JP2008178905A - Laser welding method for structure composed of steel plate - Google Patents

Laser welding method for structure composed of steel plate Download PDF

Info

Publication number
JP2008178905A
JP2008178905A JP2007016212A JP2007016212A JP2008178905A JP 2008178905 A JP2008178905 A JP 2008178905A JP 2007016212 A JP2007016212 A JP 2007016212A JP 2007016212 A JP2007016212 A JP 2007016212A JP 2008178905 A JP2008178905 A JP 2008178905A
Authority
JP
Japan
Prior art keywords
steel plate
laser welding
overlapped
steel
steel plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007016212A
Other languages
Japanese (ja)
Other versions
JP5042648B2 (en
Inventor
Kenji Saida
健二 才田
Yasunobu Miyazaki
康信 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007016212A priority Critical patent/JP5042648B2/en
Publication of JP2008178905A publication Critical patent/JP2008178905A/en
Application granted granted Critical
Publication of JP5042648B2 publication Critical patent/JP5042648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding method for preventing delayed fracture of a weld zone in laser welding of an overlapped part of a structure composed of steel plates. <P>SOLUTION: Laser welding is performed by irradiating the upper face of the uppermost steel plate in the overlapped part which is formed by superimposing a plurality of steel plates in the structure composed of steel plates, with a laser beam to fuse the overlapped part to the lower face of the lowermost steel plate and to weld the overlapped part, wherein tack welding is applied to a range within 30 mm from the starting/completing end on the extension of a planned laser weld bead of the overlapped part, this overlapped part is then welded by laser. Desirably, the tack welding is applied to the starting/completing end of the planned laser weld bead and, desirably, the tack welding is further applied to the intermediate part of the staring/completing end of the planned laser weld bead, in such a manner that an interval between the adjacent tack welding parts is within 100 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼板で構成された構造体のレーザーの溶接方法に関し、特に、構造体を製作するに際し、鋼板あるいは成形した鋼板のフランジなどを重ね、この重ね部をレーザー溶接する方法に関する。   The present invention relates to a laser welding method for a structure formed of steel plates, and more particularly, to a method for laminating a steel plate or a flange of a formed steel plate and laser welding the overlapped portion when manufacturing the structure.

レーザー溶接は、レーザー光を熱源とするため、TIG溶接やMIG溶接などのアーク溶接に比べて入熱量の制御が容易で、しかも確実に制御が行える。このため、溶接速度やレーザービームの照射出力、さらにはシールドガス流量などの溶接条件を適切に設定することによって、熱変形が小さく、偏析の少ない良好な溶接部を形成することができる溶接方法であり、薄鋼板等の溶接に好適である。
例えば、自動車工業や電気機器工業その他の分野では、薄鋼板を成形加工した部材の溶接などに採用されており、これに関連する改善技術が提案されている。
例えば、特許文献1には、薄鋼板を突き合わせ、突き合わせ面に沿ってレーザー溶接する際に、溶接が溶接面の一端から他端に向かう一方向に進められるため、溶接熱により生じる鋼板の反りによって、突き合わせ部が拡開し、溶接が困難となる問題点を解決するために、溶接予定箇所の互いに隔離した複数の位置でパルスレーザー溶接により仮付けを行った後、溶接予定箇所の全長にわたってレーザー溶接による本溶接を行うことが開示されている。
また、特許文献2には、フランジ部を有する2つのパネル部材をフランジ部を対向、当接させた状態でレーザービームで溶接し、閉断面のコーチジョイントと称される自動車用の構造体を製造するに際し、当接するフランジ部のギャップの変動による適正な溶け込み深さを確保するために、重ね部のレーザー照射予定面に適当な間隔で貫通穴を形成、これにピン部を有する補助プレートを嵌装したのち、レーザービームを照射して溶接する方法を提案されている。
Since laser welding uses laser light as a heat source, control of heat input is easier and more reliable than arc welding such as TIG welding and MIG welding. For this reason, it is a welding method that can form a good weld with little thermal deformation and little segregation by appropriately setting welding conditions such as welding speed, laser beam irradiation output, and shielding gas flow rate. Yes, suitable for welding thin steel plates and the like.
For example, in the automobile industry, the electrical equipment industry, and other fields, it has been adopted for welding a member formed by processing a thin steel plate, and related improvement techniques have been proposed.
For example, in Patent Document 1, when a thin steel plate is abutted and laser welding is performed along the abutting surface, welding is advanced in one direction from one end of the welding surface to the other end. In order to solve the problem that the butted part is expanded and welding becomes difficult, after laser beam welding is performed by pulse laser welding at a plurality of positions that are separated from each other, the laser is welded over the entire length of the planned welding part. It is disclosed to perform main welding by welding.
In Patent Document 2, two panel members having flange portions are welded with a laser beam in a state where the flange portions are opposed to and in contact with each other, and a structure for an automobile called a closed joint is manufactured. In order to secure an appropriate penetration depth due to the gap variation of the flange part that comes into contact, through holes are formed at appropriate intervals on the laser irradiation planned surface of the overlapped part, and an auxiliary plate having a pin part is fitted into this. A method of welding by irradiating a laser beam after wearing is proposed.

特開昭59−215288号公報JP 59-215288 A 特開平9−10973号公報Japanese Patent Laid-Open No. 9-10773

レーザー溶接は薄鋼板などの溶接に好適であり、自動車用の構造体の溶接にも適用範囲が拡大されている。さらに近年は、燃料比の改善や安全性の向上といった要求に対応するため、引張強度が440MPa以上の高強度(ハイテン)の薄鋼板が多く使用されるようになっており、高強度の薄鋼板をレーザー溶接により溶接することが求められている。   Laser welding is suitable for welding thin steel sheets and the like, and its application range has been expanded to welding automobile structures. Furthermore, in recent years, in order to meet demands such as improvement in fuel ratio and safety, high strength (high-tensile) thin steel plates with a tensile strength of 440 MPa or more are often used. Are required to be welded by laser welding.

図8(a)〜(d)は、自動車の車体パネル構造体の例を示すものであり、これらの構造体は、上述のように、高張力鋼よりなる薄板材から形成されている。
図8において(a)は、フランジ部4及びこれに続く折り曲げ部5を有する軸方向に垂直な断面形状がハット形状に成形された二つの部材2と3を、フランジ部4、6が互いに対向するように配置してフランジ部4、6を重ね合わせ、重ね合わせ部を溶接して構造体を形成したものであり、(b)は、上述のハット形状の部材2のフランジ部4を、平坦な鋼板部材8に対向するように配置して重ね合わせ、重ね合わせ部を溶接して構造体を形成したものであり、(c)は、上述のような二つのハット形状の部材2、3のフランジ部4、6を平坦な鋼板部材8を介して対向するように配置して重ね合わせ、重ね合わせ部を溶接して構造体を形成したものであり、更に、(d)は、上述のようなハット形状の部材を複数(図では、2、3の2枚)、同一方向に重ね合わせ、重ね部を溶接して構造体を形成したものである。
このように、フランジ部を有する部材を用いて、フランジ部を有する部材同士、或いはフランジ部を有する部材と板部材とを重ね合わせ、少なくともフランジ部の重なり部で溶接することによって、構造体が製作されている。
しかしながら、このような高強度の薄鋼板で構成される構造体の重ね部のレーザー溶接において、溶接終了後の溶接部に割れや破断が発生することがある。
FIGS. 8A to 8D show examples of a vehicle body panel structure of an automobile, and these structures are formed of a thin plate material made of high-tensile steel as described above.
In FIG. 8, (a) shows two members 2 and 3 having a flange portion 4 and a bent portion 5 following the flange portion 4 and a cross-sectional shape perpendicular to the axial direction formed into a hat shape, and the flange portions 4 and 6 face each other. The flanges 4 and 6 are arranged so as to overlap each other, and the overlapping parts are welded to form a structure. (B) shows the flatness of the flange 4 of the hat-shaped member 2 described above. The steel plate members 8 are arranged so as to face each other, overlapped, and the overlapped portion is welded to form a structure. (C) shows the two hat-shaped members 2 and 3 as described above. The flange portions 4 and 6 are arranged so as to be opposed to each other with the flat steel plate member 8 therebetween, and the structure is formed by welding the overlapping portions. Further, (d) is as described above. Multiple hat-shaped members (2 in the figure, 2 and 3) Superimposed in the same direction, it is obtained by forming a structure by welding the overlapped portion.
In this way, by using a member having a flange portion, a member having a flange portion, or a member having a flange portion and a plate member are overlapped and welded at least at the overlapping portion of the flange portion, thereby producing a structure. Has been.
However, in the laser welding of the overlapping portion of the structure composed of such a high-strength thin steel plate, the welded portion after the welding may be cracked or broken.

発明者らは、自動車に使用される鋼板で構成された構造体を例にしてこの上記のような鋼板の重ね部のレーザー溶接における破断の状況を調査した。すなわち、図7(a)、(b)は、構造体の例を示すものであり、(a)は、上面視がI形状、(b)は、上面視がH形状のものである。
引張強度が980MPa級で板厚1.2mmの薄鋼板を図7(a)に示すようにフランジ4、6、これに続く折り曲げ部5、7をそれぞれ有し、断面がハット形状に成形して2つの成形部材2、3を製作し、各成形部材のフランジ部4、6を対向させて重ね合わせ、フランジの重ね合わせ部6をレーザービームにより溶接して構造体1を製作した。
また、構造体の長さは600mm、レーザー溶接ビードの長さは580mmとした。成形部材の長手方向の前後端の10mmは非溶接部とした。
なお、レーザー溶接条件は、ビード幅狙い:板厚mm×1.0、ビームウエスト0.6mm、焦点外し:+2mm、加工点出力:3.5kw、溶接速度:2m/min、チップ径:5mmφとし、シールド方法は、同軸センターシールド(裏面シールドなし)、シールドガスはArを25l/分とした。
また、レーザー溶接に先立ち、成形部材の溶接部となるフランジ部の両表面はウエスで払拭し、清浄なものとし、締め付け治具にてフランジの重ね部を上下からクランプ冶具(図示せず)にて固定した。
なお、図7(b)の場合の溶接方法も、成形部材の上面視の形状がH形状である点以外は、図7(a)の場合と同様であるので詳細な説明は省略する。
The inventors investigated the state of breakage in laser welding of the above-described steel plate overlap by taking as an example a structure composed of steel plates used in automobiles. That is, FIGS. 7A and 7B show examples of structures. FIG. 7A shows an I shape when viewed from above, and FIG. 7B shows an H shape when viewed from above.
A thin steel plate having a tensile strength of 980 MPa and a thickness of 1.2 mm has flanges 4 and 6 and subsequent bent portions 5 and 7 as shown in FIG. Two molded members 2 and 3 were manufactured, the flange portions 4 and 6 of each molded member were opposed to each other, and the overlapped portions 6 of the flanges were welded with a laser beam to manufacture the structure 1.
The length of the structure was 600 mm, and the length of the laser weld bead was 580 mm. 10 mm at the front and rear ends in the longitudinal direction of the molded member was a non-welded part.
The laser welding conditions were as follows: bead width target: plate thickness mm × 1.0, beam waist 0.6 mm, defocusing: +2 mm, processing point output: 3.5 kw, welding speed: 2 m / min, tip diameter: 5 mmφ The shielding method was a coaxial center shield (no backside shield), and the shielding gas was Ar at 25 l / min.
Prior to laser welding, both surfaces of the flange part, which becomes the welded part of the molded member, are wiped with a waste cloth and cleaned, and the overlapping part of the flange is clamped from above and below with a clamping jig (not shown). Fixed.
The welding method in the case of FIG. 7B is also the same as that in the case of FIG. 7A except that the shape of the molded member in the top view is an H shape, and thus detailed description is omitted.

レーザー溶接終了後、クランプ冶具を取り外してまもなく、すなわち、薄鋼板の板厚にもよるが溶接終了後(溶接終了後8時間以内)に、図7(a)(b)において、破断部16が認められた。   Shortly after the laser welding is finished, the clamp jig is removed, that is, depending on the thickness of the thin steel plate, after the end of welding (within 8 hours after the end of welding), in FIG. 7A and FIG. Admitted.

発明者らは、上述のようなレーザー溶接部の割れについて、その原因をさらに詳細に確認するためにTピール強度試験を行い、溶接後の経過時間や、鋼種などの影響をさらに詳細に検討した。このTピール強度試験は、図5に示すように、L字状に曲げた2つの試験片14、14のそれぞれの短辺の一端側を対向させて重ね合わせ、その重ね部をレーザー溶接して試験体15(Tピール試験体)とした後、この試験体15の2つの試験片14、14の短辺の他端側(非溶接端側)を互いに逆方向に引張り、溶接部が破断する際の最大引張荷重(N/mm)をTピール強度として評価するものである。   The inventors conducted a T peel strength test in order to confirm the cause of the crack in the laser weld as described above in more detail, and examined the influence of the elapsed time after welding, the steel type, etc. in more detail. . In this T peel strength test, as shown in FIG. 5, two test pieces 14 and 14 bent in an L shape are overlapped with one end of each short side facing each other, and the overlapped portion is laser welded. After forming the test body 15 (T peel test body), the other end side (non-welded end side) of the short sides of the two test pieces 14 and 14 of the test body 15 are pulled in opposite directions, and the welded portion breaks. The maximum tensile load (N / mm) at the time is evaluated as T peel strength.

まず、鋼種として980MPa級鋼を対象として厚さ1.2mmの薄鋼板を用い、試験体、試験片の形状、寸法は、図5に示すものとして重ね部をレーザー溶接し、図5に示すように重ね部に長さ30mmの溶接ビードを形成した。
なお、レーザー溶接条件は、上記と同様、ビード幅狙い:板厚mm×1.0、ビームウエスト0.6mm、焦点外し:+2mm、加工点出力:3.5kw、溶接速度:2m/min、チップ径:5mmφとし、シールド方法は、同軸センターシールド(裏面シールドなし)、シールドガスはArを25l/分とした。
また、レーザー溶接に先立ち、成形部材の溶接部となる各フランジ部の両表面はウエスで払拭し、清浄なものとし、締め付け治具にてフランジの重ね部をクランプ冶具(図示せず)にて固定した。
この試験においては、溶接終了からの経過時間を、溶接終了直後(終了から6分以内)、30分、1時間、5時間、8時間、50時間、と変えた場合のTピール試験体15をそれぞれ引張試験装置にかけ、引張試験を行い引張最大荷重(N/mm)、すなわちTピール強度、を求めた。なお、引張速度は10mm/minとした。また、このとき、試験体の破断部位についても確認した。
First, a thin steel plate having a thickness of 1.2 mm for 980 MPa class steel is used as the steel type, and the shape and dimensions of the test specimen and the test piece are as shown in FIG. A weld bead having a length of 30 mm was formed on the overlapping portion.
The laser welding conditions are the same as above, aiming at the bead width: plate thickness mm × 1.0, beam waist 0.6 mm, defocusing: +2 mm, processing point output: 3.5 kW, welding speed: 2 m / min, tip Diameter: 5 mmφ, shield method: coaxial center shield (no back shield), shield gas Ar: 25 l / min.
Prior to laser welding, both surfaces of each flange part to be the welded part of the molded member are wiped with a waste cloth and cleaned, and the overlapping part of the flange is clamped with a clamping jig (not shown). Fixed.
In this test, the T peel specimen 15 when the elapsed time from the end of welding was changed to 30 minutes, 1 hour, 5 hours, 8 hours, 50 hours immediately after the end of welding (within 6 minutes from the end). Each was subjected to a tensile test apparatus and a tensile test was performed to determine the maximum tensile load (N / mm), that is, the T peel strength. The tensile speed was 10 mm / min. At this time, the fracture site of the test specimen was also confirmed.

その結果、Tピール強度は、溶接終了直後では極めて低いものであったが、溶接終了からの時間経過と共に高くなり、溶接終了から8時間以上経過するとほぼ一定の強度が得られることが判った。なお、溶接終了直後のTピール強度は、溶接終了から8時間経過後のTピール強度の25%以下であった。   As a result, the T peel strength was extremely low immediately after the end of welding, but increased with the passage of time from the end of welding, and it was found that a substantially constant strength was obtained when 8 hours or more had elapsed after the end of welding. The T peel strength immediately after the end of welding was 25% or less of the T peel strength after 8 hours from the end of welding.

また、上記試験において、溶接終了直後のTピール試験体15は、溶接金属の部位で破断していたが、溶接終了から8時間以上経過したものではボンド部(溶融境界)又はHAZ近傍での破断となっており、このことから、母材並みの継手強度が得られることが判った。一方、溶接終了直後のTピール試験体15の破断位置は溶接金属であり、その破面形態は擬劈開破面が主であり、一部に粒界破面が認められ、溶接金属の脆化による割れであることが確認された。
なお、図6は、レーザー溶接部の破断状況をパターン化して示す溶接ビードの溶接方向に垂直な断面模式図であり、(a)は溶接金属17での破断、(b)は熱影響部(HAZ)又はボンド部18(溶融境界)近傍での破断、(c)は、母材16での破断、をそれぞれ示す。
In the above test, the T-peel specimen 15 immediately after the end of welding was fractured at the weld metal part, but when it was 8 hours or more after the end of welding, the fracture occurred near the bond part (melting boundary) or HAZ. From this, it was found that joint strength comparable to that of the base material can be obtained. On the other hand, the fracture position of the T-peel specimen 15 immediately after the end of welding is a weld metal, and the fracture surface form is mainly a pseudo-cleavage fracture surface. It was confirmed that the crack was caused by.
FIG. 6 is a schematic cross-sectional view perpendicular to the welding direction of the weld bead showing the fracture state of the laser welded portion in a pattern, where (a) is a fracture at the weld metal 17 and (b) is a heat affected zone ( HAZ) or a break near the bond portion 18 (melting boundary), and (c) shows a break at the base material 16, respectively.

発明者らは、さらに、鋼板の引張強度が440MPa級、590MPa級、および780MPa級の他の高強度鋼についても、試験体、溶接条件、試験条件等を上記980MPa級の鋼種と同様として調査を行った。その結果、これら引張強度が440MPa以上の高強度鋼のTピール強度も、溶接終了直後は極めて低いが、時間が経過するにつれて増大し、8〜10時間経過するとほぼ一定のTピール強度レベルに達することが確認された。
すなわち、溶接終了直後は、溶接終了後十分な時間、例えば8時間以上経過後の強度レベルの25%程度しかなく、かつ溶接金属の部分で破断することが判った。
一方、引張強度が270MPa級の鋼種でも、同様な試験を行ったが、引張強度が270MPa級の場合は、溶接直後(溶接後6分程度経過)のTピール強度は低下せず、溶接終了から8時間以上経過したもののTピール強度とほぼ同等であった。このような破壊は起こらなかった。
The inventors further investigated other high-strength steels having a tensile strength of 440 MPa class, 590 MPa class, and 780 MPa class as the specimens, welding conditions, test conditions, etc., similar to the above 980 MPa class steel types. went. As a result, the T peel strength of high strength steels having a tensile strength of 440 MPa or more is also very low immediately after the end of welding, but increases as time elapses and reaches a substantially constant T peel strength level after 8 to 10 hours. It was confirmed.
That is, immediately after the end of welding, it was found that there was only a sufficient time after the end of welding, for example, about 25% of the strength level after 8 hours or more, and the weld metal part was broken.
On the other hand, a similar test was performed with a steel type having a tensile strength of 270 MPa. However, when the tensile strength was 270 MPa, the T peel strength immediately after welding (about 6 minutes after welding) did not decrease, and the welding was completed. Although it passed 8 hours or more, it was almost equivalent to the T peel strength. Such destruction did not occur.

これらの結果から、これらの溶接直後の溶接金属の破断は、溶接金属の水素脆化による遅れ破壊によるものであると考えられた。すなわち、溶接部周辺の大気中の水分、或いは、成形部材の表面に付着している水分や炭化水素などが、レーザー溶接の際のレーザービームにより分解されて原子状水素となり、溶接部の溶融金属中に侵入し、拡散する。特にマルテンサイト等の硬化組織に拡散し、集積しやすい。また、レーザー溶接により細くて長いビードを形成した場合、冷却時のビード長手方向の収縮により引張りの残留応力や歪が生じる。また、溶接変形だけでなく、成形部材のスプリングバック等の外部からの引張応力も作用することもある。これら残留応力や歪は構造体の大きさや形状にもよるが、ビードの始終端部に集中しやすい。このように大きな応力や歪が集中する部位に水素は局所的に集積し、亀裂の発生や破断を招くことになるものである。   From these results, it was considered that the fracture of the weld metal immediately after the welding was caused by delayed fracture due to hydrogen embrittlement of the weld metal. In other words, moisture in the atmosphere around the welded part or moisture or hydrocarbons adhering to the surface of the molded part is decomposed by the laser beam during laser welding to become atomic hydrogen, and the molten metal in the welded part Invade and spread inside. In particular, it tends to diffuse and accumulate in hardened structures such as martensite. In addition, when a thin and long bead is formed by laser welding, tensile residual stress or strain is generated due to shrinkage in the longitudinal direction of the bead during cooling. Further, not only welding deformation but also tensile stress from the outside such as a spring back of the molded member may act. Although these residual stresses and strains depend on the size and shape of the structure, they tend to concentrate at the beginning and end of the bead. Thus, hydrogen accumulates locally at a site where a large stress or strain is concentrated, leading to the occurrence of cracks or breakage.

上述の特許文献1や2は、鋼板からなる構造体の重ね部のレーザー溶接におけるこのような遅れ破壊の防止を図るものではなく、鋼板からなる構造体の重ね部のレーザー溶接における溶接部の遅れ破壊を防止する方法は、これまで提案されていない。
従って、本発明は、鋼板からなる構造体の重ね部のレーザー溶接における溶接部の遅れ破壊を防止できるレーザー溶接方法を提供することを課題とする。
The above-mentioned Patent Documents 1 and 2 do not prevent such delayed fracture in the laser welding of the overlapped portion of the structure made of a steel plate, but delay the welded portion in the laser welding of the overlapped portion of the structure made of the steel plate. No method has been proposed for preventing destruction.
Therefore, this invention makes it a subject to provide the laser welding method which can prevent the delayed fracture of the welding part in the laser welding of the overlap part of the structure which consists of a steel plate.

本発明は上記の課題を解決するためになされたものであり、その要旨とするところは以下のとおりである。
(1)鋼板で構成される構造体の複数の鋼板を重ね合わせて形成された重ね部の最上段の鋼板の上面からレーザービームを照射して最下段の鋼板の下面までを溶融させて重ね部を溶接する鋼板の重ね部のレーザー溶接において、重ね部の予定されるレーザー溶接ビードの延長線上の始終端から30mm以内の範囲に仮付けを施し、次いでこの重ね部をレーザー溶接することを特徴とする構造体の鋼板の重ね部のレーザー溶接方法。
(2)前記仮付けが、予定されるレーザー溶接ビードの始終端上に施されることを特徴とする(1)に記載の構造体の鋼板の重ね部のレーザー溶接方法。
(3)鋼板で構成される構造体の複数の鋼板を重ね合わせて形成された重ね部の最上段の鋼板の上面からレーザービームを照射して最下段の鋼板の下面までを溶融させて重ね部を溶接する鋼板の重ね部のレーザー溶接において、重ね部の予定されるレーザー溶接ビードの始終端の中間部において仮付けを施し、隣り合う仮付けとの間隔が100mm以内となるようにすることを特徴とする(1)に記載の構造体の鋼板の重ね部のレーザー溶接方法。
(4)前記仮付けの直径が、ビード幅より大きいことを特徴とする(1)〜(3)のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。
(5)前記仮付けが、スポット溶接により施されることを特徴とする(1)〜(4)のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。
(6)前記仮付けが、機械的締結手段により施されることを特徴とする(1)〜(5)のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。
The present invention has been made to solve the above-described problems, and the gist thereof is as follows.
(1) A laser beam is irradiated from the upper surface of the uppermost steel plate of the overlapped portion formed by overlapping a plurality of steel plates of a structure composed of steel plates to melt the lower surface of the lower steel plate to the overlapped portion. In the laser welding of the overlapped portion of the steel sheets to be welded, the temporary overlap is applied to the range within 30 mm from the start and end on the extension line of the laser welding bead scheduled for the overlapped portion, and then the overlapped portion is laser welded. Laser welding method for the overlapping part of steel plates of the structure to be performed.
(2) The laser welding method for the overlapped portion of steel plates of the structure according to (1), wherein the tacking is performed on a start and end of a planned laser welding bead.
(3) The overlapping portion is formed by irradiating a laser beam from the upper surface of the uppermost steel plate of the overlapping portion formed by overlapping a plurality of steel plates of a structure composed of steel plates to melt the lower surface of the lowermost steel plate. In the laser welding of the overlapped portion of the steel plates to be welded, temporary attachment is performed at the intermediate portion of the start and end of the laser weld bead scheduled for the overlapped portion so that the interval between adjacent temporary attachments is within 100 mm. The laser welding method of the overlap part of the steel plate of the structure as described in (1).
(4) The laser welding method for the overlapped portion of steel plates of the structure according to any one of (1) to (3), wherein the diameter of the tack is larger than the bead width.
(5) The laser welding method for overlapping portions of steel plates of the structure according to any one of (1) to (4), wherein the tacking is performed by spot welding.
(6) The laser welding method for overlapping portions of steel plates of a structure according to any one of (1) to (5), wherein the tacking is performed by mechanical fastening means.

(7)前記構造体の鋼板の重ね部が、一方の鋼板が少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する鋼板であり、この一方の鋼板のフランジ部に、少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する他の鋼板のフランジ部を対向させて重ね合わせて形成されたものであることを特徴とする(1)〜(6)のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。
(8)前記構造体の鋼板の重ね部が、一方の鋼板が少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する鋼板であり、この一方の鋼板のフランジ部に、平坦な他の鋼板の平坦部を重ね合わせて形成されたものであることを特徴とする(1)〜(6)のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。
(9)前記構造体の鋼板の重ね部が、一方の鋼板が少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する鋼板であり、この一方の鋼板のフランジ部に、少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する他の鋼板のフランジ部を、平坦なさらに他の鋼板の平坦部を介して対向させ、重ね合わせて形成されたものであることを特徴とする(1)〜(6)のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。
(10)前記構造体の鋼板の重ね部が、一方の鋼板が少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する鋼板であり、この一方の鋼板のフランジ部に、少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する他の鋼板のフランジ部を同じ方向に重ね合わせて形成されたものであることを特徴とする(1)〜(6)のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。
(11)前記構造体の鋼板の引張強度が440MPa以上であることを特徴とする(1)〜(10)のいずれか1項に記載の鋼板の重ね部のレーザー溶接方法。
(7) The overlapping portion of the steel plates of the structure is a steel plate in which one steel plate has a bent portion on at least one side and a flange portion subsequent thereto, and the bent portion on one side of the steel plate has a bent portion and continues on at least one side thereof. The overlapping portion of the steel plate of the structural body according to any one of (1) to (6), wherein the flange portion of another steel plate having a flange portion is formed so as to oppose each other. Laser welding method.
(8) The overlapping portion of the steel plates of the structure is a steel plate in which one steel plate has a bent portion and a flange portion following the at least one side, and a flat portion of another flat steel plate on the flange portion of the one steel plate. (1) to (6), the method of laser welding of the overlapped portion of the steel sheets of the structure according to any one of (1) to (6).
(9) The overlapping portion of the steel plates of the structure is a steel plate in which one steel plate has a bent portion at least on one side and a flange portion subsequent thereto, and the bent portion at least on one side follows the flange portion of the one steel plate. Any one of (1) to (6), wherein the flange portion of another steel plate having a flange portion is formed so as to be opposed to each other through a flat portion of another steel plate that is flat. A method for laser welding of the overlapped portion of steel plates of the structure according to claim 1.
(10) The overlapping portion of the steel plates of the structure is a steel plate in which one steel plate has a bent portion at least on one side and a flange portion following the one, and the bent portion at least on one side follows the flange portion of the one steel plate. The overlapping portion of the steel plate of the structure according to any one of (1) to (6), wherein the flange portion of another steel plate having a flange portion is formed by overlapping in the same direction. Laser welding method.
(11) The method for laser welding a steel plate overlap portion according to any one of (1) to (10), wherein the steel sheet of the structure has a tensile strength of 440 MPa or more.

本発明によれば、レーザー溶接を施す前の仮付けにより、接合部の位置が固定される。このため、少なくともレーザー溶接直後(溶接後約8時間以内)において、溶接に伴う変形や、成形部材のスプリングバックなどによってレーザー溶接部に負荷される応力を緩和することができる。このため、溶接の際に溶接部に水素が侵入しても溶接部に亀裂が発生したり、破壊に至ること、すなわち遅れ破壊を防止することができる。
溶接時に進入した水素は、時間の経過により大気中に放散されるため、遅れ破壊の危険性は時間の経過と共に緩和される。従って、少なくとも溶接直後(溶接後約8時間以内)において溶接部に負荷される応力を緩和することができ、遅れ破壊を防止できる。
According to the present invention, the position of the joint portion is fixed by temporary attachment before performing laser welding. For this reason, at least immediately after laser welding (within about 8 hours after welding), it is possible to relieve stress applied to the laser welded portion due to deformation accompanying welding, springback of the molded member, and the like. For this reason, even if hydrogen penetrates into the welded part during welding, cracks in the welded part or breakage, that is, delayed fracture can be prevented.
Since the hydrogen that has entered during welding is dissipated into the atmosphere over time, the risk of delayed fracture is mitigated over time. Therefore, stress applied to the welded portion can be relaxed at least immediately after welding (within about 8 hours after welding), and delayed fracture can be prevented.

以下、本発明の方法を添付の図面を用いて具体的に説明する。
図1は、本発明のレーザー溶接方法の一実施形態による構造材を示す斜視図である。この実施形態においては、上面視がI形状の構造体を例示している。
図1に示すように、構造体1は、軸方向の断面形状がハット形状に成形された成形部材2、3から構成され、各成形部材は、薄鋼板をプレスなどによりそれぞれフランジ4、6およびそれぞれこれに続く折り曲げ部5、7が形成されている。これらの成形部材2、3は、フランジ部4、6が対向するように重ねられ、形成されたフランジの重ね部9の溶接予定線に沿って、仮付けDが、Ds、De、およびD2〜D4のように施されている。なお、図1の例では、重ね部の上下の鋼板はスポット溶接により、仮付け固定されている。
この後、重ね部9はレーザートーチ10により溶接され、レーザー溶接ビード11が形成される。
Hereinafter, the method of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view showing a structural material according to an embodiment of the laser welding method of the present invention. In this embodiment, a structure having an I shape in top view is illustrated.
As shown in FIG. 1, the structure 1 includes formed members 2 and 3 whose axial cross-sectional shape is formed into a hat shape. Each formed member is formed by pressing a thin steel plate with flanges 4, 6 and Bending portions 5 and 7 following this are formed. These forming members 2 and 3 are overlapped so that the flange portions 4 and 6 face each other, and the temporary attachment D is Ds, De, and D2 along the planned welding line of the formed overlapping portion 9 of the flange. It is given as D4. In addition, in the example of FIG. 1, the upper and lower steel plates of the overlapped portion are temporarily fixed by spot welding.
Thereafter, the overlapping portion 9 is welded by a laser torch 10 to form a laser weld bead 11.

図2は、本発明のレーザー溶接方法の一実施形態の構造体の溶接状況を示す上面の部分平面図であり、溶接部、仮付けの位置関係が示されている。
フランジの重ね部9のレーザー溶接ビードが形成される予定線12の延長線13上において、ビードの始端Sと終端Eから、距離G1、あるいはG2以内の範囲に始端近傍の仮止めDs、終端近傍の仮付けDeが施されており、また、始終端以外の予定される溶接ビード(溶接ビードの中間部とも記す)には、D2〜D4の仮付けが施されている。
FIG. 2 is a partial plan view of the upper surface showing the welding situation of the structure of one embodiment of the laser welding method of the present invention, showing the positional relationship between the welded part and the tacking.
On the extension line 13 of the planned line 12 where the laser welding bead of the flange overlapping portion 9 is formed, the temporary stop Ds near the start end and the vicinity of the end within a distance G1 or G2 from the start end S and end E of the bead In addition, temporary welding of D2 to D4 is applied to a planned weld bead (also referred to as an intermediate part of the weld bead) other than the start and end.

上述のように、仮付けDは、レーザー溶接ビード(溶接部)への応力の影響を軽減ないしは分散するために、上下の鋼板を少なくともフランジ部において固定するものであるから、この作用、効果を有する限りにおいて、仮付けを施す位置、仮付け箇所数、仮付けの形態などは、特に限定されるものではない。すなわち、仮付けは、溶接ビードの形成が予定される溶接予定位置(線)上、或いはその延長(線)上、或いはその周辺近傍に設けることができる。
なお、溶接ビードの始終端(S,E)および溶接ビードの延長線上を含む近傍部位は、応力が集中し易い部位であるので、本発明においては、予定されるレーザー溶接ビード12の延長線13上において始終端から30mm以内の範囲に、少なくとも仮付けを施すものとする。
予定される溶接ビードの延長線上で始終端から30mm以上離れると、溶接始終端と仮付けとの間が離れすぎて、始終端に対する仮付けの効果が小さくなるためである。予定される溶接ビードの始終端上に仮付けすることは、より好ましい。
すなわち、図2に示すように、仮付けDs、Deは、予定されるレーザー溶接ビード12の延長線上において始終端S,E、からG1、G2の範囲内に施すものであり、G1、G2は、30mm以内とするものである。また、Ds,Deを予定される溶接ビードの始端S、終端上とすることも好ましい。
なお、本発明において、仮付け部の一部が、延長線または溶接ビードにかかっている場合は、その仮付けは、延長線上或いは溶接ビード上にあるものとする。
As described above, the tack D is for fixing the upper and lower steel plates at least in the flange portion in order to reduce or disperse the influence of stress on the laser weld bead (welded portion). As long as it has, the position where temporary attachment is performed, the number of temporary attachment parts, the form of temporary attachment, etc. are not particularly limited. That is, the tacking can be provided on the planned welding position (line) where the welding bead is to be formed, on the extension (line), or in the vicinity thereof.
In addition, since the vicinity part including the start end (S, E) of a weld bead and the extension line of a weld bead is a part where stress tends to concentrate, in this invention, the extension line 13 of the laser welding bead 12 planned. In the above, at least temporary attachment is performed within a range of 30 mm from the start and end.
This is because if the distance between the start and end points is 30 mm or more on the extension line of the planned weld bead, the welding start and end points are too far apart from each other, and the effect of the tacking on the start and end points is reduced. It is more preferable to tack on the start and end of the planned weld bead.
That is, as shown in FIG. 2, the temporary attachments Ds and De are applied within the range from the start and end S and E to G1 and G2 on the expected extension line of the laser weld bead 12, and G1 and G2 are , Within 30 mm. Moreover, it is also preferable to set Ds and De on the starting end S and the end of the planned weld bead.
In the present invention, when a part of the tacking portion is on the extension line or the weld bead, the tacking is on the extension line or the weld bead.

また、仮付けを施す箇所数は、特に限定されず、予定される溶接ビードの長さLに応じて決定することができる。すなわち、仮付け箇所数が多ければ予定される溶接ビードに対する応力の影響を抑制ないし分散できる点では有利であるが、仮付けのための作業が増え、コスト、能率の点で好ましくない。一方、予定される溶接ビードの長さに対して仮付け箇所数が少なすぎると、仮付けの間隔が開くことになり、溶接ビードに対する応力の影響を抑制、分散する効果が不十分となる。従って、予定される溶接ビードの始終端の中間部においても仮付けを施し、隣り合う仮付けとの間隔が100mm以内となるように、仮付けの箇所数及び/又は仮付けの間隔を調整することが好ましい。隣り合う仮付けとの間隔が100mmよりも離れると溶接ビード(溶接部)に影響する応力を抑制し、分散する効果が不十分となるからである。   Further, the number of places to be tacked is not particularly limited, and can be determined according to the planned length L of the weld bead. That is, if the number of temporary attachment points is large, it is advantageous in that the influence of stress on the planned weld bead can be suppressed or dispersed, but the work for temporary attachment increases, which is not preferable in terms of cost and efficiency. On the other hand, if the number of temporary attachment points is too small with respect to the planned length of the weld bead, the temporary attachment interval will be increased, and the effect of suppressing and dispersing the stress on the weld bead will be insufficient. Therefore, temporary attachment is also performed at the intermediate portion of the start and end of the planned weld bead, and the number of temporary attachment points and / or the temporary attachment interval is adjusted so that the interval between adjacent temporary attachments is within 100 mm. It is preferable. This is because, if the interval between the adjacent tacks is more than 100 mm, the effect of suppressing and dispersing the stress that affects the weld bead (welded part) becomes insufficient.

図2に示すように、レーザー溶接ビードの予定線12の延長線上の始終端の近傍の仮付けDs,Deのほか、予定される溶接ビード12の中間部に施されているD2〜D4において、隣り合う仮付けとの間隔F1〜F4(Ds〜D2,D2〜D3,D3〜D4、D4〜Deの間隔をそれぞれF1,F2,F3、F4とする)は、上述のように、100mm以下であることが好ましい。
予定される溶接ビードの長さが短かく、隣り合う仮付けとの間隔が100mmを超えないような場合は、前述のような始終端近傍に仮付けを施すのみでも良いことは言うまでもない。
As shown in FIG. 2, in addition to the temporary attachments Ds and De in the vicinity of the start and end on the extended line of the planned line 12 of the laser weld bead, in D2 to D4 applied to the intermediate part of the planned weld bead 12, The intervals F1 to F4 between the adjacent tacks (Ds to D2, D2 to D3, D3 to D4, and the distances D4 to De are F1, F2, F3, and F4, respectively) are 100 mm or less as described above. Preferably there is.
Needless to say, if the length of the planned weld bead is short and the interval between adjacent tacks does not exceed 100 mm, it is only necessary to perform tacking in the vicinity of the start and end as described above.

仮付けの大きさ(例えば、仮付け部Dの直径d)は、特に限定するものではないが、小さすぎると、予定される溶接ビードに対する応力の影響を抑制、分散する効果が不十分となるので、少なくとも予定される溶接ビードの幅t、すなわち、ビードの溶接方向に直角な方向の長さ、以上であることが好ましい。
すなわち、図3は、本発明の溶接方法における仮付け部近傍部を拡大した平面模式図であり、仮付けDの大きさを説明するものである。すなわち、仮付けDの直径dは、予定される溶接ビードの幅t以上とすること(d≧t)が好ましい。仮付けの直径dが溶接ビードの幅(溶接方向に直角な方向の幅)より小さすぎると、溶接ビード(溶接部)に影響する応力を抑制し、分散する効果が不十分となるからである。好ましくは、dは1.5t〜3.0tである。
The size of the tacking (for example, the diameter d of the tacking portion D) is not particularly limited, but if it is too small, the effect of suppressing and dispersing the stress on the planned weld bead becomes insufficient. Therefore, it is preferable that the width be at least the expected width t of the weld bead, that is, the length in a direction perpendicular to the welding direction of the bead.
That is, FIG. 3 is a schematic plan view in which the vicinity of the tacking portion in the welding method of the present invention is enlarged, and illustrates the size of the tacking D. In other words, the diameter d of the tack D is preferably equal to or greater than the planned weld bead width t (d ≧ t). This is because if the diameter d of the tack is too smaller than the width of the weld bead (the width in the direction perpendicular to the welding direction), the stress affecting the weld bead (welded portion) is suppressed and the effect of dispersing becomes insufficient. . Preferably, d is 1.5t to 3.0t.

仮付けを施す方法は、その仮付けが、溶接ビードに対する応力の影響を抑制、分散する効果が十分得られる限りにおいてが特に限定されるものではなく、溶接或いは機械的な方法など適宜選択することができる。
機械的な方法としては、クランプ冶具を使用してフランジの重ね部を挟むようにして仮付けすることができる。しかしながら、レーザー溶接に際してはクランプ冶具との干渉を避けるためのレーザー装置の移動回避が必要となる。特に、仮付け箇所数が多く、隣り合う仮付け箇所との間隔が小さい場合、クランプ冶具の取り付け数も多く、かつ作業が煩雑となる。しかしながら、一つの仮付け範囲を大きくする必要がある場合は、クランプ冶具の大きさを適切に選択することにより、範囲の大きな仮付けが容易に得られるので好適である。
The method for performing the tacking is not particularly limited as long as the tacking sufficiently suppresses the influence of the stress on the weld bead and obtains an effect of dispersing, and the welding or mechanical method is appropriately selected. Can do.
As a mechanical method, a clamp jig can be used for temporary attachment so as to sandwich the overlapping portion of the flange. However, in laser welding, it is necessary to avoid movement of the laser device to avoid interference with the clamp jig. In particular, when the number of temporary attachment points is large and the distance between adjacent temporary attachment points is small, the number of clamp jigs to be attached is large and the operation becomes complicated. However, when it is necessary to enlarge one tacking range, it is preferable that a tacking with a large range can be easily obtained by appropriately selecting the size of the clamp jig.

一方、溶接による方法は、上述のような機械的な方法の場合とは異なり、レーザー溶接に際してはクランプ冶具との干渉を避けるためのレーザー装置の移動回避が不要であり、仮付け数箇所数が多い場合でも効率的に仮付けを施すことができる。また、小さな構造体や小さな範囲の仮付けを形成する場合に好適である。しかしながら、大型の構造体をレーザー溶接する場合や、大きな範囲の仮付けを形成する場合は、スポットの大きさに限界がある。このように、レーザー溶接する構造体の性状、仮付け箇所数、間隔、仮付け範囲の大きさなどの条件に応じて、仮付けを形成する手段を適切に選択することができる。   On the other hand, unlike the mechanical method described above, the welding method does not require the movement of the laser device to avoid interference with the clamp jig during laser welding, and the number of temporary attachments is small. Even when there are many cases, it is possible to perform temporary attachment efficiently. Moreover, it is suitable when forming a small structure or a small range of tacks. However, when laser welding a large structure or when forming a large range of tacks, the spot size is limited. Thus, the means for forming the tack can be appropriately selected according to the conditions such as the properties of the structure to be laser welded, the number of tack positions, the interval, and the size of the tack range.

図4(a)(b)は、本発明のレーザー溶接方法の他の実施形態による構造体の例を示すもので、上面視がH形状の構造体の例において成形部材のフランジの重ね部にレーザー溶接ビードが形成されている。(a)では、溶接ビードの始終端部にスポット溶接により仮付けが施されており、(b)では、溶接ビードの始終端部および始終端の中間に複数の仮付けが施されている。これらの例においても、仮付けを施す位置、仮付け箇所数、仮付けの形態などに関しては上述のとおりであるので、詳細な説明は省略する。   4 (a) and 4 (b) show examples of structures according to other embodiments of the laser welding method of the present invention. In the example of the structure having an H shape when viewed from the top, the overlapping part of the flange of the molded member is shown. A laser weld bead is formed. In (a), temporary attachment is performed by spot welding on the start and end portions of the weld bead, and in (b), a plurality of temporary attachments are applied between the start and end portions of the weld bead and the start and end portions. Also in these examples, since the position where the temporary attachment is performed, the number of temporary attachment parts, the form of the temporary attachment, and the like are as described above, detailed description thereof is omitted.

本発明のレーザー溶接方法は、構造体に限らず、薄鋼板を重ね合わせ、重ね部をレーザー溶接する際に広く適用できるものであり、その範囲を限定されるものではない。前述のように、図8において、(a)は、フランジ部4及びこれに続く折り曲げ部5を有する軸方向に垂直な断面形状がハット形状に成形された二つの部材2と3を、フランジ部4、6が互いに対向するように配置してフランジ部4、6を重ね合わせ、重ね合わせ部を溶接して構造体を形成したものであり、(b)は、上述のハット形状の部材2のフランジ部4を、平坦な鋼板部材8に対向するように配置して重ね合わせ、重ね合わせ部を溶接して構造体を形成したものであり、(c)は、上述のような二つのハット形状の部材2、3のフランジ部4、6を平坦な鋼板部材8を介して対向するように配置して重ね合わせ、重ね合わせ部を溶接して構造体を形成したものであり、更に、(d)は、上述のようなハット形状の部材を複数(図では、2、3の2枚)、同一方向に重ね合わせ、重ね部を溶接して構造体を形成したものである。このような形態の構造体のレーザー溶接においては、成形部材のスプリングバックによる応力集中があるので、本発明の効果を一層好適に得ることができる。   The laser welding method of the present invention is not limited to the structure, and can be widely applied when superposing thin steel plates and laser welding the overlapped portion, and the scope thereof is not limited. As described above, in FIG. 8, (a) shows two members 2 and 3 having a flange portion 4 and a bent portion 5 following the flange portion 4 and a sectional shape perpendicular to the axial direction formed into a hat shape. 4 and 6 are arranged so as to face each other, the flange portions 4 and 6 are overlapped, and the overlapped portion is welded to form a structure, and (b) shows the above-described hat-shaped member 2. The flange portion 4 is arranged so as to face the flat steel plate member 8 and overlapped, and the overlapped portion is welded to form a structure, and (c) shows the two hat shapes as described above. The flange portions 4 and 6 of the members 2 and 3 are arranged so as to oppose each other with a flat steel plate member 8 interposed therebetween, and the overlapped portions are welded to form a structure. ) A plurality of the hat-shaped members as described above (in the figure, Two 2,3) superimposed in the same direction, is obtained by forming a structure by welding the overlapped portion. In laser welding of such a structure, stress concentration due to springback of the molded member is present, so that the effects of the present invention can be obtained more suitably.

本発明のレーザー溶接方法は、特に鋼種を限定するものではないが、前述のように、引張強度が270MPa級の鋼では遅れ破壊が生じなかったことなどから、高強度の鋼板、特に、遅れ破壊の問題が顕著となる引張強さが440MPa以上の鋼種の鋼材を用いる構造体の場合に適用することが好ましい。   Although the laser welding method of the present invention is not particularly limited to the steel type, as described above, delayed fracture did not occur in steel with a tensile strength of 270 MPa class, and thus high strength steel sheets, particularly delayed fracture. It is preferable to apply in the case of a structure using a steel material of a steel type having a tensile strength of 440 MPa or more where the above problem becomes significant.

以下、実施例に基づいて本発明を具体的に説明する。
板厚1〜1.2mmの高強度の薄鋼板(引張強度440MPaの鋼成分は、質量%で、C:0.10%、Si:0.11%、Mn:0.95%、980MPaの鋼成分は、質量%で、C:0.13%、Si:1.00%、Mn:2.20%であった。)を成形した図1に示す形状の2つの成形部材をフランジを対向させて重ね合わせ、フランジの重ね合わせ部をレーザー溶接により構造体を作成した。成形部材の軸方向長さ700mm、溶接ビードの長さは50〜600mmとした。
レーザー溶接に先立ち、フランジの重ね部に各形態で仮付けを施し、レーザー溶接後の遅れ破壊の有無を確認した。仮付けの位置、仮付けの間隔、仮付けの大きさ(直径)は、表1に示すとおりである。なお、レーザー溶接条件は、上述と同様、ビード幅狙い:板厚mm×1.0、ビームウエスト0.6mm、焦点外し:+2mm、加工点出力:3.5kw、溶接速度:2m/min、チップ径:5mmφとし、シールド方法は、同軸センターシールド(裏面シールドなし)とし、シールドガスはArを25l/分とした。
Hereinafter, the present invention will be specifically described based on examples.
High-strength thin steel plate having a thickness of 1 to 1.2 mm (steel component having a tensile strength of 440 MPa is in mass%, C: 0.10%, Si: 0.11%, Mn: 0.95%, 980 MPa steel. The components were, by mass, C: 0.13%, Si: 1.00%, Mn: 2.20%.) Two molded members having the shape shown in FIG. Then, a structure was created by laser welding of the overlapped portion of the flange. The axial length of the molded member was 700 mm, and the length of the weld bead was 50 to 600 mm.
Prior to laser welding, temporary attachment was applied to the overlapped portion of the flange in various forms, and the presence or absence of delayed fracture after laser welding was confirmed. Table 1 shows the positions of the tacking, the spacing of the tacking, and the size (diameter) of the tacking. The laser welding conditions are the same as described above, aiming at the bead width: plate thickness mm × 1.0, beam waist 0.6 mm, defocusing: +2 mm, processing point output: 3.5 kW, welding speed: 2 m / min, tip The diameter was set to 5 mmφ, the shielding method was a coaxial center shield (no back shield), and the shielding gas was Ar of 25 l / min.

Figure 2008178905
表1から判るように、予定される溶接ビード延長線上において始終端部の近傍に仮付けを施さなかった比較例1、2および、始終端部から30mmを超えた位置に仮付けを施した比較例3では、遅れ破壊が発生した。これに対して、予定される溶接ビードの延長線上で、始終端から30mm以内に仮付けを施した本発明の実施例では、いずれも遅れ破壊は発生しなかった。また、実施例4から判るように、溶接ビードの始終端部の近傍のみに仮付けを施した場合でも、遅れ破壊の発生を抑制できることが判った。
Figure 2008178905
As can be seen from Table 1, Comparative Examples 1 and 2 in which temporary attachment was not performed in the vicinity of the start / end portion on the planned weld bead extension line, and comparison in which temporary attachment was applied to a position exceeding 30 mm from the start / end portion In Example 3, delayed fracture occurred. On the other hand, no delayed fracture occurred in any of the examples of the present invention in which temporary attachment was performed within 30 mm from the start and end points on the planned extension line of the weld bead. Further, as can be seen from Example 4, it was found that the occurrence of delayed fracture can be suppressed even when provisional attachment is performed only in the vicinity of the start / end portion of the weld bead.

本発明のレーザー溶接方法の一実施形態による構造体を示す斜視図である。It is a perspective view which shows the structure by one Embodiment of the laser welding method of this invention. 本発明のレーザー溶接方法の一実施形態による構造体の溶接状況を示す上面の部分平面図である。It is a partial top view of the upper surface which shows the welding condition of the structure by one Embodiment of the laser welding method of this invention. 本発明のレーザー溶接方法における仮付けの大きさを説明する平面模式図である。It is a plane schematic diagram explaining the magnitude | size of the temporary attachment in the laser welding method of this invention. 本発明のレーザー溶接方法の他の実施形態による構造体の例を示す斜視図であり、(a)は溶接ビードの始終端部にのみ仮付けを施した状態、(b)は溶接ビードの始終端部及び中間部に仮付けを施した状態、をそれぞれ示す。It is a perspective view which shows the example of the structure by other embodiment of the laser welding method of this invention, (a) is the state which gave temporary attachment only to the start terminal part of a weld bead, (b) is the beginning and end of a weld bead The state which gave temporary attachment to the edge part and the intermediate part is each shown. Tピール強度試験のための試験体の状況を示す図である。It is a figure which shows the condition of the test body for a T peel strength test. Tピール強度試験におけるレーザー溶接部の破断状況をパターン化して示す断面模式図であり、(a)は、溶着金属での破断、(b)は、HAZ又はボンド部近傍での破断、(c)は母材での破断、をそれぞれ示す。It is a cross-sectional schematic diagram which shows the rupture situation of the laser welding part in a T peel strength test in a pattern, (a) is a rupture at the weld metal, (b) is a rupture near the HAZ or bond part, and (c). Indicates breakage in the base material. 構造体材のレーザー溶接における遅れ破壊の発生箇所を示す模式図であり、(a)は上面視がI形状の構造体の場合、(b)は上面視がH形状の構造体の場合を示す。It is a schematic diagram which shows the generation | occurrence | production location of the delayed fracture in the laser welding of a structure material, (a) shows the case where a top view is an I-shaped structure, (b) shows the case where a top view is an H-shaped structure. . フランジの構造および構造体の断面形状を示す模式図であり、(a)はフランジ部を他の部材のフランジ部と対向させて重ね合わせたもの、(b)はフランジ部を他の平坦な板と重ね合わせたもの、(c)はフランジ部を他の部材のフランジ部と平坦な板を介して対向させて重ね合わせたもの、(d)は、フランジ部の他の部材のフランジ部と同方向に重ね合わせたものをそれぞれ示す。It is a schematic diagram which shows the structure of a flange and the cross-sectional shape of a structure, (a) is what overlapped the flange part facing the flange part of another member, (b) is another flat board. (C) is the same as the flange part of the other member of the flange part, and (c) is the same as the flange part of the other part of the flange part. Each is shown superimposed in the direction.

符号の説明Explanation of symbols

1 構造体
2 成形部材(鋼板)
3 成形部材(鋼板)
4 フランジ部
5 折り曲げ部
6 フランジ部
7 折り曲げ部
8 平坦な鋼板部材
9 重ね部
10 レーザートーチ
11 レーザー溶接ビード
12 予定されるレーザー溶接ビード線
13 予定されるレーザー溶接ビード線の延長線
14 Tピール試験片
15 Tピール試験体
16 母材
17 溶着金属
18 ボンド部又は熱影響部
19 亀裂、破断部
D 仮付け
S ビード始端部
E ビード終端部
Ds ビード始端部近傍の仮付け
De ビード終端部近傍の仮付け
D1〜Dn 中間部の仮付け
G1 ビード始端部からビード始端部近傍の仮付けまでの間隔
G2 ビード終端部からビード終端部近傍の仮付けまでの間隔
F1〜Fn 隣接する仮付けとの間隔
L 予定ビード長さ
d 仮付けの直径
t レーザー溶接部の幅
1 Structure 2 Molded Member (Steel)
3 Molded parts (steel plate)
DESCRIPTION OF SYMBOLS 4 Flange part 5 Bending part 6 Flange part 7 Bending part 8 Flat steel plate member 9 Overlapping part 10 Laser torch 11 Laser welding bead 12 Expected laser welding bead line 13 Extension line of expected laser welding bead line 14 T peel test Piece 15 T peel specimen 16 Base material 17 Weld metal 18 Bond or heat-affected zone 19 Crack or fractured portion D Temporary attachment S Bead start end E Bead end portion Ds Temporary attachment near bead end portion Temporary near Dead end portion Attachment D1 to Dn Temporary attachment of intermediate part G1 Interval from bead start end to temporary attachment near bead start end G2 Interval from bead end to temporary attachment near bead end F1 to Fn Interval between adjacent temporary attachments L Expected bead length d Tacking diameter t Laser weld width

Claims (11)

鋼板で構成される構造体の複数の鋼板を重ね合わせて形成された重ね部の最上段の鋼板の上面からレーザービームを照射して最下段の鋼板の下面までを溶融させて重ね部を溶接する鋼板の重ね部のレーザー溶接において、重ね部の予定されるレーザー溶接ビードの延長線上の始終端から30mm以内の範囲に仮付けを施し、次いでこの重ね部をレーザー溶接することを特徴とする構造体の鋼板の重ね部のレーザー溶接方法。   A laser beam is applied from the upper surface of the uppermost steel plate of the overlapped portion formed by overlapping a plurality of steel plates of a structure composed of steel plates to melt the lower surface of the lowermost steel plate and weld the overlapped portion. In laser welding of overlapped portions of steel sheets, a structure is provided in which tacking is applied to a range within 30 mm from the start and end on the extension line of the laser welding bead where the overlapped portions are planned, and then the overlapped portions are laser welded Laser welding method for the overlap of steel plates. 前記仮付けが、予定されるレーザー溶接ビードの始終端上に施されることを特徴とする請求項1に記載の構造体の鋼板の重ね部のレーザー溶接方法。   2. The laser welding method for a steel plate overlapping portion of a structure according to claim 1, wherein the tacking is performed on a start and end of a laser welding bead to be planned. 鋼板で構成される構造体の複数の鋼板を重ね合わせて形成された重ね部の最上段の鋼板の上面からレーザービームを照射して最下段の鋼板の下面までを溶融させて重ね部を溶接する鋼板の重ね部のレーザー溶接において、重ね部の予定されるレーザー溶接ビードの始終端の中間部において仮付けを施し、隣り合う仮付けとの間隔が100mm以内となるようにすることを特徴とする請求項1に記載の構造体の鋼板の重ね部のレーザー溶接方法。   A laser beam is applied from the upper surface of the uppermost steel plate of the overlapped portion formed by overlapping a plurality of steel plates of a structure composed of steel plates to melt the lower surface of the lowermost steel plate and weld the overlapped portion. In the laser welding of the overlapped portion of the steel plates, temporary attachment is performed at the intermediate portion of the start and end of the laser welding bead scheduled for the overlapped portion so that the interval between adjacent temporary attachments is within 100 mm. The laser welding method of the overlap part of the steel plate of the structure of Claim 1. 前記仮付けの直径が、ビード幅より大きいことを特徴とする請求項1〜3のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。   The laser welding method for the overlapped portion of steel plates of a structure according to any one of claims 1 to 3, wherein the diameter of the tack is larger than the bead width. 前記仮付けが、スポット溶接により施されることを特徴とする請求項1〜4のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。   The laser welding method for the overlapped portion of steel plates of a structure according to any one of claims 1 to 4, wherein the tacking is performed by spot welding. 前記仮付けが、機械的締結手段により施されることを特徴とする請求項1〜5のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。   6. The laser welding method for overlapping portions of steel plates of a structure according to any one of claims 1 to 5, wherein the tacking is performed by mechanical fastening means. 前記構造体の鋼板の重ね部が、一方の鋼板が少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する鋼板であり、この一方の鋼板のフランジ部に、少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する他の鋼板のフランジ部を対向させて重ね合わせて形成されたものであることを特徴とする請求項1〜6のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。   The overlap portion of the steel plates of the structure is a steel plate in which one steel plate has a bent portion and a flange portion subsequent to at least one side, and a bent portion and a subsequent flange portion are provided at least on one side of the flange portion of the one steel plate. The method of laser welding of the overlapped portion of the steel plates of the structure according to any one of claims 1 to 6, wherein the flange portions of the other steel plates are overlapped with each other. 前記構造体の鋼板の重ね部が、一方の鋼板が少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する鋼板であり、この一方の鋼板のフランジ部に、平坦な他の鋼板の平坦部を重ね合わせて形成されたものであることを特徴とする請求項1〜6のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。   The overlapping portion of the steel plates of the structure is a steel plate in which one steel plate has a bent portion and a flange portion following at least one side, and a flat portion of another flat steel plate is overlapped on the flange portion of the one steel plate. The method for laser welding of the overlapped portion of the steel plates of the structure according to any one of claims 1 to 6, wherein the method is a laser welding method. 前記構造体の鋼板の重ね部が、一方の鋼板が少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する鋼板であり、この一方の鋼板のフランジ部に、少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する他の鋼板のフランジ部を、平坦なさらに他の鋼板の平坦部を介して対向させ、重ね合わせて形成されたものであることを特徴とする請求項1〜6のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。   The overlap portion of the steel plates of the structure is a steel plate in which one steel plate has a bent portion and a flange portion subsequent to at least one side, and a bent portion and a subsequent flange portion are provided at least on one side of the flange portion of the one steel plate. The flange part of the other steel plate which has it is made to oppose through the flat part of the further another steel plate, and it overlaps and formed, It is any one of Claims 1-6 characterized by the above-mentioned. Laser welding method for the overlapped part of steel plates of the structure. 前記構造体の鋼板の重ね部が、一方の鋼板が少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する鋼板であり、この一方の鋼板のフランジ部に、少なくとも片側に折り曲げ部及びそれに続くフランジ部を有する他の鋼板のフランジ部を同じ方向に重ね合わせて形成されたものであることを特徴とする請求項1〜6のいずれか1項に記載の構造体の鋼板の重ね部のレーザー溶接方法。   The overlap portion of the steel plates of the structure is a steel plate in which one steel plate has a bent portion and a flange portion subsequent to at least one side, and a bent portion and a subsequent flange portion are provided at least on one side of the flange portion of the one steel plate. The method of laser welding of the overlapped portion of steel plates of a structure according to any one of claims 1 to 6, wherein the flange portion of another steel plate is formed by overlapping in the same direction. 前記構造体の鋼板の引張強度が440MPa以上であることを特徴とする請求項1〜10のいずれか1項に記載の鋼板の重ね部のレーザー溶接方法。   The method for laser welding a steel plate overlap portion according to any one of claims 1 to 10, wherein the steel sheet of the structure has a tensile strength of 440 MPa or more.
JP2007016212A 2007-01-26 2007-01-26 Laser welding method for structure made of steel plate Expired - Fee Related JP5042648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016212A JP5042648B2 (en) 2007-01-26 2007-01-26 Laser welding method for structure made of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016212A JP5042648B2 (en) 2007-01-26 2007-01-26 Laser welding method for structure made of steel plate

Publications (2)

Publication Number Publication Date
JP2008178905A true JP2008178905A (en) 2008-08-07
JP5042648B2 JP5042648B2 (en) 2012-10-03

Family

ID=39723198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016212A Expired - Fee Related JP5042648B2 (en) 2007-01-26 2007-01-26 Laser welding method for structure made of steel plate

Country Status (1)

Country Link
JP (1) JP5042648B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047181A (en) * 2008-08-22 2010-03-04 Mazda Motor Corp Method and apparatus for welding and assembling items of different types
JP2010158717A (en) * 2008-12-09 2010-07-22 Nippon Steel Corp Laser welded lap joint made of high-strength steel sheets and method for manufacturing the same
JP2012240083A (en) * 2011-05-19 2012-12-10 Nippon Steel Corp Method for manufacturing steel sheet welded part excellent in delayed fracture resistance and steel structure having welded part
JP2013054981A (en) * 2011-09-06 2013-03-21 Fuji Electric Co Ltd Manufacturing method of electromagnetic contactor
JP2013132686A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Welded structure and laser welding method
WO2014024997A1 (en) 2012-08-08 2014-02-13 新日鐵住金株式会社 Method for welding overlapped part, method for manufacturing lap weld member, lap weld member, and component for automobile
JP2014161869A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Welding method, tube end, tube end manufacturing method, electric wire connecting structure, and method for manufacturing electric wire connecting structure
WO2014208372A1 (en) * 2013-06-24 2014-12-31 日産自動車株式会社 Welding method and welding device
CN105873715A (en) * 2014-02-06 2016-08-17 新日铁住金株式会社 Lap-welding method, lap joint, production method for lap joint, and automotive part
KR20180031040A (en) 2015-09-16 2018-03-27 신닛테츠스미킨 카부시키카이샤 Overlap welding method of steel sheet and overlapping welded joint
CN110355471A (en) * 2018-04-05 2019-10-22 丰田自动车株式会社 Welding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780669A (en) * 1993-09-10 1995-03-28 Kawasaki Heavy Ind Ltd Laser beam welding method
JP2001062575A (en) * 1999-08-25 2001-03-13 Nippon Steel Corp Laser welding method for metallic plate, and structural body
JP2005066649A (en) * 2003-08-25 2005-03-17 Toyota Motor Corp Laser welding method for high tensile strength steel
JP2006007237A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Work clamping device for laser beam welding
JP2006231371A (en) * 2005-02-24 2006-09-07 Toyota Motor Corp Lap laser welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780669A (en) * 1993-09-10 1995-03-28 Kawasaki Heavy Ind Ltd Laser beam welding method
JP2001062575A (en) * 1999-08-25 2001-03-13 Nippon Steel Corp Laser welding method for metallic plate, and structural body
JP2005066649A (en) * 2003-08-25 2005-03-17 Toyota Motor Corp Laser welding method for high tensile strength steel
JP2006007237A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Work clamping device for laser beam welding
JP2006231371A (en) * 2005-02-24 2006-09-07 Toyota Motor Corp Lap laser welding method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047181A (en) * 2008-08-22 2010-03-04 Mazda Motor Corp Method and apparatus for welding and assembling items of different types
JP2010158717A (en) * 2008-12-09 2010-07-22 Nippon Steel Corp Laser welded lap joint made of high-strength steel sheets and method for manufacturing the same
JP2012240083A (en) * 2011-05-19 2012-12-10 Nippon Steel Corp Method for manufacturing steel sheet welded part excellent in delayed fracture resistance and steel structure having welded part
JP2013054981A (en) * 2011-09-06 2013-03-21 Fuji Electric Co Ltd Manufacturing method of electromagnetic contactor
JP2013132686A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Welded structure and laser welding method
KR20160108591A (en) 2012-08-08 2016-09-19 신닛테츠스미킨 카부시키카이샤 Method for welding overlapped part, and lap weld member
WO2014024997A1 (en) 2012-08-08 2014-02-13 新日鐵住金株式会社 Method for welding overlapped part, method for manufacturing lap weld member, lap weld member, and component for automobile
US10549388B2 (en) 2012-08-08 2020-02-04 Nippon Steel Corporation Method of welding overlapped portion, method of manufacturing overlap-welded member, overlap-welded member, and automotive part
JP2015171731A (en) * 2012-08-08 2015-10-01 新日鐵住金株式会社 Method for welding overlapped part, method for manufacturing lap weld member, lap weld member, and component for automobile
EP2889102A4 (en) * 2012-08-08 2016-06-29 Nippon Steel & Sumitomo Metal Corp Method for welding overlapped part, method for manufacturing lap weld member, lap weld member, and component for automobile
EP3243595A1 (en) 2012-08-08 2017-11-15 Nippon Steel & Sumitomo Metal Corporation Method of welding overlapped portion, method of manufacturing overlap-welded member, overlap-welded member, and automotive part
KR20170062552A (en) 2012-08-08 2017-06-07 신닛테츠스미킨 카부시키카이샤 Method for welding overlapped part, method for manufacturing lap weld member, lap weld member, and component for automobile
JP2014161869A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Welding method, tube end, tube end manufacturing method, electric wire connecting structure, and method for manufacturing electric wire connecting structure
JP6043872B2 (en) * 2013-06-24 2016-12-14 日産自動車株式会社 Welding parts, welding method and welding apparatus
WO2014208372A1 (en) * 2013-06-24 2014-12-31 日産自動車株式会社 Welding method and welding device
KR20160104048A (en) 2014-02-06 2016-09-02 신닛테츠스미킨 카부시키카이샤 Lap-welding method, lap joint, production method for lap joint, and automotive part
CN105873715A (en) * 2014-02-06 2016-08-17 新日铁住金株式会社 Lap-welding method, lap joint, production method for lap joint, and automotive part
EP3112076A4 (en) * 2014-02-06 2018-01-03 Nippon Steel & Sumitomo Metal Corporation Lap-welding method, lap joint, production method for lap joint, and automotive part
US10589380B2 (en) 2014-02-06 2020-03-17 Nippon Steel Corporation Lap welding method, lap joint, production method of lap joint, and an automobile part
KR20180031040A (en) 2015-09-16 2018-03-27 신닛테츠스미킨 카부시키카이샤 Overlap welding method of steel sheet and overlapping welded joint
EP3351340A4 (en) * 2015-09-16 2019-05-22 Nippon Steel & Sumitomo Metal Corporation Steel sheet lap welding method and lap welded joint
US10828717B2 (en) 2015-09-16 2020-11-10 Nippon Steel Corporation Lap welding method of steel sheet and lap weld joint of steel sheet
CN110355471A (en) * 2018-04-05 2019-10-22 丰田自动车株式会社 Welding method
US11229976B2 (en) * 2018-04-05 2022-01-25 Toyota Jidosha Kabushiki Kaisha Welding method
JP7036651B2 (en) 2018-04-05 2022-03-15 トヨタ自動車株式会社 Welding method

Also Published As

Publication number Publication date
JP5042648B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5042648B2 (en) Laser welding method for structure made of steel plate
US9616527B2 (en) Process for laser-arc hybrid welding aluminized metal workpieces
JP5267317B2 (en) Laser lap welded joint of high strength thin steel sheet and manufacturing method thereof
JP5630373B2 (en) Manufacturing method of steel plate welded portion excellent in delayed fracture resistance and steel structure having the welded portion
JP2008229720A (en) Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
US20170008124A1 (en) Lap welding method, lap joint, production method of lap joint, and an automobile part
KR101984442B1 (en) Fillet welding method and fillet weld joint
WO2020017420A1 (en) Method for manufacturing joined structure of dissimilar materials, and joined structure of dissimilar materials
JP2017113781A (en) Lap laser spot welding joint and manufacturing method of the welding joint
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
JP2005131708A (en) Welded structure having excellent brittle crack propagation resistance and its welding method
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
JP4854327B2 (en) Lap laser welding method
JP2010279991A (en) Method of lap-welding steel sheet by laser beam
JP4987453B2 (en) Lap laser welding joint of steel plates and lap laser welding method
JP5031383B2 (en) Laser welding method for steel plate overlap
EP3495524A1 (en) Arc spot welding method
KR102604218B1 (en) Joint structures, automobile parts and manufacturing methods of joint structures
KR20230028488A (en) Resistance spot welding method and manufacturing method of weld seam
JP4957271B2 (en) Laser brazing method
US11638969B2 (en) Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component
JP7151762B2 (en) SPOT WELD JOINTS, MOTOR VEHICLE STRUCTURE COMPONENTS WITH SPOT WELD JOINTS, AND METHOD FOR MANUFACTURING THE SPOT WELD JOINTS
JP6197126B1 (en) Laser-welded section and manufacturing method thereof
JP2004306083A (en) Butt-welded metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R151 Written notification of patent or utility model registration

Ref document number: 5042648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees