 1 pass. Table 1 above shows welding conditions, impact values, and path heights h of the welding method described in the present embodiment. Table 2 above shows welding conditions as a comparative example. The chemical components of the test material as the base material 1 shown in Tables 1 and 2 are summarized in Tables 3 and 5.

【0011】[0011]

【表3】 [Table 3]

【0012】[0012]

【表4】 [Table 4]

【0013】[0013]

【表5】 [Table 5]

【0014】[0014]

【表6】 [Table 6]

【0015】表3は、2.25Cr−Mo−W−V−N
b系フェライト鋼の母材1の化学成分であり、表4に示
す2.25Cr−Mo−W−V−Nb系フェライト鋼用
の溶接材料2である供試ワイヤを用いて溶接した。表5
は、1Cr−Mo−V系フェライト鋼の母材1の化学成
分であり、表6に示す1Cr−Mo−V系フェライト鋼
の溶接材料2である供試ワイヤを用いて溶接した。作製
した溶接継手の板厚の中央部から、JIS4号衝撃試験
片を採取した。ノッチ方向はサイドで、ノッチ位置は溶
接金属の中央とした。これら採取した試験片を用い、J
IS Z2242に基づいて衝撃試験を行った。衝撃試
験の温度は20℃とし、各試験条件で3本の衝撃試験を
行った。実施の形態、およびは、1Cr−Mo−
V系フェライト鋼、実施の形態、およびは、2.
25Cr−Mo−V−Nb系フェライト鋼のTIG溶接
継手である。このうち実施の形態、およびは、ホ
ットワイヤのTIG溶接法を用いた場合である。いずれ
も、自動TIG溶接装置を用いており、溶接速度は7c
m/min以下であり、かつ、溶着量は0.7g/cm
〜2.5g/cmの範囲に調整した。ミクロ組織を観察
した結果、板厚の半分以上の領域が結晶粒度番号6以上
の微細なマルテンサイト組織を示した。表1から明らか
なように、実施の形態〜の衝撃値の平均値は、20
℃で50J/cm2以上であった。本実施の形態では、
溶接速度および溶着量を容易に管理できることから、自
動TIG溶接装置を用いたが、手動によって溶接を行う
ことも可能である。表2に示す比較例AおよびBは、溶
接速度が7.0cm/min以下であるが、溶着量は0.
7g/cm未満である。比較例AおよびBでは、20℃
での衝撃値の平均値は50J/cm2以下であった。比
較例CおよびDは、溶接速度は7.0cm/min以下
であるが、溶着量が2.5g/cm以上の場合を示す。
これらにおいては、いずれも高温割れが発生した。比較
例E、F、G、H、IおよびJは、いずれも溶接速度が
7cm/min以上の場合である。このうち比較例E
は、従来技術の低入熱溶接法の一例である。これらの比
較例では溶着量に関係なく、20℃での衝撃値が50J
/cm2以下であり、衝撃値の要求値を満足しない。ま
た、比較例EおよびHでは、比較例AおよびBと同様
に、パス高さは、いずれも1mm未満であり、ミクロ組
織観察の結果、板厚の半分以上の領域が凝固組織のまま
であった。
Table 3 shows 2.25Cr-Mo-WVN.
Welding was performed using a test wire which is a chemical component of the base material 1 of the b-based ferritic steel and is a welding material 2 for the 2.25Cr-Mo-W-V-Nb-based ferritic steel shown in Table 4. Table 5
Is a chemical composition of the base material 1 of the 1Cr-Mo-V ferritic steel, and was welded using a test wire which is a welding material 2 of the 1Cr-Mo-V ferritic steel shown in Table 6. A JIS No. 4 impact test piece was collected from the center of the plate thickness of the produced welded joint. The notch direction was the side, and the notch position was the center of the weld metal. Using these test pieces, J
An impact test was performed based on IS Z2242. The temperature of the impact test was 20 ° C., and three impact tests were performed under each test condition. Embodiments and 1Cr-Mo-
V-based ferritic steel, embodiments, and 2.
It is a TIG welded joint of 25Cr-Mo-V-Nb-based ferritic steel. Among them, the embodiment and the case where the hot wire TIG welding method is used. All use automatic TIG welding equipment, welding speed is 7c
m / min or less, and the welding amount is 0.7 g / cm.
Adjusted to the range of ~ 2.5 g / cm. As a result of observing the microstructure, a region more than half of the plate thickness showed a fine martensite structure having a crystal grain size of 6 or more. As is clear from Table 1, the average value of the impact values of Embodiments 1 to 20 is 20
It was 50 J / cm 2 or more at ° C. In the present embodiment,
Although an automatic TIG welding device was used because the welding speed and the amount of welding can be easily controlled, welding can also be performed manually. Comparative Examples A and B shown in Table 2 have a welding speed of 7.0 cm / min or less, but a welding amount of 0.1 cm / min.
It is less than 7 g / cm. In Comparative Examples A and B, 20 ° C.
Average value of the impact value was 50 J / cm 2 or less. Comparative Examples C and D show the case where the welding speed is 7.0 cm / min or less, but the welding amount is 2.5 g / cm or more.
In each of these, hot cracking occurred. Comparative Examples E, F, G, H, I and J are all cases where the welding speed is 7 cm / min or more. Comparative Example E
Is an example of a conventional low heat input welding method. In these comparative examples, the impact value at 20 ° C. was 50 J regardless of the welding amount.
/ Cm 2 or less, and does not satisfy the required impact value. Further, in Comparative Examples E and H, as in Comparative Examples A and B, the pass height was less than 1 mm, and as a result of microstructure observation, a region having a half or more of the plate thickness remained a solidified structure. Was.

【0016】[0016]

【発明の効果】本発明によれば、1〜2.25CrMo
鋼に、W、VまたはNbを単独、もしくは複合添加した
調質型フェライト鋼の溶接金属においても、高靱性の溶
接金属が得られ、ボイラ等の構造物の脆性破壊を確実に
防止することができるため、構造物の安全性および信頼
性の向上において多大の効果がある。
According to the present invention, 1-2.
Even in the weld metal of tempered ferritic steel in which W, V or Nb is added alone or in combination with steel, a high toughness weld metal can be obtained, and brittle fracture of structures such as boilers can be reliably prevented. Therefore, there is a great effect in improving the safety and reliability of the structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のTIG溶接継手の溶接金属の衝撃値に
及ぼす溶接速度と各パスの平均溶着量の関係を示す図。
FIG. 1 is a graph showing the relationship between the welding speed and the average amount of deposition in each pass on the impact value of a weld metal of a TIG welded joint of the present invention.

【図2】本発明の実施の形態で例示した溶接継手の断面
構造の一例を示す模式図。
FIG. 2 is a schematic view showing an example of a cross-sectional structure of a welded joint exemplified in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…母材 2…溶接材料 3…パス 3′…後続のパス 4…焼もどしされた組織 5…溶接継手 h…1パスの積層高さ DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Welding material 3 ... Pass 3 '... Subsequent pass 4 ... Tempered structure 5 ... Weld joint h ... Stack height of 1 pass

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/00 301 C22C 38/00 301B // B23K 101:14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/00 301 C22C 38/00 301B // B23K 101: 14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】1〜2.25CrMo鋼に、W、Vまたは
Nbの単独添加もしくは複合添加した調質型のフェライ
ト鋼同士を溶接する溶接継手であって、少なくともパス
数が3回以上、すなわち溶接金属層の層数が3層以上で
あり、最終の溶接金属層以外の溶接金属層が、結晶粒度
番号6以上の微細なマルテンサイト組織を有し、かつ2
mmVノッチ衝撃試験片で測定される衝撃値が20℃で
50J/cm2以上有することを特徴とするTIG溶接
継手。
A welded joint for welding tempered ferritic steels obtained by adding W, V or Nb alone or in combination to 1-2.25CrMo steel, wherein the number of passes is at least three or more. The number of weld metal layers is 3 or more, and the weld metal layers other than the final weld metal layer have a fine martensite structure with a crystal grain size number of 6 or more, and 2
A TIG welded joint having an impact value of not less than 50 J / cm 2 at 20 ° C. measured with a mmV notch impact test piece.
【請求項2】請求項1に記載のTIG溶接継手を溶接す
る方法であって、第2パス以降の溶接金属層の溶接速度
を7cm/min以下とし、かつ、1パス当たりの溶着
量を0.7g/cmから2.5g/cmの範囲に調整して
溶接を行うことを特徴とするTIG溶接方法。
2. The method for welding a TIG welded joint according to claim 1, wherein the welding speed of the weld metal layer after the second pass is 7 cm / min or less, and the amount of welding per pass is 0. A TIG welding method, wherein welding is performed by adjusting the range from 0.7 g / cm to 2.5 g / cm.
【請求項3】請求項1に記載のTIG溶接継手を溶接す
る方法であって、第2パス以降の溶接金属層の溶接速度
を7cm/min以下とし、かつ1パス当たりの溶着層
の高さが1.0mm以上、かつ3.6mm以下の範囲に調
整して溶接を行うことを特徴とするTIG溶接方法。
3. The method for welding a TIG welded joint according to claim 1, wherein the welding speed of the weld metal layer after the second pass is set to 7 cm / min or less, and the height of the welded layer per pass. The welding method is characterized in that the welding is performed by adjusting the thickness to a range of 1.0 mm or more and 3.6 mm or less.
JP9084919A 1997-04-03 1997-04-03 Tig welded joint and its welding method Pending JPH10277746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9084919A JPH10277746A (en) 1997-04-03 1997-04-03 Tig welded joint and its welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9084919A JPH10277746A (en) 1997-04-03 1997-04-03 Tig welded joint and its welding method

Publications (1)

Publication Number Publication Date
JPH10277746A true JPH10277746A (en) 1998-10-20

Family

ID=13844130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9084919A Pending JPH10277746A (en) 1997-04-03 1997-04-03 Tig welded joint and its welding method

Country Status (1)

Country Link
JP (1) JPH10277746A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012049A (en) * 2007-07-05 2009-01-22 Nippon Steel Corp Multi-layer butt weld joint superior in brittle crack propagation resistant characteristic and weld structure body
JP2018153816A (en) * 2017-03-15 2018-10-04 住友重機械工業株式会社 Multilayer welding method and multilayer welding joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012049A (en) * 2007-07-05 2009-01-22 Nippon Steel Corp Multi-layer butt weld joint superior in brittle crack propagation resistant characteristic and weld structure body
JP2018153816A (en) * 2017-03-15 2018-10-04 住友重機械工業株式会社 Multilayer welding method and multilayer welding joint

Similar Documents

Publication Publication Date Title
KR101172953B1 (en) Austenitic heat resisting alloy
US7591410B2 (en) Methods for extending the life of alloy steel welded joints by elimination and reduction of the HAZ
JP3565331B2 (en) High strength low alloy heat resistant steel
JP5527455B2 (en) Base material of high toughness clad steel plate and method for producing the clad steel plate
EP0804993B1 (en) Alloy foil capable of liquid-phase diffusion welding of heat-resisting material in oxidizing atmosphere
WO2002090610A1 (en) Ferritic heat-resistant steel
CN109266971B (en) Reheating crack resistant W-containing high-strength low-alloy heat-resistant steel
JP2016130339A (en) High strength ferrite heat proof steel structure and production method thereof
EP0757111A1 (en) Liquid-phase diffusion bonding alloy foil for heat-resistant material which is joinable in oxidizing atmosphere
JPH11320097A (en) Weld joint structure of high cr ferrite steel
Gauzzi et al. Microstructural transformations in austenitic-ferritic transition joints
JP3733902B2 (en) Low alloy ferritic heat resistant steel
JPH10277746A (en) Tig welded joint and its welding method
KR102165756B1 (en) Ferritic heat-resistant steel welded structure manufacturing method and ferritic heat-resistant steel welded structure
JP3582463B2 (en) Welding material and metal for low alloy heat resistant steel
Bhaduri et al. Optimised post-weld heat treatment procedures and heat input for welding 17–4PH stainless steel
JPH0787989B2 (en) Gas shield arc welding method for high strength Cr-Mo steel
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JPH0636996B2 (en) Submerged arc welding wire for 9Cr-Mo steel
EP0531589B1 (en) Low-alloy steel, clad with stainless steel by overlay welding and resisting delamination at the interface caused by hydrogen
JP7477763B2 (en) Method for manufacturing welded joint using low-temperature Ni steel and welded joint obtained by the method
Zhang et al. Recent developments in welding consumables for P (T) 91 creep resisting steels
JP6950294B2 (en) Manufacturing method of joints by multi-layer welding
Li et al. Study of modified 9Cr-1Mo welds
CN115156758A (en) Welding wire for GH4202 alloy dissimilar welding and welding method thereof