JP4728926B2 - Lap resistance spot welding method - Google Patents

Lap resistance spot welding method Download PDF

Info

Publication number
JP4728926B2
JP4728926B2 JP2006281234A JP2006281234A JP4728926B2 JP 4728926 B2 JP4728926 B2 JP 4728926B2 JP 2006281234 A JP2006281234 A JP 2006281234A JP 2006281234 A JP2006281234 A JP 2006281234A JP 4728926 B2 JP4728926 B2 JP 4728926B2
Authority
JP
Japan
Prior art keywords
energization
spot welding
resistance spot
thinnest
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006281234A
Other languages
Japanese (ja)
Other versions
JP2008093726A (en
Inventor
靖雄 高橋
初彦 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006281234A priority Critical patent/JP4728926B2/en
Publication of JP2008093726A publication Critical patent/JP2008093726A/en
Application granted granted Critical
Publication of JP4728926B2 publication Critical patent/JP4728926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、複数枚の鋼板を重ね合わせて抵抗溶接法でスポット溶接する重ね抵抗スポット溶接方法に関し、特に、3枚以上の鋼板を重ね合わせた板組みを1対の電極で挟持し、加圧しながら通電して溶接する重ね抵抗スポット溶接方法に関する。   The present invention relates to a lap resistance spot welding method in which a plurality of steel plates are overlapped and spot-welded by resistance welding, and in particular, a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of electrodes and pressed. The present invention relates to a lap resistance spot welding method in which energization is performed while welding.

重ね抵抗スポット溶接方法は、複数の被接合材を重ね合わせた板組みを1対の電極で挟み、この1対の電極で加圧しながら通電して被接合材同士を接合する溶接方法であり、通電により生じる抵抗発熱によって、被接合材の接触箇所には点状の溶融部分(ナゲット)が形成される。   The lap resistance spot welding method is a welding method in which a pair of electrodes is sandwiched between a pair of electrodes and energized while being pressed with this pair of electrodes to join the materials to be joined together. Due to the resistance heat generated by energization, a spot-like melted portion (nugget) is formed at the contact portion of the material to be joined.

このような重ね抵抗スポット溶接方法を行う溶接機には、電源方式から、単相交流方式、単相及び三相整流方式、インバータ直流式及びコンデンサ式等があるが、近年、装置の軽量化及び省電力化の面から、インバータ式の直流抵抗スポット溶接が主流となりつつある。しかしながら、直流式の抵抗溶接方法は、交流式の抵抗溶接方法に比べて、電極寿命が短いという問題点がある。そこで、従来、電極寿命を延ばすために、亜鉛系片面表面処理鋼板同士を重ね合わせ溶接する際に、プラス側電極に亜鉛系表面処理面が、マイナス側電極に非表面処理面が接する配置で直流抵抗スポット溶接を行う方法が提案されている(例えば、特許文献1参照。)。   Welding machines that perform such lap resistance spot welding methods include power supply systems, single-phase AC systems, single-phase and three-phase rectification systems, inverter DC systems, and capacitor systems. From the viewpoint of power saving, inverter type DC resistance spot welding is becoming mainstream. However, the direct current resistance welding method has a problem that the electrode life is shorter than the alternating current resistance welding method. Therefore, conventionally, in order to extend the electrode life, when the zinc-based single-side surface-treated steel sheets are overlapped and welded together, the direct current is arranged such that the zinc-based surface treated surface is in contact with the positive electrode and the non-surface-treated surface is in contact with the negative electrode. A method of performing resistance spot welding has been proposed (see, for example, Patent Document 1).

しかしながら、特許文献1に記載されているような従来の重ね抵抗スポット溶接方法で3枚以上の被接合材を溶接すると、最も外側に薄板を配置した場合に、この薄板と隣接する厚板との間に良好なナゲットが形成されず、充分な接合強度が得られないという問題点がある。また、最も外側の薄板までナゲットが成長するように溶接条件を設定すると、内側の厚板間に形成されるナゲットが成長しすぎて散りが発生してしまう。   However, when three or more materials to be joined are welded by the conventional lap resistance spot welding method as described in Patent Document 1, when a thin plate is arranged on the outermost side, the thin plate and the adjacent thick plate There is a problem that a good nugget is not formed between them and a sufficient bonding strength cannot be obtained. Further, if the welding conditions are set so that the nugget grows to the outermost thin plate, the nugget formed between the thick plates on the inner side grows too much and scattering occurs.

そこで、従来、3枚以上の被接合材を重ね抵抗スポット溶接した際に、充分な接合強度を得るための方法が提案されている(例えば、特許文献2〜5参照。)。例えば、特許文献2には、2枚の厚板に薄板を重ね合わせて溶接する際に、薄板の溶接すべき部位に凸部を形成し、溶接初期は低加圧力でこの凸部を押しつぶすようにして薄板と厚板とを溶接し、その後、高加圧力で2枚の厚板を溶接するスポット溶接方法が開示されている。   Therefore, conventionally, methods have been proposed for obtaining sufficient joint strength when three or more members to be joined are subjected to resistance spot welding (see, for example, Patent Documents 2 to 5). For example, in Patent Document 2, when a thin plate is overlapped and welded on two thick plates, a convex portion is formed at a portion to be welded of the thin plate, and the convex portion is crushed with a low pressure in the initial stage of welding. A spot welding method is disclosed in which a thin plate and a thick plate are welded, and then two thick plates are welded with high pressure.

また、特許文献3に記載のスポット溶接方法では、剛性が高い厚板の上に剛性の低い薄板を重ね合わせて溶接する際に、薄板に当接する電極チップの先端径を、厚板に当接する電極チップの先端径よりも小さくすることにより、薄板と電極チップとの接触面積が厚板と電極チップとの接触面積よりも小さくして、溶接強度向上を図っている。更に、特許文献4に記載のスポット溶接方法では、薄板側と厚板側で加圧力を変えることにより接合強度向上を図っている。図6は特許文献4に記載のスポット溶接方法を模式的に示す図である。図6に示すように、特許文献4に記載のスポット溶接方法では、剛性が高い厚板101,102の上に剛性の低い薄板103を重ね合わせた板組み104を1対の電極チップ105,106で挟んで溶接する際に、薄板103に当接する電極チップ106の加圧力FUを、厚板101に当接する電極チップ105の加圧力FLよりも小さくなるようにして、電極チップ105,106間に通電している。   Further, in the spot welding method described in Patent Document 3, when a thin plate with low rigidity is superposed on a thick plate with high rigidity and welded, the tip diameter of the electrode tip that contacts the thin plate is brought into contact with the thick plate. By making it smaller than the tip diameter of the electrode tip, the contact area between the thin plate and the electrode tip is made smaller than the contact area between the thick plate and the electrode tip, thereby improving the welding strength. Furthermore, in the spot welding method described in Patent Document 4, the bonding strength is improved by changing the applied pressure between the thin plate side and the thick plate side. FIG. 6 is a diagram schematically showing the spot welding method described in Patent Document 4. As shown in FIG. 6, in the spot welding method described in Patent Document 4, a plate assembly 104 in which a thin plate 103 with low rigidity is superimposed on thick plates 101 and 102 with high rigidity is used as a pair of electrode tips 105 and 106. When the welding is performed between the electrode tips 105 and 106, the pressing force FU of the electrode tip 106 contacting the thin plate 103 is made smaller than the pressing force FL of the electrode tip 105 contacting the thick plate 101. Energized.

一方、特許文献5に記載の抵抗スポット溶接継手の製造方法では、散りの発生を防止するために、2段階でスポット溶接を行い、第2段の溶接を第1段の溶接よりも高加圧力、低電流又は同電流、長通電時間又は同じ通電時間としている。また、特許文献5及び6に記載の抵抗スポット溶接方法では、板圧比が大きな板組みであっても、必要サイズのナゲットを散りの発生なく形成することを目的として、厚金属板に接する電極チップの先端を平面又は薄金属板に接する電極チップの先端の曲率半径よりも曲率半径が大きい曲面とすると共に、2段階でスポット溶接を行い、第2段の溶接を第1段の溶接よりも高加圧力で行っている。   On the other hand, in the method of manufacturing a resistance spot welded joint described in Patent Document 5, spot welding is performed in two stages in order to prevent the occurrence of scattering, and the second stage welding is performed at a higher pressure than the first stage welding. , Low current or the same current, long energization time or the same energization time. Further, in the resistance spot welding methods described in Patent Documents 5 and 6, even if the plate pressure ratio is a plate assembly, an electrode tip that contacts a thick metal plate for the purpose of forming a nugget of a required size without occurrence of scattering. The tip of the electrode is a curved surface having a radius of curvature larger than the radius of curvature of the tip of the electrode tip in contact with a flat or thin metal plate, spot welding is performed in two stages, and the second stage welding is higher than the first stage welding. It is done with pressure.

特開平4−94877号公報JP-A-4-94877 特開2003−71569号公報JP 2003-71569 A 特開2003−251468号公報JP 2003-251468 A 特開2003−251469号公報JP 2003-251469 A 特開2005-262259号公報JP 2005-262259 A 特開2006−55898号公報JP 2006-55898 A

しかしながら、前述の従来の技術には、以下に示す問題点がある。即ち、前述した特許文献2に記載のスポット溶接方法は、薄板側の溶接すべき箇所に予め凸部を設ける必要があり、溶接箇所がこれにより限定されるという問題点があり、更に、凸部を形成するための工程が溶接前に必要であり、かつ凸部の中央部に正確に電極を当接させる精度が要求される等、作業工数の増大と精度の確保・維持に相当の費用が必要となるという問題点もある。また、特許文献3に記載のスポット溶接方法は、薄板側に当接する電極の接触面積が小さいことから、電流密度は相対的に大きくなるため、薄板側のシートセパレーション(板の浮き上がり)が大きくなり、製品の仕上がり精度が悪くなるという問題点を生ずる。更に、薄板側の電極は電流密度が高くなるため、電極の汚損及び磨耗が著しくなり、その結果、頻繁に電極のドレッシング又は交換が必要となり、生産工程上の遅延及び費用の増大等の問題点が多く発生する。更に、特許文献4に記載のスポット溶接方法は、薄板側に当接する電極の加圧力を厚板側に当接する電極の加圧力よりも小さくすることで、厚板側の接触抵抗値よりも薄板側の接触抵抗値の方が小さくなるように制御して発熱を促進しているが、そのためには、ガン本体に下部から押し上げる力を作用させるために、サーボモーターとこれを作動させるガンコントローラーが必要であり、更に溶接機は、定置式のスポット溶接機は適用できず、ロボット形スポットガンに限定される等のように、生産工程上、その設備に関わる余分な負担及び煩雑さが増し、費用が増加するという問題点がある。   However, the conventional techniques described above have the following problems. That is, the spot welding method described in Patent Document 2 described above has a problem in that it is necessary to previously provide a convex portion at a position to be welded on the thin plate side, and there is a problem that the welding portion is limited thereby. The process for forming the material is necessary before welding, and the accuracy of abutting the electrode accurately on the center of the convex part is required. There is also a problem that it is necessary. Further, in the spot welding method described in Patent Document 3, since the contact area of the electrode in contact with the thin plate side is small, the current density is relatively large, so that the sheet separation (plate lift) on the thin plate side is large. This causes the problem that the finished accuracy of the product is deteriorated. Furthermore, since the electrode on the thin plate side has a high current density, the electrode is significantly fouled and worn. As a result, the electrode must be frequently dressed or replaced, resulting in problems such as production delays and increased costs. Occur frequently. Further, in the spot welding method described in Patent Document 4, the applied pressure of the electrode that contacts the thin plate side is made smaller than the applied pressure of the electrode that contacts the thick plate side, thereby reducing the contact resistance value on the thick plate side. The contact resistance value on the side is controlled so as to decrease, and heat generation is promoted.To that end, a servo motor and a gun controller that operates the servo motor are used to apply a force that pushes up the gun body from the bottom. In addition, as for the welding machine, a stationary spot welding machine cannot be applied, and it is limited to a robot type spot gun. There is a problem that the cost increases.

一方、特許文献5及び6に記載のスポット溶接方法は、第一段及び第二段と、二段階からなる溶接工程を実施するためには、スポット溶接機に一般には具備されていない短時間で作動する可変加圧機構を備えておく必要があり、設備が高価になるという問題点がある。また、これらの溶接方法では、第一段階で薄板側にナゲットを形成させた後に、第二段階で厚板側に散り発生なしにナゲットを形成するため、第一段階に比べて特に高加圧条件を適用し、かつ低電流又は同電流で長時間通電又は同通電時間条件にする必要がある。このため、第一段階目の溶接で既に溶接は完了しているが、まだ高温状態にある薄板側に、第二段階目の溶接で大きな加圧力と余分な入熱及び負荷を生じる。これにより、薄板側の圧痕が大きくなり、製品としての変形程度も大きくなるという問題点がある。特に、特許文献6に記載の溶接方法では、薄板側電極の曲率半径が小さいため、この傾向が大きくなる。更に、特許文献5及び6に記載の溶接方法では、薄板側の電極の汚損及び磨耗が激しく、頻繁に電極のドレッシング又は交換が必要となるため、生産工程上の管理及び費用に問題点がある。   On the other hand, in the spot welding methods described in Patent Documents 5 and 6, in order to carry out a welding process consisting of a first stage and a second stage, the spot welding machine is generally not provided in a short time. There is a problem that it is necessary to provide a variable pressure mechanism that operates, and the equipment becomes expensive. Also, in these welding methods, the nugget is formed on the thin plate side in the first stage, and then the nugget is formed on the thick plate side in the second stage without being scattered. It is necessary to apply the conditions and to apply a long-time energization or the same energization time condition at a low current or the same current. For this reason, although the welding has already been completed in the first stage welding, a large pressure and excessive heat input and load are generated in the second stage welding on the thin plate side which is still in a high temperature state. As a result, the indentation on the thin plate side becomes large, and there is a problem that the degree of deformation as a product becomes large. In particular, in the welding method described in Patent Document 6, this tendency increases because the radius of curvature of the thin plate side electrode is small. Further, in the welding methods described in Patent Documents 5 and 6, the electrode on the thin plate side is heavily soiled and worn, and frequent dressing or replacement of the electrode is required. .

本発明は、上述した問題点に鑑みてさなれたものであって、3枚以上の鋼板を重ね抵抗スポット溶接する際に、溶接時の加圧力が一定であっても、薄鋼板側にも必要な溶け込みが得られ、かつ散りの発生もない重ね抵抗スポット溶接方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems. When three or more steel plates are subjected to resistance spot welding, even if the welding pressure is constant, the thin steel plate side is also provided. It is an object of the present invention to provide a lap resistance spot welding method in which necessary penetration is obtained and no scatter occurs.

本発明に係る重ね抵抗スポット溶接方法は、3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接する単相交流式電源による重ね抵抗スポット溶接方法において、前記鋼板のうち板厚が最も薄いものを一方の電極側に配置する工程と、加圧力を一定にして多段通電溶接を行う工程とを有し、前記多段通電溶接工程は、第一段の通電時に鋼板間の接触抵抗を利用した発熱形態により板厚が最も薄い鋼板に形成されるナゲット径dn(mm)と、この最も薄い鋼板の板厚t1(mm)との関係が下記数式(1)を満たすように通電時間Ta及び電流値Iaを設定して通電した後、通電時間:1〜5サイクル、休止時間:1〜5サイクルとして通電及び休止を3回以上繰り返すパルセーション通電を行うことを特徴とする。
The lap resistance spot welding method according to the present invention is a single-phase alternating current method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes and energized while being pressed to weld the contact points of each steel plate. In the lap resistance spot welding method using a power source, the method includes the step of placing the thinnest steel plate among the steel plates on one electrode side, and the step of performing multi-stage energization welding with a constant applied pressure. The energization welding process includes a nugget diameter dn (mm) formed on the thinnest steel plate by a heat generation mode utilizing contact resistance between the steel plates during the first stage energization, and a plate thickness t 1 ( mm), the energization time Ta and the current value Ia are set so as to satisfy the following formula (1), and then energization is performed with energization time: 1 to 5 cycles and rest time: 1 to 5 cycles. Parsesh repeats the pause three times or more It is characterized in that the power is turned on.

Figure 0004728926
Figure 0004728926

また、本発明に係る他の重ね抵抗スポット溶接方法は、3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接するインバータ制御直流電流式による重ね抵抗スポット溶接方法において、前記鋼板のうち板厚が最も薄いものをプラス電極側に配置する工程と、加圧力を一定にして多段通電溶接を行う工程とを有し、前記多段通電溶接工程は、第一段の通電時に鋼板間の接触抵抗を利用した発熱形態により板厚が最も薄い鋼板に形成されるナゲット径dn(mm)と、この最も薄い鋼板の板厚t1(mm)との関係が上記数式(1)を満たすように通電時間Ta及び電流値Iaを設定して通電した後、通電時間:10〜100ミリ秒間、休止時間:10〜100ミリ秒間として通電及び休止を3回以上繰り返すパルセーション通電を行うことを特徴とする。
In another lap resistance spot welding method according to the present invention, a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes, and energized while applying pressure to weld contact points of each steel plate. In the lap resistance spot welding method using an inverter controlled direct current method, the method includes the step of placing the thinnest steel plate among the steel plates on the plus electrode side, and the step of performing multistage energization welding with a constant applied pressure. The multi-stage energization welding process includes a nugget diameter dn (mm) formed on the thinnest steel sheet due to a heat generation form utilizing contact resistance between the steel sheets during the first stage energization, and the thickness of the thinnest steel sheet. Energization time Ta and current value Ia are set so that the relationship with t 1 (mm) satisfies the above formula (1), and then energization time is 10 to 100 milliseconds, and rest time is 10 to 100. Energized as milliseconds and Pulsation energization that repeats the pause three times or more is performed.

これらの重ね抵抗スポット溶接方法では、前記パルセーション溶接通電における電流値Iが下記数式(2)を満たすことが好ましい。 These lap resistance spot welding process, the current value I b in the pulsation welding operation is preferably satisfies the following formula (2).

Figure 0004728926
Figure 0004728926

更に、本発明に係る他の重ね抵抗スポット溶接方法は、3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接するインバータ制御直流電流式による重ね抵抗スポット溶接方法において、前記鋼板のうち板厚が最も薄いものをプラス電極側に配置する工程と、加圧力を一定にして多段通電溶接を行う工程とを有し、前記多段通電溶接工程は、第一段の通電時に鋼板間の接触抵抗を利用した発熱形態により板厚が最も薄い鋼板に形成されるナゲット径dn(mm)と、この最も薄い鋼板の板厚t1(mm)との関係が上記数式(1)を満たすように通電時間Ta及び電流値Iaを設定して第1の通電工程を行った後、電流値Ibを前記第1の通電工程における電流値Ia以下にすると共に、通電時間Tbを下記数式(3)に示す範囲に設定して第2の通電工程を行うことを特徴とする。
Furthermore, another lap resistance spot welding method according to the present invention is a method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes and energized while being pressed to weld contact points of the respective steel plates. In the lap resistance spot welding method using an inverter controlled direct current method, the method includes the step of placing the thinnest steel plate among the steel plates on the plus electrode side, and the step of performing multistage energization welding with a constant applied pressure. The multi-stage energization welding process includes a nugget diameter dn (mm) formed on the thinnest steel sheet due to a heat generation form utilizing contact resistance between the steel sheets during the first stage energization, and the thickness of the thinnest steel sheet. t 1 after the relationship between (mm) was subjected to first energizing step sets the energization time T a and the current value I a to satisfy the above equation (1), the current value I b for the first co If below the current value I a in energizing step , And performs second energizing step is set to a range that indicates the current time T b the following equation (3).

Figure 0004728926
Figure 0004728926

この重ね抵抗スポット溶接方法では、前記第1の通電工程における電流値Iと前記第2の通電工程における電流値Iとの関係が上記数式(2)を満たすことが好ましい。 This lap resistance spot welding method, the relationship between the current value I b in the said current value I a in the first energizing step second energizing step preferably satisfies the above equation (2).

また、上述した重ね抵抗スポット溶接方法では、最も薄い鋼板の板厚t(mm)に対する板組みの総板厚t(mm)の比(t/t)が4以上であることが好ましい。 In the lap resistance spot welding method described above, the ratio (t 2 / t 1 ) of the total plate thickness t 2 (mm) of the plate assembly to the plate thickness t 1 (mm) of the thinnest steel plate is 4 or more. preferable.

本発明によれば、板厚が最も薄い鋼板を一方の電極側に配置すると共に、通電条件を適正化して多段通電溶接しているため、溶接時の加圧力が一定であっても、散りを発生させずに3枚以上の鋼板をスポット溶接することができ、更に、薄鋼板側にも充分な接合強度が得られる程度の溶け込みを形成することができる。   According to the present invention, the steel plate with the thinnest thickness is arranged on one electrode side, and the current-carrying conditions are optimized and the multi-stage current welding is performed. Three or more steel plates can be spot-welded without being generated, and further, a penetration enough to obtain a sufficient bonding strength can be formed on the thin steel plate side.

以下、本発明を実施するための最良の形態について、添付の図面を参照して詳細に説明する。先ず、本発明の第1の実施形態に係る重ね抵抗スポット溶接方法について説明する。図1は本実施形態の重ね抵抗スポット溶接方法を模式的に示す図であり、図2は本実施形態の重ね抵抗スポット溶接方法における通電パターンを示す図である。図1に示すように、本実施形態の重ね抵抗スポット溶接方法においては、先ず、厚さが異なる3枚の鋼板1,2,3を、板厚が最も薄い鋼板3が外側になるように、即ち、板厚が最も薄い鋼板3が電極5又は電極6に接触するように重ね合わせる。これらの鋼板の板厚は特に限定されるものではないが、板厚が最も薄い鋼板3の板厚tが例えば1.0mm未満であり、それよりも厚い鋼板1,2の厚さが例えば1.0mm以上である。そして、1対の溶接電極5,6により、この3枚の鋼板1,2,3からなる板組み4を挟持すると共に加圧しつつ、単相交流式電源(図示せず)により電極5,6間に通電し、通電回数が4回以上の多段通電溶接を行う。 The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. First, the lap resistance spot welding method according to the first embodiment of the present invention will be described. FIG. 1 is a diagram schematically showing the lap resistance spot welding method of this embodiment, and FIG. 2 is a diagram showing an energization pattern in the lap resistance spot welding method of this embodiment. As shown in FIG. 1, in the lap resistance spot welding method of the present embodiment, first, the three steel plates 1, 2, 3 having different thicknesses are arranged so that the steel plate 3 having the smallest thickness is on the outside. That is, the steel plates 3 having the thinnest thickness are overlapped so as to be in contact with the electrode 5 or the electrode 6. Although not particularly limited plate thickness of these steel sheets, a sheet thickness t 1, for example, less than 1.0mm of the thinnest steel plate 3 is the plate thickness, the thickness of the thick steel plates 1 and 2 than for example It is 1.0 mm or more. The pair of welding electrodes 5 and 6 sandwich the plate assembly 4 composed of the three steel plates 1, 2 and 3 and pressurize the electrodes 5 and 6 with a single-phase AC power source (not shown). Energize in between, and perform multi-stage energization welding with energization frequency of 4 or more.

その際、図2に示すように、第1段の通電では、この第1段の通電終了時に板厚が最も薄い鋼板3に形成されるナゲット7の直径(ナゲット径)をdn(mm)とし、最も薄い鋼板3の板厚をt(mm)としたとき、ナゲット径dnと板厚tとの関係が下記数式(4)を満たすように、通電時間T及び電流値Iを設定して通電する。具体的には、通電時間Tを例えば5サイクル以下の短時間に設定し、鋼板2と鋼板3との間で散り発生が生じない条件で、かつナゲット径dnが3.5×√t以上となるように電流値Iを設定する。そして、この条件で第1段の通電を行うと、各鋼板の接触部が溶解してナゲット7が形成される。ナゲット径dnが3.5×√t未満となる条件で通電すると、継手の溶接強度が不足し、また、ナゲット径dnが5×√tを超える条件で通電すると、鋼板3側の圧痕及び板の浮き上がり(ショートセパレーション)が大きくなり、継手形状が悪くなると共に特に鋼板3側の電極消耗が激しくなる等の不具合が生じる。 At that time, as shown in FIG. 2, in the first stage energization, the diameter (nugget diameter) of the nugget 7 formed on the steel plate 3 having the smallest thickness at the end of the first stage energization is dn (mm). When the plate thickness of the thinnest steel plate 3 is t 1 (mm), the energization time Ta and the current value I a are set so that the relationship between the nugget diameter dn and the plate thickness t 1 satisfies the following formula (4). Set and energize. Specifically, energization time set the T a for example, a short 5 cycles or less, the steel plate 2 and the condition expulsion generation does not occur between the steel plate 3, and nugget diameter dn is 3.5 × √t 1 The current value Ia is set so as to be above. When the first-stage energization is performed under these conditions, the contact portion of each steel plate is melted to form the nugget 7. If energization is performed under the condition that the nugget diameter dn is less than 3.5 × √t 1 , the weld strength of the joint is insufficient, and if energization is performed under the condition that the nugget diameter dn exceeds 5 × √t 1 , the indentation on the steel plate 3 side In addition, the floating of the plate (short separation) is increased, the joint shape is deteriorated, and in addition, the electrode wear on the side of the steel plate 3 is particularly severe.

Figure 0004728926
Figure 0004728926

また、第2段以降の通電は、通電時間を1〜5サイクル、休止時間を1〜5サイクルとするパルセーション通電を3回以上繰り返して行う。これにより、第1段の通電で形成されたナゲットを維持したまま、鋼板1と鋼板2との間に充分な接合強度が得られる大きさのナゲットを成長させることができる。一方、第2段以降の通電は、休止時間を伴うパルセーション通電であるため、鋼板1と鋼板2とが接触する部分では、パルセーション溶接の特徴である急激な発熱を抑制して、散りの発生を防止しつつ充分な大きさのナゲットを形成することができる。なお、通電時間が5サイクルを超えても、ナゲットを成長させる効果は向上しない。また、休止時間が5サイクルを超えると、鋼板の温度が下がり、溶接効率が低下する。更に、通電及び休止の繰り返し回数が3回未満の場合、パルセーション通電の効果が得られず、良好なナゲットが得られない。   The energization after the second stage is performed by repeating pulsation energization with an energization time of 1 to 5 cycles and a pause time of 1 to 5 cycles three or more times. Thereby, the nugget of the magnitude | size which can obtain sufficient joint strength between the steel plate 1 and the steel plate 2 can be grown, maintaining the nugget formed by the 1st stage electricity supply. On the other hand, since the energization after the second stage is pulsation energization with a downtime, in the portion where the steel plate 1 and the steel plate 2 are in contact with each other, the rapid heat generation, which is a characteristic of pulsation welding, is suppressed. A sufficiently large nugget can be formed while preventing the occurrence. Even if the energization time exceeds 5 cycles, the effect of growing the nugget is not improved. On the other hand, when the rest time exceeds 5 cycles, the temperature of the steel sheet is lowered and the welding efficiency is lowered. Furthermore, when the number of times of energization and pause is less than 3, the effect of pulsation energization cannot be obtained and a good nugget cannot be obtained.

また、この多段通電溶接を行っている間は、前述した特許文献5及び6に記載のスポット溶接方法のように加圧力を変化させる必要はない。即ち、本実施形態の抵抗スポット溶接方法においては、電極5,6により板組み4に負荷される加圧力は一定とする。   Further, during the multistage energization welding, it is not necessary to change the applied pressure unlike the spot welding methods described in Patent Documents 5 and 6 described above. That is, in the resistance spot welding method of this embodiment, the applied pressure applied to the plate assembly 4 by the electrodes 5 and 6 is constant.

更に、本実施形態の重ね抵抗スポット溶接方法においては、図2に示すパルセーション溶接通電時の電流値Iが第1段の通電における電流値Iの1/3未満である場合、板厚が最も薄い鋼板3に所要のナゲットが形成されず、継手が強度不足となることがあり、また、パルセーション溶接通電時の電流値Iが第1段の通電における電流値Iを超えると、鋼板2と鋼板3との間で散りが発生することがある。よって、パルセーション溶接通電時の電流値Iは、下記数式(5)を満たす範囲内に設定することが望ましい。これにより、鋼板1と鋼板2との間、及び鋼板2と鋼板3との間に夫々散りを発生させることなく、充分な強度が得られる大きさのナゲットを形成することができる。 Further, in the lap resistance spot welding method of this embodiment, when the current value I b during pulsation welding operation shown in FIG. 2 is less than 1/3 of the current value I a in the energization of the first stage, the plate thickness There is not a required nugget formed thinnest steel plate 3, fittings may become insufficient strength, and if the current value I b during pulsation welding current exceeds the current value I a in the energization of the first stage Scattering may occur between the steel plate 2 and the steel plate 3. Therefore, the current value I b during pulsation welding operation is preferably set within a range satisfying the following equation (5). Thereby, the nugget of the magnitude | size which can obtain sufficient intensity | strength can be formed, without generating scattering between the steel plate 1 and the steel plate 2, and between the steel plate 2 and the steel plate 3, respectively.

Figure 0004728926
Figure 0004728926

なお、最も薄い鋼板3の板厚t(mm)に対する板組み4の総板厚t(mm)の比(t/t)が4未満の場合、上述した本発明の技術を適用しなくても、例えば、最も薄い鋼板3に接する電極の先端半径を他方の電極の先端半径に比べて小さくする等の従来から公知である技術でも、良好に溶接することができる。即ち、本発明は、最も薄い鋼板3の板厚t(mm)に対する板組み4の総板厚t(mm)の比(t/t)が4以上である場合に、その優位性及び先進性が発揮される。 When the ratio (t 2 / t 1 ) of the total plate thickness t 2 (mm) of the plate assembly 4 to the plate thickness t 1 (mm) of the thinnest steel plate 3 is less than 4, the above-described technique of the present invention is applied. Even without this, for example, a well-known technique such as making the tip radius of the electrode in contact with the thinnest steel plate 3 smaller than the tip radius of the other electrode can be well welded. That is, the present invention has an advantage when the ratio (t 2 / t 1 ) of the total plate thickness t 2 (mm) of the plate assembly 4 to the plate thickness t 1 (mm) of the thinnest steel plate 3 is 4 or more. And advanced.

上述の如く、本実施形態の重ね抵抗スポット溶接方法においては、板厚が最も薄い鋼板3を電極5又は電極6と接触するように最も外側に配置しているため、通常のスポット溶接技術を適用した場合には、最も薄い鋼板3はこれと接触している電極に冷却されているため、鋼板3側に充分な大きさのナゲットを形成することが困難であるが、本発明を適用することにより良好なナゲットを形成することが可能になる。また、最も薄い鋼板3側にナゲットが形成される条件で通電した後、通電及び休止を3回以上繰り返すパルセーション通電を行って鋼板1と鋼板2との間にナゲットを成長させているため、溶接時の加圧力を変化させなくとも、散りを発生させずに、充分な接合強度が得られるナゲットを形成することができる。   As described above, in the lap resistance spot welding method according to the present embodiment, the steel plate 3 having the thinnest thickness is disposed on the outermost side so as to be in contact with the electrode 5 or the electrode 6, so that a normal spot welding technique is applied. In this case, since the thinnest steel plate 3 is cooled by the electrode in contact therewith, it is difficult to form a sufficiently large nugget on the steel plate 3 side, but the present invention is applied. This makes it possible to form a better nugget. In addition, after energizing under the condition that the nugget is formed on the thinnest steel plate 3 side, the nugget is grown between the steel plate 1 and the steel plate 2 by performing pulsation energization that repeats energization and pause three times or more. Even if the welding pressure is not changed, it is possible to form a nugget capable of obtaining sufficient bonding strength without causing scattering.

なお、上述した第1の実施形態の重ね抵抗スポット溶接方法においては、3枚の鋼板を重ね合わせた板組みの溶接を例にして説明しているが、本発明はこれに限定されるものではなく、3枚以上の鋼板の重ね抵抗スポット溶接方法であれば、上述した効果が得られる。   In the lap resistance spot welding method of the first embodiment described above, the welding of a plate assembly in which three steel plates are overlapped is described as an example, but the present invention is not limited to this. If it is the lap resistance spot welding method of 3 or more steel plates, the effect mentioned above will be acquired.

次に、本発明の第2の実施形態の重ね抵抗スポット溶接方法について説明する。図3は本実施形態の重ね抵抗スポット溶接方法を模式的に示す図であり、図4は本実施形態の重ね抵抗スポット溶接方法における通電パターンを示す図である。本実施形態の重ね抵抗スポット溶接方法においては、図3に示すように、先ず、厚さが異なる3枚の鋼板11,12,13を、板厚が最も薄い鋼板13が外側になるように重ね合わせる。そして、1対の溶接電極15,16により、この3枚の鋼板11,12,13からなる板組み14を挟持すると共に加圧しつつ、インバータ制御直流電流式により、板厚が最も薄い鋼板13に接触する電極16がプラス電極となるようにして電極15,16間に通電し、通電回数が4回以上の多段通電溶接を行う。   Next, the lap resistance spot welding method according to the second embodiment of the present invention will be described. FIG. 3 is a diagram schematically illustrating the lap resistance spot welding method of the present embodiment, and FIG. 4 is a diagram illustrating an energization pattern in the lap resistance spot welding method of the present embodiment. In the lap resistance spot welding method of this embodiment, as shown in FIG. 3, first, the three steel plates 11, 12, and 13 having different thicknesses are overlapped so that the steel plate 13 having the smallest thickness is on the outside. Match. Then, the plate assembly 14 composed of the three steel plates 11, 12, 13 is sandwiched and pressed by the pair of welding electrodes 15, 16, and the steel plate 13 having the thinnest plate thickness is obtained by an inverter control direct current method. Energization is performed between the electrodes 15 and 16 so that the electrode 16 that comes into contact is a positive electrode, and multi-stage energization welding in which the number of energizations is four or more is performed.

その際、図4に示すように、第1段の通電では、板厚が最も薄い鋼板13に形成されるナゲット17の直径(ナゲット径)をdn(mm)、この最も薄い鋼板13の板厚をt(mm)としたとき、ナゲット径dnと板厚tとの関係が上記数式(4)を満たすように、通電時間T及び電流値Iを設定して通電し、鋼板12と鋼板13との接触部にナゲットを形成する。そして、第2段以降の通電は、通電時間を10〜100ミリ秒間、休止時間を10〜100ミリ秒間としてパルセーション通電を3回以上繰り返して行い、第1段の通電で形成されたナゲット形状を維持したまま、鋼板11と鋼板12との間に散りの発生がなく、かつ充分な溶接強度が得られる大きさのナゲットを形成することができる。 At that time, as shown in FIG. 4, in the first-stage energization, the diameter (nugget diameter) of the nugget 17 formed on the thinnest steel plate 13 is dn (mm), and the thinnest steel plate 13 is thick. the when t 1 and (mm), the relationship between the nugget diameter dn and the plate thickness t 1 is to satisfy the above equation (4), energized by setting the energization time T a and the current value I a, the steel plate 12 A nugget is formed at a contact portion between the steel plate 13 and the steel plate 13. The energization after the second stage is performed by repeating the pulsation energization three times or more with the energization time being 10 to 100 milliseconds and the pause time being 10 to 100 milliseconds, and the nugget shape formed by the first stage energization. While maintaining the above, it is possible to form a nugget having a size in which no scattering occurs between the steel plate 11 and the steel plate 12 and sufficient welding strength can be obtained.

なお、パルセーション通電において、1回の通電時間が10ミリ秒間未満の場合、各鋼板の接触部で発熱が生じないためナゲットが成長せず、また、1回の通電時間が100ミリ秒間を超える場合には、急激な発熱を抑制する効果がなくなり、激しい散りが発生することとなる。よって、通電時間は10〜100ミリ秒間とする。また、休止時間が10ミリ秒間未満の場合散りが発生しやすくなり、休止時間が100ミリ秒間を超えると、溶接部の温度が下がり、溶接効率が低下するため、充分な大きさのナゲットが形成されない。よって、休止時間は10〜100ミリ秒間とする。更に、通電及び休止の繰り返し回数が3回未満の場合、散りを発生させずに充分な大きさのナゲットを形成するというパルセーション通電の効果が得られないため、繰り返し回数は3回以上とする。   In addition, in the pulsation energization, if the energization time for one time is less than 10 milliseconds, the nugget does not grow because no heat is generated at the contact portion of each steel sheet, and the energization time for one time exceeds 100 milliseconds. In such a case, the effect of suppressing sudden heat generation is lost, and intense scattering occurs. Accordingly, the energization time is 10 to 100 milliseconds. Also, if the pause time is less than 10 milliseconds, scattering tends to occur, and if the pause time exceeds 100 milliseconds, the temperature of the weld decreases and the welding efficiency decreases, so a sufficiently large nugget is formed. Not. Therefore, the pause time is 10 to 100 milliseconds. Furthermore, if the number of times of energization and pause is less than 3, the effect of pulsation energization to form a sufficiently large nugget without generating scattering is not obtained, so the number of repetitions is 3 or more. .

また、本実施形態の重ね抵抗スポット溶接方法においては、第2段以降のパルセーション溶接通電時の電流値Iと第1段の通電の電流値Iとの関係が、上記数式(5)を満たす範囲内になるように、パルセーション溶接通電時の電流値Iを設定することが望ましい。これにより、第1段の通電で形成されたナゲット形状を維持したまま、鋼板11と鋼板12との間に散りの発生がなく、かつ充分な接合強度が得られる大きさのナゲットを形成することができる。更に、上述した本実施形態の構成は、最も薄い鋼板13の板厚t(mm)に対する板組み14の総板厚t(mm)の比(t/t)が4以上である場合に、その優位性及び先進性を発揮する。 In the lap resistance spot welding method of this embodiment, the relationship between the current value I a of the energization current value I b and the first stage at the time of pulsation welding operation of the second stage or later, the equation (5) to be within a range satisfying, it is desirable to set the current value I b during pulsation welding operation. Thus, forming a nugget having a size capable of obtaining sufficient bonding strength without causing any scattering between the steel plate 11 and the steel plate 12 while maintaining the nugget shape formed by the first-stage energization. Can do. Further, in the configuration of the present embodiment described above, the ratio (t 2 / t 1 ) of the total plate thickness t 2 (mm) of the plate assembly 14 to the plate thickness t 1 (mm) of the thinnest steel plate 13 is 4 or more. In some cases, it demonstrates its superiority and advancedness.

上述の如く、本実施形態の重ね抵抗スポット溶接方法においては、板厚が最も薄い鋼板13をプラス電極16と接触するように最も外側に配置しているため、各鋼板間で発生した溶接熱は、直流電流による電子の流れに乗って、マイナス電極側からプラス電極側へと溶接熱が移動する形態を生む。この現象によって、鋼板12と鋼板13との間に充分な大きさのナゲットが形成される。また、鋼板12と鋼板13との間にナゲットが形成される条件で通電を行った後、通電及び休止を3回以上繰り返すパルセーション通電を行って、特に鋼板11と鋼板12との間にナゲットを成長させているため、溶接時の加圧力を変化させなくても充分な接合強度が得られる。更に、第2段以降の通電は、休止時間を伴うパルセーション通電であるため、鋼板11と鋼板12とが接触する部分では、パルセーション溶接の特徴である急激な発熱を抑制して、散りの発生を防止しながら、充分な大きさのナゲットを形成することができる。更にまた、本実施形態の重ね抵抗スポット溶接方法では、インバータ制御直流電流式で多段通電溶接しているため、単相交流式電源で多段通電溶接する第1の実施形態の重ね抵抗スポット溶接方法に比べて、通電時間の長さの選択の自由度が大きく、かつ単相交流のように電流波形にゼロ・クロスがないので、発熱効率が高く、より短時間溶接を実現することができる。   As described above, in the lap resistance spot welding method of the present embodiment, the steel plate 13 having the thinnest thickness is disposed on the outermost side so as to come into contact with the plus electrode 16, and therefore the welding heat generated between the steel plates is In this way, the welding heat is transferred from the negative electrode side to the positive electrode side by riding on the flow of electrons due to the direct current. Due to this phenomenon, a sufficiently large nugget is formed between the steel plate 12 and the steel plate 13. Further, after energization is performed under the condition that a nugget is formed between the steel plate 12 and the steel plate 13, pulsation energization is performed by repeating energization and pause three times or more, and in particular between the steel plate 11 and the steel plate 12. Therefore, sufficient bonding strength can be obtained without changing the applied pressure during welding. Furthermore, since the energization after the second stage is pulsation energization with downtime, in the portion where the steel plate 11 and the steel plate 12 are in contact with each other, the rapid heat generation characteristic of pulsation welding is suppressed, A sufficiently large nugget can be formed while preventing the occurrence. Furthermore, in the lap resistance spot welding method of the present embodiment, since multistage energization welding is performed with an inverter-controlled DC current method, the lap resistance spot welding method of the first embodiment that performs multistage energization welding with a single-phase AC power supply is used. In comparison, the degree of freedom in selecting the energization time is large, and since there is no zero cross in the current waveform as in single-phase alternating current, heat generation efficiency is high and welding can be realized in a shorter time.

なお、本実施形態の重ね抵抗スポット溶接方法における上記以外の構成及び効果は、前述した第1の実施形態の重ね抵抗スポット溶接方法と同様である。   The configuration and effects other than those described above in the lap resistance spot welding method of the present embodiment are the same as those of the lap resistance spot welding method of the first embodiment described above.

次に、本発明の第3の実施形態に係る重ね抵抗スポット溶接方法について説明する。図5は本実施形態の重ね抵抗スポット溶接方法における通電パターンを示す図である。本実施形態の重ね抵抗スポット溶接方法においては、図3に示す第2の実施形態の重ね抵抗スポット溶接と同様に、先ず、厚さが異なる3枚の鋼板11,12,13を、板厚が最も薄い鋼板3が外側になるように重ね合わせる。そして、1対の溶接電極15,16により、この3枚の鋼板11,12,13からなる板組み14を挟持すると共に加圧しつつ、インバータ制御直流電流式により、板厚が最も薄い鋼板13に接触する電極16がプラス電極となるようにして電極15,16間に通電し、通電回数が2回の多段通電溶接を行う。   Next, a lap resistance spot welding method according to the third embodiment of the present invention will be described. FIG. 5 is a diagram showing an energization pattern in the lap resistance spot welding method of the present embodiment. In the lap resistance spot welding method of this embodiment, as in the lap resistance spot welding of the second embodiment shown in FIG. 3, first, three steel plates 11, 12, and 13 having different thicknesses are used. Lamination is performed so that the thinnest steel plate 3 is on the outside. Then, the plate assembly 14 composed of the three steel plates 11, 12, 13 is sandwiched and pressed by the pair of welding electrodes 15, 16, and the steel plate 13 having the thinnest plate thickness is obtained by an inverter control direct current method. Energization is performed between the electrodes 15 and 16 so that the electrode 16 that comes into contact is a positive electrode, and multi-stage energization welding is performed with two energization times.

その際、図5に示すように、第1段の通電では、この第1段の通電後に板厚が最も薄い鋼板13に形成されるナゲット径をdn(mm)とし、最も薄い鋼板13の板厚をt(mm)としたとき、ナゲット径dnと板厚tとの関係が上記数式(4)を満たすように、通電時間T及び電流値Iを設定して通電し、各鋼板の接触部に、鋼板間の接触抵抗を利用した発熱形態(非定常型発熱)である短時間・断点粒に属する溶接乳熱を与えて、ナゲットを形成する。このとき、インバータ制御直流電流式で通電しているため、各鋼板間で発生した溶接熱は直流電流による電子の流れに乗って、マイナス電極側からプラス電極側に溶接熱が移動する形態を生む。この現象により、鋼板12と鋼板13との間に、充分な大きさのナゲットを形成することができる。そして、第2段の通電では、電流値Iを第1段の通電における電流値I以下にすると共に、通電時間Tを下記数式(6)に示す範囲、即ち、第1段の通電の電流値I以上で、かつ電流値Iの6倍以下に設定して通電し、第1段の通電で形成されたナゲットを成長させる。これにより、板厚が最も薄い鋼板13と隣接する鋼板12とが接触する部分に、充分な接合強度が得られる大きさのナゲットを形成させると共に、散りの発生を防止しつつ、鋼板11と鋼板12とが接触する部分にもナゲットを形成することができる。 At that time, as shown in FIG. 5, in the first stage energization, the nugget diameter formed on the thinnest steel sheet 13 after the first stage energization is dn (mm), and the plate of the thinnest steel sheet 13 is formed. When the thickness is t 1 (mm), the energization time Ta and the current value I a are set so that the relationship between the nugget diameter dn and the plate thickness t 1 satisfies the above formula (4). A nugget is formed by applying, to the contact portion of the steel plate, welding milk heat belonging to a short-time, break-point grain, which is a heat generation mode (unsteady heat generation) using contact resistance between the steel plates. At this time, since the inverter-controlled direct current type is energized, the welding heat generated between the steel plates rides on the flow of electrons due to the direct current, resulting in a form in which the welding heat moves from the negative electrode side to the positive electrode side. . Due to this phenomenon, a sufficiently large nugget can be formed between the steel plate 12 and the steel plate 13. Then, the energization of the second stage, a range indicated with the current value I b below current I a in the energization of the first stage, the following equation (6) the energization time T b, i.e., the energization of the first stage at a current value I a above, and energized by setting the following 6 times the current value I a, growing nugget formed by the energization of the first stage. Thereby, the steel plate 11 and the steel plate are formed while forming a nugget having a size capable of obtaining sufficient bonding strength at a portion where the steel plate 13 having the thinnest thickness and the adjacent steel plate 12 are in contact with each other, and preventing the occurrence of scattering. A nugget can also be formed in the part where 12 contacts.

Figure 0004728926
Figure 0004728926

ここで、第2段の通電における通電時間が(6×T)秒間を超えると、散り発生を誘発するか、又は鋼板表面の圧痕が大きくなる。また、第2段の通電の電流値Iが、第1段の通電の電流値Iを超える場合でも、散り発生を誘発するか、又は鋼板表面の圧痕が大きくなる。なお、第2段の通電の電流値Iは、上記数式(5)を満たす範囲内であることが好ましい。これにより、散りの発生を抑制することができ、かつ鋼板表面に形成される圧痕が極めて少ないスポット溶接部を形成することができる。また、本実施形態の構成を、従来から溶接が困難とされてきた最も薄い鋼板13の板厚t(mm)に対する板組み14の総板厚t(mm)の比(t/t)が4以上の板組に適用することにより、著しい効果が期待できる。 Here, when the energization time in the second stage energization exceeds (6 × T a ) seconds, the occurrence of scattering is generated or the indentation on the surface of the steel sheet becomes large. The current value I b for the energization of the second stage, even if it exceeds the current value I a of the energization of the first stage, or to induce expulsion occurs, or indentation of the steel sheet surface increases. Note that the current value I b for the energization of the second stage is preferably in the range satisfying the above equation (5). Thereby, generation | occurrence | production of scattering can be suppressed and the spot weld part with very few indentations formed on the steel plate surface can be formed. Further, in the configuration of the present embodiment, the ratio (t 2 / t) of the total plate thickness t 2 (mm) of the plate assembly 14 to the plate thickness t 1 (mm) of the thinnest steel plate 13 that has conventionally been difficult to weld. When 1 ) is applied to a plate assembly of 4 or more, significant effects can be expected.

上述の如く、本実施形態の重ね抵抗スポット溶接方法においては、インバータ制御直流電流式を適用し、板厚が最も薄い鋼板13をプラス電極16と接触するように最も外側に配置しているため、各鋼板間で発生した溶接熱が、直流電流による電子の流れに乗って、マイナス電極側からプラス電極側に移動する形態を生む。この現象により、鋼板12と鋼板13との間に、ナゲット径dnが充分な大きさのナゲットを形成することができる。また、各鋼板にナゲットが形成される条件で第1段の通電をして各鋼板にナゲットを形成した後、電流値Iを第1段の通電の電流値Iの1/3以上でかつ電流値I以下の値に設定すると共に、通電時間Tを第1段の通電時間Ta以上でかつ(6×T)以下の範囲に設定して第2段の通電を行い、各鋼板に形成されたナゲットを成長させているため、溶接時の加圧力を変化させなくても、充分な接合強度が得られる。更に、本実施形態の重ね抵抗スポット溶接方法では、インバータ制御直流電流式により通電しているため、単相交流式電源で通電する重ね抵抗スポット溶接方法に比べて、通電時間の長さの選択の自由度が大きく、かつ単相交流のように電流波形にゼロ・クロスがないため、発熱効率が高い。また、本実施形態の重ね抵抗スポット溶接方法においては、前述したパルセーション通電のように休止時間が挿入されないため、より短時間溶接を実現することができる。 As described above, in the lap resistance spot welding method of the present embodiment, the inverter-controlled direct current method is applied, and the steel plate 13 having the thinnest thickness is disposed on the outermost side so as to contact the plus electrode 16, The welding heat generated between the steel plates rides on the flow of electrons due to the direct current and moves from the negative electrode side to the positive electrode side. Due to this phenomenon, a nugget having a sufficiently large nugget diameter dn can be formed between the steel plate 12 and the steel plate 13. In addition, after forming the nugget by the energization of the first stage to the steel plate conditions nugget is formed in the steel plate, the current value I b for more than 1/3 of the current value I a of the energization of the first stage and it sets the current value I a following values, performs energization of the second stage to set the energization time T b ranges energizing time Ta or more and a (6 × T a) following the first stage, each Since the nugget formed on the steel plate is grown, sufficient bonding strength can be obtained without changing the welding pressure during welding. Furthermore, since the lap resistance spot welding method of the present embodiment is energized by the inverter controlled DC current method, the length of the energization time is selected compared to the lap resistance spot welding method of energizing with a single-phase AC power source. High degree of freedom and high heat generation efficiency because there is no zero cross in the current waveform like single phase AC. Moreover, in the lap resistance spot welding method of this embodiment, since a rest time is not inserted like the pulsation energization mentioned above, welding can be realized for a shorter time.

なお、本実施形態の重ね抵抗スポット溶接方法における上記以外の構成及び効果は、前述した第2の実施形態の重ね抵抗スポット溶接方法と同様である。   The configuration and effects other than those described above in the lap resistance spot welding method of the present embodiment are the same as those of the lap resistance spot welding method of the second embodiment described above.

以下、本発明の実施例及び本発明の範囲から外れる比較例を挙げて、本発明の効果について具体的に説明する。先ず、本発明の第1実施例として、厚さ及び強度が異なる3枚の鋼板を、図1及び図2に示す第1の実施形態の溶接方法で重ねスポット溶接し、散り発生の有無及び接合部のナゲット径の大きさを調べた。その際の板組を下記表1に示す。本実施例においては、鋼板1,2には高張力鋼板の両面に片面あたりの付着量45g/mで亜鉛めっきした合金化溶融亜鉛めっき鋼板を使用し、板厚が最も薄い鋼板3にはめっきが施されていない裸鋼板を使用した。また、溶接条件としては、溶接電源には単相交流式電源を使用し、電極には電極径Dが16mm、先端の直径が6mm、先端のRが40であるCr−Cu合金製DR形電極を使用し、加圧力は6.0kNとした。その他の溶接条件は下記表2に示す。なお、下記表2に示す第2段以降のパルセーション通電の通電パターンにおけるNは繰り返し回数である。更に、比較例として、Bの板組みで、第2段の通電をパルセーション通電ではなく通常の連続通電にして重ねスポット溶接を行い、同様に散り発生の有無及び接合部のナゲット径の大きさを調べた。以上の結果を下記表2に併せて示す。 Hereinafter, the effects of the present invention will be specifically described with reference to examples of the present invention and comparative examples that are out of the scope of the present invention. First, as a first example of the present invention, three steel plates having different thicknesses and strengths are spot-welded by the welding method of the first embodiment shown in FIGS. The nugget diameter of the part was examined. The plate assembly at that time is shown in Table 1 below. In this embodiment, the steel plates 1 and 2 are galvanized steel plates galvanized on both sides of a high-strength steel plate with an adhesion amount of 45 g / m 2 per side, and the steel plate 3 with the thinnest thickness is used for the steel plate 3 with the smallest thickness. A bare steel plate without plating was used. Also, as welding conditions, a single phase AC power source is used as the welding power source, the electrode has an electrode diameter D of 16 mm, a tip diameter of 6 mm, and a tip R of 40. The pressure was 6.0 kN. Other welding conditions are shown in Table 2 below. Note that N in the energization pattern of pulsation energization after the second stage shown in Table 2 below is the number of repetitions. In addition, as a comparative example, with the plate assembly B, the second stage energization is not normal pulsation energization but normal continuous energization, and lap spot welding is performed. Similarly, the presence or absence of scattering and the size of the joint nugget diameter I investigated. The above results are also shown in Table 2 below.

Figure 0004728926
Figure 0004728926

Figure 0004728926
Figure 0004728926

上記表2に示すように、第2段以降をパルセーション通電として単相交流式電源による重ね抵抗スポット溶接した実施例No.1、No.2の供試材は、散りの発生がなく、各鋼板の接合部において充分な大きさのナゲットが得られた。これに対して、第2段を連続通電とした比較例No.3の供試材は、散りが発生し、更に、前述した実施例No.1、No.2の供試材に比べて各鋼板の接合部のナゲット径が小さかった。特に、最も薄い鋼板3の接合部のナゲット径は、実施例No.1、No.2の供試材の半分程度であり、良好なナゲットが得られなかった。   As shown in Table 2 above, Example No. 2 in which the second and subsequent stages were subjected to pulsation energization and lap resistance spot welding with a single-phase AC power source. 1, no. The test material No. 2 had no occurrence of scattering, and a sufficiently large nugget was obtained at the joint of each steel plate. In contrast, Comparative Example No. 2 in which the second stage was continuously energized. The test material of No. 3 was scattered, and further, the above-mentioned Example No. 1, no. The nugget diameter of the joint portion of each steel plate was smaller than that of Sample No. 2. In particular, the nugget diameter of the joint of the thinnest steel plate 3 is the same as that of Example No. 1, no. It was about half of the sample material of No. 2, and a good nugget was not obtained.

次に、本発明の第2実施例として、上記表1に示す板組で、図3及び図4に示す第2の実施形態の溶接方法で重ねスポット溶接し、散り発生の有無及び接合部のナゲット径の大きさを調べた。その際の溶接条件としては、溶接電源にはインバーター直流式電源を使用し、電極には電極径Dが16mm、先端の直径が6mm、先端のRが40であるCr−Cu合金製DR形電極を使用し、加圧力は6.0kNとした。また、電極配置は、鋼板3側をプラス極に、鋼板1側をマイナス極とした。その他の溶接条件は下記表3に示す。なお、下記表3に示す第2段以降のパルセーション通電の通電パターンにおけるNは繰り返し回数である。更に、比較例として、Bの板組みで、第2段の通電を行わずに第1段の通電のみで重ねスポット溶接を行い、同様に散り発生の有無及び接合部のナゲット径の大きさを調べた。以上の結果を下記表3に併せて示す。   Next, as a second example of the present invention, the plate set shown in Table 1 above was subjected to overlap spot welding by the welding method of the second embodiment shown in FIG. 3 and FIG. The nugget diameter was examined. As welding conditions at that time, an inverter DC power source is used as a welding power source, and an electrode diameter D is 16 mm, a tip diameter is 6 mm, and a tip R is 40. The pressure was 6.0 kN. The electrode arrangement was such that the steel plate 3 side was a positive electrode and the steel plate 1 side was a negative electrode. Other welding conditions are shown in Table 3 below. Note that N in the energization pattern of pulsation energization after the second stage shown in Table 3 below is the number of repetitions. Furthermore, as a comparative example, with the plate assembly B, the overlap spot welding is performed only by the first stage energization without performing the second stage energization. Similarly, the presence or absence of scattering and the size of the nugget diameter of the joint are determined. Examined. The above results are also shown in Table 3 below.

Figure 0004728926
Figure 0004728926

上記表3に示すように、第2段以降をパルセーション通電としてインバーター性著直流式により重ね抵抗スポット溶接した実施例No.4、No.5の供試材は、散りの発生がなく、各鋼板の接合部において充分な大きさのナゲットが得られた。これに対して、第2段を行わず、第1段の連続通電のみで溶接した比較例No.6の供試材は、散りが発生し、更に、前述した実施例No.4、No.5の供試材に比べて各鋼板の接合部のナゲット径が小さかった。特に、最も薄い鋼板3の接合部のナゲット径dnは、実施例No.4、No.5の供試材の1/4以下であり、良好なナゲットを形成することはできなかった。   As shown in Table 3 above, Example No. 2 in which the second and subsequent stages were subjected to pulsation energization and lap resistance spot welding was performed by an inverter direct current DC method. 4, no. The test material No. 5 had no occurrence of scattering, and a sufficiently large nugget was obtained at the joint of each steel plate. On the other hand, comparative example No. which welded only by the 1st step of continuous energization without performing the 2nd step. In the test material of No. 6, scattering occurred, and the above-mentioned Example No. 4, no. The nugget diameter of the joint portion of each steel plate was smaller than that of the test material of 5. In particular, the nugget diameter dn of the joint of the thinnest steel plate 3 is the same as that of Example No. 4, no. It was 1/4 or less of the 5 specimens, and a good nugget could not be formed.

次に、本発明の第3実施例として、上記表1に示す板組で、図5に示す第3の実施形態の溶接方法で重ねスポット溶接し、散り発生の有無及び接合部のナゲット径の大きさを調べた。その際の溶接条件としては、溶接電源にはインバーター直流式電源を使用し、電極には電極径Dが16mm、先端の直径が6mm、先端のRが40であるCr−Cu合金製DR形電極を使用し、加圧力は6.0kNとした。また、電極配置は、鋼板3側をプラス極に、鋼板1側をマイナス極とした。その他の溶接条件は下記表4に示す。更に、比較例として、Bの板組みで、第2段の通電を行わずに第1段の通電のみで重ねスポット溶接を行い、同様に散り発生の有無及び接合部のナゲット径の大きさを調べた。以上の結果を下記表4に併せて示す。   Next, as a third example of the present invention, the plate set shown in Table 1 above is subjected to overlap spot welding by the welding method of the third embodiment shown in FIG. I checked the size. As welding conditions at that time, an inverter DC power source is used as a welding power source, and an electrode diameter D is 16 mm, a tip diameter is 6 mm, and a tip R is 40. The pressure was 6.0 kN. The electrode arrangement was such that the steel plate 3 side was a positive electrode and the steel plate 1 side was a negative electrode. Other welding conditions are shown in Table 4 below. Furthermore, as a comparative example, with the plate assembly B, the overlap spot welding is performed only by the first stage energization without performing the second stage energization. Similarly, the presence or absence of scattering and the size of the nugget diameter of the joint are determined. Examined. The above results are also shown in Table 4 below.

Figure 0004728926
Figure 0004728926

上記表4に示すように、第2段以降をパルセーション通電としてインバーター性著直流式により重ね抵抗スポット溶接した実施例No.7、No.8の供試材は、散りの発生がなく、各鋼板の接合部において充分な大きさのナゲットが得られた。これに対して、第2段を行わず、第1段の連続通電のみで溶接した比較例No.9の供試材は、散りが発生し、更に、前述した実施例No.7、No.8の供試材に比べて各鋼板の接合部のナゲット径が小さかった。特に、最も薄い鋼板3の接合部のナゲット径dnは、実施例No.7、No.8の供試材の1/4以下であり、良好なナゲットを形成することはできなかった。   As shown in Table 4 above, Example No. 2 in which the second and subsequent stages were subjected to pulsation energization and lap resistance spot welding was performed by an inverter-driven DC method. 7, no. The test material No. 8 had no occurrence of scattering, and a sufficiently large nugget was obtained at the joint of each steel plate. On the other hand, comparative example No. which welded only by the 1st step of continuous energization without performing the 2nd step. The test material of No. 9 was scattered, and the above-mentioned Example No. 7, no. The nugget diameter of the joint portion of each steel plate was smaller than that of the test material of 8. In particular, the nugget diameter dn of the joint of the thinnest steel plate 3 is the same as that of Example No. 7, no. It was 1/4 or less of 8 specimens, and a good nugget could not be formed.

本発明の第1の実施形態に係る抵抗スポット溶接方法を模式的に示す図である。It is a figure which shows typically the resistance spot welding method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る抵抗スポット溶接方法における通電パターンを示す図である。It is a figure which shows the electricity supply pattern in the resistance spot welding method which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る抵抗スポット溶接方法を模式的に示す図である。It is a figure which shows typically the resistance spot welding method which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る抵抗スポット溶接方法における通電パターンを示す図である。It is a figure which shows the electricity supply pattern in the resistance spot welding method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る抵抗スポット溶接方法における通電パターンを示す図である。It is a figure which shows the electricity supply pattern in the resistance spot welding method which concerns on the 3rd Embodiment of this invention. 特許文献4に記載のスポット溶接方法を模式的に示す図である。It is a figure which shows typically the spot welding method of patent document 4.

符号の説明Explanation of symbols

1、2、3、11、12、13、101、102、103 鋼板
4、14、104 板組み
5、6、15、16、105、106 電極
7、17 ナゲット
1, 2, 3, 11, 12, 13, 101, 102, 103 Steel plate 4, 14, 104 Plate assembly 5, 6, 15, 16, 105, 106 Electrode 7, 17 Nugget

Claims (6)

3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接する単相交流式電源による重ね抵抗スポット溶接方法において、
前記鋼板のうち板厚が最も薄いものを一方の電極側に配置する工程と、
加圧力を一定にして多段通電溶接を行う工程とを有し、
前記多段通電溶接工程は、第一段の通電時に鋼板間の接触抵抗を利用した発熱形態により板厚が最も薄い鋼板に形成されるナゲット径dn(mm)と、この最も薄い鋼板の板厚t1(mm)との関係が下記数式(A)を満たすように通電時間Ta及び電流値Iaを設定して通電した後、通電時間:1〜5サイクル、休止時間:1〜5サイクルとして通電及び休止を3回以上繰り返すパルセーション通電を行うことを特徴とする重ね抵抗スポット溶接方法。
Figure 0004728926
In a lap resistance spot welding method with a single-phase AC power source, in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes and energized while pressing to weld the contact points of each steel plate,
Placing the thinnest of the steel plates on one electrode side; and
A step of performing multi-stage energization welding with a constant applied pressure,
The multistage energization welding process includes a nugget diameter dn (mm) formed on the thinnest steel sheet by a heat generation form utilizing contact resistance between the steel plates during the first stage energization, and a thickness t of the thinnest steel sheet. 1 Energization time Ta and current value Ia are set so that the relationship with 1 (mm) satisfies the following formula (A), and then energization time: 1 to 5 cycles, pause time: 1 to 5 cycles A lap resistance spot welding method characterized by performing pulsation energization that repeats energization and pause three or more times.
Figure 0004728926
3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接するインバータ制御直流電流式による重ね抵抗スポット溶接方法において、
前記鋼板のうち板厚が最も薄いものをプラス電極側に配置する工程と、
加圧力を一定にして多段通電溶接を行う工程とを有し、
前記多段通電溶接工程は、第一段の通電時に鋼板間の接触抵抗を利用した発熱形態により板厚が最も薄い鋼板に形成されるナゲット径dn(mm)と、この最も薄い鋼板の板厚t1(mm)との関係が下記数式(A)を満たすように通電時間Ta及び電流値Iaを設定して通電した後、通電時間:10〜100ミリ秒間、休止時間:10〜100ミリ秒間として通電及び休止を3回以上繰り返すパルセーション通電を行うことを特徴とする重ね抵抗スポット溶接方法。
Figure 0004728926
In the overlap resistance spot welding method by the inverter control direct current method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes, and a contact point of each steel plate is welded by applying electricity while applying pressure.
Placing the thinnest of the steel plates on the positive electrode side; and
A step of performing multi-stage energization welding with a constant applied pressure,
The multistage energization welding process includes a nugget diameter dn (mm) formed on the thinnest steel sheet by a heat generation form utilizing contact resistance between the steel plates during the first stage energization, and a thickness t of the thinnest steel sheet. 1 Energizing time Ta and current value Ia are set so that the relationship with 1 (mm) satisfies the following formula (A), and then energizing time: 10 to 100 milliseconds, resting time: 10 to 100 mm A lap resistance spot welding method characterized by performing pulsation energization that repeats energization and pause three or more times per second.
Figure 0004728926
前記パルセーション溶接通電における電流値Ibが下記数式(B)を満たすことを特徴とする請求項1又は2に記載の重ね抵抗スポット溶接方法。
Figure 0004728926
Lap resistance spot welding method according to claim 1 or 2 current I b in the pulsation welding operation is to satisfy the following formula (B).
Figure 0004728926
3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接するインバータ制御直流電流式による重ね抵抗スポット溶接方法において、
前記鋼板のうち板厚が最も薄いものをプラス電極側に配置する工程と、
加圧力を一定にして多段通電溶接を行う工程とを有し、
前記多段通電溶接工程は、第一段の通電時に鋼板間の接触抵抗を利用した発熱形態により板厚が最も薄い鋼板に形成されるナゲット径dn(mm)と、この最も薄い鋼板の板厚t1(mm)との関係が下記数式(C)を満たすように通電時間Ta及び電流値Iaを設定して第1の通電工程を行った後、電流値Ibを前記第1の通電工程における電流値Ia以下にすると共に、通電時間Tbを下記数式(D)に示す範囲に設定して第2の通電工程を行うことを特徴とする重ね抵抗スポット溶接方法。
Figure 0004728926
In the overlap resistance spot welding method by the inverter control direct current method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes, and a contact point of each steel plate is welded by applying electricity while applying pressure.
Placing the thinnest of the steel plates on the positive electrode side; and
A step of performing multi-stage energization welding with a constant applied pressure,
The multistage energization welding process includes a nugget diameter dn (mm) formed on the thinnest steel sheet by a heat generation form utilizing contact resistance between the steel plates during the first stage energization, and a thickness t of the thinnest steel sheet. 1 after the relationship between (mm) was subjected to first energizing step sets the energization time T a and the current value I a to satisfy the following formula (C), passing a current value I b the first while below the current value I a in step lap resistance spot welding method, which comprises carrying out the second energizing step is set to a range that indicates the current time T b the following equation (D).
Figure 0004728926
前記第1の通電工程における電流値Iaと前記第2の通電工程における電流値Ibとの関係が下記数式(E)を満たすことを特徴とする請求項4に記載の重ね抵抗スポット溶接方法。
Figure 0004728926
Lap resistance spot welding method according to claim 4 in which the relationship between the current value I b in the said current value I a in the first energizing step second energizing step is characterized by satisfying the following formula (E) .
Figure 0004728926
最も薄い鋼板の板厚t1(mm)に対する板組みの総板厚t2(mm)の比(t2/t1)が4以上であることを特徴とする請求項1乃至5のいずれか1項に記載の重ね抵抗スポット溶接方法。 The ratio (t 2 / t 1 ) of the total plate thickness t 2 (mm) of the plate assembly to the plate thickness t 1 (mm) of the thinnest steel plate is 4 or more. 2. The lap resistance spot welding method according to item 1.
JP2006281234A 2006-10-16 2006-10-16 Lap resistance spot welding method Active JP4728926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281234A JP4728926B2 (en) 2006-10-16 2006-10-16 Lap resistance spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281234A JP4728926B2 (en) 2006-10-16 2006-10-16 Lap resistance spot welding method

Publications (2)

Publication Number Publication Date
JP2008093726A JP2008093726A (en) 2008-04-24
JP4728926B2 true JP4728926B2 (en) 2011-07-20

Family

ID=39377126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281234A Active JP4728926B2 (en) 2006-10-16 2006-10-16 Lap resistance spot welding method

Country Status (1)

Country Link
JP (1) JP4728926B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083381A1 (en) 2013-12-05 2015-06-11 Jfeスチール株式会社 Resistance-spot-welding method
KR20160021858A (en) * 2013-07-11 2016-02-26 신닛테츠스미킨 카부시키카이샤 Resistive spot welding method
KR20160045892A (en) * 2013-12-20 2016-04-27 신닛테츠스미킨 카부시키카이샤 Resistance spot welding method
EP3266553A4 (en) * 2015-03-05 2018-03-21 JFE Steel Corporation Resistance spot welding method and weld joint
US10722972B2 (en) 2015-03-05 2020-07-28 Jfe Steel Corporation Resistance spot welding device
JP2022018306A (en) * 2020-07-15 2022-01-27 フタバ産業株式会社 Resistance spot welding method and resistance spot welding apparatus

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183069A1 (en) 2008-09-30 2011-07-28 Tokyo Electron Limited Deposition apparatus, deposition method, and storage medium having program stored therein
JP5201116B2 (en) 2008-10-16 2013-06-05 Jfeスチール株式会社 Resistance spot welding method for high strength steel sheet
JP5293227B2 (en) * 2009-01-30 2013-09-18 Jfeスチール株式会社 Resistance spot welding method for high strength thin steel sheet
JP5359571B2 (en) * 2009-02-12 2013-12-04 新日鐵住金株式会社 Resistance welding method for high strength steel sheet and manufacturing method for resistance welding joint
JP5332857B2 (en) * 2009-04-20 2013-11-06 新日鐵住金株式会社 Resistance welding method for high strength steel sheet
JP5333560B2 (en) 2011-10-18 2013-11-06 Jfeスチール株式会社 Resistance spot welding method and resistance spot welding joint of high strength steel plate
JP5835028B2 (en) * 2012-03-12 2015-12-24 新日鐵住金株式会社 Lap resistance spot welding method
JP6409470B2 (en) * 2014-09-30 2018-10-24 新日鐵住金株式会社 Spot welding method
JP6653242B2 (en) * 2016-11-14 2020-02-26 株式会社神戸製鋼所 Joint structure and manufacturing method thereof
JP6653241B2 (en) * 2016-11-14 2020-02-26 株式会社神戸製鋼所 Joint structure and manufacturing method thereof
JP6591952B2 (en) * 2016-11-14 2019-10-16 株式会社神戸製鋼所 Junction structure and manufacturing method thereof
JP6945929B2 (en) * 2017-09-28 2021-10-06 ダイハツ工業株式会社 Spot welding method and manufacturing method of steel plate parts
KR101999005B1 (en) 2017-12-22 2019-07-10 주식회사 포스코 Method for preventing of spot selding crack of galvanized steel sheet
WO2020045678A1 (en) * 2018-08-31 2020-03-05 豊田鉄工株式会社 Resistance spot welding method
JP7297788B2 (en) * 2018-11-26 2023-06-26 本田技研工業株式会社 spot welding method
CN113134671B (en) * 2021-03-22 2022-11-18 首钢集团有限公司 Resistance spot welding method for welding plate group
JP7359815B2 (en) * 2021-09-21 2023-10-11 フタバ産業株式会社 Resistance spot welding method and resistance spot welding device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223671A (en) * 1984-04-20 1985-11-08 Toyota Motor Corp Method for triplex projection welding
JP3922263B2 (en) * 2004-03-17 2007-05-30 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint
JP4543823B2 (en) * 2004-08-23 2010-09-15 Jfeスチール株式会社 Resistance spot welding method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101892828B1 (en) * 2013-07-11 2018-08-28 신닛테츠스미킨 카부시키카이샤 Resistive spot welding method
KR20160021858A (en) * 2013-07-11 2016-02-26 신닛테츠스미킨 카부시키카이샤 Resistive spot welding method
US10265797B2 (en) 2013-07-11 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Resistance spot welding method
JP5854172B2 (en) * 2013-12-05 2016-02-09 Jfeスチール株式会社 Resistance spot welding method
WO2015083381A1 (en) 2013-12-05 2015-06-11 Jfeスチール株式会社 Resistance-spot-welding method
KR20160075830A (en) 2013-12-05 2016-06-29 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
EP3078444A4 (en) * 2013-12-05 2016-11-30 Jfe Steel Corp Resistance spot welding method
JPWO2015083381A1 (en) * 2013-12-05 2017-03-16 Jfeスチール株式会社 Resistance spot welding method
US9895765B2 (en) 2013-12-05 2018-02-20 Jfe Steel Corporation Resistance spot welding method
US10406627B2 (en) 2013-12-20 2019-09-10 Nippon Steel Corporation Resistance spot welding method
KR101887789B1 (en) * 2013-12-20 2018-08-10 신닛테츠스미킨 카부시키카이샤 Resistance spot welding method
KR20160045892A (en) * 2013-12-20 2016-04-27 신닛테츠스미킨 카부시키카이샤 Resistance spot welding method
EP3266553A4 (en) * 2015-03-05 2018-03-21 JFE Steel Corporation Resistance spot welding method and weld joint
US10641304B2 (en) 2015-03-05 2020-05-05 Jfe Steel Corporation Resistance spot welding method and weld joint
US10722972B2 (en) 2015-03-05 2020-07-28 Jfe Steel Corporation Resistance spot welding device
JP2022018306A (en) * 2020-07-15 2022-01-27 フタバ産業株式会社 Resistance spot welding method and resistance spot welding apparatus
JP7160864B2 (en) 2020-07-15 2022-10-25 フタバ産業株式会社 Resistance spot welding method and resistance spot welding device

Also Published As

Publication number Publication date
JP2008093726A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4728926B2 (en) Lap resistance spot welding method
JP6428893B2 (en) Spot welding method
JP6108030B2 (en) Resistance spot welding method
JP2008161877A (en) Lap resistance spot welding method
KR101744427B1 (en) Spot welding method for high-strength steel sheet excellent in joint strength
JP4543823B2 (en) Resistance spot welding method
JP2010247215A (en) Resistance welding method of high tensile steel sheet
JP2007268604A (en) Resistance spot welding method
KR102225221B1 (en) Method of manufacturing resistance spot welded joints
JP5057557B2 (en) Series spot welding method and welding apparatus
JP2009241112A (en) Resistance spot welding method
KR20170119712A (en) Resistance spot welding method and method for manufacturing resistance spot welded joint
JP2006043731A (en) Method for controlling power-supply of spot welding
WO2015133099A1 (en) Resistive spot-welding method
EP1149654B1 (en) Method of resistance spot welding with optimized welding electrodes for aluminium
JP6590121B1 (en) Resistance spot welding method and manufacturing method of welded member
JP4884958B2 (en) Lap resistance spot welding method
JP6037018B2 (en) Resistance spot welding method
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP6287232B2 (en) Current waveform determination method and resistance spot welding method in resistance spot welding
JP7371664B2 (en) Resistance spot welding method, method for manufacturing welded parts, and welding equipment
JP6913062B2 (en) Resistance spot welding method and welding member manufacturing method
JP6856181B1 (en) Resistance spot welding method and welding member manufacturing method
WO2022219968A1 (en) Resistance spot welding method
KR20140018482A (en) Hybrid welding method of multy-layered joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R151 Written notification of patent or utility model registration

Ref document number: 4728926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350