JP5206448B2 - Resistance spot welding method for high strength thin steel sheet - Google Patents

Resistance spot welding method for high strength thin steel sheet Download PDF

Info

Publication number
JP5206448B2
JP5206448B2 JP2009019064A JP2009019064A JP5206448B2 JP 5206448 B2 JP5206448 B2 JP 5206448B2 JP 2009019064 A JP2009019064 A JP 2009019064A JP 2009019064 A JP2009019064 A JP 2009019064A JP 5206448 B2 JP5206448 B2 JP 5206448B2
Authority
JP
Japan
Prior art keywords
point
welding
nugget
thin steel
resistance spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009019064A
Other languages
Japanese (ja)
Other versions
JP2010172945A (en
Inventor
泰明 沖田
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009019064A priority Critical patent/JP5206448B2/en
Publication of JP2010172945A publication Critical patent/JP2010172945A/en
Application granted granted Critical
Publication of JP5206448B2 publication Critical patent/JP5206448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高強度薄鋼板を抵抗スポット溶接する方法に関するものである。   The present invention relates to a method for resistance spot welding of a high strength thin steel sheet.

一般に、重ね合わせられた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。例えば、自動車の製造にあたっては1台あたり数千点ものスポット溶接がなされている。この溶接法は、2枚以上の鋼板を重ね合わせ、その表面を直接、上下の電極で挟み加圧力を加えながら、上下電極間に大電流の溶接電流を短時間通電して接合する方法である。この電極はその電極寿命を延長させるために水冷されており、大電流の溶接電流を流すことで発生する抵抗発熱と電極による抜熱とのバランスにより、点状の溶融部が得られる。この点状の溶融部は、通電停止後は急速に冷却され、ナゲットと呼ばれる接合部(溶接部)が形成される。   In general, a resistance spot welding method, which is a kind of a lap resistance welding method, is used for joining stacked steel plates. For example, in the manufacture of automobiles, several thousand spots are welded per vehicle. This welding method is a method in which two or more steel plates are overlapped, and the surface is directly sandwiched between the upper and lower electrodes and a large welding current is applied between the upper and lower electrodes for a short time to join them. . This electrode is water-cooled in order to extend the life of the electrode, and a point-like melted portion is obtained by a balance between resistance heat generation generated by flowing a large current of welding current and heat removal by the electrode. The dotted melted portion is rapidly cooled after the energization is stopped, and a joint (welded portion) called a nugget is formed.

近年、特に自動車に使用される鋼板においては、衝突安全性の向上や、車体軽量化のために高強度の薄鋼板の使用が拡大しつつある。しかし、高強度の薄鋼板においてはより多くの合金成分が添加されており、抵抗スポット溶接のような急熱、急冷の熱サイクルを受けた場合、溶融、凝固したナゲットはもちろん、周辺の熱影響部も非常に硬く脆い材質となりやすく、特に十字引張において高い強度が得られにくくなることが知られている。   In recent years, especially in steel plates used for automobiles, the use of high-strength thin steel plates has been expanding in order to improve collision safety and reduce vehicle weight. However, in the high strength steel sheet, more alloy components are added, and when subjected to rapid heating and rapid thermal cycles such as resistance spot welding, not only melted and solidified nuggets, but also the surrounding thermal effects It is known that the part is also very hard and brittle, and it is difficult to obtain high strength particularly in cross tension.

このような問題に対して、高い十字引張強度を得るためには、単純にナゲット径を大きくすることで十字引張強度はある程度向上させることができる。   In order to obtain such a high cross tensile strength, the cross tensile strength can be improved to some extent by simply increasing the nugget diameter.

また、特許文献1には、溶接通電終了後、板厚の関数で規定された溶接後保持時間経過後に電極を鋼板から離すことを特徴とする高強度鋼板のスポット溶接方法および、溶接通電終了後も後通電を継続し、スポット溶接部の冷却中の温度降下速度を調整することを特徴とする高強度鋼板のスポット溶接方法によって、十字引張強さを改善できることが開示されている。   Patent Document 1 discloses a method for spot welding a high-strength steel sheet characterized by separating the electrode from the steel sheet after the welding energization is completed, and after the retention time after welding specified by a function of the plate thickness, and after the welding energization is completed. Further, it is disclosed that the cross tensile strength can be improved by a spot welding method for a high-strength steel sheet characterized by continuing post-energization and adjusting the temperature drop rate during cooling of the spot weld.

また、非特許文献1においては、本通電終了後、一定時間冷却した後に再度通電を行い、ナゲット部と熱影響部を焼き戻すことにより硬さを低下させ、残留応力を変化させることにより、スポット溶接部の疲労強度を向上させる方法が開示されている。この中で同時にテンパー通電により十字引張強度も改善することが開示されている。   Further, in Non-Patent Document 1, after completion of the main energization, the energization is performed again after cooling for a certain period of time, the hardness is reduced by tempering the nugget portion and the heat-affected zone, and the residual stress is changed. A method for improving the fatigue strength of a weld is disclosed. Among them, it is disclosed that the cross tensile strength is improved by tempering at the same time.

特開2002−103048号公報JP 2002-103048 A

「鉄と鋼」、第68巻、第9号、第1444ページ〜第1451ページ"Iron and Steel", Vol. 68, No. 9, pages 1444 to 1451

しかしながら、ナゲット径の拡大においては、大きなナゲットを得ようとすると電極で押さえきれずにスパッタが発生しやすくなり、溶接部に残るくぼみも大きくなる。また、溶接するために確保しているフランジ部も狭くすることが困難となるなどの問題がある。   However, when the nugget diameter is increased, if an attempt is made to obtain a large nugget, spatter is likely to occur without being suppressed by the electrodes, and the dent remaining in the welded portion also increases. In addition, there is a problem that it is difficult to narrow a flange portion secured for welding.

また、特許文献1に記載の方法では、溶接後保持時間を板厚の関数として規定しているが、実際のロボットでの溶接を考えると、溶接タイマーに設定できる保持時間と抵抗スポット溶接ロボットが加圧を終了して電極が鋼板から離れるまでの時間は異なり、各溶接ロボットにて確認が必要となる。   In the method described in Patent Document 1, the post-weld holding time is defined as a function of the plate thickness. However, considering welding with an actual robot, the holding time that can be set in the welding timer and the resistance spot welding robot are The time from the end of pressurization to the separation of the electrode from the steel sheet is different, and each welding robot needs to confirm.

また、非特許文献1に記載の方法においては、適切なテンパー通電条件範囲が狭いことから実用性に課題があった。また、本通電後に一旦、M点以下の温度まで冷却することが必要であることから溶接時間が長くなるという問題と共に、長い時間をかけたテンパーのプロセスを加えても、ナゲットの径は変化しないため、低強度の鋼板の場合に得られる十字引張強度程度に回復するだけで、従来よりも高い強度が得られるわけではない。 In addition, the method described in Non-Patent Document 1 has a problem in practicality because an appropriate temper energization condition range is narrow. In addition, since it is necessary to cool to a temperature below the Mf point once after the main energization, the diameter of the nugget changes even if a tempering process that takes a long time is added along with the problem that the welding time becomes long. Therefore, it is not possible to obtain a higher strength than in the past by simply recovering to the level of the cross tensile strength obtained in the case of a low-strength steel plate.

本発明は、上記のような事情に鑑みてなされたものであり、継手引張特性に優れた高強度薄鋼板の抵抗スポット溶接方法を提供することを目的とするものである。   This invention is made | formed in view of the above situations, and it aims at providing the resistance spot welding method of the high intensity | strength thin steel plate excellent in the joint tensile characteristic.

本発明者らは、上記課題を達成するため、高強度薄鋼板の抵抗スポット溶接における十字引張特性を向上させる手法について鋭意検討した。テンパー通電のプロセスをベースに十字引張特性の改善に重要な要素について検討した結果、本通電後、テンパー通電までの間の冷却時間においてM点以下の温度まで冷却されることが重要であることを確認した。つまり、テンパーのプロセスを取る以上、冷却時間を含む溶接時間の増加は避けられない。また、継手強度(破断形態)を向上させるために、2点の溶接を行い接合部の面積を拡大させることを検討したが、各溶接点が独立した状態では、各溶接点のそれぞれが個々に破断してしまい、継手強度、破断形態を向上させることはできない。そこで、1点目の溶接後、2点目の溶接を1点目の溶接部に重なるように溶接することで、高強度薄鋼板の抵抗スポット溶接継手の十字引張特性を向上させることができると考えた。すなわち、1点目の通電後、溶融部を凝固させるに必要なだけ保持した後、電極による加圧を解除し、電極の位置を1点目のナゲットと次に形成させる2点目のナゲットが重なる範囲内の位置に移動し、2点目の溶接を行なう。電極の移動、加圧動作の間に1点目の溶接部にはテンパー通電前に必要なM点以下の温度まで冷却が確保され、2点目の溶接において、テンパーの効果と接合面積拡大の効果を併せ持たせることができると考えた。 In order to achieve the above-mentioned problems, the present inventors diligently studied a method for improving the cross tensile property in resistance spot welding of a high-strength thin steel sheet. As a result of examining important elements for improving the cross tensile properties based on the temper energization process, it is important to cool to a temperature below the Mf point during the cooling time between energization and temper energization. It was confirmed. In other words, as long as the temper process is performed, an increase in welding time including cooling time is inevitable. In addition, in order to improve the joint strength (fracture form), it was considered to expand the area of the joint by welding at two points. However, when each welding point is independent, each welding point is individually It breaks, and the joint strength and fracture form cannot be improved. Therefore, after welding the first point, by welding the second point welding so as to overlap the first point welded portion, it is possible to improve the cross tensile characteristics of the resistance spot welded joint of high strength thin steel sheet Thought. That is, after energization of the first point, after holding the melted portion as necessary to solidify, the pressure applied by the electrode is released, and the nugget of the second point is formed next to the nugget of the first point and the position of the electrode. Move to a position within the overlapping range and weld the second point. During the movement and pressurization of the electrode, the first welded part is cooled to a temperature below the Mf point required before energizing the temper. We thought that we could have the effect of.

上記の考え方に基づいて、本発明は以下の特徴を有している。   Based on the above concept, the present invention has the following features.

[1]重ね合わせた2枚以上の高強度の薄鋼板を一対の電極によって挟み加圧力を加えながら抵抗スポット溶接をするにあたり、1点目を溶接後、電極の位置を移動し、1点目の溶接部がM点以下の温度まで冷却された後に、1点目の溶接部に一部重なるように2点目の溶接を行なうことを特徴とする高強度薄鋼板の抵抗スポット溶接方法。 [1] When carrying out resistance spot welding while sandwiching two or more high strength thin steel plates stacked between a pair of electrodes and applying pressure, the position of the electrode is moved after welding the first point. A resistance spot welding method for a high-strength thin steel sheet, wherein the second point welding is performed so that the second point welding partially overlaps with the first point welding portion after the welded portion is cooled to a temperature below the Mf point.

[2]前記1点目の溶接部に一部重なるように2点目の溶接を行なうにあたり、2点目の溶接を行う前に、さらに別の箇所に1点目の溶接のみを行うことを特徴とする前記[1]に記載の高強度薄鋼板の抵抗スポット溶接方法。   [2] When performing the second point welding so as to partially overlap the first point welded portion, before performing the second point welding, it is necessary to perform only the first point welding at another location. The resistance spot welding method for a high-strength thin steel sheet according to the above [1].

本発明においては、2つの溶接部(ナゲット)が一部重なるように溶接することによって、テンパー通電の効果とナゲット面積拡大による十字引張特性の向上が可能となった。   In the present invention, by performing welding so that two welds (nuggets) partially overlap each other, it is possible to improve the effect of temper energization and the cross tensile property by expanding the nugget area.

また、2点溶接することにより、トータルとしてのナゲット径が拡大するため、1点1点のナゲット径は必要以上に大きくする必要がなく、狭いフランジ部への溶接にも適用しやすいという効果がある。1点1点のナゲット径を必要以上に大きくする必要が無いため、設定電流は低く抑えることができ、散りの発生を抑制することができ、溶接部のくぼみも小さくすることができる。   Moreover, since the total nugget diameter is expanded by welding at two points, the nugget diameter at each point does not need to be increased more than necessary, and it is easy to apply to welding to a narrow flange portion. is there. Since it is not necessary to increase the nugget diameter of each point more than necessary, the set current can be suppressed low, the occurrence of scattering can be suppressed, and the indentation of the welded portion can be reduced.

また、通常のテンパー通電を行なうプロセスにおいては、本通電とテンパー通電の間の長い冷却時間の間工程がストップしてしまうが、本発明は1点目を溶接した後、溶接位置を移動させてから2点目を溶接するプロセスであるため、このときにさらに次の打点の1点目を溶接しておき、その後、2点目を溶接しに戻ってくることにより、時間を短縮できるという効果もある。   Further, in the normal temper energization process, the process stops for a long cooling time between the main energization and the temper energization. However, the present invention moves the welding position after welding the first point. Since this is a process of welding the second point from the beginning, the first point of the next hit point is further welded at this time, and then the second point is returned to welding, thereby reducing the time. There is also.

本発明の一実施形態に係る抵抗スポット溶接方法を示す模式図である。It is a schematic diagram which shows the resistance spot welding method which concerns on one Embodiment of this invention. 本発明の実施例1における比較例の十字引張試験後の破断部を切断した断面の図面代用写真である。It is a drawing substitute photograph of the cross section which cut | disconnected the fracture | rupture part after the cross tension test of the comparative example in Example 1 of this invention. 本発明の実施例1における本発明例の十字引張試験後の破断部を切断した断面の図面代用写真である。It is a drawing substitute photograph of the cross section which cut | disconnected the fracture | rupture part after the cross tension test of the example of this invention in Example 1 of this invention.

本発明の実施の形態を以下に述べる。   Embodiments of the present invention will be described below.

図1は、本発明の一実施形態に係る抵抗スポット溶接方法の模式図である。   FIG. 1 is a schematic diagram of a resistance spot welding method according to an embodiment of the present invention.

図1(a)に示すように、高強度薄鋼板13と高強度薄鋼板14とを重ね、電極11及び電極12により、薄鋼板13と薄鋼板14とを接合する部分を挟持する。そして、電極11、12間に電流を通電する。もちろん、この電流は直流、交流どちらでも構わない。これにより、電流が流れた部分が抵抗発熱し、電極による抜熱とのバランスによって、電極間中央部付近に溶融部(ナゲット)15が形成される。このとき、ナゲット15の径は大きければ1点だけでも高い十字引張強度が得られるため、散りの発生しない範囲で大きい径のナゲットのほうが好ましい。1点1点のナゲット径が小さくても十字引張特性に優れた継手を得られることが本溶接方法の特徴であるが、板厚をtとしたときに、ナゲット径が3√tに満たない場合は2点重ねて溶接しても十分な接合面積を得ることが困難となるため、ナゲット径は3√t以上が好ましい。   As shown in FIG. 1A, the high-strength thin steel plate 13 and the high-strength thin steel plate 14 are overlapped, and the electrode 11 and the electrode 12 sandwich the portion where the thin steel plate 13 and the thin steel plate 14 are joined. A current is passed between the electrodes 11 and 12. Of course, this current may be either direct current or alternating current. As a result, the portion where the current flows generates resistance heat, and a melted portion (nugget) 15 is formed in the vicinity of the central portion between the electrodes due to the balance with heat removal by the electrodes. At this time, if the diameter of the nugget 15 is large, a high cross tensile strength can be obtained even at only one point. Therefore, a nugget having a large diameter is preferable in a range where no scattering occurs. A feature of this welding method is that a joint with excellent cross tensile properties can be obtained even if the nugget diameter at each point is small, but the nugget diameter is less than 3√t when the plate thickness is t. In this case, it is difficult to obtain a sufficient bonding area even if two points are overlapped, so that the nugget diameter is preferably 3√t or more.

そして、1点目の通電終了後、ナゲット15が凝固するに必要なだけ加圧を保持した後、図1(b)に示すように、加圧を解除し、電極11、12を移動させる。この移動中において、ナゲット15をM点以下の温度まで冷却することにより、2点目の溶接におけるテンパー効果が有効に働くようになる。したがって、2点目の溶接までの間の時間が長くなっても構わないため、図1(b’)に示すように、この間にさらに次の1点目を溶接してナゲット16を形成しておくことも、たとえば鋼板の板厚が厚く1点目と2点目の間に長い冷却時間が必要となる場合などでは、溶接工程を短縮する上で好ましい場合もある。 After the energization at the first point, the pressure is maintained as much as necessary for the nugget 15 to solidify, and then the pressure is released and the electrodes 11 and 12 are moved as shown in FIG. During this movement, the nugget 15 is cooled to a temperature not higher than the Mf point, so that the temper effect in the second welding is effectively performed. Accordingly, since the time until the second point welding may be increased, as shown in FIG. 1 (b ′), the next point is further welded to form the nugget 16 during this period. For example, when the steel plate is thick and a long cooling time is required between the first point and the second point, it may be preferable to shorten the welding process.

その後、図1(c)に示すように、1点目のナゲット15に2点目のナゲット17の一部重なる位置に2点目を溶接する。この2点目の溶接により、1点目の溶接部にテンパーがかかり、1点目のナゲット15および熱影響部の靱性が改善されるとともに、トータルのナゲット径が拡大することにより十字引張特性が改善される。この2点目の溶接では1点目の溶接部に分流するため、同じ溶接条件では2点目の溶融部の径が小さくなるため、2点目の溶接電流を上げるか、通電時間を延長することがより好ましい。ただし、2点目溶接による溶融部が1点目のナゲットを全て再溶融するような条件の場合には、テンパーの効果がなくなるため脆いナゲットとなり、十字引張特性は改善しない。また、1点目のナゲット15と、2点目のナゲット17が全く重ならない場合は各溶接点のそれぞれが個々に破断してしまうために、この場合も十字引張特性は改善しない。1点目のナゲット15が2点目の溶接によって全て再溶融してしまうこと無く、かつ、2つのナゲット15、17が重なるように、1点目と2点目の溶接位置のずらし量、2点目の溶接条件を選択すればよい。   Thereafter, as shown in FIG. 1C, the second point is welded to the first point nugget 15 at a position where the second point nugget 17 partially overlaps. By this second welding, the first weld is tempered, the toughness of the first nugget 15 and the heat-affected zone is improved, and the total nugget diameter is increased to increase the cross tensile property. Improved. In this second welding, since the current is diverted to the first welding portion, the diameter of the second melting portion is reduced under the same welding conditions. Therefore, the second welding current is increased or the energization time is extended. It is more preferable. However, in the condition that the melted part by the second point welding remelts all the first point nuggets, the effect of the temper is lost, resulting in a brittle nugget and the cross tensile properties are not improved. In addition, when the first nugget 15 and the second nugget 17 do not overlap at all, each weld point is individually broken, and in this case, the cross tensile property is not improved. The first nugget 15 is not completely remelted by the second welding and the two nuggets 15 and 17 are overlapped so that the welding positions of the first and second welds are shifted by 2 What is necessary is just to select the welding conditions of the point.

ちなみに、本発明において用いる溶接装置は、加圧機構の種類(エアシリンダによるもの、サーボモータによるもの)や形状(定置式、ロボットガン)、電源の種類(単相交流、交流インバータ、直流インバータ)など特に限定されるものではない。また、溶接される高強度鋼板は、そのタイプ(固溶強化型、析出強化型、2相組織型、加工誘起変態型など)にも限定されず、板組み(軟鋼との組み合わせや3枚重ねなど)にも限定されない。   By the way, the welding equipment used in the present invention is the type of pressure mechanism (by air cylinder, by servo motor), shape (stationary, robot gun), and type of power source (single-phase AC, AC inverter, DC inverter). There is no particular limitation. Further, the high-strength steel plate to be welded is not limited to its type (solid solution strengthening type, precipitation strengthening type, two-phase structure type, processing induced transformation type, etc.). Etc.).

本発明の効果を確認するために、実施例1として、以下の本発明例と比較例を実施した。   In order to confirm the effect of the present invention, the following examples of the present invention and comparative examples were carried out as Example 1.

その際の板組みは板厚1.6mmの980MPa級の高強度薄鋼板の2枚重ねである。電極はDR型の先端径6mmの電極を用いた。溶接は単相交流のサーボモータ加圧式抵抗スポット溶接ロボットを使用した。溶接条件は表1に示すとおりであり、2点溶接する本発明例の場合と1点だけ溶接する比較例の場合で溶接した。なお、本発明例の1点目の溶接条件と比較例の溶接条件とは同じであり、ナゲット径は約4√tとなる条件で溶接を行なった。本発明例の2点目は1点目の位置から2.5mmずらしたところに1点目と同じ溶接条件で溶接を行なった。   The plate assembly at that time is a double stack of 980 MPa class high strength thin steel plates with a plate thickness of 1.6 mm. As the electrode, a DR type electrode having a tip diameter of 6 mm was used. For welding, a single-phase AC servo motor pressure resistance spot welding robot was used. The welding conditions are as shown in Table 1. Welding was performed in the case of the present invention in which two points were welded and in the case of a comparative example in which only one point was welded. In addition, the welding conditions of the 1st point of this invention example and the welding conditions of a comparative example are the same, and the nugget diameter was welded on the conditions used as about 4√t. The second point of the inventive example was welded under the same welding conditions as the first point at a position shifted by 2.5 mm from the position of the first point.

そして、それぞれの溶接後の試験体をJIS・Z・3137に規定される十字引張試験を行い、評価した。図2に、比較例の場合の十字引張試験後の破断部を切断した断面を示し、図3に、本発明例の場合の十字引張試験後の破断部を切断した断面を示す。   Each of the test specimens after welding was evaluated by performing a cross tension test defined in JIS / Z / 3137. FIG. 2 shows a cross section obtained by cutting the fracture portion after the cross tension test in the case of the comparative example, and FIG. 3 shows a cross section obtained by cutting the fracture portion after the cross tension test in the case of the present invention example.

比較例の場合、図2に示すように、界面破断しており、十字引張強度は9.9kNであったのに対し、本発明例では、図3に示すように、ボタン破断となり破断形態が改善され、十字引張強度も13.2kNと向上しており、本発明の有効性が確認できる。   In the case of the comparative example, as shown in FIG. 2, the interface fractured and the cross tensile strength was 9.9 kN, whereas in the example of the present invention, as shown in FIG. The cross tensile strength is improved to 13.2 kN, and the effectiveness of the present invention can be confirmed.

本発明の効果を確認するために、実施例2として、以下の本発明例と比較例を実施した。   In order to confirm the effect of the present invention, the following examples of the present invention and comparative examples were carried out as Example 2.

ここでは、単相交流のサーボモータ加圧式抵抗スポット溶接ロボットを用いて、980MPa級、1180MPa級、1470MPa級の鋼板のそれぞれの2枚重ねの板組みに対して溶接を行った。溶接は表2に示す溶接条件で行い、ここでは、JIS・Z・3144に規定されるたがね試験を行い、溶接部の強さを評価した。また、1点目の溶接部温度が2点目を溶接する前までにM点温度以下まで冷却された場合は(○)、冷却されなかった場合は(×)、と記した。なお、本発明におけるM点は、高周波加熱式全自動変態記録測定装置(formastor-EDF、FTM-1000)を用いた変態膨張変化から測定するものである。また、たがね試験では、たがねを打ち込み、破断しなかったものを良好(○)、界面破断したものを不良(×)と判断した。 Here, welding was performed on each two-layered sheet set of 980 MPa class, 1180 MPa class, and 1470 MPa class steel sheets using a single-phase AC servo motor pressure resistance spot welding robot. Welding was performed under the welding conditions shown in Table 2. Here, a chisel test defined in JIS / Z / 3144 was performed to evaluate the strength of the welded portion. In addition, when the temperature of the weld zone at the first point was cooled to the Mf point temperature or lower before the second point was welded, it was marked (◯), and when it was not cooled (x). The Mf point in the present invention is measured from a transformation expansion change using a high-frequency heating type fully automatic transformation recording measuring device (formastor-EDF, FTM-1000). Further, in the rattan test, it was judged that the case where the rattan was driven and not broken was good (◯), and the case where the interface was broken was judged as bad (x).

その結果、表2に示すように、本発明例ではたがね試験で破断せず、接合部が良好な強度を持っていることがわかる。これに対して、2点目溶接をしない従来のもの(No.2、16)、1点目と2点目の間の冷却時間が短く、1点目の溶接部がM点温度以下まで冷却されなかったもの(No.10、11)や、1点目と2点目の間の距離が離れすぎてナゲットが重ならないもの(No.4、14)などの比較例では、たがねを打ち込むと簡単に界面破断し、溶接部が脆く、弱いことが確認できる。 As a result, as shown in Table 2, it can be seen that the example of the present invention does not break in the chisel test, and the joint has good strength. On the other hand, the conventional one that does not perform the second point welding (No. 2, 16), the cooling time between the first point and the second point is short, and the welded portion at the first point is below the Mf point temperature. In comparative examples such as those that were not cooled (No. 10, 11) and those that did not overlap the nugget because the distance between the first and second points was too far (No. 4, 14) It is easy to confirm that the interface breaks and the weld is brittle and weak.

本発明の効果を確認するために、1点目の溶接の後に、別の箇所に1点目の溶接のみを行い、その後に1点目の溶接部に一部重なるように2点目の溶接を行った。これにより、1点目と2点目を連続して溶接する場合に必要であった1点目と2点目の間の冷却時間を短縮でき、溶接施工全体としての時間短縮、すなわち、タクトタイムの短縮が可能であることを確認した。   In order to confirm the effect of the present invention, after the first point welding, only the first point welding is performed at another location, and then the second point welding is performed so as to partially overlap the first point welding portion. Went. As a result, the cooling time between the first point and the second point, which was necessary when welding the first point and the second point continuously, can be shortened, and the time required for the entire welding operation can be shortened, that is, the tact time. It was confirmed that it was possible to shorten.

11 電極
12 電極
13 高強度薄鋼板
14 高強度薄鋼板
15 溶融部(ナゲット)
16 溶融部(ナゲット)
17 溶融部(ナゲット)
DESCRIPTION OF SYMBOLS 11 Electrode 12 Electrode 13 High-strength thin steel plate 14 High-strength thin steel plate 15 Melting part (nugget)
16 Melting part (nugget)
17 Melting part (nugget)

Claims (2)

重ね合わせた2枚以上の高強度の薄鋼板を一対の電極によって挟み加圧力を加えながら抵抗スポット溶接をするにあたり、1点目を溶接後、電極の位置を移動し、1点目の溶接部がM点以下の温度まで冷却された後に、1点目の溶接部に一部重なるように2点目の溶接を行なうことを特徴とする高強度薄鋼板の抵抗スポット溶接方法。 When carrying out resistance spot welding with two or more superposed thin steel plates sandwiched between a pair of electrodes and applying pressure, the position of the electrode is moved after welding the first point. Is cooled to a temperature equal to or lower than the M f point, the second point welding is performed so as to partially overlap the first point welded portion. 前記1点目の溶接部に一部重なるように2点目の溶接を行なうにあたり、2点目の溶接を行う前に、さらに別の箇所に1点目の溶接のみを行うことを特徴とする請求項1に記載の高強度薄鋼板の抵抗スポット溶接方法。   When performing the second point welding so as to partially overlap the first point weld, only the first point welding is performed at another location before the second point welding is performed. The resistance spot welding method of the high-strength thin steel sheet according to claim 1.
JP2009019064A 2009-01-30 2009-01-30 Resistance spot welding method for high strength thin steel sheet Expired - Fee Related JP5206448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019064A JP5206448B2 (en) 2009-01-30 2009-01-30 Resistance spot welding method for high strength thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019064A JP5206448B2 (en) 2009-01-30 2009-01-30 Resistance spot welding method for high strength thin steel sheet

Publications (2)

Publication Number Publication Date
JP2010172945A JP2010172945A (en) 2010-08-12
JP5206448B2 true JP5206448B2 (en) 2013-06-12

Family

ID=42704392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019064A Expired - Fee Related JP5206448B2 (en) 2009-01-30 2009-01-30 Resistance spot welding method for high strength thin steel sheet

Country Status (1)

Country Link
JP (1) JP5206448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946478B2 (en) 2016-10-11 2021-03-16 Toyota Jidosha Kabushiki Kaisha Welding method and welded structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179606B (en) * 2011-02-18 2013-03-20 济钢集团有限公司 Welding process for 1,000MPa level non-quenched and tempered high-strength steel
JP6006805B2 (en) * 2011-12-21 2016-10-12 アルコア インコーポレイテッド Method for joining dissimilar materials
JP6123904B2 (en) * 2013-09-12 2017-05-10 新日鐵住金株式会社 Resistance spot welding method and manufacturing method of welded structure
US20190358733A1 (en) * 2018-05-22 2019-11-28 GM Global Technology Operations LLC Overlapping spot welds for improved mechanical performance and weld repair
JP7115223B2 (en) * 2018-11-02 2022-08-09 日本製鉄株式会社 Method for manufacturing resistance spot welded joints

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330253A (en) * 2003-05-08 2004-11-25 Daihatsu Motor Co Ltd Method and apparatus for spot-welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946478B2 (en) 2016-10-11 2021-03-16 Toyota Jidosha Kabushiki Kaisha Welding method and welded structure

Also Published As

Publication number Publication date
JP2010172945A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5293227B2 (en) Resistance spot welding method for high strength thin steel sheet
TWI601588B (en) Resistance point welding method
JP5714537B2 (en) Resistance spot welding method for high strength steel sheet
JP5467480B2 (en) Welded structural member and welding method
JP5713147B2 (en) Overlap welding member, automotive part, overlapping portion welding method, and overlap welding member manufacturing method
KR101588257B1 (en) Method of resistance spot welding of high-tensile strength steel sheet and welding joint manufactured by the method
JP5895430B2 (en) Resistance spot welding joint and resistance spot welding method of high strength thin steel sheet
JP5640410B2 (en) Method of manufacturing resistance spot welded joint
JP2008229720A (en) Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
JP5210552B2 (en) High strength spot welded joint
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
JP6438880B2 (en) Welded structural member and welding method
JP5942392B2 (en) Resistance spot welding method for high strength steel sheet
JP5573128B2 (en) Resistance spot welding method
JP2009125801A (en) Welding method
JP6313921B2 (en) Resistance spot welding method
KR100722130B1 (en) Spot welding method for high strength steel sheet
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
WO2019156073A1 (en) Method for resistance spot welding, and method for producing resistance-spot-welded joint
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP5891741B2 (en) Resistance spot welding method for high strength steel sheet
JP5640409B2 (en) Method of manufacturing resistance spot welded joint
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JPWO2019198725A1 (en) Manufacturing method of spot welded joints, automobile frame parts including spot welded joints, and spot welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees