JP7339511B2 - Welded joint and manufacturing method thereof - Google Patents

Welded joint and manufacturing method thereof Download PDF

Info

Publication number
JP7339511B2
JP7339511B2 JP2019147268A JP2019147268A JP7339511B2 JP 7339511 B2 JP7339511 B2 JP 7339511B2 JP 2019147268 A JP2019147268 A JP 2019147268A JP 2019147268 A JP2019147268 A JP 2019147268A JP 7339511 B2 JP7339511 B2 JP 7339511B2
Authority
JP
Japan
Prior art keywords
metal plate
triple point
insert
metal
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019147268A
Other languages
Japanese (ja)
Other versions
JP2021028070A (en
Inventor
広志 島貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019147268A priority Critical patent/JP7339511B2/en
Publication of JP2021028070A publication Critical patent/JP2021028070A/en
Application granted granted Critical
Publication of JP7339511B2 publication Critical patent/JP7339511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、溶接継手およびその製造方法に関する。 The present invention relates to welded joints and methods of making same.

突き合わせられた2枚の金属板の片面側(表面側)から突合せ溶接する場合、金属板(主板)の裏面に裏当て金を予め取り付けて溶接することが一般的である。裏当て金を用いて片面溶接を行う場合、応力集中部となる溶接ルート部の裏当て金と主板との間のスリットの先端部位に溶接を施している。しかし、輸送管や建築鉄骨の柱などの様に人が内側に入ることのできない中空部材や容器などでは、溶接施工や疲労き裂発生防止対策を金属板の裏面側(内側)から施すことができない。 When butt-welding two butted metal plates from one side (front side), it is common to attach a backing metal to the back side of the metal plate (main plate) in advance before welding. When single-sided welding is performed using a backing metal, welding is performed at the tip of the slit between the backing metal and the main plate at the welding root portion where stress is concentrated. However, for hollow parts and containers where people cannot enter, such as transportation pipes and building steel pillars, it is possible to apply welding or measures to prevent fatigue cracks from the back side (inside) of the metal plate. Can not.

そこで、例えば下記特許文献1から特許文献4には、突き合わせられる鋼板や鋼管の端部に曲げ加工を施すことで鋼板や鋼管の面外に張り出した開先を形成し、突き合わせ溶接する方法が開示されている。また、下記特許文献5および特許文献6には、開先の一部を鋼板の面外に張り出した形状に成型して溶接する方法が開示されている。これらの技術によれば、主板から裏面側に滑らかに張り出す形で裏当て金となる張り出し部が形成されるため、裏面から溶接を施す必要はない。ところで、特許文献7には縦板を曲げて平板に垂直に突き合せ、隅肉溶接する方法が開示されている。 Therefore, for example, Patent Documents 1 to 4 below disclose a method of butt-welding a steel plate or steel pipe to be butted together by bending the ends of the steel plate or steel pipe to form a groove projecting out of the plane of the steel plate or steel pipe. It is Further, Patent Documents 5 and 6 below disclose a method of forming a groove into a shape protruding out of the surface of a steel plate and welding the steel plate. According to these techniques, since the projecting portion that becomes the backing metal is formed in a shape that smoothly projects from the main plate to the rear surface side, welding from the rear surface is not necessary. By the way, Patent Literature 7 discloses a method of bending a vertical plate and vertically butting it against a flat plate and performing fillet welding.

特開平09-164496号公報JP-A-09-164496 特開2009-740号公報JP-A-2009-740 特開平11-10383号公報JP-A-11-10383 特開昭59-92167号公報JP-A-59-92167 特開2009-34696号公報JP-A-2009-34696 特開昭59-70466号公報JP-A-59-70466 特開2010-221235号公報JP 2010-221235 A

しかし、上記特許文献1から特許文献6に記載の技術では、張り出し部の寸法を加味して突き合わせられる鋼板同士の間隔を精密に制御する必要がある。例えば、突き合わせられる鋼板同士の間隔が大きすぎればアークがルート側から抜けてしまうために溶接が難しくなり、当該間隔を小さくしようして鋼板同士を近付け過ぎると互いの張り出し部が邪魔になり、所定の場所に溶接継手を収めることができない場合がある。特許文献7のようなL字状の溶接継手や、その他T字継手、十字継手も同様な問題が生じる場合がある。 However, in the techniques described in Patent Literatures 1 to 6, it is necessary to precisely control the interval between the steel plates that are butted against each other in consideration of the dimensions of the projecting portions. For example, if the gap between the butted steel plates is too large, the arc will escape from the root side, making welding difficult. It may not be possible to fit the welded joint in place. L-shaped welded joints such as those disclosed in Patent Document 7, T-shaped joints, and cruciform joints may also have similar problems.

そこで、本発明は、片面突合せ溶接を行う際に突き合わせられる金属板同士の間隔の施工誤差による溶接施工への影響が軽減され得る溶接継手およびその製造方法を提供することを課題とする。 Accordingly, an object of the present invention is to provide a welded joint and a method of manufacturing the same that can reduce the influence on welding execution due to construction errors in the spacing between metal plates that are butted together when performing single-sided butt welding.

本発明は、下記の溶接継手およびその製造方法を要旨とする。 The gist of the present invention is the following welded joint and method for manufacturing the same.

(1)第1金属板と、
表面及び裏面を有し、端部において前記裏面側に張り出した張り出し部を有する第2金属板と、
前記第1金属板の表面と、前記第2金属板の前記張り出し部を含む端面との間に形成された開先と、
前記開先のルート側に配置された入れ金と、
前記開先に充填されている溶接金属と、
を備える、溶接継手。
(2)前記入れ金、前記第1金属板及び前記溶接金属の境界線の交点を第1の三重点とし、
前記入れ金、前記第2金属板及び前記溶接金属の境界線の交点を第2の三重点とし、
前記第1の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX1とし、
前記第2の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX2とし、
前記第2金属板の前記裏面と、前記第1の三重点を含む前記裏面に平行な面と、の距離をY1とし、
前記第2金属板の前記裏面と、前記第2の三重点を含む前記裏面に平行な面と、の距離をY2とするとき、
下記式1:
Y1/X1-(Y2/X2)/4≧0.34 かつ Y2/X2-(Y1/X1)/3≧0.25 (1)
を満たす、上記(1)に記載の溶接継手。
(3)前記第2金属板の前記表面側の溶接トウ部に、深さが0.1mm以上かつ0.5mm以下であり、幅が1.5mm以上の溝状のピーニング処理部を有する、上記(1)または(2)に記載の溶接継手。
(4)表面及び裏面を有し且つ端部において前記裏面側に張り出した張り出し部を有する第2金属板を、第1金属板の表面と前記第2金属板の前記張り出し部を含む端面との間に開先が形成されるように前記第1金属板と突合せる突き合わせ工程と、
前記開先のルート側に入れ金を配置する配置工程と、
前記開先に溶接金属を充填する溶接工程と、
を備える溶接継手の製造方法。
(5)前記入れ金、前記第1金属板及び前記溶接金属の境界線の交点を第1の三重点とし、
前記入れ金、前記第2金属板及び前記溶接金属の境界線の交点を第2の三重点とし、
前記第1の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX1とし、
前記第2の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX2とし、
前記第2金属板の前記裏面と、前記第1の三重点を含む前記裏面に平行な面と、の距離をY1、
前記第2金属板の前記裏面と、前記第2の三重点を含む前記裏面に平行な面と、の距離をY2とするとき、
下記式1:
Y1/X1-(Y2/X2)/4≧0.34 かつ Y2/X2-(Y1/X1)/3≧0.25 (1)
を満たす、上記(4)に記載の溶接継手の製造方法。
(6)前記溶接工程の後、前記第2金属板の表面側の溶接トウ部に、深さが0.1mm以上かつ0.5mm以下であり、幅が1.5mm以上の溝状のピーニング処理部を形成する、上記(4)又は(5)に記載の溶接継手の製造方法。
(1) a first metal plate;
a second metal plate having a front surface and a back surface, and having an overhanging portion projecting toward the back surface at an end;
a groove formed between the surface of the first metal plate and an end face including the projecting portion of the second metal plate;
a insert disposed on the root side of the groove;
a weld metal filled in the groove;
a welded joint.
(2) the intersection of the boundary lines of the insert, the first metal plate and the weld metal is defined as a first triple point;
The second triple point is the intersection of the boundary lines of the insert, the second metal plate and the weld metal,
Let X1 be the component of the distance from the first triple point to the base of the projecting portion of the second metal plate parallel to the material axis direction of the second metal plate,
Let X2 be the component of the distance from the second triple point to the base of the projecting portion of the second metal plate parallel to the material axis direction of the second metal plate,
Letting Y1 be the distance between the back surface of the second metal plate and a plane parallel to the back surface including the first triple point,
When the distance between the back surface of the second metal plate and the plane parallel to the back surface including the second triple point is Y2,
Formula 1 below:
Y1/X1-(Y2/X2)/4≧0.34 and Y2/X2-(Y1/X1)/3≧0.25 (1)
The welded joint according to (1) above, which satisfies:
(3) The above, wherein the welding toe portion on the surface side of the second metal plate has a groove-shaped peening treatment portion having a depth of 0.1 mm or more and 0.5 mm or less and a width of 1.5 mm or more. The welded joint according to (1) or (2).
(4) A second metal plate having a front surface and a back surface, and having an overhanging portion projecting toward the back surface at an end, is provided between the surface of the first metal plate and the end surface including the overhanging portion of the second metal plate. A butting step of butting with the first metal plate so that a groove is formed therebetween;
an arrangement step of arranging a insert on the root side of the groove;
a welding step of filling the groove with a weld metal;
A method of manufacturing a welded joint comprising:
(5) A first triple point is defined as an intersection of boundary lines of the insert, the first metal plate and the weld metal;
The second triple point is the intersection of the boundary lines of the insert, the second metal plate and the weld metal,
Let X1 be the component of the distance from the first triple point to the base of the projecting portion of the second metal plate parallel to the material axis direction of the second metal plate,
Let X2 be the component of the distance from the second triple point to the base of the projecting portion of the second metal plate parallel to the material axis direction of the second metal plate,
Y1 is the distance between the back surface of the second metal plate and a plane parallel to the back surface including the first triple point;
When the distance between the back surface of the second metal plate and the plane parallel to the back surface including the second triple point is Y2,
Formula 1 below:
Y1/X1-(Y2/X2)/4≧0.34 and Y2/X2-(Y1/X1)/3≧0.25 (1)
The method for manufacturing a welded joint according to (4) above, which satisfies:
(6) After the welding step, a groove-shaped peening treatment having a depth of 0.1 mm or more and 0.5 mm or less and a width of 1.5 mm or more is performed on the weld toe portion on the surface side of the second metal plate. The method for manufacturing a welded joint according to (4) or (5) above, wherein a portion is formed.

本発明によって、片面突合せ溶接を行う際に突き合わせられる金属板同士の間隔の施工誤差による溶接施工への影響が軽減され得る溶接継手およびその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION By this invention, the welding joint which can reduce the influence on welding work by the construction error of the space|interval of the metal plates which are butt|matched when performing single-sided butt welding, and its manufacturing method can be provided.

図1は、本発明の実施形態に係る溶接継手を模式的に示す側面図である。FIG. 1 is a side view schematically showing a welded joint according to an embodiment of the invention. 図2は、本発明の実施形態に係る溶接継手の溶接部の詳細を示す側面図である。FIG. 2 is a side view showing details of a welded portion of a welded joint according to an embodiment of the present invention. 図3は、張り出し部の形成方法の一例を模式的に示す側面図である。FIG. 3 is a side view schematically showing an example of a method of forming the projecting portion. 図4は、裏当て金を用いた場合のルート未溶着部の発生応力を示した図である。FIG. 4 is a diagram showing the stress generated in the unwelded portion of the root when a backing metal is used. 図5は、図4で解析した従来の裏当て金を用いた場合の溶接継手を模式的に示す側面図である。FIG. 5 is a side view schematically showing a welded joint when the conventional backing metal analyzed in FIG. 4 is used. 図6は、公称応力と第1の三重点の材軸方向応力との関係を示した図である。FIG. 6 is a diagram showing the relationship between the nominal stress and the material axial stress at the first triple point. 図7は、公称応力と第2の三重点の材軸方向応力との関係を示した図である。FIG. 7 is a diagram showing the relationship between the nominal stress and the material axial stress at the second triple point. 図8は、判定指標Wおよび判定指標Bと三重点の応力集中倍率との関係を示した図である。FIG. 8 is a diagram showing the relationship between the determination index W and the determination index B and the stress concentration ratio of the triple point. 図9は、本発明の実施形態に係る溶接継手の第2金属板に引張荷重を加えたときの、第1金属板及び第2金属板の応力分布を模式的に示す側面図である。FIG. 9 is a side view schematically showing stress distribution in the first metal plate and the second metal plate when a tensile load is applied to the second metal plate of the welded joint according to the embodiment of the present invention. 図10は、図9の溶接継手の溶接ルート部付近の応力の流線を模式的に示す側面図である。10 is a side view schematically showing stress streamlines near the weld root portion of the welded joint of FIG. 9. FIG.

以下、本発明の実施形態に係る溶接継手およびその製造方法について説明する。 A welded joint and a method for manufacturing the same according to embodiments of the present invention will be described below.

(溶接継手)
本実施形態に係る溶接継手は、第1金属板と、表面及び裏面を有し、端部において前記裏面側に張り出した張り出し部を有する第2金属板と、前記第1金属板の表面と前記第2金属板の前記張り出し部を含む端面との間に形成された開先と、前記開先のルート側に配置された入れ金と、前記開先に充填されている溶接金属と、を備える。
(welded joint)
The welded joint according to the present embodiment includes a first metal plate, a second metal plate having a front surface and a back surface, and a projecting portion projecting toward the back surface at an end, a surface of the first metal plate and the a groove formed between the second metal plate and an end surface including the projecting portion; a insert disposed on the root side of the groove; and a weld metal filling the groove. .

図1は、本発明の実施形態に係る溶接継手を模式的に示す側面図である。図1に示す溶接継手100は、第1金属板1、第2金属板2、溶接金属部3および入れ金5を主な構成として備えている。 FIG. 1 is a side view schematically showing a welded joint according to an embodiment of the invention. A welded joint 100 shown in FIG. 1 includes a first metal plate 1, a second metal plate 2, a weld metal portion 3, and a insert 5 as main components.

第1金属板1および第2金属板2は、それぞれが表面及び裏面を有し、第1金属板1の表面と第2金属板2の端部とで溶接可能な材料であれば特に限定されないが、例えば板状または管状である。本願において、第1金属板1の表面及び裏面は特に区別されない。第2金属板2は、第1金属板1の表面に開先を有するように突き合わせられ、突き合わせられる側の端部において第2金属板2の裏面側に張り出した張り出し部4を有する。図1において、第2金属板2が溶接金属部3と接する部分が張り出し部4の端部である。第1金属板1および第2金属板2は、第1金属板の表面と第2金属板の張り出し部を含む端面との間に開先を有する。 The first metal plate 1 and the second metal plate 2 each have a front surface and a back surface, and are not particularly limited as long as they are made of a material that can be welded between the front surface of the first metal plate 1 and the end of the second metal plate 2. is, for example, plate-like or tubular. In the present application, the front surface and the back surface of the first metal plate 1 are not particularly distinguished. The second metal plate 2 is abutted against the surface of the first metal plate 1 so as to have a groove, and has an overhang portion 4 that overhangs the back side of the second metal plate 2 at the end on the abutting side. In FIG. 1 , the portion where the second metal plate 2 contacts the welded metal portion 3 is the end portion of the overhang portion 4 . The first metal plate 1 and the second metal plate 2 have grooves between the surface of the first metal plate and the end face including the projecting portion of the second metal plate.

第2金属板2は、張り出し部4を除く部位において所定の厚さを有する。第1金属板1および第2金属板2の厚さは特に限定されないが、例えば3~200mmの厚みを有してもよい。図1および図2では、第1金属板1および第2金属板2の厚さが同一である例を示しているが、第1金属板1および第2金属板2の厚さは互いに異なっていてもよい。 The second metal plate 2 has a predetermined thickness except for the projecting portion 4 . Although the thicknesses of the first metal plate 1 and the second metal plate 2 are not particularly limited, they may have a thickness of 3 to 200 mm, for example. 1 and 2 show an example in which the thicknesses of the first metal plate 1 and the second metal plate 2 are the same, but the thicknesses of the first metal plate 1 and the second metal plate 2 are different from each other. may

図1および図2では、第1金属板1と第2金属板2とが垂直に配置される例を示しているが、第1金属板1の表面に第2金属板2の張り出し部4の端面が突き合わされるように、互いに非平行に配置されていればよい。第1金属板1および第2金属板2の材料は特に限定されないが、それぞれ、例えば、鋼、アルミニウム、ステンレス等からなる。 1 and 2 show an example in which the first metal plate 1 and the second metal plate 2 are arranged vertically. It suffices if they are arranged non-parallel to each other so that the end faces abut each other. Although the materials of the first metal plate 1 and the second metal plate 2 are not particularly limited, they are made of, for example, steel, aluminum, stainless steel, or the like.

本実施形態の溶接継手によれば、第1金属板1の表面と第2金属板2の張り出し部4の端部とを突き合せる際に、開先の寸法に関して施工誤差があったとしても溶接施工への影響が軽減され得る。そのため、開先の寸法は特に限定されるものではないが、例えば、第1金属板1または第2金属板2の板厚の1~100%としてもよい。開先の寸法は、第2金属板2の材軸方向に平行な方向において最も短い長さである。 According to the welded joint of the present embodiment, when the surface of the first metal plate 1 and the end of the projecting portion 4 of the second metal plate 2 are butted against each other, even if there is an error in the size of the groove, welding The impact on construction can be reduced. Therefore, although the size of the groove is not particularly limited, it may be 1 to 100% of the plate thickness of the first metal plate 1 or the second metal plate 2, for example. The dimension of the groove is the shortest length in the direction parallel to the material axis direction of the second metal plate 2 .

溶接金属部3は、上記のように突き合わせられる第1金属板1の表面および第2金属板2の端面によって形成される開先に充填された溶接金属からなる。 The weld metal portion 3 is made of the weld metal filled in the groove formed by the surface of the first metal plate 1 and the end face of the second metal plate 2 which are butted as described above.

入れ金5は、開先のルート側に配置される。入れ金5が開先内のルート側に配置されることにより、溶接の際に溶接金属がルート側から漏れ出ることを抑制することができる。 A insert 5 is placed on the root side of the groove. By arranging the insert 5 on the root side in the groove, it is possible to suppress leakage of the weld metal from the root side during welding.

入れ金5を構成する材料は、張り出し部4を含む第1金属板1および第2金属板2と溶接によって接合される材料であれば特に限定されないが、例えば鋼、アルミニウム、ステンレス等であることができ、好ましくは、第1金属板1及び第2金属板2と同種の材料である。 The material constituting the insert 5 is not particularly limited as long as it is a material that can be joined by welding to the first metal plate 1 and the second metal plate 2 including the projecting portion 4. For example, it may be steel, aluminum, stainless steel, or the like. , preferably the same kind of material as the first metal plate 1 and the second metal plate 2 .

入れ金5の形状は、溶接の際に溶接金属がルート側から漏れ出さないように開先内のルート側に配置可能であれば、特に限定されるものではなく、図1に示すように楔形状若しくは逆三角形の断面形状、または逆台形、四角形、菱形、円形、楕円形等の断面形状を有することができる。本願において、断面とは、第2金属板2の材軸方向及び板厚方向に平行に、溶接継手の中心軸を通るように切断した面をいう。 The shape of the insert 5 is not particularly limited as long as it can be arranged on the root side of the groove so that the weld metal does not leak from the root side during welding. It can have a shape or an inverted triangular cross-sectional shape, or an inverted trapezoidal, square, rhomboidal, circular, elliptical, etc. cross-sectional shape. In the present application, a cross section refers to a plane cut parallel to the material axis direction and plate thickness direction of the second metal plate 2 so as to pass through the central axis of the welded joint.

入れ金5の寸法は、溶接の際に溶接金属がルート側から漏れ出さないように第1金属板1の表面と第2金属板2の張り出し部4との間に配置可能であれば、特に限定されるものではないが、入れ金5の第2金属板2の材軸方向に平行な方向の最大長さは、好ましくは、第2金属板2の板厚の5~50%であり、第2金属板2の板厚方向に平行な方向の最大長さが、好ましくは、第2金属板2の板厚の12~125%である。 The dimensions of the insert 5 are particularly so that it can be arranged between the surface of the first metal plate 1 and the projecting portion 4 of the second metal plate 2 so that the weld metal does not leak from the root side during welding. Although not limited, the maximum length of the insert 5 in the direction parallel to the material axis direction of the second metal plate 2 is preferably 5 to 50% of the plate thickness of the second metal plate 2, The maximum length of the second metal plate 2 in the direction parallel to the thickness direction is preferably 12 to 125% of the thickness of the second metal plate 2 .

入れ金5は、入れ金5の断面形状において細い部分が第2金属板2の裏面側に配置されるように、開先内に配置され得る。 The insert 5 can be arranged in the groove so that the thin portion of the cross-sectional shape of the insert 5 is arranged on the back surface side of the second metal plate 2 .

入れ金5は、好ましくは楔形状または略逆台形の断面形状を有する。図1では、入れ金5の細い側の先端が尖っているが、入れ金5の先端は必ずしも尖っている必要はなく、入れ金5の断面形状は略逆台形でもよい。入れ金5が、楔形状または略逆台形の断面形状を有する場合、入れ金5が、開先の形状、すなわち第1金属板1の表面と第2金属板2の張り出し部4との隙間の形状に整合しやすく、開先を効率的に埋めて固定され得る。 The insert 5 preferably has a wedge-shaped or generally inverted trapezoidal cross-sectional shape. In FIG. 1, the tip of the thin side of the insert 5 is pointed, but the tip of the insert 5 does not necessarily have to be sharp, and the cross-sectional shape of the insert 5 may be substantially inverted trapezoid. When the insert 5 has a wedge-shaped or substantially inverted trapezoidal cross-sectional shape, the insert 5 has a groove shape, that is, a gap between the surface of the first metal plate 1 and the overhanging portion 4 of the second metal plate 2. It is easy to conform to the shape and can be fixed by filling the groove efficiently.

図1では、入れ金5の太い側の端面が第2金属板2の表面と平行になっているが、入れ金5の太い側の端面は、第1金属板1および第2金属板2の表面と非平行でもよく、曲面等となっていてもよい。 In FIG. 1 , the thick end face of the insert 5 is parallel to the surface of the second metal plate 2 , but the thick end face of the insert 5 is parallel to the first metal plate 1 and the second metal plate 2 . It may be non-parallel to the surface, or may be curved or the like.

溶接の際に溶接金属がルート側から漏れ出さない程度の隙間が、開先内における入れ金5の側面と第1金属板1および第2金属板2との間に形成されていてもよい。後述する三重点よりも第2金属板2の裏面側において、入れ金5の側面と張り出し部4とが溶接されず、隙間(スリット)が形成されてもよい。 A gap may be formed between the side surface of the insert 5 and the first metal plate 1 and the second metal plate 2 in the groove so that the weld metal does not leak from the root side during welding. A gap (slit) may be formed without welding the side surface of the insert 5 and the projecting portion 4 on the back surface side of the second metal plate 2 from the triple point described later.

入れ金5は、好ましくは、入れ金5の側面が第1金属板1の表面及び第2金属板2の開先角度のうち少なくとも一方と実質的に同等の角度を有する。入れ金5は、より好ましくは、入れ金5の側面が第1金属板1の表面及び第2金属板2の開先角度と実質的に同等の角度を持ち、入れ金5が、第1金属板1の表面と第2金属板2の開先との間に隙間なく配置される形状を有する。入れ金5が、前記好ましい形状を有することにより、入れ金5は、開先をより良好に埋めて固定され得る。 The insert 5 preferably has a side surface of the insert 5 having an angle substantially equal to at least one of the surface of the first metal plate 1 and the groove angle of the second metal plate 2 . More preferably, the insert 5 has a side surface of the insert 5 having an angle substantially equal to the groove angle of the surface of the first metal plate 1 and the groove angle of the second metal plate 2, and the insert 5 It has a shape that is arranged without a gap between the surface of the plate 1 and the groove of the second metal plate 2 . Due to the preferred shape of the insert 5, the insert 5 can be fixed by filling the groove better.

入れ金5は、溶接方向において一体物である必要はない。入れ金5は、開先のルート側から溶接アークが吹き抜けない程度に開先内に詰め込むことができれば、溶接方向に分割されていてもよい。施工誤差によってルート部の開口量(第1金属板1および第2金属板2の間隔)が位置によって異なる場合、寸法が互いに異なる入れ金5を複数用意し、それらを開先内に配置することによって、溶接金属部3の全ての部位において溶接金属の十分な溶け込み深さを確保し得る。 The insert 5 need not be integral in the welding direction. The insert 5 may be divided in the welding direction as long as it can be packed into the groove to such an extent that the welding arc does not blow through from the root side of the groove. If the opening amount of the root portion (interval between the first metal plate 1 and the second metal plate 2) varies depending on the position due to construction error, prepare a plurality of inserts 5 with different dimensions and arrange them in the groove. Thus, a sufficient penetration depth of the weld metal can be ensured in all parts of the weld metal portion 3 .

好ましくは、本実施形態の溶接継手は、前記入れ金、前記第1金属板及び前記溶接金属の境界線の交点を第1の三重点とし、前記入れ金、前記第2金属板及び前記溶接金属の境界線の交点を第2の三重点とし、前記第1の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX1とし、前記第2の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX2とし、前記第2金属板の前記裏面と、前記第1の三重点を含む前記裏面に平行な面と、の距離をY1とし、前記第2金属板の前記裏面と、前記第2の三重点を含む前記裏面に平行な面と、の距離をY2とするとき、
下記式1:
Y1/X1-(Y2/X2)/4≧0.34 かつ Y2/X2-(Y1/X1)/3≧0.25 (1)
を満たす。
Preferably, in the welded joint of the present embodiment, the intersection of boundary lines of the insert, the first metal plate and the weld metal is the first triple point, and the insert, the second metal plate and the weld metal The second triple point is defined as the intersection of the boundary lines, and the component parallel to the material axis direction of the second metal plate of the distance from the first triple point to the root of the overhanging portion of the second metal plate is X1 and the component parallel to the material axis direction of the second metal plate of the distance from the second triple point to the root of the overhanging portion of the second metal plate is X2, and the back surface of the second metal plate and , and the plane parallel to the back surface containing the first triple point, and the distance between the back surface of the second metal plate and the plane parallel to the back surface containing the second triple point is Y1. When the distance is Y2,
Formula 1 below:
Y1/X1-(Y2/X2)/4≧0.34 and Y2/X2-(Y1/X1)/3≧0.25 (1)
meet.

次に、本実施形態の溶接継手の溶接部の寸法について説明する。 Next, the dimensions of the welded portion of the welded joint of this embodiment will be described.

図2は、本実施形態の溶接継手の溶接部を示す側面模式図である。図2には、本実施形態における溶接継手の溶接部の各部の寸法を示している。 FIG. 2 is a schematic side view showing the welded portion of the welded joint of this embodiment. FIG. 2 shows the dimensions of each portion of the welded portion of the welded joint in this embodiment.

図2において、P1は、第1金属板1、溶接金属部3および入れ金5の交点である三重点である。P2は、第2金属板2、溶接金属部3および入れ金5の交点である三重点である。 In FIG. 2, P1 is the triple point, which is the intersection of the first metal plate 1, the weld metal part 3 and the insert 5. In FIG. P2 is the triple point that is the intersection of the second metal plate 2, the weld metal part 3 and the insert 5;

X1は、三重点P1から張り出し部4の根元P3までの、第2金属板2の材軸方向距離である。X2は、三重点P2から張り出し部4の根元P3までの、第2金属板2の材軸方向距離である。張り出し部4の根元とは、金属板裏面における屈曲開始位置をいう。 X1 is the material axial distance of the second metal plate 2 from the triple point P1 to the base P3 of the projecting portion 4 . X2 is the axial distance of the second metal plate 2 from the triple point P2 to the base P3 of the projecting portion 4; The base of the projecting portion 4 refers to the bending start position on the back surface of the metal plate.

θは、溶接前における第2金属板2の開先(図2中の破線)の、第1金属板1の表面(図2中の破線)に対する鋭角の角度である。 θ is an acute angle of the groove of the second metal plate 2 (broken line in FIG. 2) before welding with respect to the surface of the first metal plate 1 (broken line in FIG. 2).

Y1は、第2金属板2の裏面と、三重点P1を含む第2金属板2の裏面に平行な面と、の距離である。Y2は、第2金属板2の裏面と、三重点P2を含む第2金属板2の裏面に平行な面と、の距離である。すなわち、Y1およびY2は、溶接金属の溶け込み深さである。 Y1 is the distance between the back surface of the second metal plate 2 and the plane parallel to the back surface of the second metal plate 2 including the triple point P1. Y2 is the distance between the back surface of the second metal plate 2 and the plane parallel to the back surface of the second metal plate 2 including the triple point P2. That is, Y1 and Y2 are the penetration depths of the weld metal.

三重点近傍P1、P2近傍においては、応力集中しやすく、疲労亀裂、延性亀裂、または脆性亀裂が発生しやすい。疲労亀裂、延性亀裂、または脆性亀裂の発生を抑制するために、三重点への応力流入を小さくすることが必要である。 In the vicinity of the triple points P1 and P2, stress is likely to concentrate, and fatigue cracks, ductile cracks, or brittle cracks are likely to occur. In order to suppress the initiation of fatigue cracks, ductile cracks, or brittle cracks, it is necessary to reduce the stress influx to the triple junction.

三重点への応力流入を小さくするためには、溶接金属部3において溶接金属の溶け込みをルート側で可能な限り深くすることが好ましい。溶接金属の溶け込みが深いほど、三重点がルート側で深くなり応力が三重点に流れにくくなる(回り込みにくくなる)。 In order to reduce the influx of stress to the triple point, it is preferable to make the penetration of the weld metal as deep as possible on the root side of the weld metal portion 3 . The deeper the penetration of the weld metal, the deeper the triple point on the root side, making it difficult for stress to flow to the triple point (become less likely to wrap around).

溶接金属の溶け込みがルート側で可能な限り深くなるように、溶接金属の溶け込み深さY1及びY2を、入れ金5の挿入深さでコントロールすることが好ましい。入れ金5の挿入深さをコントロールしやすくする観点から、溶接の開先角度θは15°以上が好ましい。また、下記に説明する寸法X1及びX2を小さくするために、溶接の開先角度θは45°以下であることが好ましく、30°以下であることがより好ましい。 The penetration depths Y1 and Y2 of the weld metal are preferably controlled by the insertion depth of the insert 5 so that the penetration of the weld metal becomes as deep as possible on the root side. From the viewpoint of facilitating control of the insertion depth of the insert 5, the welding groove angle θ is preferably 15° or more. Also, in order to reduce the dimensions X1 and X2 described below, the welding groove angle θ is preferably 45° or less, more preferably 30° or less.

三重点への応力流入を小さくするために、張り出し部4の肉厚は必要最小限に薄くすることが好ましい。すなわち、寸法X1及びX2はできるだけ小さいことが好ましい。寸法X1及びX2が小さいほど、三重点に応力が流れにくくなる。ただし、寸法X1及びX2は、溶接によって溶け落ちない程度の厚みを確保されることが好ましい。 In order to reduce the influx of stress to the triple point, it is preferable to reduce the thickness of the projecting portion 4 to the minimum required. That is, the dimensions X1 and X2 are preferably as small as possible. The smaller the dimensions X1 and X2, the less stress flows to the triple point. However, it is preferable that the dimensions X1 and X2 should be thick enough to prevent burn-through by welding.

上記のように、三重点への応力流入を小さくするためには、溶接金属の溶け込み深さY1及びY2は大きいほど好ましく、寸法X1及びX2は小さいほど好ましい。 As described above, in order to reduce the influx of stress to the triple point, it is preferable that the penetration depths Y1 and Y2 of the weld metal are as large as possible, and the dimensions X1 and X2 are as small as possible.

図9に、本発明の実施形態に係る溶接継手の第2金属板に引張荷重を加えたときの、第1金属板及び第2金属板の応力分布を模式的に示す側面図を示す。図10に、図9の溶接継手の溶接ルート部付近の応力の流線を模式的に示す側面図を示す。 FIG. 9 shows a side view schematically showing the stress distribution of the first metal plate and the second metal plate when a tensile load is applied to the second metal plate of the welded joint according to the embodiment of the present invention. FIG. 10 shows a side view schematically showing stress streamlines near the weld root portion of the welded joint of FIG.

図10(a)を基準として、図10(b)は三重点P1を金属板の表面側に移動させた場合を示し、図10(c)は、三重点P2を第2金属板の表面側に移動させた場合を示す。 Based on FIG. 10(a), FIG. 10(b) shows the case where the triple point P1 is moved to the surface side of the metal plate, and FIG. is moved to .

図10(b)においては、P1側の応力の流線がP1付近で密になり応力集中が高まっている。図10(c)においては、P2付近の応力の流線が密になっている。このことが、式1の第1項目の二次的な効果と関連する。 In FIG. 10(b), the stress streamlines on the P1 side become dense near P1, increasing the stress concentration. In FIG. 10(c), the stress streamlines near P2 are dense. This is related to the secondary effect of the first term in Equation 1.

また、図10(b)では、P1側に応力が流れることでP2側の応力の流線が粗になり、P2の位置が第2金属板の裏面側にあるほどP2側の応力の流線が粗になり、多くの流線がP1側に向かう。図10(c)では、P2側に応力が流れることでこの陰になるP1側では応力の流線が粗になり、P1の位置が第2金属板の裏面側にあるほどP2の陰に隠れる形となり、P2側の応力の流線が密になる。このことが、式1の第2項目の二次的な効果と関連する。 In addition, in FIG. 10(b), as the stress flows to the P1 side, the stress streamline on the P2 side becomes rougher, and the closer the position of P2 is to the back side of the second metal plate, the more the stress streamline on the P2 side becomes. becomes coarser and many streamlines are directed to the P1 side. In FIG. 10(c), as the stress flows to the P2 side, the stress streamline becomes rougher on the P1 side, which is in the shadow, and the closer the position of P1 is to the back side of the second metal plate, the more it is hidden behind P2. and the stress streamlines on the P2 side become dense. This is related to the secondary effect of the second term in Equation 1.

Y1、Y2、X1、及びX2の寸法を変更しながら、公称応力に対する三重点の材軸方向応力を有限要素法(FEM)を用いて解析し、公称応力に対する三重点における応力の倍率を三重点応力倍率として算出することができる。Y1、Y2、X1、及びX2の寸法を変更したときの三重点応力倍率1~2の範囲に対して、Yで正規化したY1/X1及びY2/X2をパラメーターとして変化する関数W及び関数Bを求めることができる。 While changing the dimensions of Y1, Y2, X1, and X2, the material axial stress at the triple point against the nominal stress is analyzed using the finite element method (FEM), and the multiplier of the stress at the triple point against the nominal stress is calculated at the triple point It can be calculated as a stress magnification. Function W and function B that change with Y1/X1 and Y2/X2 normalized by Y as parameters for the triple point stress magnification range of 1 to 2 when the dimensions of Y1, Y2, X1, and X2 are changed can be asked for.

関数W及び関数Bは、三重点のスリットの先端(亀裂先端)に流入する応力と関連する比率Y1/X1と比率Y2/X2とをパラメーターとする関数であり、下記式1:
Y1/X1-(Y2/X2)/4≧0.34 かつ Y2/X2-(Y1/X1)/3≧0.25 (1)
を満たすことが好ましいことを知見した。
Function W and function B are functions whose parameters are the ratio Y1/X1 and the ratio Y2/X2 related to the stress flowing into the tip of the slit at the triple point (crack tip), and are represented by the following equation 1:
Y1/X1-(Y2/X2)/4≧0.34 and Y2/X2-(Y1/X1)/3≧0.25 (1)
It has been found that it is preferable to satisfy

上記式を満たすようにY1、Y2、X1、及びX2を調整して溶接継手100が形成されることにより、三重点P1、P2近傍への応力流入を小さくすることができ、三重点P1、P2近傍での疲労亀裂、延性亀裂、及び脆性亀裂の発生を抑制することができる。すなわち、溶接継手100の疲労強度及び破壊強度が高められ得る。Y1、Y2、X1、及びX2は、下記式2:
Y1/X1-(Y2/X2)/4>0.40 かつ Y2/X2-(Y1/X1)/3>0.35 (2)
を満たすことがより好ましい。
The welded joint 100 is formed by adjusting Y1, Y2, X1, and X2 so as to satisfy the above formula, so that the stress inflow to the vicinity of the triple points P1 and P2 can be reduced. It is possible to suppress the occurrence of fatigue cracks, ductile cracks, and brittle cracks in the vicinity. That is, the fatigue strength and fracture strength of the welded joint 100 can be enhanced. Y1, Y2, X1, and X2 are represented by Formula 2 below:
Y1/X1-(Y2/X2)/4>0.40 and Y2/X2-(Y1/X1)/3>0.35 (2)
It is more preferable to satisfy

上記式1及び上記式2は、Y1、Y2、X1、及びX2の寸法と、公称応力に対する三重点の材軸方向応力との関係について行ったFEM解析結果に基づいて導出した。式1を満たす場合は、三重点応力倍率は2以下となる。式2を満たす場合は、三重点応力倍率が1以下となる。 Formulas 1 and 2 above were derived based on the results of FEM analysis of the relationship between the dimensions of Y1, Y2, X1, and X2 and the stress in the material axial direction at the triple point with respect to the nominal stress. When the formula 1 is satisfied, the triple point stress magnification is 2 or less. When formula 2 is satisfied, the triple point stress magnification is 1 or less.

第1金属板1および第2金属板2の板厚については、溶接ルート部の応力分布にほとんど影響しないことから影響因子に含めない。 The plate thicknesses of the first metal plate 1 and the second metal plate 2 are not included in the influencing factors because they have little effect on the stress distribution at the weld root.

開先角度θについては、三重点応力倍率が2を超える領域での関数W及び関数Bにより得られる値(以下、それぞれW値、B値、または判定指標W、判定指標Bとも言う)と三重点応力倍率との直線関係に対するばらつきに多少影響があるだけで、実際の溶接で用いられる開先角度の範囲では全体的な傾向に影響しないため、影響因子に含めない。 Regarding the groove angle θ, the value obtained by the function W and the function B in the region where the triple point stress magnification exceeds 2 (hereinafter also referred to as the W value, the B value, or the judgment index W and the judgment index B) It is not included in the influencing factor because it only has a slight effect on the variation in the linear relationship with the critical stress factor, and does not affect the overall trend in the range of groove angles used in actual welding.

溶接金属の溶け込み深さY1は、好ましくは第2金属板2の板厚の10~30%の深さである。Y1が前記好ましい範囲にあることにより、溶接金属の体積を大きくしすぎずに施工することができる。 The penetration depth Y1 of the weld metal is preferably 10 to 30% of the plate thickness of the second metal plate 2. When Y1 is within the above preferable range, the weld metal can be welded without excessively increasing its volume.

溶接金属の溶け込み深さY2は、好ましくは第2金属板2の板厚の5~20%の深さである。Y2が前記好ましい範囲にあることにより、溶接金属の体積を大きくしすぎずに施工することができる。 The penetration depth Y2 of the weld metal is preferably 5 to 20% of the plate thickness of the second metal plate 2. When Y2 is within the above preferred range, the weld metal can be welded without excessively increasing its volume.

寸法X1は、好ましくは第2金属板2の板厚の15~100%である。寸法X1が前記好ましい範囲にあることにより、入れ金5が完全に溶け落ちず、張り出し部の寸法を確保することができる。 Dimension X1 is preferably 15 to 100% of the plate thickness of second metal plate 2 . When the dimension X1 is within the preferred range, the insert 5 is not completely melted down, and the dimension of the projecting portion can be ensured.

寸法X2は、好ましくは第2金属板2の板厚の5~50%である。寸法X2が前記好ましい範囲にあることにより、張り出し部4が溶け落ちずに溶接施工をすることができる。 Dimension X2 is preferably 5 to 50% of the plate thickness of second metal plate 2 . When the dimension X2 is within the above preferred range, welding can be performed without the overhanging portion 4 being melted down.

図1にはT字型継手の例を示したが、第1金属板1の上端が第2金属板2の表面の位置と同程度であるL字型溶接継手や、図1の第1金属板1の裏面、すなわち第2金属板2と反対側に第2金属板2と同様な溶接がなされている十字継手であってもよい。第1金属板1の裏面(反対側)においては、裏当て金を用いる方法またはK開先として溶接を行う方法で十字継手にしてもよい。 Although an example of a T-shaped joint is shown in FIG. A cruciform joint in which the back surface of the plate 1, ie, the side opposite to the second metal plate 2, is welded in the same manner as the second metal plate 2 may be used. On the back surface (opposite side) of the first metal plate 1, a cruciform joint may be formed by a method using a backing metal or a method of welding as a K groove.

好ましくは、本実施形態の溶接継手100は、第2金属板2の表面側の溶接トウ部に、ピーニング処理部6を有する。ピーニング処理部6は、例えば、溶接金属部3の表面側の溶接トウ部にピーニング処理を施すことによって形成される。 Preferably, the welded joint 100 of this embodiment has a peening treated portion 6 at the weld toe portion on the surface side of the second metal plate 2 . The peening treated portion 6 is formed, for example, by performing a peening treatment on the weld toe portion on the surface side of the weld metal portion 3 .

ピーニング処理部6は、好ましくは、0.1mm以上0.5mmの深さ及び1.5mm以上の幅を有する溝形状を有する。 The peening treated portion 6 preferably has a groove shape with a depth of 0.1 mm or more and 0.5 mm and a width of 1.5 mm or more.

ピーニング処理部6に替えて、グラインダー等の研削工具によって溶接止端部の平坦化処理部が形成されてもよい。溶接金属部3の表面側止端部において、グラインダー等によって曲率加工を施して応力集中を低減させたり、ピーニング処理部6を形成して圧縮残留応力を導入したりすれば、溶接継手としてより良い疲労強度が得られる。 Instead of the peening treated portion 6, a flattened portion of the weld toe may be formed by a grinding tool such as a grinder. If the surface side toe portion of the weld metal portion 3 is subjected to curvature processing with a grinder or the like to reduce stress concentration, or if a peening treatment portion 6 is formed to introduce compressive residual stress, the welded joint will be better. Fatigue strength is obtained.

第2金属板2の裏面側のP3で指す張り出し部の根元及びその近傍は応力集中部となりやすいため、好ましくは、グラインダー処理部またはピーニング処理部を有する。裏面側の張り出し部の根元及びその近傍へのグラインダー処理またはピーニング処理は、溶接前に行うことができる。 Since the base of the projecting portion indicated by P3 on the back side of the second metal plate 2 and its vicinity are likely to become stress concentration portions, they preferably have a grinder-treated portion or a peening-treated portion. Grinding or peening of the base of the overhang on the back side and its vicinity can be performed before welding.

Y1、Y2、X1、X2、及びθ、並びにピーニング処理部の寸法は、マクロ組織観察(JIS G 0553:2008)によって確認することができる。具体的には、溶接継手から試料を採取し、観察面を機械研磨、バフ研磨で鏡面に仕上げ、エッチングを施し、溶接金属と母材(熱影響部を含む)との境界を現出させて、肉眼または拡大鏡による観察を行う。三重点P1及び三重点P2は、それぞれ、第1金属板及び第2金属板と、入れ金とが溶融して一体化している部分(溶接された部分)と溶接されていない部分との境界であり、断面形状から特定することができる。したがって、必ずしも、マクロ組織観察を行って熱影響部(HAZ)や溶接金属の境界を特定する必要はない。 Y1, Y2, X1, X2, and θ, and the dimensions of the peened portion can be confirmed by macrostructure observation (JIS G 0553:2008). Specifically, a sample is taken from the welded joint, and the surface to be observed is mechanically polished and buffed to a mirror finish, and then etched to reveal the boundary between the weld metal and the base material (including the heat-affected zone). , observation with the naked eye or a magnifying glass. The triple point P1 and the triple point P2 are the boundaries between the portion (welded portion) where the first metal plate and the second metal plate and the insert are melted and integrated and the portion where they are not welded, respectively. Yes, and can be identified from the cross-sectional shape. Therefore, it is not always necessary to observe the macrostructure to identify the heat affected zone (HAZ) or the boundary of the weld metal.

(溶接継手の製造方法)
次に、本実施形態に係る溶接継手の製造方法について説明する。
(Manufacturing method of welded joint)
Next, a method for manufacturing a welded joint according to this embodiment will be described.

本実施形態に係る溶接継手の製造方法は、表面及び裏面を有し且つ端部において前記裏面側に張り出した張り出し部を有する第2金属板を、第1金属板の表面と前記第2金属板の前記張り出し部を含む端面との間に開先が形成されるように前記第1金属板と突合せる突き合わせ工程と、前記開先のルート側に入れ金を配置する配置工程と、前記開先に溶接金属を充填する溶接工程と、を備える。 A method for manufacturing a welded joint according to the present embodiment includes a second metal plate having a front surface and a back surface and having an overhanging portion projecting toward the back surface at an end portion, by A butting step of butting against the first metal plate so that a groove is formed between the end face including the overhang portion of the groove, an arranging step of arranging a insert on the root side of the groove, and the groove and a welding step of filling a weld metal into the.

本実施形態の溶接継手の製造方法は、突き合わせ工程、配置工程、及び溶接工程を有する。以下、これらの工程について説明する。 The manufacturing method of the welded joint of this embodiment has a butting process, an arrangement process, and a welding process. These steps are described below.

突き合わせ工程に先立って、まず、第2金属板2の突き合わせられる側の先端を裏面側に張り出させて張り出し部4を形成する。図3は、第2金属板の張り出し部4の形成方法の一例を示す側面模式図である。張り出し部4の形成方法としては、例えば、図3に示す様に、第2金属板2の開先の機械加工時に、第2金属板2の裏面側の一部を第2金属板2の裏面と平行に伸ばした形状の開先を作製し、この伸ばした部分を塑性変形させて裏面側に曲げる方法が考えられる。この様にして張り出し部4を形成する方法は、第2金属板2の全厚を曲げ加工する必要がないため、第2金属板2が極厚部材であっても適用し得る。 Prior to the butting step, first, the tip of the side of the second metal plate 2 to be butted is made to protrude to the back side to form the projecting portion 4 . FIG. 3 is a schematic side view showing an example of a method of forming the projecting portion 4 of the second metal plate. As a method for forming the projecting portion 4, for example, as shown in FIG. It is conceivable to prepare a groove in a shape extended parallel to and bend this extended portion to the back side by plastically deforming it. The method of forming the protruding portion 4 in this way does not require the bending of the entire thickness of the second metal plate 2, so it can be applied even if the second metal plate 2 is an extremely thick member.

また、張り出し部4の形成する他の方法として、張り出し部4となる金属板を第2金属板2の裏面側端部に溶接する方法も考えられる。 As another method for forming the projecting portion 4, a method of welding a metal plate to be the projecting portion 4 to the rear surface side end portion of the second metal plate 2 is also conceivable.

突き合わせ工程においては、上記のように端部において裏面側に張り出した張り出し部4を有する第2金属板2を、第1金属板1の表面に、第1金属板1の表面と第2金属板2の張り出し部4を含む端面との間に開先が形成されるように突合わせる。 In the butting step, the second metal plate 2 having the protruding portion 4 protruding toward the back side at the end as described above is placed on the surface of the first metal plate 1, and the surface of the first metal plate 1 and the second metal plate 2 and the end face including the projecting portion 4 are butted so as to form a bevel.

配置工程においては、第1金属板1の表面と第2金属板2の張り出し部4を含む端面との間に形成された開先のルート側に入れ金5を配置する。好ましくは、第2金属板2の表面側から入れ金5を挿入し、開先のルート側に配置する。このようにして、溶接の際に溶接金属がルート側から漏れ出さないように、開先の少なくとも一部が入れ金5によって埋められる。入れ金5を配置することにより、開先の寸法、すなわち突き合わせられる第1金属板1の表面と第2金属板2張り出し部4を含む端面との間隔に多少の施工誤差があったとしても、溶接の際に溶接金属がルート側から漏れ出さないように開先の少なくとも一部を埋めることができる。 In the arranging step, the insert 5 is arranged on the root side of the groove formed between the surface of the first metal plate 1 and the end face of the second metal plate 2 including the projecting portion 4 . Preferably, the insert 5 is inserted from the surface side of the second metal plate 2 and arranged on the root side of the groove. In this manner, at least a portion of the groove is filled with the insert 5 so that the weld metal does not leak from the root side during welding. By arranging the insert 5, even if there is a slight error in the size of the groove, that is, the gap between the surface of the first metal plate 1 to be butted and the end face including the projecting portion 4 of the second metal plate 2, At least part of the groove can be filled so that the weld metal does not leak from the root side during welding.

上記のように入れ金5を配置した後、溶接工程において、第1金属板1の表面と第2金属板2の突き合わせられる側の端面とによって形成される開先に溶接金属を充填し、溶接金属部3を形成する。 After arranging the insert 5 as described above, in the welding process, the groove formed by the surface of the first metal plate 1 and the end face of the second metal plate 2 to be butted is filled with a weld metal, and the welding is performed. A metal part 3 is formed.

溶接金属部3は、第2金属板2の表面側から開先のルート側に配置された入れ金上に溶接材料を溶融させて溶接を行うことにより形成する。溶接方法は特に限定されず、例えば、アーク溶接を採用することができる。また、溶接金属は、第2金属板2の表面側と裏面側とにおいて、面外位置まで張り出すように盛り付けられることが好ましい。すなわち、溶接金属は、第2金属板2の表面を含む平面と第2金属板2の裏面を含む平面とで挟まれる領域の外側まで張り出すように盛り付けられることが好ましい。 The welded metal part 3 is formed by melting a welding material on the insert arranged on the root side of the groove from the surface side of the second metal plate 2 and welding. The welding method is not particularly limited, and arc welding can be used, for example. Moreover, it is preferable that the weld metal is piled up on the front side and the back side of the second metal plate 2 so as to protrude to an out-of-plane position. In other words, the weld metal is preferably piled up so as to protrude outside the area sandwiched between a plane including the front surface of the second metal plate 2 and a plane including the back surface of the second metal plate 2 .

好ましくは、本実施形態の溶接継手の製造方法は、前記入れ金、前記第1金属板及び前記溶接金属の境界線の交点を第1の三重点とし、前記入れ金、前記第2金属板及び前記溶接金属の境界線の交点を第2の三重点とし、前記第1の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX1とし、前記第2の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX2とし、前記第2金属板の前記裏面と、前記第1の三重点を含む前記裏面に平行な面と、の距離をY1、前記第2金属板の前記裏面と、前記第2の三重点を含む前記裏面に平行な面と、の距離をY2とするとき、
下記式:
Y1/X1-(Y2/X2)/4≧0.34 かつ Y2/X2-(Y1/X1)/3≧0.25
を満たす。
Preferably, in the method for manufacturing a welded joint of the present embodiment, the intersection of boundary lines of the insert, the first metal plate and the weld metal is set as a first triple point, and the insert, the second metal plate and The intersection of the boundary lines of the weld metal is defined as a second triple point, and the distance from the first triple point to the root of the projecting portion of the second metal plate is parallel to the material axis direction of the second metal plate. Let X1 be the component, let X2 be the component of the distance from the second triple point to the base of the projecting portion of the second metal plate, parallel to the material axis direction of the second metal plate, and let X2 be the component of the second metal plate. A distance between the back surface and a plane parallel to the back surface including the first triple point is Y1, and a distance between the back surface of the second metal plate and a plane parallel to the back surface including the second triple point is Y1. , is the distance Y2,
The formula below:
Y1/X1-(Y2/X2)/4≧0.34 and Y2/X2-(Y1/X1)/3≧0.25
meet.

好ましくは、本実施形態の溶接継手の製造方法は、前記溶接工程の後、前記第2金属板の表面側の溶接トウ部に、深さが0.1mm以上かつ0.5mm以下であり、幅が1.5mm以上の溝状のピーニング処理部を形成することを含む。 Preferably, in the method for manufacturing a welded joint of the present embodiment, after the welding step, the weld toe on the surface side of the second metal plate has a depth of 0.1 mm or more and 0.5 mm or less and a width of 0.1 mm or more and 0.5 mm or less. includes forming a groove-shaped peened portion with a diameter of 1.5 mm or more.

ピーニング処理工程は、溶接工程の後に上記ピーニング処理部6を形成する工程である。ピーニング処理工程は必須の工程ではない。また、ピーニング処理工程に替えて、上記のようにグラインダー等の研削工具によって溶接止端部に平坦化処理が施されてもよい。 The peening process is a process of forming the peening process part 6 after the welding process. A peening treatment step is not an essential step. Further, instead of the peening treatment step, the weld toe portion may be flattened by a grinding tool such as a grinder as described above.

(本実施形態の効果)
本実施形態に係る溶接継手100によれば、入れ金5が用いられることによって、片面突合せ溶接を行う際に突き合わせられる第1金属板1および第2金属板2の間隔の施工誤差による溶接施工への影響が軽減され得る。
(Effect of this embodiment)
According to the welded joint 100 according to the present embodiment, by using the insert 5, welding work due to a construction error in the gap between the first metal plate 1 and the second metal plate 2 that are butted when performing single-sided butt welding. can be mitigated.

また、本実施形態に係る溶接継手100の好ましい実施形態によれば、上記式1を満たす入れ金5及び張り出し部4を有する金属板を用いることによって、溶接金属の溶け込み不良欠陥がより抑制され、疲労強度や破壊強度がより高い溶接継手とされ得る。 Further, according to the preferred embodiment of the welded joint 100 according to the present embodiment, by using the metal plate having the insert 5 and the projecting portion 4 that satisfy the above formula 1, the penetration defect of the weld metal is further suppressed, A welded joint with higher fatigue strength and fracture strength can be obtained.

本発明の溶接継手における疲労亀裂や延脆性破壊に対する効果を検討するに当たり、様々な寸法の溶接継手についてFEM解析を行い三重点の応力を評価した。 In examining the effects of welded joints of the present invention on fatigue cracks and ductile brittle fractures, FEM analysis was performed on welded joints of various sizes to evaluate the stress at the triple point.

図4に、一般的に行われている裏当て金を用いたT字溶接継手の溶接ルート部の未溶着部先端の応力をFEM解析により算定した比較例の結果を示す。この解析例は、452MPaの降伏応力を有する強度590MPa級の板厚が20mmの鋼材11及び鋼材12を用いた場合において、図5に示すように、鋼板1の表面に鋼板2の端部を突合わせて形成したレ形開先を裏当て金を用いて溶接接合したときの、端部を溶接した鋼板2の材軸方向に引張荷重を与えた場合の解析結果である。 FIG. 4 shows the result of a comparative example in which the stress at the tip of the unwelded portion of the weld root portion of a T-shaped welded joint using a common backing metal was calculated by FEM analysis. In this analysis example, when steel materials 11 and 12 having a strength of 590 MPa and a thickness of 20 mm having a yield stress of 452 MPa are used, as shown in FIG. It is an analysis result when a tensile load is applied in the axial direction of the steel plate 2 to which the ends are welded when jointed grooves are welded using a backing metal.

図4は、鋼板1、溶接金属部3および裏当て金の交点を三重点P1’とし、鋼板2、溶接金属部3および裏当て金の交点を三重点P2’として、公称応力と溶接ルートの未溶着部先端である三重点P1’、P2’の材軸方向応力との関係を示している。 Fig. 4 shows the relationship between the nominal stress and the weld root, with the intersection of the steel plate 1, the weld metal part 3 and the backing metal as the triple point P1' and the intersection of the steel plate 2, the weld metal part 3 and the backing metal as the triple point P2'. It shows the relationship between triple points P1' and P2', which are the tips of unwelded portions, and stress in the material axial direction.

一般に溶接構造物の疲労設計で考慮する応力最大レベルである200MPaを公称応力として鋼板2の材軸方向に与えた場合、三重点P1’、P2’の材軸方向応力は、鋼板2に与えた公称応力の3倍から4倍を示し、極めて高い応力集中が起こっている。 When 200 MPa, which is the maximum stress level generally considered in the fatigue design of a welded structure, is given in the axial direction of the steel plate 2 as a nominal stress, the axial direction stress at the triple points P1' and P2' is given to the steel plate 2. It shows 3 to 4 times the nominal stress, and a very high stress concentration occurs.

本発明の効果を確認するため、452MPaの降伏応力を有する強度590MPa級の板厚が20mmの鋼材1及び鋼材2を用いた場合において、溶け込み深さY1、Y2、張り出し部の根元からの第1の三重点P1、第2の三重点P2までの距離であるX1、X2をパラメーターとして変化させたときの部材公称応力と三重点P1、P2における溶接ルート先端の材軸方向応力との関係を、二次元平面ひずみ弾塑性FEM解析により求めた。 In order to confirm the effect of the present invention, when steel material 1 and steel material 2 having a strength of 590 MPa class with a yield stress of 452 MPa and a plate thickness of 20 mm were used, the penetration depths Y1 and Y2 and the first The relationship between the member nominal stress and the material axial stress at the tip of the weld root at the triple points P1 and P2 when changing X1 and X2, which are the distances to the triple point P1 and the second triple point P2, as parameters, It was obtained by two-dimensional plane strain elastic-plastic FEM analysis.

図6に、部材公称応力と第1の三重点P1における溶接ルート先端の材軸方向応力との関係を示す。図7に、部材公称応力と第2の三重点P2における溶接ルート先端の材軸方向応力との関係を示す。溶接ルート先端の材軸方向応力は、溶接ルート先端に最も近いFEMの要素(未溶着部の先端の要素)の積分点(三重点に最も近い積分点)応力とした。 FIG. 6 shows the relationship between the member nominal stress and the member axial stress at the tip of the welding root at the first triple point P1. FIG. 7 shows the relationship between the member nominal stress and the member axial direction stress at the tip of the welding root at the second triple point P2. The stress in the material axial direction at the tip of the weld root was taken as the stress at the integration point (integration point closest to the triple point) of the FEM element closest to the tip of the weld root (the element at the tip of the unwelded portion).

図6及び図7中の記号は、評価した溶接継手の各部寸法を表しており、Mに続く数字2桁は、溶け込み深さY2のレベル(04が浅く44が深い)を示し、下2桁は、溶け込み深さY1のレベル(+5が浅く25が深い)を示している。 The symbols in FIGS. 6 and 7 represent the dimensions of each part of the evaluated welded joint, and the two digits following M indicate the level of the penetration depth Y2 (04 is shallow and 44 is deep), and the last two digits indicates the level of penetration depth Y1 (+5 is shallow and 25 is deep).

表1に、上記記号、試験体各部の寸法、及び解析結果を示す。 Table 1 shows the symbols, the dimensions of each part of the specimen, and the analysis results.

Figure 0007339511000001
Figure 0007339511000001

表1の上記解析結果とは、試験体各部の寸法に基づくW値及びB値と三重点応力倍率との関係である。以下に、三重点応力倍率の基準並びにW値及びB値の算出方法について説明する。 The above analysis results in Table 1 are the relationship between the W value and B value based on the dimensions of each part of the specimen and the triple point stress ratio. The criteria for the triple point stress magnification and the method for calculating the W value and the B value will be described below.

局所的に塑性変形が開始すると応力が低下するので、最も厳しい公称応力200MPaの場合の結果から三重点応力倍率(三重点応力/公称応力)を求めた。図4に示した、従来の裏当て金を用いた場合の継手のルート部の応力は、公称応力の3~4倍程度を示していることから、これと比較し、応力集中が2.0以下になる条件が好ましいと考えた。また、たとえば日本鋼構造協会の鋼構造物の疲労設計指針において200万回繰り返し負荷を許容する応力範囲は、溶接のない機械仕上げされた鋼板でも190MPaである。したがって、継ぎ手の疲労設計では、鋼材強度によらず応力範囲が200MPaを超えるような設計は行わないのが一般的である。 Since the stress decreases when plastic deformation starts locally, the triple point stress ratio (triple point stress/nominal stress) was determined from the results for the severest nominal stress of 200 MPa. The stress at the root of the joint when using the conventional backing metal shown in FIG. 4 shows about 3 to 4 times the nominal stress. We thought that the following conditions were preferable. In addition, for example, in the fatigue design guideline for steel structures of the Japan Society of Steel Construction, the stress range in which 2 million cycles of load are allowed is 190 MPa even for a machined steel plate without welding. Therefore, fatigue design of joints is generally not designed in such a way that the stress range exceeds 200 MPa, regardless of the strength of the steel material.

図6及び図7の解析結果は、452MPaの降伏応力を有する強度590MPa級の鋼材についての結果であることから、公称応力200MPaの2倍で降伏応力よりやや低い400MPa、すなわち三重点応力倍率が2以下を効果の目安として設定した。さらに望ましい条件として、三重点応力が公称応力の200MPaの1.5倍程度以下になる条件とした。 The analysis results of FIGS. 6 and 7 are for a steel material with a strength of 590 MPa and a yield stress of 452 MPa. The following is set as a guideline for the effect. A more desirable condition is that the triple point stress is less than or equal to about 1.5 times the nominal stress of 200 MPa.

この解析結果をもとに、三重点P1、P2の応力と公称応力との関係に及ぼす影響因子として、溶け込み深さY1、Y2と寸法X1、X2との関係に着目して検討し、三重点P1の応力倍率が1.5~2.0の範囲において、Y1、Y2で正規化したY1/X1及びY2/X2をパラメーターとして簡単な式の形で変化する関数W:
W=Y1/X1-(Y2/X2)/4
と、三重点P2の応力倍率が1.5~2.0の範囲において、Y1、Y2で正規化したY1/X1及びY2/X2をパラメーターとして簡単な式の形で変化する関数B:
B=Y2/X2-(Y1/X1)/3
とを算出し、関数W及び関数Bで得られるW値及びB値(判定指標W及び判定指標B)によって、三重点P1、P2の応力レベルを判定できることを見出した。
Based on the results of this analysis, the relationship between the penetration depths Y1 and Y2 and the dimensions X1 and X2 was examined as an influencing factor on the relationship between the stress at the triple points P1 and P2 and the nominal stress. A function W that changes in the form of a simple formula using Y1/X1 and Y2/X2 normalized by Y1 and Y2 as parameters in the range of 1.5 to 2.0 where the stress magnification of P1 is 1.5 to 2.0:
W=Y1/X1-(Y2/X2)/4
and a function B that changes in the form of a simple formula using Y1/X1 and Y2/X2 normalized by Y1 and Y2 as parameters in the range of 1.5 to 2.0 where the stress magnification at the triple point P2 is 1.5 to 2.0:
B=Y2/X2-(Y1/X1)/3
, and found that the stress levels at the triple points P1 and P2 can be determined from the W value and B value (determination index W and determination index B) obtained from the function W and the function B.

関数W及び関数Bは、溶接ルート部に未溶着部がある場合に、第2金属板2に作用している応力が未溶着部先端に集中しにくくなるための必要な形状条件を表す。この判定方法によれば、三重点P1の判定式として関数Wが用いられ、三重点P2の判定式として関数Bが用いられる。 Function W and function B represent shape conditions necessary to prevent the stress acting on the second metal plate 2 from concentrating on the tip of the unwelded portion when there is an unwelded portion in the weld root. According to this determination method, the function W is used as the determination formula for the triple point P1, and the function B is used as the determination formula for the triple point P2.

図8に示すように、W≧0.34では三重点P1およびP2の公称応力に対する応力集中倍率は2.0以下となり、W≧0.40では応力集中倍率は1.5以下となる。すなわち、関数Wは下記式:
W=Y1/X1-(Y2/X2)/4≧0.34(W≧0.40がより望ましい。)
を満たす。B≧0.25では、三重点P1およびP2の公称応力に対する応力集中倍率は2.0以下となり、B≧0.35では応力集中倍率は1.5以下となる。すなわち、関数Bは下記式:
B=Y2/X2-(Y1/X1)/3≧0.25(B≧0.35がより望ましい。)
を満たす。溶接ルート部の破壊は三重点P1、P2のいずれかから発生するため、関数W及び関数Bは、上記式の両方の条件を満足することが必要である。したがって、前述の疲労に有効な条件応力400MPaと破壊しない条件200MPaとして、下記式:
Y1/X1-(Y2/X2)/4≧0.34、かつ
Y2/X2-(Y1/X1)/3≧0.25
を満たすことが好ましい。
As shown in FIG. 8, when W≧0.34, the stress concentration ratio with respect to the nominal stress at the triple points P1 and P2 is 2.0 or less, and when W≧0.40, the stress concentration ratio is 1.5 or less. That is, the function W is the following formula:
W=Y1/X1-(Y2/X2)/4≧0.34 (W≧0.40 is more desirable.)
meet. When B≧0.25, the stress concentration ratio with respect to the nominal stress at the triple points P1 and P2 is 2.0 or less, and when B≧0.35, the stress concentration ratio is 1.5 or less. That is, the function B is the following formula:
B=Y2/X2-(Y1/X1)/3≧0.25 (B≧0.35 is more desirable.)
meet. Since the fracture of the weld root portion occurs from either triple point P1 or P2, the function W and the function B must satisfy both conditions of the above equations. Therefore, assuming that the stress condition effective for fatigue is 400 MPa and the condition that does not break is 200 MPa, the following formula:
Y1/X1-(Y2/X2)/4≧0.34 and Y2/X2-(Y1/X1)/3≧0.25
is preferably satisfied.

より好ましくは、
Y1/X1-(Y2/X2)/4≧0.40、かつ
Y2/X2-(Y1/X1)/3≧0.35
を満たす。
More preferably
Y1/X1-(Y2/X2)/4≧0.40 and Y2/X2-(Y1/X1)/3≧0.35
meet.

なお、第1金属板1および第2金属板2の板厚については、ほとんど影響しないことから影響因子に含めなかった。溶接開先の角度θについては、図8の三重点応力倍率が2.0を超える領域でのW値及びB値と三重点応力倍率との直線関係に対するバラつきに多少影響が見られただけで、実際の溶接で用いられる開先角度の範囲では全体的な傾向に影響しなかった。 Note that the plate thicknesses of the first metal plate 1 and the second metal plate 2 are not included in the influencing factors because they have little effect. Regarding the weld groove angle θ, there was only a slight effect on the variation in the linear relationship between the W value and B value and the triple point stress ratio in the region where the triple point stress ratio exceeds 2.0 in FIG. , the range of groove angles used in actual welding did not affect the overall trend.

本発明によれば、各種鋼構造物の現場突合せ溶接など、ルートギャップの施工誤差が大きく、片面からしか溶接できない場合でも、疲労強度や破壊強度の高い片面突合せ溶接部を容易に施工できるようになる。 According to the present invention, it is possible to easily construct single-sided butt welds with high fatigue strength and fracture strength even when there is a large root gap construction error and welding can only be performed from one side, such as on-site butt welding of various steel structures. Become.

1 第1金属板
2 第2金属板
3 溶接金属部
4 張り出し部
5 入れ金
6 ピーニング処理部
P1 第1の三重点(入れ金、第1金属板、及び溶接金属の境界線の交点)
P2 第2の三重点(入れ金、第2金属板(張り出し部は金属板の一部)、及び溶接金属の境界線の交点)
P3 張り出し部の根元(第2金属板)
P1' 第1金属板、溶接金属部および裏当て金の三重点
P2' 第2金属板、溶接金属部および裏当て金の三重点
X1 第1の三重点から張り出し部の根元P3までの第2金属板材軸方向距離
X2 第2の三重点から張り出し部の根元P3までの第2金属板材軸方向距離
Y1 溶け込み深さ(第2金属板の裏面と、第1の三重点を含む前記裏面に平行な面と、の距離)
Y2 溶け込み深さ(第2金属板の裏面と、第2の三重点を含む前記裏面に平行な面と、の距離)
θ 開先角度
100 溶接継手
1 First metal plate 2 Second metal plate 3 Weld metal part 4 Overhang part 5 Insert 6 Peening treatment part P1 First triple point (intersection of boundary lines of insert, first metal plate, and weld metal)
P2 Second triple point (intersection of insert, second metal plate (overhang is part of metal plate), and weld metal boundary)
P3 Root of overhang (second metal plate)
P1' The triple point of the first metal plate, the weld metal part and the backing metal P2' The triple point of the second metal plate, the weld metal part and the backing metal X1 The second point from the first triple point to the root P3 of the overhang part Metal plate axial distance X2 Second metal plate axial distance from the second triple point to the base P3 of the overhang Y1 Penetration depth (parallel to the back surface of the second metal plate and the back surface including the first triple point) and the distance between)
Y2 penetration depth (distance between the back surface of the second metal plate and a plane parallel to the back surface including the second triple point)
θ Groove angle 100 Weld joint

Claims (10)

第1金属板と、
表面及び裏面を有し、端部において前記裏面側に張り出した張り出し部を有する第2金属板と、
前記第1金属板の表面と、前記第2金属板の前記張り出し部を含む端面との間に形成された開先と、
前記開先のルート側に配置され、かつ、前記張り出し部の先端と前記第1金属板との間に配置された入れ金と、
前記開先に充填されている溶接金属と、
を備える、溶接継手。
a first metal plate;
a second metal plate having a front surface and a back surface, and having an overhanging portion projecting toward the back surface at an end;
a groove formed between the surface of the first metal plate and an end face including the projecting portion of the second metal plate;
a insert disposed on the root side of the groove and disposed between the tip of the projecting portion and the first metal plate;
a weld metal filled in the groove;
a welded joint.
前記入れ金、前記第1金属板及び前記溶接金属の境界線の交点を第1の三重点とし、
前記入れ金、前記第2金属板及び前記溶接金属の境界線の交点を第2の三重点とし、
前記第1の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX1とし、
前記第2の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX2とし、
前記第2金属板の前記裏面と、前記第1の三重点を含む前記裏面に平行な面と、の距離をY1とし、
前記第2金属板の前記裏面と、前記第2の三重点を含む前記裏面に平行な面と、の距離をY2とするとき、
下記式1:
Y1/X1-(Y2/X2)/4≧0.34 かつ Y2/X2-(Y1/X1)/3≧0.25 (1)
を満たす、請求項1に記載の溶接継手。
The intersection of the boundary lines of the insert, the first metal plate and the weld metal is defined as a first triple point,
The second triple point is the intersection of the boundary lines of the insert, the second metal plate and the weld metal,
Let X1 be the component of the distance from the first triple point to the base of the projecting portion of the second metal plate parallel to the material axis direction of the second metal plate,
Let X2 be the component of the distance from the second triple point to the base of the projecting portion of the second metal plate parallel to the material axis direction of the second metal plate,
Letting Y1 be the distance between the back surface of the second metal plate and a plane parallel to the back surface including the first triple point,
When the distance between the back surface of the second metal plate and the plane parallel to the back surface including the second triple point is Y2,
Formula 1 below:
Y1/X1-(Y2/X2)/4≧0.34 and Y2/X2-(Y1/X1)/3≧0.25 (1)
The welded joint of claim 1, wherein:
前記第2金属板の前記表面側の溶接トウ部に、深さが0.1mm以上かつ0.5mm以下であり、幅が1.5mm以上の溝状のピーニング処理部を有する、
請求項1または2に記載の溶接継手。
A groove-shaped peening treated portion having a depth of 0.1 mm or more and 0.5 mm or less and a width of 1.5 mm or more is provided in the weld toe portion on the surface side of the second metal plate,
Welded joint according to claim 1 or 2.
1つの前記入れ金は、溶接部の長手方向に垂直な断面において、前記第2金属板の板厚方向における一方側が相対的に細く、他方側が相対的に太く、相対的に細い方が前記第2金属板の裏面側に配置される、
請求項1~3のいずれか1項に記載の溶接継手。
One insert is relatively thin on one side in the plate thickness direction of the second metal plate and relatively thick on the other side in a cross section perpendicular to the longitudinal direction of the welded portion, and the relatively thin one is the first. 2 Arranged on the back side of the metal plate,
The welded joint according to any one of claims 1-3.
前記入れ金の側面と前記張り出し部とが溶接されず、スリットが形成される、
請求項1~4のいずれか1項に記載の溶接継手。
the side of the insert and the overhang are not welded to form a slit;
The welded joint according to any one of claims 1-4.
表面及び裏面を有し且つ端部において前記裏面側に張り出した張り出し部を有する第2金属板を、第1金属板の表面と前記第2金属板の前記張り出し部を含む端面との間に開先が形成されるように前記第1金属板と突合せる突き合わせ工程と、
前記開先のルート側、かつ、前記張り出し部の先端と前記第1金属板との間に入れ金を配置する配置工程と、
前記開先に溶接金属を充填する溶接工程と、
を備える溶接継手の製造方法。
A second metal plate having a front surface and a back surface and having an overhanging portion projecting toward the back surface at an end portion is opened between the surface of the first metal plate and an end surface including the overhanging portion of the second metal plate. a butting step of butting with the first metal plate so that the tip is formed;
an arrangement step of arranging a insert on the root side of the groove and between the tip of the projecting portion and the first metal plate;
a welding step of filling the groove with a weld metal;
A method of manufacturing a welded joint comprising:
前記入れ金、前記第1金属板及び前記溶接金属の境界線の交点を第1の三重点とし、
前記入れ金、前記第2金属板及び前記溶接金属の境界線の交点を第2の三重点とし、
前記第1の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX1とし、
前記第2の三重点から前記第2金属板の張り出し部の根元までの距離の、前記第2金属板の材軸方向に平行な成分をX2とし、
前記第2金属板の前記裏面と、前記第1の三重点を含む前記裏面に平行な面と、の距離をY1、
前記第2金属板の前記裏面と、前記第2の三重点を含む前記裏面に平行な面と、の距離をY2とするとき、
下記式1:
Y1/X1-(Y2/X2)/4≧0.34 かつ Y2/X2-(Y1/X1)/3≧0.25 (1)
を満たす、請求項6に記載の溶接継手の製造方法。
The intersection of the boundary lines of the insert, the first metal plate and the weld metal is defined as a first triple point,
The second triple point is the intersection of the boundary lines of the insert, the second metal plate and the weld metal,
Let X1 be the component of the distance from the first triple point to the base of the projecting portion of the second metal plate parallel to the material axis direction of the second metal plate,
Let X2 be the component of the distance from the second triple point to the base of the projecting portion of the second metal plate parallel to the material axis direction of the second metal plate,
Y1 is the distance between the back surface of the second metal plate and a plane parallel to the back surface including the first triple point;
When the distance between the back surface of the second metal plate and the plane parallel to the back surface including the second triple point is Y2,
Formula 1 below:
Y1/X1-(Y2/X2)/4≧0.34 and Y2/X2-(Y1/X1)/3≧0.25 (1)
The method for manufacturing a welded joint according to claim 6, wherein:
前記溶接工程の後、前記第2金属板の表面側の溶接トウ部に、深さが0.1mm以上かつ0.5mm以下であり、幅が1.5mm以上の溝状のピーニング処理部を形成する、
請求項6又は7に記載の溶接継手の製造方法。
After the welding step, a groove-shaped peened portion having a depth of 0.1 mm or more and 0.5 mm or less and a width of 1.5 mm or more is formed in the weld toe portion on the surface side of the second metal plate. do,
A method for manufacturing a welded joint according to claim 6 or 7.
前記入れ金は、溶接部の長手方向に垂直な断面において、前記第2金属板の板厚方向における一方側が相対的に細く、他方側が相対的に太く、相対的に細い方が前記第2金属板の裏面側に配置される、
請求項6~8のいずれか1項に記載の溶接継手の製造方法。
In a cross section perpendicular to the longitudinal direction of the welded part, the insert is relatively thin on one side in the plate thickness direction of the second metal plate, relatively thick on the other side, and the relatively thin side is the second metal plate. Placed on the back side of the board,
A method for manufacturing a welded joint according to any one of claims 6 to 8.
前記入れ金の側面と前記張り出し部とが溶接されず、スリットが形成される、
請求項6~9のいずれか1項に記載の溶接継手の製造方法。
the side of the insert and the overhang are not welded to form a slit;
A method for manufacturing a welded joint according to any one of claims 6 to 9.
JP2019147268A 2019-08-09 2019-08-09 Welded joint and manufacturing method thereof Active JP7339511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147268A JP7339511B2 (en) 2019-08-09 2019-08-09 Welded joint and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147268A JP7339511B2 (en) 2019-08-09 2019-08-09 Welded joint and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021028070A JP2021028070A (en) 2021-02-25
JP7339511B2 true JP7339511B2 (en) 2023-09-06

Family

ID=74667325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147268A Active JP7339511B2 (en) 2019-08-09 2019-08-09 Welded joint and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7339511B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039166A (en) 2001-07-25 2003-02-12 Masakatsu Uchida One side welding method for steel structure
JP2009034696A (en) 2007-07-31 2009-02-19 Nippon Steel Corp Butt welded joint excellent in fatigue characteristics, and its manufacturing method
JP2015229183A (en) 2014-06-05 2015-12-21 新日鐵住金株式会社 Structure excellent in fatigue characteristic
JP2018171647A (en) 2017-03-31 2018-11-08 Jfeスチール株式会社 Boxing weld joint having excellent fatigue strength and boxing welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039166A (en) 2001-07-25 2003-02-12 Masakatsu Uchida One side welding method for steel structure
JP2009034696A (en) 2007-07-31 2009-02-19 Nippon Steel Corp Butt welded joint excellent in fatigue characteristics, and its manufacturing method
JP2015229183A (en) 2014-06-05 2015-12-21 新日鐵住金株式会社 Structure excellent in fatigue characteristic
JP2018171647A (en) 2017-03-31 2018-11-08 Jfeスチール株式会社 Boxing weld joint having excellent fatigue strength and boxing welding method

Also Published As

Publication number Publication date
JP2021028070A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US6386427B2 (en) One-side welding method for steel structure
Haagensen et al. IIW recommendations on methods for improving the fatigue strength of welded joints: IIW-2142-110
US7748596B2 (en) Welded structure having excellent resistance to brittle crack propagation and welding method therefor
Ahmed et al. Development and testing of fixtures for friction stir welding of thin aluminium sheets
JP6528853B2 (en) Cutting method by press die
KR102395331B1 (en) Rotary tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method
US20170129051A1 (en) Crack and fracture resistant weld joint and welding process
JP2008178905A (en) Laser welding method for structure composed of steel plate
Caiazzo et al. Dissimilar autogenous disk-laser welding of Haynes 188 and Inconel 718 superalloys for aerospace applications
KR20180102143A (en) Notching equipments of steel strip, Notching method of steel strip, Cold rolling equipment and cold rolling method
DUONG et al. Effect of welding parameters on mechanical properties of friction stir welded T-lap dissimilar metal joints between 7075 and 5083 aluminum alloys
JP7339511B2 (en) Welded joint and manufacturing method thereof
JP3702216B2 (en) Manufacturing method for inner and outer surface submerged arc welded steel pipes with excellent seam weld toughness
JP2007021530A (en) Method for repairing steel casting by welding and steel casting having part repaired by welding
JP7364867B2 (en) Welded joint and its manufacturing method
JP5935395B2 (en) Welding assembly groove part for square welding of four-sided box section
JP2002160056A (en) High-strength joint construction method for steel-frame structure
JP6380672B2 (en) Welded joint and its manufacturing method
JP6453109B2 (en) Through-diaphragm welded joint structure and method for manufacturing through-diaphragm welded joint structure
JP4858936B2 (en) Method of imparting brittle crack propagation to welded structures
TWI654312B (en) Laser welded steel and manufacturing method thereof
Unt et al. Effects of sealing run welding with defocused laser beam on the quality of T-joint fillet weld
JP2024039595A (en) Electroslag welding method
JP2008030173A (en) Band saw blade
JP2022086780A (en) Lap fillet welded joint, automobile component and method of manufacturing lap fillet welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R151 Written notification of patent or utility model registration

Ref document number: 7339511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151