JP6287232B2 - Current waveform determination method and resistance spot welding method in resistance spot welding - Google Patents

Current waveform determination method and resistance spot welding method in resistance spot welding Download PDF

Info

Publication number
JP6287232B2
JP6287232B2 JP2014004520A JP2014004520A JP6287232B2 JP 6287232 B2 JP6287232 B2 JP 6287232B2 JP 2014004520 A JP2014004520 A JP 2014004520A JP 2014004520 A JP2014004520 A JP 2014004520A JP 6287232 B2 JP6287232 B2 JP 6287232B2
Authority
JP
Japan
Prior art keywords
spot welding
resistance spot
current
current waveform
nugget diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014004520A
Other languages
Japanese (ja)
Other versions
JP2015131327A (en
Inventor
学 福本
学 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014004520A priority Critical patent/JP6287232B2/en
Publication of JP2015131327A publication Critical patent/JP2015131327A/en
Application granted granted Critical
Publication of JP6287232B2 publication Critical patent/JP6287232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、抵抗スポット溶接における電流波形の決定方法、および、この方法により決定された波形で通電する抵抗スポット溶接方法に関する。より詳しくは、チリを発生させることなく所望のナゲット径が得られる抵抗スポット溶接の電流波形を決定する方法、および、電極を介して押圧されている被溶接部材へ上記方法で決定された波形で通電することにより抵抗スポット溶接を行う、抵抗スポット溶接方法に関する。   The present invention relates to a method for determining a current waveform in resistance spot welding, and a resistance spot welding method for energizing with a waveform determined by this method. More specifically, a method of determining a current waveform of resistance spot welding that can obtain a desired nugget diameter without generating dust, and a waveform determined by the above method to a member to be welded that is pressed through an electrode The present invention relates to a resistance spot welding method in which resistance spot welding is performed by energization.

自動車等の各種工業部材における材料同士の接合方法の1つとして、抵抗スポット溶接が用いられている。抵抗スポット溶接では、接合される二以上の被溶接部材を電極間に挟み、この電極によって被溶接部材を押圧しつつ通電する。これにより、通電された二以上の被溶接部材の接触界面の一部が溶融されて接合される。   As one method for joining materials in various industrial members such as automobiles, resistance spot welding is used. In resistance spot welding, two or more members to be welded are sandwiched between electrodes, and electricity is applied while pressing the members to be welded by the electrodes. Thereby, a part of contact interface of the to-be-welded two or more to-be-welded members is melted and joined.

抵抗スポット溶接において、抵抗スポット溶接時に発生するチリやスパッタと称される溶融部からの溶融金属の飛散(以下において、溶融金属が飛散する現象を「チリ」ということがある。)は、作業環境を悪化させる。また、製品表面にチリが付着すると製品品質が低下するため、チリの発生が懸念される場合には、予め、付着したチリを除去しやすくするための加工が製品に施される。かかる加工はコスト高の一因になるため、チリの発生を抑制することが望まれている。   In resistance spot welding, dust generated during resistance spot welding and splash of molten metal from a molten portion called spatter (hereinafter, the phenomenon of molten metal scattering is sometimes referred to as “chilli”) is a work environment. Worsen. Further, if dust adheres to the product surface, the product quality deteriorates. Therefore, when there is a concern about the generation of dust, the product is previously subjected to processing for facilitating removal of the adhered dust. Since such processing contributes to high costs, it is desired to suppress the generation of dust.

抵抗スポット溶接により接合された被溶接部材の接合強度は、通電により溶融した溶融部の直径(以下において、「ナゲット径」ということがある。)に応じて変化し、ナゲット径を大きくするほど接合強度を高めやすい。そのため、所望の接合強度を確保する観点からは、ナゲット径を大きくすることが好ましい。しかしながら、ナゲット径を大きくし過ぎるとチリが発生する。そのため、抵抗スポット溶接を行う際には、ナゲット径が、所望の接合強度を確保するために最低限必要なナゲット径(以下において、「最小ナゲット径」ということがある。)以上になり、且つ、チリが発生し始める大きさ未満になるように、溶接条件が決められる。   The joining strength of the welded members joined by resistance spot welding changes according to the diameter of the melted part melted by energization (hereinafter, sometimes referred to as “nugget diameter”), and the larger the nugget diameter is, the more the joining strength increases. Easy to increase strength. For this reason, it is preferable to increase the nugget diameter from the viewpoint of securing a desired bonding strength. However, if the nugget diameter is too large, dust is generated. Therefore, when performing resistance spot welding, the nugget diameter is equal to or larger than the minimum nugget diameter necessary for ensuring the desired joint strength (hereinafter, sometimes referred to as “minimum nugget diameter”), and The welding conditions are determined so as to be less than the size at which dust starts to occur.

このような抵抗スポット溶接に関する技術として、例えば特許文献1には、通電時間の初期にスパッタの発生を抑え得る程度の電流値に所定時間維持して被溶接物の表面を軟化させ、その後に電流値を所定時間高く維持してスパッタの発生を抑えつつナゲットを成長させるスポット溶接の通電制御方法が開示されている。また、特許文献2には、抵抗溶接の通電時間内に、溶接する鋼板に対してナゲットを成長させる程度の高い電流値を維持する時間帯と、スパッタを発生させずに鋼板を軟化させる程度の低い電流値を維持する時間帯を交互に繰り返すように、通電するスポット抵抗溶接の通電制御方法が開示されている。また、特許文献3には、高張力鋼板への通電電流を漸変的に上昇させることによりナゲット生成を行う第1ステップと、該第1ステップの後に電流を下降させる第2ステップと、該第2ステップの後に電流を上昇させて本溶接するとともに、漸変的に通電電流を下降させる第3ステップとを備えた工程によりスポット溶接を行う高張力鋼板のスポット溶接方法が開示されている。
さらに従来技術として、非特許文献「福本学、岡村一男、福井清之、「自動車用薄鋼板を対象とした高精度スポット溶接CAE技術の開発」、自動車技術会学術講演会前刷集、2006、No.74-06、p.9-12」を挙げることができる。
As a technique related to such resistance spot welding, for example, in Patent Document 1, the surface of the workpiece is softened by maintaining a current value at a level that can suppress the occurrence of spatter at the initial stage of energization time, and then the current is An energization control method for spot welding is disclosed in which the nugget is grown while maintaining the value high for a predetermined time to suppress the occurrence of spatter. Patent Document 2 discloses a time zone for maintaining a high current value at which a nugget is grown on a steel sheet to be welded within a current-carrying time for resistance welding, and a degree for softening the steel sheet without causing spattering. An energization control method for spot resistance welding in which energization is performed so as to alternately repeat time zones for maintaining a low current value is disclosed. Patent Document 3 discloses a first step of generating nuggets by gradually increasing an energization current to a high-tensile steel plate, a second step of decreasing the current after the first step, A high-strength steel spot welding method is disclosed in which spot welding is performed by a process including a third step of increasing the current after two steps and performing main welding while gradually decreasing the energization current.
Furthermore, as a conventional technology, non-patent literature "Studies of Fukumoto, Kazuo Okamura, Kiyoyuki Fukui," Development of high-precision spot welding CAE technology for thin steel sheets for automobiles ", Preprint of Academic Lectures of the Society of Automotive Engineers of Japan, 2006, No. 74-06, p. 9-12 ".

特開2006−43731号公報JP 2006-43731 A 特開2006−181621号公報JP 2006-181621 A 特開2003−236674号公報JP 2003-236684 A 特開2007−283328号公報JP 2007-283328 A

近年、ハイテンや超ハイテン等の新しい鋼板の活用が、ますます志向されつつある。これらの高強度鋼板は、強度を高めるための方策として、一般にSi等の合金が軟鋼より多く添加されており、その結果比抵抗が高いため発熱しやすい。それゆえ、高強度鋼板を抵抗スポット溶接した場合には、接触界面における温度上昇が激しく、溶融部(ナゲット)を得ることが容易である反面、非溶融部を含んだ接触面積が、溶融部の面積より大きい状態を維持すること、すなわちチリの発生を回避することが困難となる。したがって、最小ナゲット径を得るために必要な電流値(下限電流)とチリが発生する直前の電流値(上限電流)とによって画定される適正電流範囲が狭い。適正電流範囲が狭いと、最小ナゲット径を確保しつつチリの発生を抑制できる溶接条件が限定されるため、複数回の溶接を連続的に行うことにより生じる電極先端の損耗や、被溶接材同士の隙間等による重ね合わせの状態変化など、実生産上生じ得る種々の外乱に対する余裕度が小さいこととなり、場合によっては適正条件範囲から逸脱した条件で溶接することとなる。そのため、上限電流を最大化する等により適正電流範囲を拡大することが望まれている。
これまでに、特許文献1〜特許文献3のような技術が開発されているが、これらの文献には適正電流範囲が拡大されるか否かに関する記載がない。そのため、これらの技術を用いても、適正電流範囲を拡大できない虞があった。また、鋼板を軟化させる程度の通電を行うため、総通電時間が長くなる。その結果、生産上の制約で溶接時間を制限するような場合には、実生産への適用が困難になる虞もあった。
In recent years, the use of new steel sheets such as high tensile steel and super high tensile steel has been increasingly oriented. These high-strength steel sheets are likely to generate heat because, as a measure for increasing the strength, generally, an alloy such as Si is added more than mild steel, and as a result, the specific resistance is high. Therefore, when high-strength steel plates are resistance spot welded, the temperature rise at the contact interface is severe and it is easy to obtain a melted part (nugget), but the contact area including the non-melted part is It becomes difficult to maintain a state larger than the area, that is, to avoid generation of dust. Therefore, the appropriate current range defined by the current value (lower limit current) necessary to obtain the minimum nugget diameter and the current value (upper limit current) immediately before the occurrence of dust is narrow. When the appropriate current range is narrow, the welding conditions that can suppress the generation of dust while ensuring the minimum nugget diameter are limited. Therefore, the wear of the electrode tip caused by continuous multiple times of welding, The margin for various disturbances that may occur in actual production, such as a change in the state of superposition due to gaps, etc., is small, and in some cases, welding is performed under conditions that deviate from the appropriate condition range. Therefore, it is desired to expand the appropriate current range by maximizing the upper limit current.
So far, techniques such as Patent Documents 1 to 3 have been developed, but these documents do not describe whether or not the appropriate current range is expanded. Therefore, even if these techniques are used, there is a possibility that the appropriate current range cannot be expanded. Further, since energization is performed to such an extent that the steel plate is softened, the total energization time becomes long. As a result, when the welding time is limited due to production restrictions, it may be difficult to apply to actual production.

そこで本発明は、最小ナゲット径を確保しつつチリの発生を抑制できる適正電流範囲を拡大させる電流波形を決定することが可能な、抵抗スポット溶接における電流波形決定方法、および、この方法により決定された電流波形で抵抗スポット溶接を行う抵抗スポット溶接方法を提供することを課題とする。   Accordingly, the present invention provides a current waveform determination method in resistance spot welding that can determine a current waveform that expands an appropriate current range that can suppress generation of dust while ensuring a minimum nugget diameter, and is determined by this method. It is an object of the present invention to provide a resistance spot welding method for performing resistance spot welding with a current waveform.

本発明者は、「適正電流範囲が広い」という態様は、電流を横軸としナゲット径を縦軸とする座標平面に記載した曲線、いわゆるウェルドローブの勾配が緩やかになると考えた。より具体的には、通電時間τに対する通電量の時間平均値が上限電流となるような、時刻tにおける通電量を表した通電波形をIS(t)としたとき、IS(t)により得られるナゲット径DSと、IS(t)−ΔI(ΔI>0)で下限電流を表したときに、通電波形IS(t)−ΔIにより得られるナゲット径D0との差をΔD=DS−D0(>0)とした場合、ΔD/ΔIを小さくするような通電波形IS(t)を選ぶことで適正電流範囲を拡大することができると考えた。
この考えに基づいて鋭意研究した結果、本発明者は、かかる特徴を有する波形で通電したときのナゲット径と通電時間との関係を、通電時間を横軸としナゲット径を縦軸とする座標平面に記載すると、通電開始直後のナゲット径の成長速度が速く、且つ、ナゲット径が所定値になった後にナゲット径が漸増する形態になることを知見した。さらに、本発明者は、この特徴を表現した数式と、ナゲット径を最小ナゲット径以上にすることを表す数式を目的関数とし、チリを発生させないために満たすべき条件を表す数式を制約条件として与え、且つ、電流波形(電流パターン)を設計変数とする最適化問題を解くことにより、適正電流範囲を拡大させる電流波形を決定することが可能になることを知見した。本発明は、このような知見に基づいて完成させた。以下、本発明について説明する。
The present inventor considered that the aspect of “the wide appropriate current range” is that the curve of the curve described on the coordinate plane with the current as the horizontal axis and the nugget diameter as the vertical axis, the so-called weld lobe gradient becomes gentle. More specifically, when an energization waveform representing the energization amount at time t such that the time average value of the energization amount with respect to the energization time τ becomes the upper limit current is IS (t), it is obtained by IS (t). When the nugget diameter DS and the lower limit current are expressed by IS (t) −ΔI (ΔI> 0), the difference between the nugget diameter D0 obtained by the energization waveform IS (t) −ΔI is expressed as ΔD = DS−D0 (> 0), it was considered that the appropriate current range can be expanded by selecting an energization waveform IS (t) that reduces ΔD / ΔI.
As a result of earnest research based on this idea, the present inventor found that the relationship between the nugget diameter and the energization time when energized with a waveform having such characteristics is a coordinate plane with the energization time as the horizontal axis and the nugget diameter as the vertical axis. It was found that the growth rate of the nugget diameter immediately after the start of energization is high and the nugget diameter gradually increases after the nugget diameter reaches a predetermined value. Further, the present inventor gives, as a constraint condition, a mathematical expression expressing this feature and a mathematical expression representing that the nugget diameter is equal to or larger than the minimum nugget diameter as an objective function and a condition representing a condition to be satisfied in order to prevent generation of dust. In addition, it has been found that it is possible to determine a current waveform that expands an appropriate current range by solving an optimization problem using a current waveform (current pattern) as a design variable. The present invention has been completed based on such findings. The present invention will be described below.

本発明の第1の態様は、2枚以上の複数の被溶接材で構成された積層体を一対の電極で挟持し、該一対の電極で積層体を押圧しつつ通電することにより上記2枚以上の複数の被溶接材の界面に溶融部を形成させる過程を経て、上記2枚以上の複数の被溶接材を接合する抵抗スポット溶接における電流波形を決定する方法であって、電極から積層体へと付与される加圧力をP、一対の電極間に電流を通す通電時間をτ、0〜τのいずれかの値をとる時刻tにおけるナゲット径をDN(t)、0〜1のいずれかの値をとる係数をk、積層体に含まれている互いに接触する任意の2つの被溶接材が抵抗スポット溶接時に溶融せずに互いに接触する界面である非溶融部(コロナボンドと称される場合がある)に作用する、時刻tにおける力をF(t)、とするとき、DN(t)の、時刻t=0〜τにおける積分値であるSが最大であること、および、DN(τ)が最大であることを目的関数とし、F(t)の、時刻t=0〜τにおけるナゲット形成開始以降の最小値であるFminがFmin>(1−k)・Pなる関係を制約条件とし、且つ、時刻tにおける電流の波形IS(t)を設計変数とする最適化問題を解く工程を有する、抵抗スポット溶接における電流波形決定方法である。 According to a first aspect of the present invention, a laminate composed of a plurality of materials to be welded is sandwiched between a pair of electrodes, and the laminate is energized while pressing the laminate with the pair of electrodes. A method for determining a current waveform in resistance spot welding for joining two or more of the plurality of materials to be welded through the process of forming a melted portion at the interface of the plurality of materials to be welded, comprising: The applied pressure applied to P is P, the energization time for passing the current between the pair of electrodes is τ, and the nugget diameter at time t taking any value from 0 to τ is DN (t), 0 to 1 The coefficient taking the value of k is a non-melting part (referred to as corona bond) that is an interface where any two workpieces that are in contact with each other included in the laminate contact each other without melting during resistance spot welding F (t), the force at time t acting on And the objective function is that S, which is the integral value of DN (t) at time t = 0 to τ, and that DN (τ) is maximal, and F (t) Design the current waveform IS (t) at time t with the relation that F min, which is the minimum value after the start of nugget formation at time t = 0 to τ, is F min > (1−k) · P. A method for determining a current waveform in resistance spot welding, which includes a step of solving an optimization problem as a variable.

ここで、本発明において、「電流」は、交流の場合には実効電流を意味する。また、目的関数の「Sが最大であること」は、適正電流範囲を拡大させやすい電流波形であること、に相当する。また、目的関数の「DN(τ)が最大であること」は、ナゲット径を最大にすることに相当し、これは、適正電流範囲の上限電流を最大にすることに相当する。ナゲット径の最大値を可能な限り大きくすることにより、ナゲット径を最小ナゲット径以上にしやすくなる。さらに、本発明において、制約条件の「Fmin>(1−k)・P」は、チリが発生しないこと、に相当する。
本発明における最適化問題では、「Sが最大であること」および「DN(τ)が最大であること」を目的関数にするので、最適化問題を解くことにより得られる電流波形は、適正電流範囲を拡大させやすく、且つ、適正電流範囲の上限電流を最大にする電流波形である。また、「Fmin>(1−k)・P」を制約条件にするので、得られる電流波形は、チリが発生しない電流波形である。本発明では、このような条件を設定した最適化問題を解くことにより電流波形を決定する。したがって、本発明によれば、適正電流範囲を拡大させる電流波形を決定することが可能である。
Here, in the present invention, “current” means effective current in the case of alternating current. The objective function “S is the maximum” corresponds to a current waveform that easily expands the appropriate current range. The objective function “DN (τ) is maximum” corresponds to maximizing the nugget diameter, which corresponds to maximizing the upper limit current of the appropriate current range. By increasing the maximum value of the nugget diameter as much as possible, it becomes easier to make the nugget diameter larger than the minimum nugget diameter. Furthermore, in the present invention, the constraint condition “F min > (1-k) · P” corresponds to the absence of dust.
In the optimization problem in the present invention, since “S is maximum” and “DN (τ) is maximum” are objective functions, the current waveform obtained by solving the optimization problem is an appropriate current. It is a current waveform that makes it easy to expand the range and maximizes the upper limit current of the appropriate current range. Further, since “F min > (1−k) · P” is a constraint, the obtained current waveform is a current waveform in which no dust is generated. In the present invention, the current waveform is determined by solving the optimization problem in which such conditions are set. Therefore, according to the present invention, it is possible to determine a current waveform that expands the appropriate current range.

また、上記本発明の第1の態様において、係数kが0.85〜0.95であることが好ましい。このような形態にすることにより、チリの発生/不発生の予測精度を高めやすくなるので、適正電流範囲を拡大させる電流波形を決定しやすくなる。   In the first aspect of the present invention, the coefficient k is preferably 0.85 to 0.95. By adopting such a form, it becomes easy to improve the prediction accuracy of occurrence / non-occurrence of dust, so that it becomes easy to determine a current waveform that expands the appropriate current range.

本発明の第2の態様は、上記本発明の第1の態様にかかる抵抗スポット溶接における電流波形決定方法により決定された電流波形IS(t)で抵抗スポット溶接を行うことを特徴とする、抵抗スポット溶接方法である。   According to a second aspect of the present invention, the resistance spot welding is performed with the current waveform IS (t) determined by the current waveform determination method in the resistance spot welding according to the first aspect of the present invention. This is a spot welding method.

本発明の第2の態様では、本発明の第1の態様にかかる抵抗スポット溶接における電流波形決定方法により決定された電流波形IS(t)で抵抗スポット溶接を行うので、強度を高めたスポット溶接材を、良好な作業環境で低コスト且つ高精度に製造することが可能な、抵抗スポット溶接方法を提供することができる。   In the second aspect of the present invention, the resistance spot welding is performed with the current waveform IS (t) determined by the current waveform determination method in the resistance spot welding according to the first aspect of the present invention. It is possible to provide a resistance spot welding method capable of manufacturing a material at a low cost and with high accuracy in a favorable working environment.

本発明によれば、適正電流範囲を拡大させる電流波形を決定することが可能な抵抗スポット溶接における電流波形決定方法、および、この方法により決定された波形で通電する抵抗スポット溶接方法を提供することができる。   According to the present invention, there are provided a current waveform determination method in resistance spot welding capable of determining a current waveform that expands an appropriate current range, and a resistance spot welding method of energizing with a waveform determined by this method. Can do.

コロナボンドに作用する力Fと時刻tとの関係を説明する模式図である。It is a schematic diagram explaining the relationship between the force F which acts on a corona bond, and the time t. ナゲット径Dと電流Iとの関係を説明する模式図である。図2(a)は適正電流範囲が狭い場合におけるナゲット径Dと電流Iとの関係を説明する模式図であり、図2(b)は適正電流範囲が広い場合におけるナゲット径Dと電流Iとの関係を説明する模式図である。It is a schematic diagram explaining the relationship between the nugget diameter D and the electric current I. FIG. 2A is a schematic diagram for explaining the relationship between the nugget diameter D and the current I when the appropriate current range is narrow, and FIG. 2B is a schematic diagram illustrating the nugget diameter D and the current I when the appropriate current range is wide. It is a schematic diagram explaining the relationship. ナゲット径Dと時刻tとの関係を説明する模式図である。図3(a)は適正電流範囲が狭い場合における典型的な通電波形の態様としてナゲット径Dと時刻tとの関係を説明する模式図であり、図3(b)は適正電流範囲が広い場合における典型的な通電波形の態様としてナゲット径Dと時刻tとの関係を説明する模式図である。It is a schematic diagram explaining the relationship between the nugget diameter D and the time t. FIG. 3A is a schematic diagram for explaining the relationship between the nugget diameter D and time t as a typical form of the energization waveform when the appropriate current range is narrow, and FIG. 3B is a case where the appropriate current range is wide. It is a schematic diagram explaining the relationship between the nugget diameter D and the time t as a mode of a typical energization waveform in FIG. Sを説明する図である。It is a figure explaining S. FIG. 最適化計算により得られた5段通電パターンを示す図である。It is a figure which shows the 5-step electricity supply pattern obtained by the optimization calculation. 最適化計算により得られた5段通電パターンおよび単通電の場合におけるナゲット径と通電時間との関係を示す図である。It is a figure which shows the relationship between the nugget diameter and energization time in the case of the 5 step | paragraph energization pattern obtained by optimization calculation, and single energization. 最適化計算により得られた5段通電パターンおよび単通電の場合における非溶融部に作用する力と通電時間との関係を示す図である。It is a figure which shows the relationship between the force and the energization time which act on the non-melting part in the case of the 5-stage energization pattern obtained by optimization calculation, and single energization. 実施例の適正電流範囲を説明する図である。It is a figure explaining the appropriate electric current range of an Example. 比較例の適正電流範囲を説明する図である。It is a figure explaining the appropriate current range of a comparative example.

以下、本発明の実施の形態について説明する。なお、以下の説明は、本発明の例示であり、本発明は以下に例示する形態に限定されない。   Embodiments of the present invention will be described below. In addition, the following description is an illustration of this invention and this invention is not limited to the form illustrated below.

1.抵抗スポット溶接における電流波形決定方法
製造現場における抵抗スポット溶接の実施状況を考慮すると、三大溶接条件(電極から被溶接材へと付与される加圧力P、一対の電極間に通す電流I、通電時間τ)のうち、加圧力Pは溶接機の性能や制御機構の制約により調整範囲や調整自由度が大きくなく、通電時間τは生産タクトにより制約を受けるため、特に長時間化の方向には調整自由度が確保しづらいが、電流Iは制御装置(タイマー)の性能の範囲内で調整自由度が大きい。このように、三大溶接条件のうち最も変更しやすい溶接条件は、電流Iである。そこで、本発明によって電流波形を決定する際には、加圧力Pおよび通電時間τを一定とし、電流Iのパターンを最適化することにした。また、一般に、抵抗スポット溶接により接合された溶接材は所定以上の強度であることが求められる。ナゲット径Dを大きくすることにより溶接材の強度を高めることが可能になる一方、ナゲット径が大き過ぎるとチリが発生する。そのため、本発明では、チリが発生しない範囲内でナゲット径Dを最大化する電流Iのパターンを探索することにした。ここで、0〜1のいずれかの値をとる係数をk、互いに接触する2つの被溶接材が抵抗スポット溶接時に溶融せずに互いに接触する界面である非溶融部に作用する力をF、とするとき、「チリが発生しない」ことは、Fmin>(1−k)・Pと表現できることを本発明者は知見している。そこで、本発明では、「チリが発生しない」という条件を、Fmin>(1−k)・Pで表現することにした。F(t)と時刻tとの関係を、模式的に図1に示す。図1において、Fcritはチリが発生する直前のFの値である。図1に示したように、Fmin>(1−k)・P=Fcritを満たす条件で通電することにより、チリの発生を回避することができる。
1. Current Waveform Determination Method in Resistance Spot Welding Considering the state of resistance spot welding at the manufacturing site, the three major welding conditions (pressure P applied from the electrode to the workpiece, current I passed between the pair of electrodes, energization Among the time τ), the applied pressure P is not large in the adjustment range and the degree of freedom of adjustment due to the performance of the welder and the control mechanism, and the energization time τ is restricted by the production tact. Although it is difficult to secure the degree of freedom of adjustment, the current I has a large degree of freedom of adjustment within the range of the performance of the control device (timer). Thus, the welding condition that is most easily changed among the three major welding conditions is the current I. Therefore, when determining the current waveform according to the present invention, the pressure I and energization time τ are kept constant, and the current I pattern is optimized. In general, the welded material joined by resistance spot welding is required to have a predetermined strength or more. While increasing the nugget diameter D makes it possible to increase the strength of the welding material, if the nugget diameter is too large, dust is generated. For this reason, in the present invention, the current I pattern that maximizes the nugget diameter D within a range in which no dust is generated is searched. Here, k is a coefficient taking any value of 0 to 1, and F is a force acting on a non-melting portion which is an interface where two workpieces that are in contact with each other are not melted during resistance spot welding and are in contact with each other. Then, the present inventor has found that “no dust is generated” can be expressed as F min > (1−k) · P. Therefore, in the present invention, the condition that “no dust is generated” is expressed by F min > (1-k) · P. The relationship between F (t) and time t is schematically shown in FIG. In FIG. 1, F crit is the value of F just before dust occurs. As shown in FIG. 1, generation of dust can be avoided by energizing under a condition satisfying F min > (1−k) · P = F crit .

また、本発明者は、適正電流範囲が狭い板組と、適正電流範囲が広い板組とでは、電流Iを横軸としナゲット径Dを縦軸とする座標平面に記載されるグラフの形態が異なることを知見した。ナゲット径Dと電流Iとの関係を、模式的に図2に示す。図2(a)は適正電流範囲が狭い場合を説明する模式図であり、図2(b)は適正電流範囲が広い場合を説明する模式図である。図2(a)および図2(b)において、ISはチリが発生する直前の電流(適正電流範囲の上限電流)であり、Dminは最小ナゲット径であり、矢印で特定された範囲が適正電流範囲である。 Further, the present inventor has shown that a graph set described on a coordinate plane having a current I as a horizontal axis and a nugget diameter D as a vertical axis in a plate set with a narrow appropriate current range and a plate set with a wide appropriate current range. I found it different. The relationship between the nugget diameter D and the current I is schematically shown in FIG. FIG. 2A is a schematic diagram for explaining a case where the appropriate current range is narrow, and FIG. 2B is a schematic diagram for explaining a case where the appropriate current range is wide. 2 (a) and 2 (b), IS is the current immediately before the occurrence of dust (upper limit current of the appropriate current range), D min is the minimum nugget diameter, and the range specified by the arrow is appropriate Current range.

図2(a)及び図2(b)に示したように、適正電流範囲が広い板組(図2(b))は、適正電流範囲が狭い板組(図2(a))よりもグラフの勾配が緩やかであった。したがって、適正電流範囲が広い電流形状は、「電流Iが変化したときのナゲット径Dの変化量が小さい」という条件を満たすと考えられる。   As shown in FIG. 2A and FIG. 2B, the board assembly having a wider appropriate current range (FIG. 2B) is a graph than the board assembly having a narrower appropriate current range (FIG. 2A). The slope of was gentle. Therefore, the current shape having a wide appropriate current range is considered to satisfy the condition that “the change amount of the nugget diameter D when the current I changes is small”.

これまで検討したように、本発明で決定される適正電流範囲が広い電流形状は、「電流Iが変化したときのナゲット径Dの変化量が小さい」という条件を満たし、さらに、「チリが発生しない範囲内でナゲット径Dを最大化する」という条件を満たす。本発明者は、鋭意研究の結果、これらの条件を満たす電流形状で抵抗スポット溶接を行うと、溶接開始後の時刻tを横軸としナゲット径Dを縦軸とする座標平面に記載されるグラフが特有の形態になることを知見した。ナゲット径Dと時刻tとの関係を、模式的に図3に示す。図3(a)は、電流Iが変化したときのナゲット径の変化ΔDが大きい場合を説明する模式図であり、図3(b)は、電流Iが変化したときのナゲット径の変化ΔDが小さい場合を説明する模式図である。図3(a)および図3(b)において、ΔIは、チリが発生し始める電流ISから低減した電流であり、ΔDは、I=ISの場合に得られるナゲット径とI=IS−ΔIの場合に得られるナゲット径との差である。   As discussed so far, the current shape having a wide appropriate current range determined by the present invention satisfies the condition that “the change amount of the nugget diameter D when the current I changes is small”, and further, “the occurrence of dust is generated. The condition of “maximizing the nugget diameter D within the range not to be satisfied” is satisfied. As a result of earnest research, the present inventor conducted resistance spot welding with a current shape that satisfies these conditions, and a graph described on a coordinate plane with time t after the start of welding as the horizontal axis and the nugget diameter D as the vertical axis. Has become a peculiar form. The relationship between the nugget diameter D and the time t is schematically shown in FIG. FIG. 3A is a schematic diagram for explaining a case where the change ΔD of the nugget diameter when the current I changes is large. FIG. 3B shows the change ΔD of the nugget diameter when the current I changes. It is a schematic diagram explaining the case where it is small. 3A and 3B, ΔI is a current reduced from the current IS at which dust starts to be generated, and ΔD is a nugget diameter obtained when I = IS and I = IS−ΔI. This is the difference from the nugget diameter obtained in this case.

加圧力および通電時間を一定とし、通電量を種々変化させて、ある同一の大きさのナゲット径を得ようとした場合、ナゲット成長履歴の様態として次の両極端の場合を考えることができる。すなわち、ナゲット径Dと通電開始後の時刻tとの関係としては、抵抗スポット溶接開始後のナゲット成長が緩慢で、抵抗スポット溶接を終了する前にナゲット径が急激に成長する場合(図3(a))と、抵抗スポット溶接開始直後にナゲット径が急激に成長し、抵抗スポット溶接を終了する前にナゲット径の成長が飽和する場合(図3(b))の2形態が考えられる。
図3(a)と図3(b)とを比較すると、同じΔIだけ電流を低減した場合のΔDが、図3(a)は図3(b)よりも大きい。ΔD/ΔIは図2(a)および図2(b)に示したグラフの傾きに相当するので、図3(a)は適正電流範囲が狭い場合に相当し、図3(b)は適正電流範囲が広い場合に相当する。
When it is attempted to obtain a nugget diameter having a certain size by changing the energization amount with the applied pressure and the energization time being constant, the following two extreme cases can be considered as the nugget growth history. That is, the relationship between the nugget diameter D and the time t after the start of energization is such that the nugget growth after the start of resistance spot welding is slow and the nugget diameter grows abruptly before the end of resistance spot welding (FIG. 3 ( a)), and the nugget diameter grows rapidly immediately after the start of resistance spot welding, and the growth of the nugget diameter saturates before the end of resistance spot welding (FIG. 3B).
Comparing FIG. 3A and FIG. 3B, ΔD when the current is reduced by the same ΔI is larger in FIG. 3A than in FIG. Since ΔD / ΔI corresponds to the slope of the graphs shown in FIGS. 2A and 2B, FIG. 3A corresponds to the case where the appropriate current range is narrow, and FIG. 3B shows the appropriate current. This corresponds to a wide range.

図4に、Sを示す。図4において、DSはI=ISのときのナゲット径である。図3(a)、図3(b)、および、図4を比較すると、図3(a)よりも図3(b)の方が、Sが大きくなる。したがって、図3(b)のような形態になることは、「Sを最大にする」と表現することが可能と考えられる。   FIG. 4 shows S. In FIG. 4, DS is the nugget diameter when I = IS. When FIG. 3A, FIG. 3B, and FIG. 4 are compared, S is larger in FIG. 3B than in FIG. Therefore, it can be considered that the form as shown in FIG. 3B can be expressed as “maximizing S”.

電流波形を最適化するには、電流Iのパターンを設計変数とする最適化問題を解けば良い。上述のように、チリが発生しないためには「Fmin>(1−k)・P=Fcrit」という条件を満たせば良い。そのため、本発明では、「Fmin>(1−k)・P=Fcrit」、「ナゲット径Dが最大」、「Sが最大」のすべてを満たし、且つ、電流Iのパターンを設計変数とする最適化問題を解くことにより、電流波形を決定することができる。具体的には、ナゲット径およびチリの発生有無を正確に予測可能な抵抗スポット溶接シミュレーションソフトと、最適化計算を行う最適化ソフトとを用いることにより、適正電流範囲を拡大させる電流波形を決定することができる。かかる過程により決定された電流波形は、「Fmin>(1−k)・P=Fcrit」、「ナゲット径Dが最大」、「Sが最大」のすべてを満たすので、具体的には、ISを通る電流波形が決定される。 In order to optimize the current waveform, an optimization problem using the current I pattern as a design variable may be solved. As described above, in order not to generate dust, the condition “F min > (1−k) · P = F crit ” may be satisfied. Therefore, in the present invention, all of “F min > (1−k) · P = F crit ”, “maximum nugget diameter D”, “maximum S” and satisfy the pattern of current I as design variables The current waveform can be determined by solving the optimization problem. Specifically, the current waveform that expands the appropriate current range is determined by using resistance spot welding simulation software that can accurately predict the occurrence of nugget diameter and dust and optimization software that performs optimization calculations. be able to. The current waveform determined by this process satisfies all of “F min > (1−k) · P = F crit ”, “maximum nugget diameter D”, and “S is maximum”. A current waveform through the IS is determined.

母材強度クラス980MPa級の冷延鋼板である被溶接材について抵抗スポット溶接をする際に、通電開始から通電終了まで一定の電流を通す単通電の場合よりも最適電流範囲を拡大させることが可能な電流波形の決定を試みた。以下にその内容を記すことにより、本発明についてさらに具体的に説明する。なお、ここでは、被溶接材として母材強度クラス980MPa級の冷延鋼板を用いたが、本発明を適用可能な被溶接材はこれに限定されない。   When resistance spot welding is performed on a material to be welded that is a cold rolled steel sheet of base material strength class 980 MPa class, it is possible to expand the optimum current range compared to single energization in which a constant current is passed from the start of energization to the end of energization. Attempt to determine the correct current waveform. The present invention will be described more specifically by describing the contents below. Here, a cold-rolled steel sheet having a base material strength class of 980 MPa is used as the material to be welded, but the material to be welded to which the present invention is applicable is not limited to this.

本発明により電流波形を決定する際には、決定される電流波形の基本形態を予め設定する必要はないが、溶接機の制御装置(タイマー)の機能制約等を考慮して、今回は、電流パターンが任意の5段階に設定可能な5段通電の最適解を探索した。また、今回は、市販の有限要素法解析ソフトに、ナゲット径およびチリの発生有無を正確に予測可能にする機能を組み込んだソフトを「ナゲット径およびチリの発生有無を正確に予測可能な抵抗スポット溶接シミュレーションソフト」として使用し、市販の最適化ソフトを「最適化ソフト」として使用した。解析条件を表1に示す。なお、本発明は、電流パターンを任意の3段階に設定可能な3段通電や、任意の7段階に設定可能な7段通電等、他の形態の最適解も探索することができる。   When determining the current waveform according to the present invention, it is not necessary to set the basic form of the determined current waveform in advance, but in consideration of the functional restrictions of the control device (timer) of the welding machine, We searched for an optimal solution for five-stage energization in which the pattern can be set to any five stages. In addition, this time, a software that incorporates a function that makes it possible to accurately predict the occurrence of nugget diameter and dust is added to the commercially available finite element method analysis software. It was used as “welding simulation software”, and commercially available optimization software was used as “optimization software”. The analysis conditions are shown in Table 1. The present invention can also search for other forms of optimal solutions such as three-stage energization in which the current pattern can be set at any three stages and seven-stage energization that can be set at any seven stages.

まず、適正電流範囲の上限になる電流パターンを最適化した。最適化計算の試行回数は50回とし、(1)加圧力P、溶接電流I、および、通電時間τのデータを入力、(2)ナゲット径およびチリの発生有無を正確に予測可能な抵抗スポット溶接シミュレーションソフトによる有限要素法解析、(3)ナゲット径DN(t)および非溶融部に作用する力F(t)を出力、(4)最適化ソフトによる、S最大およびDN(τ)最大を目的関数とし、Fmin>(1−k)・Pを制約条件とし、電流パターンを設計変数とする最適化計算、を繰り返した。この最適化計算では、k=0.9とした。得られた5段通電パターン(以下において、「最適5段通電」ということがある。)を図5に示す。 First, the current pattern that becomes the upper limit of the appropriate current range was optimized. The number of trials for optimization calculation is 50. (1) Input data of pressure P, welding current I, and energization time τ. (2) Resistance spot that can accurately predict the occurrence of nugget diameter and dust. Finite element method analysis by welding simulation software, (3) Output nugget diameter DN (t) and force F (t) acting on non-melted part, (4) S maximum and DN (τ) maximum by optimization software An optimization calculation using an objective function, F min > (1−k) · P as a constraint, and a current pattern as a design variable was repeated. In this optimization calculation, k = 0.9. FIG. 5 shows the obtained 5-stage energization pattern (hereinafter sometimes referred to as “optimal 5-stage energization”).

図5に示したように、最適5段通電では、電流値が各段階で増/減を繰り返しつつ、全体的には漸増する形態になった。   As shown in FIG. 5, in the optimal five-stage energization, the current value gradually increased / decreased at each stage and gradually increased gradually.

最適5段通電で抵抗スポット溶接を行う有限要素法解析により得られた、ナゲット径と通電時間との関係を図6に、非溶融部に作用する力と通電時間との関係を図7に、それぞれ示す。なお、図6および図7には、最適5段通電と同等のナゲット径が得られる単通電条件(I=7.5kA)で抵抗スポット溶接を行う有限要素法解析を行うことにより得られた結果もあわせて示した。   FIG. 6 shows the relationship between the nugget diameter and the energization time, and FIG. 7 shows the relationship between the force acting on the non-melted portion and the energization time. Each is shown. 6 and 7 show the results obtained by performing a finite element method analysis in which resistance spot welding is performed under a single energization condition (I = 7.5 kA) in which a nugget diameter equivalent to the optimum 5-stage energization is obtained. Also shown.

図6に示したように、ナゲット径の成長では、最適5段通電と単通電条件との間に大差はなかった。これに対し、図7に示したように、非溶融部に作用する力Fの履歴では、最適5段通電と単通電条件との間に大きな差が見られた。単通電条件ではFがFcrit以下になる時間帯があるため、チリが発生したが、最適5段通電ではFがFcrit(=0.1P)以下になる時間帯がなかったため、チリの発生を防止できた。 As shown in FIG. 6, in the growth of the nugget diameter, there was no significant difference between the optimum five-stage energization and the single energization condition. On the other hand, as shown in FIG. 7, in the history of the force F acting on the non-melted portion, a large difference was observed between the optimum five-stage energization and the single energization condition. Since there is a time zone in which F is less than F crit under the single energization condition, dust occurs, but there is no time zone in which F is less than F crit (= 0.1 P) in the optimal 5-stage energization, so generation of dust We were able to prevent.

次に、最適5段通電の電流波形を維持したまま当該電流波形を上下させることにより平均電流値Im(=(I+I+I+I+I)/5)を0.5kA間隔で変化させた有限要素法解析を行うことにより、最適化計算によって得られた電流波形(実施例)の適正電流範囲を調べた。また、0.5kA間隔で電流値を変化させた単通電条件の場合の有限要素法解析を行うことにより、単通電条件の場合(比較例)の適正電流範囲も調査した。実施例の結果を図8に、比較例の結果を図9に、それぞれ示す。図8および図9において、右肩上がりの線で結ばれている■がナゲット径Dの結果であり、右肩下がりの線で結ばれている○がFの結果である。なお、図8および図9に示したDminは4.73mmとした。 Next, the average current value Im (= (I 1 + I 2 + I 3 + I 4 + I 5 ) / 5) is changed at 0.5 kA intervals by moving the current waveform up and down while maintaining the current waveform of the optimum five-stage energization. By performing the finite element method analysis, the appropriate current range of the current waveform (example) obtained by the optimization calculation was examined. In addition, by conducting a finite element method analysis in the case of a single energization condition in which the current value was changed at intervals of 0.5 kA, the appropriate current range in the case of the single energization condition (comparative example) was also investigated. The results of the example are shown in FIG. 8, and the results of the comparative example are shown in FIG. In FIG. 8 and FIG. 9, the ■ connected by the line that rises to the right is the result of the nugget diameter D, and the circle that is connected by the line that descends to the right is the result of F. The Dmin shown in FIGS. 8 and 9 was 4.73 mm.

図8に示したように、実施例の適正電流範囲は約1.9kAであった。これに対し、図9に示したように、比較例の適正電流範囲は約1.3kAであった。以上の結果から、最適5段通電は単通電条件より約0.6kAも適正電流範囲を拡大できることが確認できた。また、この結果は、高強度鋼板を被溶接材とした解析により得られた結果であるため、本発明は、適正電流範囲が狭いとされる高強度鋼板を含む板組についても、適正電流範囲を拡大できることが確認できた。   As shown in FIG. 8, the appropriate current range of the example was about 1.9 kA. On the other hand, as shown in FIG. 9, the appropriate current range of the comparative example was about 1.3 kA. From the above results, it was confirmed that the optimum current range can be expanded by about 0.6 kA in the optimum five-stage energization from the single energization condition. In addition, since this result is a result obtained by analysis using a high-strength steel plate as a material to be welded, the present invention also applies to an appropriate current range for a plate assembly including a high-strength steel plate whose proper current range is considered to be narrow. It was confirmed that can be expanded.

Claims (3)

2枚以上の複数の被溶接材で構成された積層体を一対の電極で挟持し、前記一対の電極で前記積層体を押圧しつつ通電することにより前記2枚以上の複数の被溶接材の界面に溶融部を形成させる過程を経て、前記2枚以上の複数の被溶接材を接合する抵抗スポット溶接における電流波形を決定する方法であって、
前記電極から前記積層体へと付与される加圧力をP、前記一対の電極間に電流を通す通電時間をτ、0〜τのいずれかの値をとる時刻tにおけるナゲット径をDN(t)、0〜1のいずれかの値をとる係数をk、前記積層体に含まれている互いに接触する任意の2つの前記被溶接材が前記抵抗スポット溶接時に溶融せずに互いに接触する界面である非溶融部に作用する、前記時刻tにおける力をF(t)、とするとき、
前記DN(t)は、ナゲット径およびチリの発生有無を予測可能なシュミレーションソフトによる有限要素法解析により、時刻tにおける電流の波形IS(t)から得られ、
前記DN(t)の、時刻t=0〜τにおける積分値であるSが最大であること、および、時刻τにおけるナゲット径DN(τ)が最大であることを目的関数とし、前記F(t)の、時刻t=0〜τにおけるナゲット形成開始以降の最小値であるFminがFmin>(1−k)・Pなる関係を制約条件とし、且つ、前記IS(t)を設計変数とする最適化問題を最適化ソフトを用いて解く工程を有する、抵抗スポット溶接における電流波形決定方法。
A laminate composed of two or more welded materials is sandwiched between a pair of electrodes, and energized while pressing the laminate with the pair of electrodes. A method for determining a current waveform in resistance spot welding for joining a plurality of welded materials of two or more through a process of forming a melted portion at an interface,
The pressure applied from the electrodes to the laminate is P, the energization time for passing a current between the pair of electrodes is τ, and the nugget diameter at time t taking any value from 0 to τ is DN (t) , K is a coefficient that takes a value of 0 to 1, and any two of the welded materials that are in contact with each other and are included in the laminate are interfaces that do not melt during the resistance spot welding and contact each other When the force at the time t acting on the non-melting part is F (t),
The DN (t) is obtained from the current waveform IS (t) at time t by finite element analysis using simulation software capable of predicting the occurrence of nugget diameter and dust.
The objective function is that S, which is an integrated value of DN (t) at time t = 0 to τ , is maximum, and that the nugget diameter DN (τ) at time τ is maximum, and F (t of), the optimal time t = the minimum value after the nugget formation starting at 0~Tau Fmin is the Fmin> (1-k) · P the relationship constraints, and, to design variables the iS (t) Current waveform determination method in resistance spot welding, which includes a step of solving the optimization problem using optimization software .
前記係数kが0.85〜0.95である、請求項1に記載の抵抗スポット溶接における電流波形決定方法。 The current waveform determination method in resistance spot welding according to claim 1, wherein the coefficient k is 0.85 to 0.95. 請求項1又は2に記載の抵抗スポット溶接における電流波形決定方法により決定された電流波形IS(t)で抵抗スポット溶接を行うことを特徴とする、抵抗スポット溶接方法。 A resistance spot welding method, wherein resistance spot welding is performed with a current waveform IS (t) determined by the current waveform determination method in resistance spot welding according to claim 1 or 2.
JP2014004520A 2014-01-14 2014-01-14 Current waveform determination method and resistance spot welding method in resistance spot welding Active JP6287232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014004520A JP6287232B2 (en) 2014-01-14 2014-01-14 Current waveform determination method and resistance spot welding method in resistance spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014004520A JP6287232B2 (en) 2014-01-14 2014-01-14 Current waveform determination method and resistance spot welding method in resistance spot welding

Publications (2)

Publication Number Publication Date
JP2015131327A JP2015131327A (en) 2015-07-23
JP6287232B2 true JP6287232B2 (en) 2018-03-07

Family

ID=53899019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014004520A Active JP6287232B2 (en) 2014-01-14 2014-01-14 Current waveform determination method and resistance spot welding method in resistance spot welding

Country Status (1)

Country Link
JP (1) JP6287232B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108857010B (en) * 2017-05-10 2021-04-20 华域汽车车身零件(武汉)有限公司 Spot welding quality control method for galvanized steel sheet for automobile
JP7468418B2 (en) * 2021-03-18 2024-04-16 トヨタ自動車株式会社 Welding determination method and spot welding device
JP7416339B1 (en) 2022-06-16 2024-01-17 Jfeスチール株式会社 Resistance spot welding spatter prediction method, resistance spot welding method, and manufacturing method of welded parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043731A (en) * 2004-08-04 2006-02-16 Daihatsu Motor Co Ltd Method for controlling power-supply of spot welding
JP2007210006A (en) * 2006-02-09 2007-08-23 Akio Hirane Inverter type dc resistance spot welding machine
JP5217108B2 (en) * 2006-04-14 2013-06-19 新日鐵住金株式会社 Resistance spot welding spatter generation prediction method, welding method, and welding member
JP5332857B2 (en) * 2009-04-20 2013-11-06 新日鐵住金株式会社 Resistance welding method for high strength steel sheet

Also Published As

Publication number Publication date
JP2015131327A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
CN107000109B (en) Resistance spot welding method
JP5825454B1 (en) Resistance spot welding method
WO2015049998A1 (en) Resistance spot welding method
JP2008093726A (en) Lap resistance spot welding method
JP6287232B2 (en) Current waveform determination method and resistance spot welding method in resistance spot welding
JP2006043731A (en) Method for controlling power-supply of spot welding
KR20190014073A (en) Resistance spot welding method
CN111770807B (en) Resistance spot welding method and method for manufacturing welded member
Mohanty et al. Performance evaluation of alternating current square waveform submerged arc welding as a candidate for fabrication of thick welds in 2.25 Cr-1Mo heat-resistant steel
JP6160190B2 (en) Resistance spot welding method for dissimilar metal materials
JP4753411B2 (en) Energization control method for spot resistance welding
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
CN114466722B (en) Resistance spot welding method and method for manufacturing welded member
JP2012187616A (en) Resistance welding apparatus and resistance welding method
JP5217108B2 (en) Resistance spot welding spatter generation prediction method, welding method, and welding member
JP6904479B2 (en) Resistance spot welding method and welding member manufacturing method
JP6913062B2 (en) Resistance spot welding method and welding member manufacturing method
CN112262012B (en) Resistance spot welding method and method for manufacturing welded member
JP6856181B1 (en) Resistance spot welding method and welding member manufacturing method
CN112334261B (en) Resistance spot welding method and method for manufacturing welded member
JP7416339B1 (en) Resistance spot welding spatter prediction method, resistance spot welding method, and manufacturing method of welded parts
CN112368101B (en) Resistance spot welding method and method for manufacturing welded member
JP7112819B2 (en) Spot welding method and spot welding device
KR20180011320A (en) Resistance spot welding method
Govindan et al. Modeling of resistance spot welding process–a review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350