JP5293227B2 - Resistance spot welding method for high strength thin steel sheet - Google Patents

Resistance spot welding method for high strength thin steel sheet Download PDF

Info

Publication number
JP5293227B2
JP5293227B2 JP2009019065A JP2009019065A JP5293227B2 JP 5293227 B2 JP5293227 B2 JP 5293227B2 JP 2009019065 A JP2009019065 A JP 2009019065A JP 2009019065 A JP2009019065 A JP 2009019065A JP 5293227 B2 JP5293227 B2 JP 5293227B2
Authority
JP
Japan
Prior art keywords
thin steel
strength
resistance spot
energization
spot welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009019065A
Other languages
Japanese (ja)
Other versions
JP2010172946A (en
Inventor
泰明 沖田
公一 谷口
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009019065A priority Critical patent/JP5293227B2/en
Publication of JP2010172946A publication Critical patent/JP2010172946A/en
Application granted granted Critical
Publication of JP5293227B2 publication Critical patent/JP5293227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高強度薄鋼板の抵抗スポット溶接方法に関するものである。   The present invention relates to a resistance spot welding method for a high-strength thin steel sheet.

一般に、重ね合わせられた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。例えば、自動車の製造にあたっては1台あたり数千点もの抵抗スポット溶接がなされている。   In general, a resistance spot welding method, which is a kind of a lap resistance welding method, is used for joining stacked steel plates. For example, in the manufacture of automobiles, several thousand resistance spot weldings are performed per vehicle.

この抵抗スポット溶接法は、図3に示すように、2枚以上の鋼板(ここでは、鋼板3と鋼板4の2枚の鋼板)を重ね合わせ、その表面を直接、上下の電極1、2で挟み加圧力を加えながら、上下電極1、2間に大電流の溶接電流を短時間通電して接合する方法である。この電極1、2はその電極寿命を延長させるために水冷されており、大電流の溶接電流を流すことで発生する抵抗発熱と電極による抜熱とのバランスにより、点状の溶融部が得られる。この点状の溶融部は、通電停止後は急速に冷却され、ナゲット6と呼ばれる接合部が形成される。   In this resistance spot welding method, as shown in FIG. 3, two or more steel plates (here, two steel plates of steel plate 3 and steel plate 4) are overlapped, and the surface is directly covered by upper and lower electrodes 1 and 2. In this method, a large welding current is applied for a short time between the upper and lower electrodes 1 and 2 while applying the sandwiching pressure. The electrodes 1 and 2 are water-cooled in order to extend the life of the electrodes, and a point-like melted portion can be obtained by the balance between the resistance heat generated by flowing a large welding current and the heat removal by the electrodes. . The dotted melted portion is rapidly cooled after the energization is stopped, and a joint portion called a nugget 6 is formed.

近年、特に自動車に使用される鋼板においては、衝突安全性の向上や、車体軽量化のために高強度の鋼板の使用が拡大しつつある。しかし、高強度の鋼板においてはより多くの合金成分が添加されており、抵抗スポット溶接のような急熱、急冷の熱サイクルを受けた場合、溶融、凝固したナゲットはもちろん、周辺の熱影響部も非常に硬く脆い材質となりやすく、特に十字引張において高い強度が得られにくくなることが知られている。   In recent years, especially in steel plates used for automobiles, the use of high-strength steel plates has been expanding to improve collision safety and reduce vehicle weight. However, more alloy components are added to high-strength steel sheets, and when subjected to rapid heating and rapid thermal cycles such as resistance spot welding, not only melted and solidified nuggets, but also the surrounding heat affected zone However, it is known that the material tends to be very hard and brittle, and it is difficult to obtain high strength particularly in cross tension.

このような問題に対して、高い十字引張強度を得るためには、単純にナゲット径を大きくすることで十字引張強度はある程度向上させることができる。   In order to obtain such a high cross tensile strength, the cross tensile strength can be improved to some extent by simply increasing the nugget diameter.

また、特許文献1には、溶接通電終了後、板厚の関数で規定された溶接後保持時間経過後に電極を鋼板から離すことを特徴とする高強度鋼板のスポット溶接方法および、溶接通電終了後も後通電を継続し、スポット溶接部の冷却中の温度降下速度を調整することを特徴とする高強度鋼板のスポット溶接方法によって、十字引張強さを改善できることが開示されている。   Patent Document 1 discloses a method for spot welding a high-strength steel sheet characterized by separating the electrode from the steel sheet after the welding energization is completed, and after the retention time after welding specified by a function of the plate thickness, and after the welding energization is completed. Further, it is disclosed that the cross tensile strength can be improved by a spot welding method for a high-strength steel sheet characterized by continuing post-energization and adjusting the temperature drop rate during cooling of the spot weld.

また、非特許文献1においては、本通電終了後、一定時間冷却した後に再度通電を行い、ナゲット部と熱影響部を焼き戻すことにより、硬さを低下させ、残留応力を変化させることにより、スポット溶接部の疲労強度を向上させる方法が開示されている。この中で同時にテンパー通電により十字引張強度も改善することが開示されている。   In Non-Patent Document 1, after completion of the main energization, the energization is performed again after cooling for a certain time, and the nugget part and the heat affected part are tempered to reduce the hardness and change the residual stress. A method for improving the fatigue strength of a spot weld is disclosed. Among them, it is disclosed that the cross tensile strength is improved by tempering at the same time.

特開2002−103048号公報JP 2002-103048 A

「鉄と鋼」、第68巻、第9号、第1444頁〜第1451頁"Iron and Steel", Vol. 68, No. 9, pp. 1444 to 1451

しかしながら、ナゲット径の拡大においては、大きなナゲットを得ようとすると電極で押さえきれずにスパッタが発生しやすくなり、溶接部に残るくぼみも大きくなる。また、溶接するために確保しているフランジ部も狭くすることが困難となるなどの問題がある。   However, when the nugget diameter is increased, if an attempt is made to obtain a large nugget, spatter is likely to occur without being suppressed by the electrodes, and the dent remaining in the welded portion also increases. In addition, there is a problem that it is difficult to narrow a flange portion secured for welding.

また、特許文献1に記載の方法では、溶接後保持時間を板厚の関数として規定しているが、実際のロボットでの溶接を考えると、溶接タイマーに設定できる保持時間と抵抗スポット溶接ロボットが加圧を終了して電極が鋼板から離れるまでの時間は異なり、各溶接ロボットにて確認が必要となる。   In the method described in Patent Document 1, the post-weld holding time is defined as a function of the plate thickness. However, considering welding with an actual robot, the holding time that can be set in the welding timer and the resistance spot welding robot are The time from the end of pressurization to the separation of the electrode from the steel sheet is different, and each welding robot needs to confirm.

また、非特許文献1に記載の方法においては、適切なテンパー通電条件範囲が狭いことから実用性に課題があった。また、一般的にはテンパー通電は本通電よりも低い電流を長時間通電することにより行なわれており、溶接時間が長くなるという問題もあった。   In addition, the method described in Non-Patent Document 1 has a problem in practicality because an appropriate temper energization condition range is narrow. In general, the temper energization is performed by energizing a current lower than the main energization for a long time, and there is a problem that the welding time becomes long.

本発明は、上記のような事情に鑑みてなされたものであり、継手引張特性に優れた高強度薄鋼板の抵抗スポット溶接方法を提供することを目的とする。   This invention is made | formed in view of the above situations, and it aims at providing the resistance spot welding method of the high intensity | strength thin steel plate excellent in the joint tensile characteristic.

本発明者らは、上記課題を達成するため、高強度薄鋼板の抵抗スポット溶接における十字引張特性を向上させる手法について鋭意検討した。特に、テンパー通電時の通電条件と発熱位置の関係に注目した。   In order to achieve the above-mentioned problems, the present inventors diligently studied a method for improving the cross tensile property in resistance spot welding of a high-strength thin steel sheet. In particular, we focused on the relationship between the energization conditions and the heat generation position during temper energization.

図1は従来のテンパー通電の溶接条件の模式図である。図1に示すように、従来のテンパー通電では、本通電でナゲットを形成させた後、長時間の冷却時間をおき、その後テンパー通電を行なう。テンパー通電は、一般的に、本通電と同程度あるいは本通電よりも長い時間、本通電の電流値未満の電流を流すことによって行なわれる。この場合、電極による抜熱と通電による抵抗発熱のバランスによって、電極間中央部からの発熱となる。入熱が過剰になるとナゲット中央部から再溶融してしまうため、テンパー(焼き戻し)とならず、再度焼入れされることになり、高強度薄鋼板では溶接部は脆くなり継手強度は向上しない。一方、テンパー通電電流を低く設定した場合、ナゲット中央部からの発熱で継手強度に影響を与えるナゲット端部付近の温度をテンパーに必要な温度に制御するためには、長い通電時間が必要となる。また、本通電で形成されるナゲットの径が変化すると、適正なテンパー通電電流も変化するため、実施工を考えると条件範囲が狭く、適用が困難であった。   FIG. 1 is a schematic diagram of welding conditions for conventional temper energization. As shown in FIG. 1, in the conventional temper energization, after the nugget is formed by the main energization, a long cooling time is set, and then the temper energization is performed. The temper energization is generally performed by flowing a current less than the current value of the main energization for a time equal to or longer than the main energization. In this case, heat is generated from the central portion between the electrodes due to the balance between heat removal by the electrodes and resistance heat generation by energization. If the heat input becomes excessive, the nugget is melted again from the central portion, so that it is not tempered (tempered) but is re-quenched, and in a high-strength thin steel plate, the weld becomes brittle and the joint strength is not improved. On the other hand, when the temper energization current is set low, a long energization time is required to control the temperature near the nugget end that affects the joint strength due to heat generation from the nugget center to the temperature required for the temper. . In addition, when the diameter of the nugget formed by the main energization changes, the appropriate temper energization current also changes. Therefore, considering the implementation, the condition range is narrow and it is difficult to apply.

これに対して、テンパー通電として短時間で高い電流をかけた場合の溶接条件の模式図を図2に示す。   On the other hand, the schematic diagram of the welding conditions at the time of applying a high electric current for a short time as temper energization is shown in FIG.

図1に示したような従来のテンパー通電の場合は、前述したように、電極による抜熱と通電による抵抗発熱のバランスによって、電極間中央部からの発熱となる。これに対して、図2に示すように、短時間に高いテンパー通電電流をかけた場合は、電極の近傍に最も発熱する領域が形成され、この領域から熱伝導で溶接部に熱が加わることになる。つまり、短時間で効率的に広い領域を加熱でき、また、テンパー通電電流が過大となっても発熱の中心が鋼板間の境界部と異なるため、鋼板間にて散りが発生し難く、広い適正範囲をもつテンパー通電を行なえると考えた。   In the case of the conventional temper energization as shown in FIG. 1, as described above, heat is generated from the central portion between the electrodes due to the balance between heat removal by the electrodes and resistance heat generation by the energization. On the other hand, as shown in FIG. 2, when a high temper current is applied in a short time, a region that generates the most heat is formed in the vicinity of the electrode, and heat is applied from this region to the welded portion by heat conduction. become. In other words, a wide area can be efficiently heated in a short time, and even if the tempering current is excessive, the center of heat generation is different from the boundary between the steel plates, so that scattering does not easily occur between the steel plates, and a wide appropriate We thought that tempering with a range could be performed.

また、上記のテンパー通電として短時間で高い電流をかける場合においても、本通電で形成されたナゲットが高温のうちに通電しようとすると、高温のナゲット部が再溶融して散りが発生しやすくなってしまう。更に、テンパー通電のプロセスを取る以上、一旦焼きが入ることが必要であり、そのために長い冷却時間が必要となる。この場合、一点当りに必要とされる溶接時間がテンパー通電を行なわない場合と比較して大幅に増加してしまうことも解決したい問題点の一つであった。なお、この短時間高電流のプロセスで溶接部に加えられる熱処理がオーステンパーであってもAc1変態点(723℃付近)以下に冷却する必要があるため同様である。   In addition, even when a high current is applied for a short time as the temper energization described above, if the nugget formed by the main energization is to be energized at a high temperature, the high temperature nugget portion is likely to be remelted and scattered. End up. Furthermore, as long as the process of energizing the temper is taken, it is necessary to start baking once, and thus a long cooling time is required. In this case, it is one of the problems to be solved that the welding time required for each point is significantly increased as compared with the case where temper energization is not performed. The same applies to the heat treatment applied to the welded portion in this short time high current process because it is necessary to cool to the Ac1 transformation point (near 723 ° C.) or less even if it is an austemper.

溶接部の冷却は鋼板を挟んでいる電極への放熱により急速に行なわれるため、電極と鋼板との接触面積が広いほど早く冷却することができる。一般的に、抵抗スポット溶接の電極は、図4に模式図を示すように、電極先端が曲率を持った形状をしている。従って、本通電後の冷却を速める方法としては、高い加圧力で溶接を行ない、電極と鋼板との間の接触面積を広くすればよい。すなわち、本通電の途中あるいは本通電後に加圧力を増加させれば電極と鋼板との接触面積を拡大することができ、冷却速度が増加し、冷却時間を短縮することができる。テンパー通電を行なうときは加圧力が高い必要はないため、冷却が完了後は加圧力を低減してから極短時間高電流の通電を行なってもよく、むしろこの場合、通電時の発熱による熱膨張により電極と鋼板との接触面が減少し、極短時間高電流を流すテンパー通電の電流値を低減できる利点がある。   Since the welded portion is rapidly cooled by heat radiation to the electrodes sandwiching the steel plate, the welded portion can be cooled faster as the contact area between the electrode and the steel plate is wider. In general, an electrode for resistance spot welding has a shape in which the tip of the electrode has a curvature, as schematically shown in FIG. Therefore, as a method of accelerating the cooling after the main energization, it is only necessary to perform welding with a high pressure and widen the contact area between the electrode and the steel plate. That is, if the applied pressure is increased during the main energization or after the main energization, the contact area between the electrode and the steel plate can be increased, the cooling rate can be increased, and the cooling time can be shortened. When the temper is energized, the applied pressure does not need to be high, so after the cooling is completed, the applied pressure may be reduced and then energized with a high current for a very short time. Due to the expansion, the contact surface between the electrode and the steel sheet is reduced, and there is an advantage that the current value of temper energization for passing a high current for an extremely short time can be reduced.

また、自動車の部品構造をみると、例えばセンターピラーでは、高強度の鋼板を用いたピラーアウターとピラーインナーの組み合わせの外側に軟質の薄鋼板を用いたパネルアウターが組み合わされた構造が採用されており、この三枚重ねの構造の溶接が必要となる。   Also, looking at the parts structure of automobiles, for example, the center pillar employs a structure in which a panel outer using a soft thin steel plate is combined outside a combination of a pillar outer using a high strength steel plate and a pillar inner. Therefore, it is necessary to weld this three-layer structure.

この構造に対して短時間高電流のテンパー通電を行なったときの発熱位置は軟質薄鋼板と高強度鋼板の間付近となるが、軟質薄鋼板は固有抵抗が高強度鋼板よりも低く発熱しにくいため、散り発生の問題は生じにくいので、全く問題は無く、高強度鋼板間の継手強度を向上させることができる。さらに、発熱位置が軟質薄鋼板と高強度鋼板の間付近となるため、薄板と厚板の間の接合状態が良くなり、薄板がはがれにくくなるという利点もある。   When a high-tempering current is applied to this structure for a short time, the heat generation position is in the vicinity between the soft thin steel plate and the high strength steel plate, but the soft thin steel plate has a lower specific resistance than the high strength steel plate and is less likely to generate heat. Therefore, since the problem of occurrence of scattering does not easily occur, there is no problem at all, and the joint strength between the high-strength steel sheets can be improved. Furthermore, since the heat generation position is in the vicinity between the soft thin steel plate and the high strength steel plate, there is an advantage that the joining state between the thin plate and the thick plate is improved, and the thin plate is difficult to peel off.

上記のような検討結果に基づいて、本発明は以下のような特徴を有している。   Based on the above examination results, the present invention has the following features.

[1]2枚以上の高強度の薄鋼板を重ね合わせた板組を一対の電極によって挟み加圧力を加えながら電流を流して溶接する抵抗スポット溶接方法であって、
本通電にてナゲットを形成する第1ステップと、前記第1ステップの終了後、電極で狭持したまま保持することにより溶接部を冷却する第2ステップと、前記第2ステップの終了後、極短時間で散りの出ない範囲内で本通電よりも高い電流を流す第3ステップとを備えた工程により抵抗スポット溶接を行なうことを特徴とする高強度薄鋼板の抵抗スポット溶接方法。
[1] A resistance spot welding method in which a plate assembly in which two or more high-strength thin steel plates are stacked is sandwiched between a pair of electrodes and a current is applied while welding is applied.
A first step of forming a nugget by main energization, a second step of cooling the welded portion by holding it with an electrode after completion of the first step, and a pole after completion of the second step A resistance spot welding method for a high-strength thin steel sheet, characterized in that resistance spot welding is performed by a process including a third step in which a current higher than the main energization is applied within a short time without scattering.

[2]電極の先端の形状が曲面であることを特徴とする前記[1]に記載の高強度薄鋼板の抵抗スポット溶接方法。   [2] The resistance spot welding method for a high-strength thin steel sheet according to [1], wherein the shape of the tip of the electrode is a curved surface.

[3]前記第1ステップの途中から、または前記第1ステップの終了後から、加圧力を増加させることを特徴とする前記[1]または[2]に記載の高強度薄鋼板の抵抗スポット溶接方法。   [3] The resistance spot welding of the high-strength thin steel sheet according to [1] or [2], wherein the applied pressure is increased from the middle of the first step or after the end of the first step. Method.

[4]前記第2ステップの終了後、加圧力を低減してから、前記第3ステップを行うことを特徴とする前記[1]〜[3]のいずれかに記載の高強度薄鋼板の抵抗スポット溶接方法。   [4] The resistance of the high-strength thin steel sheet according to any one of [1] to [3], wherein the third step is performed after the applied pressure is reduced after completion of the second step. Spot welding method.

[5]前記2枚以上の高強度の薄鋼板を重ね合わせた板組の少なくとも一方側に、前記高強度の薄鋼板よりも板厚が薄く強度も低い薄鋼板をさらに重ね合わせた板組を抵抗スポット溶接することを特徴とする前記[1]〜[4]のいずれかに記載の高強度薄鋼板の抵抗スポット溶接方法。   [5] A plate assembly in which a thin steel plate having a thickness smaller than that of the high-strength thin steel plate and having a lower strength is further superimposed on at least one side of the plate assembly in which the two or more high-strength thin steel plates are stacked. Resistance spot welding of the high-strength thin steel sheet according to any one of [1] to [4], wherein resistance spot welding is performed.

本発明は、高強度薄鋼板の抵抗スポット溶接において、テンパー通電のプロセスとして、従来のテンパー通電条件とは正反対に、極短時間に高い電流を流すというテンパー通電条件を用いることにより、テンパー通電時の発熱の形態を従来のテンパー通電とは異なる形に制御でき、短時間で効率的にかつ適正電流範囲の広いテンパー通電を行なうことができるようになり、高強度鋼板の抵抗スポット溶接にて問題となっていた継手強度、特に十字引張強を改善することが可能となる。   In the resistance spot welding of a high-strength thin steel sheet, the temper energization condition is such that a high current is passed in an extremely short time as the temper energization process as opposed to the conventional temper energization condition. Can be controlled in a different form from conventional tempering, and tempering can be performed efficiently in a short time with a wide appropriate current range. This is a problem in resistance spot welding of high-strength steel sheets. It becomes possible to improve the joint strength, especially the cross tensile strength.

また、先端の形状が曲面である電極を用いることにより、本通電後テンパー通電を行なうまでの冷却時間の短時間化ができるようになり、従来のテンパー通電を行なう場合に比較して大幅なタクトタイムの短縮が可能となる。   In addition, the use of an electrode with a curved tip makes it possible to shorten the cooling time until the temper energization is performed after the main energization. Time can be shortened.

また、板厚比の大きな三枚重ねの板組(例えば、板厚0.7mmの薄板、板厚1.6mmの厚板、板厚1.6mmの厚板を重ね合わせた板組)の溶接においても適用可能であり、発熱位置が薄板と厚板の境界付近となるため、薄板と厚板の接合状態を改善する効果もある。   Also, welding of a three-layered plate assembly having a large thickness ratio (for example, a plate assembly in which a thin plate having a thickness of 0.7 mm, a thick plate having a thickness of 1.6 mm, and a thick plate having a thickness of 1.6 mm are stacked) Since the heat generation position is near the boundary between the thin plate and the thick plate, there is also an effect of improving the bonding state between the thin plate and the thick plate.

従来のテンパー通電の溶接条件を示す模式図である。It is a schematic diagram which shows the welding conditions of the conventional temper energization. 本発明の一実施形態におけるテンパー通電の溶接条件を示す模式図である。It is a schematic diagram which shows the welding conditions of temper electricity supply in one Embodiment of this invention. 抵抗スポット溶接の模式図である。It is a schematic diagram of resistance spot welding. 先端が曲面になった電極を示す図である。It is a figure which shows the electrode from which the front end became a curved surface. 本発明の実施例1における板組を示す図である。It is a figure which shows the board assembly in Example 1 of this invention.

本発明の実施の形態を以下に述べる。   Embodiments of the present invention will be described below.

本発明の一実施形態に係る高強度薄鋼板の抵抗スポット溶接方法は、前述の図3に示した模式図と同様である。そして、その溶接条件は前述の図2に示した模式図と同様である。   The resistance spot welding method for a high-strength thin steel sheet according to an embodiment of the present invention is the same as the schematic diagram shown in FIG. The welding conditions are the same as those in the schematic diagram shown in FIG.

すなわち、この実施形態においては、図3と図2に示すように、2枚の高強度薄鋼板3、4を重ね合わせた板組を上下一対の電極1、2によって挟み、加圧力を加えながら電流を流して抵抗スポット溶接方法を行うに際して、第1ステップとして、本通電にてナゲット6を形成し、第2ステップとして、電極で狭持したまま保持することにより溶接部を冷却し、第3ステップとして、極短時間で散りの出ない範囲内で本通電よりも高い電流を流すようにしている。   That is, in this embodiment, as shown in FIGS. 3 and 2, a plate assembly in which two high-strength thin steel plates 3 and 4 are overlapped is sandwiched between a pair of upper and lower electrodes 1 and 2 while applying pressure. When performing the resistance spot welding method by passing an electric current, as a first step, the nugget 6 is formed by main energization, and as a second step, the welded portion is cooled by being held between the electrodes, and the third step is performed. As a step, a current higher than that of the main energization is made to flow within a range in which scattering does not occur in an extremely short time.

以下に、各ステップについて詳しく述べる。   Hereinafter, each step will be described in detail.

まず、第1ステップにおいては、高強度薄鋼板3と高強度薄鋼板4とを重ね、電極1と電極2により、高強度薄鋼板3と高強度薄鋼板4とを接合する部分を挟持する。そして、電極1、2間に電流を通電する。もちろん、この電流は直流、交流どちらでも構わない。これにより、電流が流れた部分が抵抗発熱し、電極による抜熱とのバランスによって、電極1、2間の中央部付近に溶融部(ナゲット)6が形成される。このとき、ナゲット6の径は十分に大きければ1点だけでも高い十字引張強度が得られるため、散りの発生しない範囲で大きい径のナゲットの方が好ましい。ナゲット径が小さくても、第3ステップでの短時間高電流のテンパー通電を行なうことにより、十字引張特性に優れた継手を得られることがこの溶接方法の特徴である。   First, in the first step, the high-strength thin steel plate 3 and the high-strength thin steel plate 4 are overlapped, and the electrode 1 and the electrode 2 sandwich the portion where the high-strength thin steel plate 3 and the high-strength thin steel plate 4 are joined. A current is passed between the electrodes 1 and 2. Of course, this current may be either direct current or alternating current. As a result, the portion where the current flows generates resistance heat, and a melted portion (nugget) 6 is formed in the vicinity of the central portion between the electrodes 1 and 2 due to balance with heat removal by the electrodes. At this time, if the diameter of the nugget 6 is sufficiently large, a high cross tensile strength can be obtained even at only one point. Therefore, a nugget having a large diameter is preferable in a range where no scattering occurs. It is a feature of this welding method that even if the nugget diameter is small, a joint having excellent cross tensile properties can be obtained by conducting tempering with a high current for a short time in the third step.

次に、第2ステップにおいて、冷却時間はナゲットが十分に冷却(Ac1点以下に冷却)されるまでとる必要があり、冷却が足りないと、第3ステップのテンパーの効果が得られなかったり、散りが発生したりする。冷却時間を短時間化するために、冷却時間の間は加圧力を増加させ、電極1、2と鋼板3、4との接触面積を増加させることが好ましい。この効果を得るには、図4に示したように、電極1、2の先端が平面ではなく曲面である(曲率を持っている)ことが好ましい。   Next, in the second step, the cooling time needs to be taken until the nugget is sufficiently cooled (cooled to the Ac1 point or less), and if the cooling is insufficient, the effect of the temper of the third step cannot be obtained, Scattering occurs. In order to shorten the cooling time, it is preferable to increase the contact pressure between the electrodes 1 and 2 and the steel plates 3 and 4 during the cooling time. In order to obtain this effect, it is preferable that the tips of the electrodes 1 and 2 are curved surfaces (having curvature) as shown in FIG.

次に、第3ステップにおいて、テンパー通電の電流値を決定するに当っては、強度を保証したい最小の径(例えば、板厚をtとしたときの3√t〜4√t程度)のナゲットが形成される本通電条件にてテンパー条件を決定するのがよい。このとき、発熱の中心が鋼板3、4間の境界部と異なるため、散りが発生し難く、広い適正範囲を持つテンパー通電を行なえるため、適正範囲内の高電流側でテンパー電流を決定するのが好ましい。高電流側にテンパー電流を設定することにより、本通電で形成されるナゲット径が大きな場合においても、テンパー通電の効果を得ることができる。また、このときテンパー通電時間は、長くなると発熱の中心の位置が鋼板間の境界部付近になるため、極短時間の通電が好ましい。具体的には0.1sec以下のテンパー通電時間が好ましい。一方、0.02sec以下のテンパー通電時間では高電流での電流の制御が困難となる。したがって、テンパー通電時間T1については、0.02sec<T1≦0.1secが好ましい。   Next, in the third step, in determining the current value of the temper energization, the nugget of the minimum diameter (for example, about 3√t to 4√t when the plate thickness is t) for which the strength is to be guaranteed. It is preferable to determine the tempering condition based on the main energizing condition where the slab is formed. At this time, since the center of heat generation is different from the boundary portion between the steel plates 3 and 4, it is difficult for scatter to occur, and temper energization having a wide appropriate range can be performed. Is preferred. By setting the temper current on the high current side, the effect of temper energization can be obtained even when the nugget diameter formed by the main energization is large. At this time, if the temper energization time is long, the position of the center of heat generation is near the boundary between the steel plates, and therefore energization for an extremely short time is preferable. Specifically, a temper energization time of 0.1 sec or less is preferable. On the other hand, when the temper energizing time is 0.02 sec or less, it becomes difficult to control the current at a high current. Accordingly, the temper energization time T1 is preferably 0.02 sec <T1 ≦ 0.1 sec.

ちなみに、本発明において用いる溶接装置は、加圧機構の種類(エアシリンダによるもの、サーボモータによるもの)、形状(定置式、ロボットガン)、電源の種類(単相交流、交流インバータ、直流インバータ)など特に限定されるものではない。また、溶接される高強度鋼板は、そのタイプ(固溶強化型、析出強化型、2相組織型、加工誘起変態型など)にも限定されず、板組(軟鋼との組み合わせや三枚重ねなど)にも限定されない。   By the way, the welding equipment used in the present invention is the type of pressure mechanism (by air cylinder, by servo motor), shape (stationary, robot gun), and type of power source (single-phase AC, AC inverter, DC inverter). There is no particular limitation. Moreover, the high-strength steel plate to be welded is not limited to its type (solid solution strengthening type, precipitation strengthening type, two-phase structure type, work-induced transformation type, etc.), and is a plate assembly (combination with mild steel or three-layer superposition). Etc.).

本発明の効果を確認するために本発明例と比較例を実施した。   In order to confirm the effect of the present invention, the present invention example and the comparative example were carried out.

その際に、板組は表1と図5に示すものを用いた。すなわち、板組A〜Eは、一枚目と二枚目ともに、同じ種類で同じ板厚の高強度鋼板を2枚重ね合わせた板組であり(図5(a))、板組Fは、二枚目と三枚目として同じ種類で同じ板厚の高強度鋼板を2枚重ね合わせた上に、一枚目として軟質薄鋼板を1枚重ね合わせた板組である(図5(b))。   At that time, the plate assembly shown in Table 1 and FIG. 5 was used. That is, the plate sets A to E are plate sets obtained by superposing two high-strength steel plates of the same type and the same plate thickness on the first and second sheets (FIG. 5 (a)). The second and third sheets are a set of two high strength steel sheets of the same type and the same sheet thickness, and one soft thin steel sheet as the first sheet (FIG. 5B). )).

Figure 0005293227
Figure 0005293227

そして、本発明例と比較例の溶接条件は表2に示すとおりである。   Table 2 shows the welding conditions for the inventive example and the comparative example.

なお、溶接装置は単相交流のサーボモータ加圧式抵抗スポット溶接ロボットを使用した。   The welding apparatus used was a single-phase AC servo motor pressure resistance spot welding robot.

そして、溶接後の試験体について、JIS Z 3137に規定される十字引張試験を行い、評価した。プラグ破断となるものを合格(○)、界面破断となるものを不合格(×)と判断した。   And the cross-tension test prescribed | regulated to JISZ3137 was done about the test body after welding, and it evaluated. Those that resulted in plug fracture were judged as acceptable (◯), and those that resulted in interface fracture were judged as unacceptable (x).

表2に、本発明例と比較例の結果(散り発生の有無、十字引張強度、破断形態)を示す。   Table 2 shows the results of the present invention and comparative examples (whether or not scattering occurs, cross tensile strength, fracture mode).

Figure 0005293227
Figure 0005293227

まず、番号10(比較例)は、テンパー通電を行なわなかった場合であり、十字引張試験を行なうと界面破断となり、十字引張強度も低い。   First, No. 10 (comparative example) is a case where temper energization was not performed. When a cross tension test was performed, interface fracture occurred and the cross tensile strength was low.

次に、番号1〜4は、極短時間高電流のテンパー通電をかけた場合であり、冷却時間だけ変化させたものである。この板組におけるこの本通電と冷却の条件のもとでは、番号4(比較例)は、冷却時間が短すぎるため散りが発生してしまい、界面破断で十字引張破断強度も低い。一方、番号1〜3(本発明例)は、プラグ破断となり、高い強度を示している。   Next, numbers 1 to 4 correspond to a case where temper energization with a high current is applied for an extremely short time, which is changed only for the cooling time. Under this main energization and cooling condition in this plate assembly, No. 4 (comparative example) is scattered because the cooling time is too short, and the cross tensile fracture strength is low due to interfacial fracture. On the other hand, numbers 1 to 3 (examples of the present invention) are plug fractures, indicating high strength.

次に、番号5〜9は、テンパー通電の電流値を変化させたもので、電流が18kAの番号9(比較例)では、電流が高すぎるために散りが発生し、界面破断で十字引張破断強度も低いが、番号5〜8(本発明例)では、プラグ破断で高い強度が得られており、また、テンパー電流の適正範囲が広いことも分かる。   Next, Nos. 5 to 9 were obtained by changing the current value of the temper energization. In No. 9 (comparative example) with a current of 18 kA, the current was too high to cause scattering, and interfacial fracture caused cross tension fracture. Although the strength is low, it can also be seen that in Nos. 5 to 8 (examples of the present invention), a high strength is obtained by plug rupture, and the appropriate range of the temper current is wide.

次に、番号11〜19は、電極先端径を拡大し、さらに冷却中の加圧力を上げることで冷却速度を向上させたものである。テンパー通電を加えていない番号11(比較例)では、界面破断で強度が低いが、番号12〜19(本発明例)では、プラグ破断で高い強度を示すだけでなく、冷却時間も短くすることができることが分かる。   Next, Nos. 11 to 19 increase the cooling rate by increasing the electrode tip diameter and further increasing the pressure during cooling. In No. 11 (comparative example) where temper energization is not applied, the strength is low due to interfacial fracture, but in Nos. 12 to 19 (examples of the present invention), not only high strength is exhibited due to plug fracture, but also the cooling time is shortened. You can see that

次に、番号20〜24は、テンパー通電の通電時間を変化させたものであるが、番号20(比較例)では、通電時間が短すぎるために、高いテンパー電流を与えても効果が得られていない。一方、テンパー通電時間が0.12secと長い番号23、34(比較例)では、散りが発生し、界面破断となり、強度も低い。   Next, Nos. 20 to 24 are obtained by changing the energization time of temper energization. However, in No. 20 (comparative example), the energization time is too short. Not. On the other hand, in numbers 23 and 34 (comparative examples) having a long temper energization time of 0.12 sec, scattering occurs, interface fracture occurs, and the strength is low.

次に、番号25〜32は、適用する鋼板の板厚、強度、めっきの有無の影響を調べたものであり、テンパー通電を行なわない番号26、28、30、32(比較例)では、界面破断で低い強度であったものが、番号25、27、29、31(本発明例)では、極短時間高電流のテンパー通電を行なうことによって、プラグ破断で高い強度が得られるようになり、本発明の効果が確認できる。   Next, numbers 25 to 32 are for examining the influence of the thickness, strength, and presence / absence of plating of the steel sheet to be applied. In numbers 26, 28, 30, and 32 (comparative examples) where temper energization is not performed, In the case of numbers 25, 27, 29, and 31 (examples of the present invention) that had low strength at break, high strength was obtained at plug break by performing tempering with a high current for an extremely short time. The effect of the present invention can be confirmed.

また、番号33〜35は、軟鋼のめっき鋼板(板厚0.7mm)1枚と980MPa級高張力めっき鋼板(板厚1.6mm)2枚をあわせた三枚重ねの板組の場合である。テンパー通電を行なわない番号35(比較例)では、1.6mmの高張力鋼板間の十字引張強度は低く界面破断であったが、番号33、34(本発明例)では、プラグ破断となり、高い強度が得られており、三枚重ねの板組みに対しても本発明の効果が確認できた。   Numbers 33 to 35 correspond to a case of a three-layered plate set including one sheet of mild steel plated steel plate (plate thickness 0.7 mm) and two 980 MPa class high-tensile plated steel plates (plate thickness 1.6 mm). . In No. 35 (comparative example) in which temper energization was not performed, the cross tensile strength between 1.6 mm high-strength steel sheets was low and interface fracture occurred, but in No. 33 and 34 (invention example), plug fracture occurred and was high. The strength was obtained, and the effect of the present invention was confirmed even for a three-layered plate assembly.

さらに、表2には記載していないが、番号35(比較例)では、軟鋼めっき鋼板(薄板)と高張力めっき鋼板(厚板)の間の接合状態が悪く、簡単に界面破断していたが、番号33、34(本発明例)では、軟鋼めっき鋼板(薄板)と高張力めっき鋼板(厚板)の間でもプラグ破断となっており、このような板厚比の大きな板組みにおいてよく問題となる薄板のはがれの問題も本発明を用いることによって解決できることが分かる。   Furthermore, although not described in Table 2, in No. 35 (comparative example), the joining state between the mild steel plated steel plate (thin plate) and the high-tensile plated steel plate (thick plate) was poor, and the interface was easily broken. However, in Nos. 33 and 34 (examples of the present invention), the plug is broken between the mild steel plated steel plate (thin plate) and the high strength plated steel plate (thick plate). It can be seen that the problem of thin plate peeling, which is a problem, can be solved by using the present invention.

1 電極
2 電極
3 鋼板(高強度鋼板)
4 鋼板(高強度鋼板)
6 ナゲット
1 electrode 2 electrode 3 steel plate (high strength steel plate)
4 Steel plate (high strength steel plate)
6 Nuggets

Claims (5)

2枚以上の高強度の薄鋼板を重ね合わせた板組を一対の電極によって挟み加圧力を加えながら電流を流して溶接する抵抗スポット溶接方法であって、
本通電にてナゲットを形成する第1ステップと、前記第1ステップの終了後、電極で狭持したまま保持することにより溶接部を冷却する第2ステップと、前記第2ステップの終了後、0.02sec超え0.1sec以下の極短時間で散りの出ない範囲内で本通電よりも高い電流にてテンパー通電を行う第3ステップとを備えた工程により抵抗スポット溶接を行なうことを特徴とする高強度薄鋼板の抵抗スポット溶接方法。
A resistance spot welding method in which a plate assembly in which two or more high-strength thin steel plates are stacked is sandwiched between a pair of electrodes and current is applied while welding is applied, and welding is performed.
A first step of forming a nugget in this energization, after completion of the first step, a second step of cooling the welded portion by holding while sandwiched by the electrodes, after completion of the second step, 0 A resistance spot welding is performed by a process including a third step in which temper energization is performed at a higher current than the main energization within a range in which no scattering occurs in an extremely short time of .02 sec and 0.1 sec or less. Resistance spot welding method for high strength thin steel sheet.
電極の先端の形状が曲面であることを特徴とする請求項1に記載の高強度薄鋼板の抵抗スポット溶接方法。   2. The resistance spot welding method for a high strength thin steel sheet according to claim 1, wherein the shape of the tip of the electrode is a curved surface. 前記第1ステップの途中から、または前記第1ステップの終了後から、加圧力を増加させることを特徴とする請求項1または2に記載の高強度薄鋼板の抵抗スポット溶接方法。   3. The resistance spot welding method for high-strength thin steel sheets according to claim 1 or 2, wherein the applied pressure is increased from the middle of the first step or after the end of the first step. 前記第2ステップの終了後、加圧力を低減してから、前記第3ステップを行うことを特徴とする請求項1〜3のいずれかに記載の高強度薄鋼板の抵抗スポット溶接方法。   The resistance spot welding method for a high-strength thin steel sheet according to any one of claims 1 to 3, wherein the third step is performed after the applied pressure is reduced after the second step. 前記2枚以上の高強度の薄鋼板を重ね合わせた板組の少なくとも一方側に、前記高強度の薄鋼板よりも板厚が薄く強度も低い薄鋼板をさらに重ね合わせた板組を抵抗スポット溶接することを特徴とする請求項1〜4のいずれかに記載の高強度薄鋼板の抵抗スポット溶接方法。   At least one side of the plate assembly in which the two or more high-strength thin steel plates are overlapped is resistance spot welded to a plate assembly in which the thin steel plates that are thinner and lower in strength than the high-strength thin steel plates are further overlapped A resistance spot welding method for a high-strength thin steel sheet according to any one of claims 1 to 4.
JP2009019065A 2009-01-30 2009-01-30 Resistance spot welding method for high strength thin steel sheet Active JP5293227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019065A JP5293227B2 (en) 2009-01-30 2009-01-30 Resistance spot welding method for high strength thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019065A JP5293227B2 (en) 2009-01-30 2009-01-30 Resistance spot welding method for high strength thin steel sheet

Publications (2)

Publication Number Publication Date
JP2010172946A JP2010172946A (en) 2010-08-12
JP5293227B2 true JP5293227B2 (en) 2013-09-18

Family

ID=42704394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019065A Active JP5293227B2 (en) 2009-01-30 2009-01-30 Resistance spot welding method for high strength thin steel sheet

Country Status (1)

Country Link
JP (1) JP5293227B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177254A1 (en) 2020-03-05 2021-09-10 Jfeスチール株式会社 Resistance spot welding method and manufacturing method for resistance spot welded joint

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013005319B1 (en) * 2010-09-06 2018-02-06 Honda Motor Co., Ltd. WELDING METHOD AND WELDING DEVICE
JP5149355B2 (en) * 2010-09-08 2013-02-20 富士重工業株式会社 Spot welding method and spot welding apparatus
JP5895430B2 (en) * 2011-10-04 2016-03-30 Jfeスチール株式会社 Resistance spot welding joint and resistance spot welding method of high strength thin steel sheet
JP5333560B2 (en) 2011-10-18 2013-11-06 Jfeスチール株式会社 Resistance spot welding method and resistance spot welding joint of high strength steel plate
JP5267640B2 (en) * 2011-11-25 2013-08-21 Jfeスチール株式会社 Evaluation method for resistance spot welded joints
JP6313921B2 (en) * 2011-12-21 2018-04-18 Jfeスチール株式会社 Resistance spot welding method
DE102012018098A1 (en) * 2012-09-13 2014-03-13 Volkswagen Ag Method for resistance welding of components with variable time characteristic of the welding current, as well as component composite produced therewith
US10040145B2 (en) 2012-09-24 2018-08-07 Nippon Steel & Sumitomo Metal Corporation Spot welding method of high-strength steel sheets excellent in joint strength
MX2015014507A (en) * 2013-04-17 2016-02-26 Nippon Steel & Sumitomo Metal Corp Spot welding method.
EP3020499B1 (en) * 2013-07-11 2020-08-12 Nippon Steel Corporation Resistive spot welding method
KR101567652B1 (en) * 2013-12-20 2015-11-09 현대자동차주식회사 Spot welding method for high strength steel sheet
JP6399266B1 (en) * 2017-03-31 2018-10-03 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint
CN110461528B (en) * 2017-03-31 2021-04-20 杰富意钢铁株式会社 Method for manufacturing resistance spot-welded joint
JP7059573B2 (en) * 2017-11-10 2022-04-26 日本製鉄株式会社 Resistance spot welding equipment
US20210362266A1 (en) 2018-02-09 2021-11-25 Jfe Steel Corporation Resistance spot welding method and method for producing resistance spot welded joint
JP7115223B2 (en) * 2018-11-02 2022-08-09 日本製鉄株式会社 Method for manufacturing resistance spot welded joints
JP6828831B1 (en) * 2019-04-24 2021-02-10 Jfeスチール株式会社 Resistance spot welding method, resistance spot welding joint manufacturing method
WO2020240961A1 (en) 2019-05-28 2020-12-03 Jfeスチール株式会社 Resistance spot welding unit and resistance spot welding method, and resistance spot welded joint and method for manufacturing resistance spot welded joint
MX2021014596A (en) 2019-05-28 2022-01-11 Jfe Steel Corp Resistance spot welding unit and resistance spot welding method, and resistance spot welded joint and method for manufacturing resistance spot welded joint.
JP7368716B2 (en) 2019-11-07 2023-10-25 日本製鉄株式会社 Manufacturing method of resistance spot welding joints

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849539B2 (en) * 2002-02-19 2006-11-22 Jfeスチール株式会社 Spot welding method for high-tensile galvanized steel sheet
JP4728926B2 (en) * 2006-10-16 2011-07-20 新日本製鐵株式会社 Lap resistance spot welding method
JP5459750B2 (en) * 2007-11-28 2014-04-02 日産自動車株式会社 Welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177254A1 (en) 2020-03-05 2021-09-10 Jfeスチール株式会社 Resistance spot welding method and manufacturing method for resistance spot welded joint

Also Published As

Publication number Publication date
JP2010172946A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5293227B2 (en) Resistance spot welding method for high strength thin steel sheet
TWI601588B (en) Resistance point welding method
JP5467480B2 (en) Welded structural member and welding method
JP5714537B2 (en) Resistance spot welding method for high strength steel sheet
JP6226083B2 (en) Resistance spot welding method
WO2014025063A1 (en) Lap welded member, automobile component, method for welding lapped part, and method for manufacturing lap welded member
JP5895430B2 (en) Resistance spot welding joint and resistance spot welding method of high strength thin steel sheet
JP6438880B2 (en) Welded structural member and welding method
JP2007268604A (en) Resistance spot welding method
JP2012187617A (en) Joined body of high tensile strength steel sheet and resistance welding method for high tensile strength steel sheet
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
JP2010149187A (en) Resistance spot welding method
KR100722130B1 (en) Spot welding method for high strength steel sheet
JP6052480B1 (en) Resistance spot welding method
JP2013128945A (en) Resistance spot welding method
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
KR20140016268A (en) Method of producing a welded article of dispersion strengthened platinum based alloy with two steps welding
JP5082249B2 (en) Resistance spot welding method
JP7247768B2 (en) Resistance welding method for high-strength steel plates
KR20180011320A (en) Resistance spot welding method
JP6589171B2 (en) Metal resin bonding method and metal resin bonded body
JP2023145265A (en) Spot welded joint and spot welded joint manufacturing method
JP2013252543A (en) Series spot welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5293227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250