JP6904479B2 - Resistance spot welding method and welding member manufacturing method - Google Patents
Resistance spot welding method and welding member manufacturing method Download PDFInfo
- Publication number
- JP6904479B2 JP6904479B2 JP2020505936A JP2020505936A JP6904479B2 JP 6904479 B2 JP6904479 B2 JP 6904479B2 JP 2020505936 A JP2020505936 A JP 2020505936A JP 2020505936 A JP2020505936 A JP 2020505936A JP 6904479 B2 JP6904479 B2 JP 6904479B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- energization
- pressing force
- welded
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims description 218
- 238000000034 method Methods 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000003825 pressing Methods 0.000 claims description 94
- 229910052751 metal Inorganic materials 0.000 claims description 58
- 239000002184 metal Substances 0.000 claims description 58
- 239000000463 material Substances 0.000 claims description 54
- 230000001186 cumulative effect Effects 0.000 claims description 19
- 229910000831 Steel Inorganic materials 0.000 description 19
- 239000010959 steel Substances 0.000 description 19
- 230000003044 adaptive effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/10—Spot welding; Stitch welding
- B23K11/11—Spot welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Resistance Welding (AREA)
Description
本発明は抵抗スポット溶接方法に関し、特に外乱の影響が大きい場合であっても、散りを発生させることなく安定して所望のナゲット径を確保することを可能ならしめようとするものである。 The present invention relates to a resistance spot welding method, and aims to make it possible to stably secure a desired nugget diameter without causing scattering even when the influence of disturbance is particularly large.
一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。
この溶接法は、重ね合わせた2枚以上の鋼板を挟んでその上下から一対の電極で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法であり、高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板が溶融し、凝固した部分である。このナゲットにより、鋼板同士が点状に接合される。Generally, a resistance spot welding method, which is a kind of lap resistance welding method, is used for joining the stacked steel plates.
This welding method is a method in which two or more stacked steel plates are sandwiched and pressed by a pair of electrodes from above and below, and a high current welding current is applied between the upper and lower electrodes for a short time to join them. A point-shaped welded portion can be obtained by utilizing the resistance heat generated by passing the welding current of. This point-shaped welded portion is called a nugget, and is a portion where both steel plates are melted and solidified at a contact point between the steel plates when an electric current is passed through the stacked steel plates. With this nugget, the steel plates are joined in dots.
良好な溶接部品質を得るためには、ナゲット径が適正な範囲で形成されることが重要である。ナゲット径は、溶接電流、通電時間、電極形状および加圧力等の溶接条件によって定まる。従って、適切なナゲット径を形成するためには、被溶接材の材質、板厚および重ね枚数等の被溶接材条件に応じて、上記の溶接条件を適正に設定する必要がある。 In order to obtain good weld quality, it is important that the nugget diameter is formed in an appropriate range. The nugget diameter is determined by welding conditions such as welding current, energization time, electrode shape and pressing force. Therefore, in order to form an appropriate nugget diameter, it is necessary to appropriately set the above welding conditions according to the conditions of the material to be welded, such as the material of the material to be welded, the plate thickness, and the number of stacked sheets.
例えば、自動車の製造に際しては、一台当たり数千点ものスポット溶接が施されており、また次々と流れてくる被処理材(ワーク)を溶接する必要がある。この時、各溶接箇所における被溶接材の材質、板厚および重ね枚数等の被溶接材の状態が同一であれば、溶接電流、通電時間および加圧力等の溶接条件も同一の条件で同一のナゲット径を得ることができる。しかしながら、連続した溶接では、電極の被溶接材接触面が次第に摩耗して接触面積が初期状態よりも次第に広くなる。このように接触面積が広くなった状態で、初期状態と同じ値の溶接電流を流すと、被溶接材中の電流密度が低下し、溶接部の温度上昇が低くなるため、ナゲット径は小さくなる。このため、数百〜数千点の溶接毎に、電極の研磨または交換を行い、電極の先端径が拡大しすぎないようにしている。 For example, in the manufacture of automobiles, thousands of spot welds are performed on each vehicle, and it is necessary to weld the materials (workpieces) to be treated that flow one after another. At this time, if the material to be welded, the plate thickness, the number of stacked sheets, and other conditions of the material to be welded at each weld are the same, the welding conditions such as welding current, energization time, and pressing force are also the same under the same conditions. You can get the nugget diameter. However, in continuous welding, the contact surface of the electrode to be welded is gradually worn and the contact area is gradually wider than in the initial state. If a welding current of the same value as the initial state is applied in a state where the contact area is widened in this way, the current density in the material to be welded decreases and the temperature rise of the welded portion decreases, so that the nugget diameter becomes smaller. .. Therefore, the electrode is polished or replaced every several hundred to several thousand points of welding so that the tip diameter of the electrode does not expand too much.
その他、予め定めた回数の溶接を行うと溶接電流値を増加させて、電極の摩耗に伴う電流密度の低下を補償する機能(ステッパー機能)を備えた抵抗溶接装置が、従来から使用されている。このステッパー機能を使用するには、上述した溶接電流変化パターンを予め適正に設定しておく必要がある。しかしながら、このために、数多くの溶接条件および被溶接材条件に対応した溶接電流変化パターンを、試験等によって導き出すには、多くの時間とコストが必要になる。また、実際の施工においては、電極摩耗の進行状態にはバラツキがあるため、予め定めた溶接電流変化パターンが常に適正であるとはいえない。 In addition, a resistance welding device having a function (stepper function) of increasing the welding current value when welding is performed a predetermined number of times to compensate for a decrease in current density due to electrode wear has been conventionally used. .. In order to use this stepper function, it is necessary to properly set the above-mentioned welding current change pattern in advance. However, for this reason, it takes a lot of time and cost to derive a welding current change pattern corresponding to a large number of welding conditions and welding material conditions by a test or the like. Further, in actual construction, since the progress state of electrode wear varies, it cannot be said that the predetermined welding current change pattern is always appropriate.
さらに、溶接に際して外乱が存在する場合、例えば、溶接する点の近くにすでに溶接した点(既溶接点)がある場合や、被溶接材の表面凹凸が大きく溶接する点の近くに被溶接材の接触点が存在する場合には、溶接時に既溶接点や接触点に電流が分流する。このような状態では、所定の条件で溶接しても、電極直下の溶接したい位置における電流密度は低下するため、やはり必要な径のナゲットは得られなくなる。この発熱量不足を補償し、必要な径のナゲットを得るには、予め高い溶接電流を設定することが必要となる。 Further, when there is a disturbance during welding, for example, when there is an already welded point (already welded point) near the welding point, or when the surface unevenness of the material to be welded is large, the material to be welded is near the point where it is welded. If there is a contact point, a current is diverted to the existing weld point or contact point during welding. In such a state, even if welding is performed under predetermined conditions, the current density at the position to be welded immediately below the electrode decreases, so that a nugget having a required diameter cannot be obtained. In order to compensate for this insufficient calorific value and obtain a nugget with a required diameter, it is necessary to set a high welding current in advance.
また、表面凹凸や部材の形状などにより溶接する点の周囲が強く拘束されている場合や、溶接点周囲の鋼板間に異物が挟まっていたりする場合には、鋼板間の板隙が大きくなることで鋼板同士の接触径が狭まり、散りが発生しやすくなることもある。 In addition, when the circumference of the welding point is strongly restrained by the surface unevenness or the shape of the member, or when foreign matter is caught between the steel plates around the welding point, the plate gap between the steel plates becomes large. In some cases, the contact diameter between the steel sheets is narrowed, and scattering is likely to occur.
上記の問題を解決するものとして、以下に述べるような技術が提案されている。
例えば、特許文献1には、高張力鋼板への通電電流を漸変的に上昇させることによりナゲット生成を行なう第1ステップと、上記第1ステップの後に電流下降させる第2ステップと、上記第2ステップ後に電流上昇させて本溶接すると共に、漸変的に通電電流を下降させる第3ステップとを備えた工程によりスポット溶接を行なうことで、通電初期のなじみ不良に起因する散りを抑制しようとする高張力鋼板のスポット溶接方法が記載されている。The following techniques have been proposed to solve the above problems.
For example,
特許文献2には、通電時間の初期にスパッタの発生を抑え得る程度の電流値に所定時間維持して被溶接物の表面を軟化させ、その後に電流値を所定時間高く維持してスパッタの発生を抑えつつナゲットを成長させるスポット溶接の通電制御方法が記載されている。 In Patent Document 2, the surface of the workpiece is softened by maintaining a current value that can suppress the occurrence of spatter at the initial stage of the energization time for a predetermined time, and then the current value is maintained high for a predetermined time to generate spatter. The energization control method of spot welding that grows the nugget while suppressing the pressure is described.
特許文献3には、推算した溶接部の温度分布と目標ナゲットを比較して溶接機の出力を制御することによって、設定したナゲット径を得ようとする抵抗溶接機の制御装置が記載されている。 Patent Document 3 describes a control device for a resistance welder that attempts to obtain a set nugget diameter by controlling the output of the welder by comparing the estimated temperature distribution of the welded portion with the target nugget. ..
特許文献4には、溶接電流とチップ間電圧を検出し、熱伝導計算により溶接部のシミュレーションを行い、溶接中における溶接部のナゲットの形成状態を推定することによって、良好な溶接を行おうとする抵抗溶接機の溶接条件制御方法が記載されている。 Patent Document 4 attempts to perform good welding by detecting the welding current and the inter-chip voltage, simulating the welded portion by heat conduction calculation, and estimating the nugget formation state of the welded portion during welding. The welding condition control method of the resistance welding machine is described.
特許文献5には、被溶接物の板厚と通電時間とから、その被溶接物を良好に溶接することができる単位体積当たりの累積発熱量を計算し、計算された単位体積・単位時間当たりの発熱量を発生させる溶接電流または電圧に調整する処理を行う溶接システムを用いることにより、被溶接物の種類や電極の摩耗状態によらず良好な溶接を行おうとする抵抗溶接システムが記載されている。 In Patent Document 5, the cumulative calorific value per unit volume at which the object to be welded can be welded satisfactorily is calculated from the plate thickness of the object to be welded and the energization time, and the calculated unit volume and per unit time. A resistance welding system that attempts to perform good welding regardless of the type of object to be welded or the wear state of the electrodes is described by using a welding system that adjusts to the welding current or voltage that generates the calorific value of the above. There is.
しかしながら、特許文献1および2に記載の技術では、外乱の有無および大小によって適正となる溶接条件は変化すると考えられるため、想定以上の外乱、例えば、被溶接材となる金属板間の隙間や分流が生じた際には、散りを発生させることなく所望のナゲット径を確保することができないという問題があった。 However, in the techniques described in
また、特許文献3および4に記載の技術では、熱伝導モデル(熱伝導シミュレーション)等に基づいてナゲットの温度を推定するため、複雑な計算処理が必要であり、溶接制御装置の構成が複雑になるだけでなく、溶接制御装置自体が高価になるという問題があった。 Further, in the techniques described in Patent Documents 3 and 4, since the temperature of the nugget is estimated based on a heat conduction model (heat conduction simulation) or the like, complicated calculation processing is required, and the configuration of the welding control device becomes complicated. Not only that, there is a problem that the welding control device itself becomes expensive.
さらに、特許文献5に記載の技術では、累積発熱量を目標値に制御することによって、電極が一定量摩耗していたとしても良好な溶接を行うことができるものと考えられる。
しかしながら、設定した被溶接材条件と実際の被溶接材条件が大きく異なる場合、例えば、被溶接材となる金属板間に大きな隙間が存在している場合などには、最終的な累積発熱量を目標値に合わることができても、発熱の形態、つまり溶接部の温度分布の時間変化が目標とする良好な溶接部が得られる熱量パターンから外れ、必要とするナゲット径が得られなかったり、散りが発生したりする。Further, in the technique described in Patent Document 5, it is considered that by controlling the cumulative calorific value to a target value, good welding can be performed even if the electrodes are worn by a certain amount.
However, when the set conditions for the material to be welded and the actual conditions for the material to be welded are significantly different, for example, when there is a large gap between the metal plates to be the material to be welded, the final cumulative calorific value is calculated. Even if the target value can be met, the form of heat generation, that is, the time change of the temperature distribution of the weld, deviates from the calorific value pattern that can obtain the target good weld, and the required nugget diameter cannot be obtained. , Scattering occurs.
本発明は、上記の現状に鑑み開発されたものであって、外乱の影響、特に被溶接材を構成する金属板間の隙間(以下、「板隙」ともいう)が大きい場合であっても、散りの発生なしに、安定して所望のナゲット径を得ることができる抵抗スポット溶接方法を提供することを目的とする。
また、本発明は、上記の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法を提供することを目的とする。The present invention has been developed in view of the above situation, and even when the influence of disturbance, particularly the gap between the metal plates constituting the material to be welded (hereinafter, also referred to as "plate gap") is large. It is an object of the present invention to provide a resistance spot welding method capable of stably obtaining a desired nugget diameter without the occurrence of scattering.
Another object of the present invention is to provide a method for manufacturing a welded member, which joins a plurality of overlapping metal plates by the above-mentioned resistance spot welding method.
さて、発明者らは、上記の目的を達成すべく、鋭意検討を重ね、以下の知見を得た。
(1)板隙が大きい場合、通電開始時点では被溶接材を構成する金属板(以下、単に「金属板」ともいう)間の接触面積が小さいため、散りが発生しやすくなる。また、板隙が大きい場合に、金属板を電極で過度に加圧すると、金属板が大きく反る。これにより、金属板と電極の接触面積が過度に増大して電極への抜熱が促され、結果的に、ナゲット径やナゲット厚さが小さくなる場合もある。
(2)このような板隙の影響を緩和するには、板隙の大きさに応じて、通電時の加圧力を設定して、通電時、特には通電開始時点で、金属板間に適正な接触面積を確保することが有効である。By the way, the inventors have made extensive studies in order to achieve the above object, and obtained the following findings.
(1) When the plate gap is large, the contact area between the metal plates (hereinafter, also simply referred to as “metal plates”) constituting the material to be welded is small at the start of energization, so that scattering is likely to occur. Further, when the plate gap is large, if the metal plate is excessively pressed by the electrodes, the metal plate warps significantly. As a result, the contact area between the metal plate and the electrode is excessively increased to promote heat removal to the electrode, and as a result, the nugget diameter and the nugget thickness may be reduced.
(2) In order to mitigate the influence of such a plate gap, the pressing force at the time of energization is set according to the size of the plate gap, and it is appropriate between the metal plates at the time of energization, especially at the start of energization. It is effective to secure a good contact area.
そこで、発明者らは、上記の知見を基に、板隙の大きさに応じて、通電時の加圧力を設定する方法について、さらに検討を重ね、以下の知見を得た。
(3)板隙の影響は、加圧を開始してから所定の設定加圧力に到達するまでの加圧力の指標となるパラメータに反映される、
例えば、金属板間に隙間がない場合と、金属板間に隙間がある場合に、それぞれ同じ条件で金属板を加圧していくと、加圧を開始してから所定の設定加圧力に到達するまでの時間やサーボモータの挙動が、それぞれ異なるものになる、
(4)よって、まず、通電開始前に、上記被溶接材を所定の設定加圧力(以下、初期設定加圧力ともいう)に到達するまで加圧し、
ついで、通電開始前の加圧開始時点から初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用い、図1に示すように、板隙の影響を考慮して、(初期設定加圧力:F0とは別途、)通電時の加圧力:FAを設定し通電を行う、特には、通電時の加圧力を、下記式(1)を満足する範囲内に設定し通電を行う、
ことにより、
通電開始時点で、金属板間に適切な接触面積を確保することができ、その結果、板隙の影響によらず、散りの発生なしに、安定して所望のナゲット径を得ること可能となる。
F0×(1+0.1×(TA-T0)/T0) ≦ FA ≦F0×(1+3.0×(TA-T0)/T0) ・・・(1)
ここで、
FA:本溶接における通電時の加圧力
F0:本溶接における初期設定加圧力
TA:本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
T0:被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
である。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。Therefore, based on the above findings, the inventors further studied a method of setting the pressing force at the time of energization according to the size of the plate gap, and obtained the following findings.
(3) The influence of the plate gap is reflected in the parameter that is an index of the pressing force from the start of the pressurization to the arrival of the predetermined set pressing force.
For example, when there is no gap between the metal plates and when there is a gap between the metal plates, if the metal plates are pressurized under the same conditions, the pressurization starts and then the predetermined set pressing force is reached. The time to time and the behavior of the servo motor will be different.
(4) Therefore, first, before the start of energization, the material to be welded is pressurized until it reaches a predetermined set pressing force (hereinafter, also referred to as initial set pressing force).
Then, using a parameter that is an index of the pressing force obtained from the start of pressurization before the start of energization until the initial setting pressing force is reached, as shown in FIG. 1, the influence of the plate gap is taken into consideration (initially). Set pressing force: Separately from F 0 ) Energizing pressure: Set F A to energize, especially set the energizing pressure within the range that satisfies the following formula (1) and energize. I do,
By
At the start of energization, an appropriate contact area can be secured between the metal plates, and as a result, a desired nugget diameter can be stably obtained regardless of the influence of the plate gap and without the occurrence of scattering. ..
F 0 × (1 + 0.1 × (T A -T 0 ) / T 0 ) ≤ F A ≤ F 0 × (1 + 3.0 × (T A -T 0 ) / T 0 ) ・ ・ ・ (1)
here,
F A : Pressurizing pressure when energized in main welding
F 0 : Initial setting pressing force in main welding
T A : Time from the start of pressurization before the start of energization in main welding to the arrival of the initial set pressing force
T 0 : The time from the start of pressurization before the start of energization to the arrival of the initial set pressing force when there is no gap between the metal plates constituting the material to be welded.
The present invention has been completed with further studies based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接の通電開始前に、上記被溶接材を初期設定加圧力に到達するまで加圧し、
ついで、上記本溶接の通電開始前の加圧開始時点から上記初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、上記本溶接の通電時の加圧力を設定する、
抵抗スポット溶接方法。That is, the gist structure of the present invention is as follows.
1. 1. It is a resistance spot welding method in which a material to be welded, which is made by stacking a plurality of metal plates, is sandwiched between a pair of electrodes and energized while being pressurized.
Before the start of energization of the main welding, the material to be welded is pressurized until the initial set pressing force is reached.
Then, the pressing force at the time of energization of the main welding is set by using the parameter which is an index of the pressing force obtained from the start of pressurization before the start of energization of the main welding until the initial setting pressing force is reached. ,
Resistance spot welding method.
2.前記本溶接の通電時の加圧力を、次式(1)を満足する範囲内に設定する、前記1に記載の抵抗スポット溶接方法。
F0×(1+0.1×(TA-T0)/T0) ≦ FA ≦F0×(1+3.0×(TA-T0)/T0) ・・・(1)
ここで、
FA:本溶接における通電時の加圧力
F0:本溶接における初期設定加圧力
TA:本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
T0:被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
である。2. The resistance spot welding method according to 1 above, wherein the pressing force at the time of energization of the main welding is set within a range satisfying the following equation (1).
F 0 × (1 + 0.1 × (T A -T 0 ) / T 0 ) ≤ F A ≤ F 0 × (1 + 3.0 × (T A -T 0 ) / T 0 ) ・ ・ ・ (1)
here,
F A : Pressurizing pressure when energized in main welding
F 0 : Initial setting pressing force in main welding
T A : Time from the start of pressurization before the start of energization in main welding to the arrival of the initial set pressing force
T 0 : The time from the start of pressurization before the start of energization to the arrival of the initial set pressing force when there is no gap between the metal plates constituting the material to be welded.
3.前記本溶接に先立ち、テスト溶接を行うものとし、
該テスト溶接では、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
また、前記本溶接の通電では、前記テスト溶接における単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を目標値に設定し、該目標値に従って通電量を制御する、前記1または2に記載の抵抗スポット溶接方法。3. 3. Prior to the main welding, test welding shall be performed.
In the test welding, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume calculated from the electrical characteristics between the electrodes when energized by constant current control to form an appropriate nugget are obtained. Remember,
Further, in the energization of the main welding, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume in the test welding are set as target values, and the energization amount is controlled according to the target value. The resistance spot welding method according to 1 or 2.
4.前記1〜3のいずれかに記載の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法。4. A method for manufacturing a welded member, which joins a plurality of stacked metal plates by the resistance spot welding method according to any one of 1 to 3 above.
本発明によれば、外乱の影響、特に板隙が大きい場合であっても、散りの発生なしに、良好なナゲットを得ることができる。
また、本発明によれば、自動車の製造などの実作業において次々と流れてくる被処理材を連続的に溶接する(溶接位置や被処理材ごとに外乱の状態が変動する)場合であっても、外乱の状態の変動に有効に対応して所望のナゲット径を安定的に確保することが可能となり、その結果、作業効率や歩留まりの向上という点でも極めて有利となる。According to the present invention, a good nugget can be obtained without the occurrence of scattering even when the influence of disturbance, particularly when the plate gap is large.
Further, according to the present invention, it is a case where the materials to be treated that flow one after another in actual work such as manufacturing of an automobile are continuously welded (the state of disturbance varies depending on the welding position and the material to be treated). However, it is possible to stably secure a desired nugget diameter in response to fluctuations in the state of disturbance, and as a result, it is extremely advantageous in terms of improving work efficiency and yield.
本発明を、以下の実施形態に基づき説明する。
本発明の一実施形態は、複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接の通電開始前に、上記被溶接材を初期設定加圧力に到達するまで加圧し、
ついで、上記本溶接の通電開始前の加圧開始時点から上記初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、上記本溶接の通電時の加圧力を設定する、というものである。
なお、本溶接とは、対象とする被溶接材を実際に溶接する工程を意味し、後述するテスト溶接と区別するために使用する。The present invention will be described based on the following embodiments.
One embodiment of the present invention is a resistance spot welding method in which a material to be welded in which a plurality of metal plates are superposed is sandwiched between a pair of electrodes and energized while being pressurized.
Before the start of energization of the main welding, the material to be welded is pressurized until the initial set pressing force is reached.
Then, the pressing force at the time of energization of the main welding is set by using the parameter which is an index of the pressing force obtained from the start of pressurization before the start of energization of the main welding until the initial setting pressing force is reached. ,.
The main welding means a process of actually welding the target material to be welded, and is used to distinguish it from the test welding described later.
なお、本発明の一実施形態に係る抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能であればよく、形式(定置式、ロボットガン等)、電極形状等はとくに限定されない。 The welding apparatus that can be used in the resistance spot welding method according to the embodiment of the present invention may be provided as long as it is provided with a pair of upper and lower electrodes and can arbitrarily control the pressing force and the welding current during welding. (Fixed type, robot gun, etc.), electrode shape, etc. are not particularly limited.
以下、本発明の一実施形態に係る抵抗スポット溶接方法の本溶接について、説明する。 Hereinafter, the main welding of the resistance spot welding method according to the embodiment of the present invention will be described.
(1)本溶接
上述したように、板隙の影響を緩和するには、板隙の大きさに応じて、通電時の加圧力を設定して、通電時、特には通電開始時点で、金属板間に適正な接触面積を確保することが有効である。
また、板隙の影響は、加圧を開始してから所定の設定加圧力に到達するまでの加圧力の指標となるパラメータに反映される。
よって、本溶接の通電開始前に、被溶接材を初期設定加圧力に到達するまで加圧し、ついで、本溶接の通電開始前の加圧開始時点から初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、本溶接の通電時の加圧力を設定することが重要となる。(1) Main welding As described above, in order to mitigate the influence of the plate gap, the pressing force at the time of energization is set according to the size of the plate gap, and the metal is energized, especially at the start of energization. It is effective to secure an appropriate contact area between the boards.
Further, the influence of the plate gap is reflected in the parameter which is an index of the pressing force from the start of the pressurization to the arrival of the predetermined set pressing force.
Therefore, before the start of energization of the main welding, the material to be welded is pressurized until it reaches the initial set pressing force, and then it is obtained from the time of the start of pressurization before the start of energization of the main welding until the initial set pressing force is reached. It is important to set the pressing force when the main welding is energized by using the parameter that is the index of the pressing force.
例えば、図2に示すように、金属板間に隙間がない場合と、金属板間に隙間がある場合に、それぞれ同じ条件で金属板を加圧していくと、加圧を開始してから所定の設定加圧力に到達するまでの時間:TAが、それぞれ異なるものとなる。
すなわち、金属板間に隙間がない場合、電極による加圧開始後は、比較的短い時間で初期設定加圧力に到達する。一方、金属板間に板隙がある場合、加圧の初期段階では金属板を変形させて板隙を潰す(金属板間を接触させる)ことになるので、初期設定加圧力に到達達するまでの時間が長くなる。
よって、加圧開始から設定加圧力に達するまでの時間:TAなどの上記通電開始前の加圧開始時点から上記初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用い、図1に示すように、板隙の影響を考慮して、(初期設定加圧力:F0とは別途、)通電時の加圧力:FAを設定し通電を行う、特には、通電時の加圧力を、下記式(1)を満足する範囲内に設定し通電を行うことにより、通電開始時点で、金属板間に適正な接触面積を確保することができ、その結果、板隙の影響によらず、散りの発生なしに、安定して所望のナゲット径を得ること可能となる。
F0×(1+0.1×(TA-T0)/T0) ≦ FA ≦F0×(1+3.0×(TA-T0)/T0) ・・・(1)
ここで、
FA:本溶接における通電時の加圧力
F0:本溶接における初期設定加圧力
TA:本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
T0:被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
である。For example, as shown in FIG. 2, when the metal plates are pressurized under the same conditions when there is no gap between the metal plates and when there is a gap between the metal plates, the pressure is determined after the pressurization is started. Time to reach the set pressing force of: T A will be different for each.
That is, when there is no gap between the metal plates, the initial set pressing force is reached in a relatively short time after the start of pressurization by the electrodes. On the other hand, if there is a plate gap between the metal plates, the metal plate is deformed and the plate gap is crushed (contact between the metal plates) in the initial stage of pressurization, so until the initial set pressing force is reached. The time will be longer.
Therefore, time to reach the set pressure from the start pressure: using a parameter indicative of the obtained pressure until the pressure beginning before the energization start such T A to reach the initial set pressure , As shown in FIG. 1, in consideration of the influence of the plate gap, the pressing force at the time of energization: F A is set (in addition to the initial setting pressing force: F 0 ) to energize, especially at the time of energizing. By setting the pressing force of the above within a range satisfying the following formula (1) and energizing, an appropriate contact area can be secured between the metal plates at the start of energization, and as a result, the plate gap can be secured. Regardless of the influence, it is possible to stably obtain a desired nugget diameter without the occurrence of scattering.
F 0 × (1 + 0.1 × (T A -T 0 ) / T 0 ) ≤ F A ≤ F 0 × (1 + 3.0 × (T A -T 0 ) / T 0 ) ・ ・ ・ (1)
here,
F A : Pressurizing pressure when energized in main welding
F 0 : Initial setting pressing force in main welding
T A : Time from the start of pressurization before the start of energization in main welding to the arrival of the initial set pressing force
T 0 : The time from the start of pressurization before the start of energization to the arrival of the initial set pressing force when there is no gap between the metal plates constituting the material to be welded.
ここで、本溶接における通電時の加圧力:FAがF0×(1+0.1×(TA-T0)/T0)未満になると、通電開始時点で、金属板間に十分な接触面積を確保することが困難となる。一方、FAがF0×(1+3.0×(TA-T0)/T0) になると、金属板と電極の接触面積が過度に増大して電極への抜熱が促され、結果的に、ナゲット径やナゲット厚さが小さくなるおそれがある。
そのため、本溶接の通電開始前の加圧開始時点から初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、板隙の影響を加味して本溶接の通電時の加圧力を設定し通電を行うことが重要であり、特には、本溶接の通電時の加圧力を、上掲式(1)を満足する範囲内に設定し通電を行うことが好ましい。上掲式(1)について、より好ましくは、F0×(1+0.2×(TA-T0)/T0)以上、F0×(1+2.0×(TA-T0)/T0)以下である。Here, when the pressing force at the time of energization in the main welding: F A is less than F 0 × (1 + 0.1 × (T A -T 0 ) / T 0 ), sufficient contact between the metal plates is made at the start of energization. It becomes difficult to secure the area. On the other hand, when F A becomes F 0 × (1 + 3.0 × (T A -T 0 ) / T 0 ), the contact area between the metal plate and the electrode increases excessively, and heat removal to the electrode is promoted, resulting in Therefore, the nugget diameter and the nugget thickness may be reduced.
Therefore, when the main welding is energized, the influence of the plate gap is taken into consideration by using the parameter that is an index of the pressing force obtained from the start of pressurization before the start of energization of the main welding until the initial set pressing force is reached. It is important to set the pressing force and energize, and in particular, it is preferable to set the pressing force at the time of energizing the main welding within a range satisfying the above formula (1) and energize. Regarding the above formula (1), more preferably, F 0 × (1 + 0.2 × (T A -T 0 ) / T 0 ) or more, F 0 × (1 + 2.0 × (T A -T 0 ) / T). 0 ) It is less than or equal to.
また、加圧力の指標となるパラメータとしては、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間、・本溶接における通電開始前の加圧開始時点から通電開始時点までの時間、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータのトルク、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータの回転速度、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのひずみ、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの電極変位量、および
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの電極変位速度、
などが挙げられ、これらのパラメータを用いて、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定し、通電を行うことが好ましい。In addition, as a parameter that is an index of pressing force,
・ Time from the start of pressurization before the start of energization in the main welding to the time to reach the initial set pressing force
・ Torque of the servo motor of the welding gun from the start of pressurization before the start of energization in the main welding until the initial set pressing force is reached.
・ Rotation speed of the servo motor of the welding gun from the start of pressurization before the start of energization in the main welding to the arrival of the initial set pressing force,
・ Strain of the welding gun from the start of pressurization before the start of energization in the main welding until the initial set pressing force is reached,
・ The amount of electrode displacement from the start of pressurization before the start of energization in the main welding to the arrival of the initial set pressing force, and ・ The electrode from the start of pressurization before the start of energization in the main welding to the arrival of the initial set pressing force Displacement speed,
It is preferable that the pressing force at the time of energization in the main welding is set within a range satisfying the above-mentioned formula (1) by using these parameters, and the energization is performed.
例えば、本溶接における通電開始前の加圧開始時点から通電開始時点までの時間は、[本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間]+[本溶接における初期設定加圧力への到達時点から通電開始時点までの時間]で表せる。
よって、本溶接における通電開始前の加圧開始時点から通電開始時点までの時間を、加圧力の指標となるパラメータとする場合には、[本溶接における通電開始前の加圧開始時点から通電開始時点までの時間]から[本溶接における初期設定加圧力への到達時点から通電開始時点までの時間]を減じるなどして、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定することが可能である。
また、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータのトルク(以下、単にトルクともいう)を、加圧力の指標となるパラメータとする場合、電極が被溶接材である金属板に接触すると、トルクが急激に増加しはじめ、その後、鋼板に十分な加圧力が付与された時点で、トルクは安定した値に達して飽和する。
よって、トルクの増加開始から飽和までの時間を、加圧開始時点から初期設定加圧力に到達するまでの時間とする(換言すれば、トルクの増加開始時点を加圧開始時点、トルクの増加が飽和してトルクが一定となった時点を初期設定加圧力への到達時点と判断する)ことにより、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定することが可能である。
さらに、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータの回転速度(以下、単に回転速度ともいう)を、加圧力の指標となるパラメータとする場合、電極が被溶接材である金属板に接触すると、回転速度は不安定になり、その後、徐々に減少していく。そして、初期設定加圧力に達すると電極は動かなくなるため、回転速度は0となる。
よって、回転速度が不安定になり減少を開始してから0に到達するまでの時間を、加圧開始時点から初期設定加圧力に到達するまでの時間とする(換言すれば、回転速度が不安定になった時点を加圧開始時点、回転速度が0になった時点を初期設定加圧力への到達時点と判断する)ことにより、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定することが可能である。
また、トルクの増加開始時点を加圧開始時点、回転速度が0となった時点を初期設定加圧力への到達時点と判断するなど、複数の加圧力の指標となるパラメータを組み合わせることで、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定してもよい。For example, the time from the start of pressurization before the start of energization in the main welding to the start of energization is [the time from the start of pressurization before the start of energization in the main welding to the arrival of the initial set pressing force] + [main welding. It can be expressed by the time from the time when the initial setting pressure is reached to the time when the energization starts.
Therefore, if the time from the start of pressurization before the start of energization in the main welding to the start of energization is used as a parameter to be an index of the pressing force, [Energization starts from the start of pressurization before the start of energization in the main welding. Satisfy the above formula (1) for the pressing force at the time of energization in the main welding by subtracting [the time from the time when the initial setting pressing force in the main welding is reached to the time when the energization starts] from]. It is possible to set within the range to be welded.
Further, when the torque of the servomotor of the welding gun (hereinafter, also simply referred to as torque) from the start of pressurization before the start of energization in the main welding to the arrival of the initial set pressurization is used as a parameter as an index of pressurization. When the electrode comes into contact with the metal plate to be welded, the torque begins to increase rapidly, and then when sufficient pressure is applied to the steel plate, the torque reaches a stable value and saturates.
Therefore, the time from the start of torque increase to saturation is the time from the start of pressurization to the arrival of the initial set pressing force (in other words, the start point of torque increase is the start point of pressurization, and the increase in torque is By (determining that the time when the torque becomes constant after saturation is the time when the initial setting pressure is reached), the pressure at the time of energization in the main welding is set within the range that satisfies the above formula (1). It is possible.
Further, the rotation speed (hereinafter, simply referred to as the rotation speed) of the servomotor of the welding gun from the start of pressurization before the start of energization in the main welding to the arrival of the initial set pressurization is used as a parameter as an index of pressurization. In this case, when the electrode comes into contact with the metal plate to be welded, the rotation speed becomes unstable and then gradually decreases. Then, when the initial setting pressing force is reached, the electrodes do not move, so that the rotation speed becomes zero.
Therefore, the time from the start of pressurization to reaching 0 after the rotation speed becomes unstable and starts to decrease is defined as the time from the start of pressurization to the arrival of the initial set pressing force (in other words, the rotation speed is unsatisfactory). By determining the time when the pressure becomes stable as the start of pressurization and the time when the rotation speed becomes 0 as the time when the initial set pressure is reached), the pressure at the time of energization in the main welding is determined by the above formula (1). ) Can be set within a satisfactory range.
In addition, by combining parameters that are indicators of multiple pressurization, such as determining the start point of torque increase as the start point of pressurization and the time point when the rotation speed becomes 0 as the time point of reaching the initial set pressurization, this The pressing force at the time of energization in welding may be set within a range satisfying the above formula (1).
加えて、本溶接における初期設定加圧力は、被溶接材を構成する金属板の材質や厚さなどに応じて、適宜、設定すればよい。
例えば、被溶接材として厚さ:1.6mm、材質:めっき無しまたは表面にZnを含むめっきを施した270〜2000MPa級鋼板を2枚重ねた板組を使用する場合、初期設定加圧力は1.0〜7.0kNとすることが好ましい。
また、被溶接材として厚さ:1.6mm、材質:めっき無しまたは表面にZnを含むめっきを施した270〜2000MPa級鋼板を3枚重ねた板組を使用する場合、初期設定加圧力は2.0kN〜10.0kNとすることが好ましい。In addition, the initial setting pressing force in the main welding may be appropriately set according to the material and thickness of the metal plate constituting the material to be welded.
For example, when using a plate set of two 270 to 2000 MPa class steel plates with a thickness of 1.6 mm and a material: no plating or plating containing Zn on the surface as the material to be welded, the initial set pressing force is 1.0 to. It is preferably 7.0 kN.
In addition, when using a plate set of three 270 to 2000 MPa class steel plates with a thickness of 1.6 mm and a material: no plating or plating containing Zn on the surface as the material to be welded, the initial set pressing force is 2.0 kN. It is preferably ~ 10.0 kN.
また、被溶接材を構成する金属板間に隙間がない、特には、外乱がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間:T0は、例えば、金属板間に隙間のない、本溶接と同じ板厚、材質の金属板から構成される被溶接材を別途用意し、本溶接と同じ加圧条件で、当該被溶接材を加圧することにより、求めればよい。
加えて、後述するテスト溶接を行う場合には、テスト溶接時の設定加圧力を、そのまま本溶接の初期設定加圧力としてもよい。
なお、一般的な抵抗スポット溶接装置では、加圧開始時点から設定加圧力に到達するまでの間のある加圧力(以下、切り替え設定値といもいう)に到達した時点で、制御方式を切り替える設定(位置制御→トルク制御)がなされており、通常、同じ加圧力手段を使用し、かつ当該切り替え設定値を同じにすれば、同じ条件で加圧されていると言える。Further, when there is no gap between the metal plates constituting the material to be welded, particularly when there is no disturbance, the time from the start of pressurization before the start of energization to the arrival of the initial set pressing force: T 0 is, for example. By separately preparing a material to be welded, which is composed of metal plates of the same thickness and material as the main welding, with no gaps between the metal plates, and pressurizing the material to be welded under the same pressure conditions as the main welding. , Just ask.
In addition, when performing the test welding described later, the set pressing force at the time of the test welding may be used as it is as the initial set pressing force of the main welding.
In a general resistance spot welding device, the control method is switched when a certain pressing force (hereinafter, also referred to as a switching set value) between the start of pressurization and the arrival of the set pressing force is reached. (Position control → torque control) is performed, and normally, if the same pressing means is used and the switching set value is the same, it can be said that the pressure is applied under the same conditions.
さらに、本溶接における通電は、特に限定されず、定電流制御により行ってもよいし、後述するテスト溶接を行ったのちに、当該テスト溶接で設定した目標値に従って、通電量を制御する適応制御溶接を行ってもよい。 Further, the energization in the main welding is not particularly limited, and may be performed by constant current control, or after performing the test welding described later, adaptive control for controlling the amount of energization according to the target value set in the test welding. Welding may be performed.
例えば、定電流制御の場合、溶接電流および通電時間は、被溶接材を構成する金属板の材質や厚さなどに応じて、適宜、設定すればよく、例えば、一般的な2枚重ね以上の板組みを使用する場合、溶接電流は3.0〜14.0kA、通電時間は100〜1000msとすることが好適である。
また、本溶接の通電を2段以上の多段ステップに分割してもよく、例えば、ナゲットを形成する通電(本通電)の前に、接触径を安定化させるための予通電を行ってもよいし、後熱処理のための後通電を行ってもよい。これらの予通電および後通電は、定電流制御により行っても、アップスロープ状やダウンスロープ状の通電パターンとしてもよい。また、各通電間に通電休止時間を設けてもよい。For example, in the case of constant current control, the welding current and the energizing time may be appropriately set according to the material and thickness of the metal plate constituting the material to be welded. When using a sheet metal assembly, it is preferable that the welding current is 3.0 to 14.0 kA and the energization time is 100 to 1000 ms.
Further, the energization of the main welding may be divided into two or more steps, and for example, pre-energization for stabilizing the contact diameter may be performed before the energization for forming the nugget (main energization). Then, post-energization for post-heat treatment may be performed. These pre-energization and post-energization may be performed by constant current control, or may be an up-slope-shaped or down-slope-shaped energization pattern. Further, an energization suspension time may be provided between each energization.
また、適応制御溶接の場合、後述するテスト溶接により得た目標値(単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量)を基準として溶接を行い、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線に沿っている場合には、そのまま溶接を行って溶接を終了する。ただし、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの通電時間内で補償すべく、本溶接での単位体積当たりの累積発熱量が目標値として設定した単位体積当たりの累積発熱量と一致するように通電量を制御する。 In the case of adaptive control welding, welding is performed based on the target values (time change curve of instantaneous calorific value per unit volume and cumulative calorific value) obtained by test welding described later, and the time of instantaneous calorific value per unit volume. If the amount of change follows the reference time change curve, welding is performed as it is and welding is completed. However, if the time change amount of the instantaneous calorific value per unit volume deviates from the standard time change curve, the cumulative amount per unit volume in the main welding is to compensate for the deviation amount within the remaining energizing time. The energization amount is controlled so that the calorific value matches the cumulative calorific value per unit volume set as the target value.
さらに、後述するテスト溶接において通電を2段以上の多段ステップに分割し、当該多段ステップに分割した溶接条件に基づき適応制御溶接の目標値を設定する場合には、本溶接の適応制御溶接も、テスト溶接において多段ステップに分割した溶接条件と同様に、多段ステップに分割して行う、ステップ毎の適応制御溶接を行うことが好ましい。 Further, in the test welding described later, when the energization is divided into two or more multi-step steps and the target value of the adaptive control welding is set based on the welding conditions divided into the multi-step steps, the adaptive control welding of the main welding is also performed. Similar to the welding conditions divided into multiple steps in the test welding, it is preferable to perform adaptive control welding for each step, which is performed by dividing into multiple steps.
ここで、ステップ毎の適応制御溶接では、いずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を当該ステップの残りの通電時間内で補償すべく、当該ステップでの単位体積当たりの累積発熱量が、テスト溶接の当該ステップでの単位体積当たりの累積発熱量と一致するように、通電量を制御する。 Here, in the adaptive control welding for each step, if the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve in any step, the deviation amount is the rest of the step. In order to compensate within the energization time of, the energization amount is controlled so that the cumulative calorific value per unit volume in the step matches the cumulative calorific value per unit volume in the step of the test welding.
なお、発熱量の算出方法については特に制限はないが、特許文献5にその一例が開示されており、本発明でもこの方法を採用することができる。この方法による単位体積・単位時間当たりの発熱量qおよび単位体積当たりの累積発熱量Qの算出要領は次のとおりである。
被溶接材の合計厚みをt、被溶接材の電気抵抗率をr、電極間電圧をV、溶接電流をIとし、電極と被溶接材が接触する面積をSとする。この場合、溶接電流は横断面積がSで、厚みtの柱状部分を通過して抵抗発熱を発生させる。この柱状部分における単位体積・単位時間当たりの発熱量qは次式(2)で求められる。
q=(V・I)/(S・t) --- (2)
また、この柱状部分の電気抵抗Rは、次式(3)で求められる。
R=(r・t)/S --- (3)
(3)式をSについて解いてこれを(2)式に代入すると、発熱量qは次式(4)
q=(V・I・R)/(r・t2)
=(V2)/(r・t2) --- (4)
となる。The method for calculating the calorific value is not particularly limited, but an example thereof is disclosed in Patent Document 5, and this method can also be adopted in the present invention. The procedure for calculating the calorific value q per unit volume / unit time and the cumulative calorific value Q per unit volume by this method is as follows.
Let t be the total thickness of the material to be welded, r be the electrical resistivity of the material to be welded, V be the voltage between the electrodes, I be the welding current, and S be the area where the electrodes and the material to be welded come into contact. In this case, the welding current has a cross-sectional area of S and passes through a columnar portion having a thickness t to generate resistance heat. The calorific value q per unit volume and unit time in this columnar portion is calculated by the following equation (2).
q = (VI) / (ST) --- (2)
Further, the electric resistance R of this columnar portion is obtained by the following equation (3).
R = (rt) / S --- (3)
When equation (3) is solved for S and this is substituted into equation (2), the calorific value q is calculated by the following equation (4).
q = (V ・ I ・ R) / (r ・ t 2 )
= (V 2 ) / (r · t 2 ) --- (4)
Will be.
上掲式(4)から明らかなように、単位体積・単位時間当たりの発熱量qは、電極間電圧Vと被溶接物の合計厚みtと被溶接物の電気抵抗率rから算出でき、電極と被溶接物が接触する面積Sによる影響を受けない。なお、(4)式は電極間電圧Vから発熱量を計算しているが、電極間電流Iから発熱量qを計算することもでき、このときにも電極と被溶接物が接触する面積Sを用いる必要がない。そして、単位体積・単位時間当たりの発熱量qを通電期間にわたって累積すれば、溶接に加えられる単位体積当たりの累積発熱量Qが得られる。(4)式から明らかなように、この単位体積当たりの累積発熱量Qもまた電極と被溶接材が接触する面積Sを用いないで算出することができる。
以上、特許文献5記載の方法によって、累積発熱量Qを算出する場合について説明したが、その他の算出式を用いても良いのは言うまでもない。As is clear from the above equation (4), the calorific value q per unit volume / unit time can be calculated from the voltage V between the electrodes, the total thickness t of the work piece, and the electrical resistivity r of the work piece, and the electrodes. It is not affected by the area S where the object to be welded and the object to be welded come into contact with each other. In Eq. (4), the calorific value is calculated from the voltage V between the electrodes, but the calorific value q can also be calculated from the current I between the electrodes. There is no need to use. Then, by accumulating the calorific value q per unit volume and unit time over the energization period, the cumulative calorific value Q per unit volume applied to welding can be obtained. As is clear from the equation (4), the cumulative calorific value Q per unit volume can also be calculated without using the area S where the electrode and the material to be welded contact.
The case where the cumulative calorific value Q is calculated by the method described in Patent Document 5 has been described above, but it goes without saying that other calculation formulas may be used.
(2)テスト溶接
上記の本溶接の通電において、適応制御溶接を行う場合には、本溶接に先立ち、テスト溶接を行い、該テスト溶接において、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させる。
すなわち、テスト溶接では、被溶接材と同じ鋼種、厚みの予備溶接試験を、既溶接点への分流や板隙のない状態で、定電流制御にて種々の条件で行い、テスト溶接における最適条件を見つける。
そして、上記の条件で通電を行い、この通電の際の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を、本溶接における目標値として、記憶させる。なお、電極間の電気特性とは、電極間抵抗または電極間電圧を意味する。
また、上述したように、テスト溶接における通電を2段以上の多段ステップに分割し、本溶接において、ステップ毎の適応制御溶接を行ってもよい。(2) Test Welding In the above-mentioned main welding energization, when adaptive control welding is performed, test welding is performed prior to the main welding, and in the test welding, energization is performed by constant current control to form an appropriate nugget. The time-varying curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume calculated from the electrical characteristics between the electrodes in the case are stored.
That is, in test welding, a preliminary welding test of the same steel type and thickness as the material to be welded is performed under various conditions under constant current control without diversion to the existing welding point or plate gap, and the optimum conditions for test welding. Find out.
Then, energization is performed under the above conditions, and the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume calculated from the electrical characteristics between the electrodes at the time of this energization are the targets in this welding. Store as a value. The electrical characteristics between the electrodes mean the resistance between the electrodes or the voltage between the electrodes.
Further, as described above, the energization in the test welding may be divided into two or more multi-step steps, and the adaptive control welding for each step may be performed in the main welding.
なお、使用する被溶接材は特に制限はなく、軟鋼から超高張力鋼板までの各種強度を有する鋼板およびめっき鋼板、アルミ合金などの軽金属板の溶接にも適用でき、3枚以上の鋼板を重ねた板組みにも適用できる。 The material to be welded is not particularly limited, and can be applied to welding steel plates having various strengths from mild steel to ultra-high-strength steel plates and light metal plates such as plated steel plates and aluminum alloys, and three or more steel plates are stacked. It can also be applied to steel plate assembly.
また、上記の本発明の一実施形態に係る抵抗スポット溶接方法では、被溶接材に板隙がある場合を例示して説明したが、溶接点の近傍に既溶接点がある場合においても、所望のナゲット径を安定的に確保する効果が得られる。
すなわち、溶接点の近傍に既溶接点がある場合、既溶接点での溶接の際のシートセパレーションの影響で、被溶接材となる金属板間に僅かな隙間が生じる。よって、溶接点と既溶接点の距離が近く、特に、被溶接材を構成する金属板が高張力鋼板などの場合には、この隙間を加圧によって潰すことが困難となって、金属板間で十分な接触面積が確保できず、既溶接点への分流が生じやすくなる。
本発明の一実施形態に係る抵抗スポット溶接方法によれば、上記のような板隙がある場合にも、通電開始時点での加圧力を適正に制御して、金属板間に適正な接触面積を確保することが可能となる。また、特に、適応制御溶接を行う場合、既溶接点への分流が回避されることで、適応制御溶接における発熱量の誤認識をより有効に防止することが可能となる。Further, in the resistance spot welding method according to the embodiment of the present invention described above, the case where the material to be welded has a plate gap has been described as an example, but it is desired even when there is an already welded point in the vicinity of the welded point. The effect of stably securing the diameter of the nugget can be obtained.
That is, when there is an already welded point in the vicinity of the welded point, a slight gap is generated between the metal plates to be welded due to the influence of the sheet separation at the time of welding at the already welded point. Therefore, the distance between the welding point and the existing welding point is short, and especially when the metal plate constituting the material to be welded is a high-strength steel plate or the like, it becomes difficult to crush this gap by pressurization, and the space between the metal plates becomes difficult. It is not possible to secure a sufficient contact area, and the flow to the existing welding point is likely to occur.
According to the resistance spot welding method according to the embodiment of the present invention, even when there is a plate gap as described above, the pressing force at the start of energization is appropriately controlled, and an appropriate contact area between the metal plates is obtained. Can be secured. Further, in particular, when adaptive control welding is performed, it is possible to more effectively prevent erroneous recognition of the amount of heat generated in adaptive control welding by avoiding the diversion to the existing welding point.
そして、上記した抵抗スポット溶接方法を用いて重ね合わせた複数枚の金属板を接合することで、外乱の状態の変動に有効に対応して所望のナゲット径を安定的に確保しつつ、種々の溶接部材、特には、自動車部品等の溶接部材を製造することができる。 Then, by joining a plurality of overlapping metal plates using the resistance spot welding method described above, various types of metal plates can be stably secured while stably responding to fluctuations in the state of disturbance. Welding members, in particular, welding members such as automobile parts can be manufactured.
表1に示す金属板の板組みについて、図3(a)および(b)のような板隙(外乱)がない状態、または、図4(a)および(b)のような板隙がある状態で、表2に示す条件で本溶接を行い、溶接継手を作製した。ここで、No.1、2、4〜13では、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間を、加圧力の指標となるパラメータとして、本溶接の通電時の加圧力を設定した。一方、No.3では、通電時の加圧力を初期設定加圧力のままとして、本溶接の通電を行った。
なお、図4(a)および(b)では、金属板間にスペーサを挿入し、上下からクランプすることで(図示せず)、種々の板隙厚さtgとなる板隙を設けた。なお、スペーサ間距離はいずれも40mmとした。Regarding the plate assembly of the metal plates shown in Table 1, there is no plate gap (disturbance) as shown in FIGS. 3 (a) and 3 (b), or there is a plate gap as shown in FIGS. 4 (a) and 4 (b). In this state, main welding was performed under the conditions shown in Table 2 to prepare a welded joint. Here, No. In 1, 2, 4 to 13, the time from the start of pressurization before the start of energization in the main welding until the initial set pressurization is reached is used as a parameter as an index of the pressurization, and the pressurization during the energization of the main weld is used. It was set. On the other hand, No. In No. 3, the main welding was energized while the pressing force at the time of energization was left as the initial setting pressing force.
In addition, in FIGS. 4A and 4B, a spacer was inserted between the metal plates and clamped from above and below (not shown) to provide a plate gap having various plate gap thickness tg. The distance between spacers was set to 40 mm.
また、一部の実施例については、本溶接の前に、図3に示す板隙のない状態で、表2に示す条件でテスト溶接を行い、加圧開始から初期設定加圧力に到達するまでの時間を測定するとともに、テスト溶接の通電時における、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させた。
なお、テスト溶接の通電は、図5のような1段通電、または、図6のような2段通電とし、テスト溶接で2段通電を行ったものについては、本溶接でステップ毎の適応制御溶接を行った。
さらに、テスト溶接を行わなかったものについては、別途、金属板間に隙間のない、本溶接と同じ板厚、材質の金属板から構成される被溶接材(外乱がない被溶接材)を用意し、本溶接と同じ加圧条件で、被溶接材を加圧することにより、加圧開始から初期設定加圧力に達するまでの時間を測定した。
これらの測定した被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間を表2に併記する。Further, in some examples, before the main welding, test welding is performed under the conditions shown in Table 2 without the plate gap shown in FIG. 3, from the start of pressurization until the initial set pressing force is reached. In addition to measuring the time of, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume when the test welding was energized were memorized.
It should be noted that the energization of the test welding is the one-stage energization as shown in FIG. 5 or the two-stage energization as shown in FIG. Welding was done.
Furthermore, for those that have not been test-welded, a separate material to be welded (material to be welded without disturbance) that has no gaps between the metal plates and is composed of metal plates of the same thickness and material as the main weld is prepared. Then, by pressurizing the material to be welded under the same pressurizing conditions as in the main welding, the time from the start of pressurization to reaching the initial set pressing force was measured.
Table 2 also shows the time from the start of pressurization before the start of energization to the arrival of the initial set pressing force when there is no gap between the measured metal plates constituting the material to be welded.
得られた各溶接継手について、溶接部を切断し、断面をエッチング後、光学顕微鏡により観察し、ナゲット径および散り発生の有無から、以下の3段階で評価した。
◎(合格、特に優れる):板隙によらず、ナゲット径が4.5√t´以上(t´:板組みのうち最も薄い金属板の板厚(mm))で、かつ散りの発生なし
○(合格、優れる):板隙によらず、ナゲット径が4.0√t´以上で、かつ、散りの発生無し(ただし、◎(合格、特に優れる)は除く)
×:板隙によっては、ナゲット径が4.0√t´未満、および/または、散りが発生Each of the obtained welded joints was evaluated in the following three stages based on the nugget diameter and the presence or absence of scattering after cutting the welded portion and etching the cross section and observing with an optical microscope.
◎ (Passed, especially excellent): The nugget diameter is 4.5√t'or more (t': the thinnest metal plate thickness (mm) of the plate assembly) regardless of the plate gap, and no scattering occurs ○ ( Passed, excellent): Nugget diameter is 4.0√t'or more and no scattering occurs regardless of board gap (however, ◎ (passed, especially excellent) is excluded)
X: Depending on the plate gap, the nugget diameter is less than 4.0√t'and / or scattering occurs.
発明例ではいずれも、板隙によらず、散りの発生なく、十分な大きさのナゲット径が得られた。一方、比較例では、板隙によっては、十分なナゲット径が得られなかったり、散りが発生したりした。
なお、加圧力の指標となるパラメータとして、本溶接における通電開始前の加圧開始時点から通電開始時点までの時間、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータのトルク、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータの回転速度、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのひずみ、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの電極変位量、および本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの電極変位速度を用いた場合にも、上記と同様の結果が得られた。In each of the examples of the invention, a nugget diameter having a sufficiently large size was obtained regardless of the plate gap and without the occurrence of scattering. On the other hand, in the comparative example, a sufficient nugget diameter could not be obtained or scattering occurred depending on the plate gap.
The parameters that serve as indicators of the pressing force are the time from the start of pressurization before the start of energization in the main welding to the start of energization, and from the start of pressurization before the start of energization in the main welding until the initial set pressing force is reached. Welding gun servo motor torque, welding gun servo motor rotation speed from the start of pressurization before the start of energization in main welding to reaching the initial set pressing force, the start of pressurization before the start of energization in main welding Welding gun strain from to reaching the initial set pressing force, electrode displacement amount from the start of pressurization before the start of energization in main welding to reaching the initial set pressing force, and pressurization before starting energization in main welding The same result as above was obtained when the electrode displacement rate from the start point to the arrival of the initial set pressing force was used.
11,12:金属板
14:電極
15:スペーサ11, 12: Metal plate 14: Electrode 15: Spacer
Claims (3)
本溶接の通電開始前に、上記被溶接材を初期設定加圧力に到達するまで加圧し、
ついで、上記本溶接の通電開始前の加圧開始時点から上記初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、上記本溶接の通電時の加圧力を、次式(1)を満足する範囲内に設定する、
抵抗スポット溶接方法。
F 0 ×(1+0.1×(T A -T 0 )/T 0 ) ≦ F A ≦F 0 ×(1+3.0×(T A -T 0 )/T 0 ) ・・・(1)
ここで、
F A :本溶接における通電時の加圧力
F 0 :本溶接における初期設定加圧力
T A :本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
T 0 :被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
である。 It is a resistance spot welding method in which a material to be welded, which is made by stacking a plurality of metal plates, is sandwiched between a pair of electrodes and energized while being pressurized.
Before the start of energization of the main welding, the material to be welded is pressurized until the initial set pressing force is reached.
Then, using the parameter as an index of the pressing force obtained from the start of pressurization before the start of energization of the main welding to the arrival of the initial set pressing force, the pressing force at the time of energizing the main welding is as follows. Set the equation (1) within a satisfactory range,
Resistance spot welding method.
F 0 × (1 + 0.1 × (T A -T 0 ) / T 0 ) ≤ F A ≤ F 0 × (1 + 3.0 × (T A -T 0 ) / T 0 ) ・ ・ ・ (1)
here,
F A : Pressurizing pressure when energized in main welding
F 0 : Initial setting pressing force in main welding
T A : Time from the start of pressurization before the start of energization in main welding to the arrival of the initial set pressing force
T 0 : Time from the start of pressurization before the start of energization to the arrival of the default pressurization when there is no gap between the metal plates that make up the material to be welded.
Is.
該テスト溶接では、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
また、前記本溶接の通電では、前記テスト溶接における単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を目標値に設定し、該目標値に従って通電量を制御する、請求項1に記載の抵抗スポット溶接方法。 Prior to the main welding, test welding shall be performed.
In the test welding, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume calculated from the electrical characteristics between the electrodes when energized by constant current control to form an appropriate nugget are obtained. Remember,
Further, in the energization of the main welding, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume in the test welding are set as target values, and the energization amount is controlled according to the target value. Item 2. The resistance spot welding method according to Item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021080019A JP7371664B2 (en) | 2018-11-08 | 2021-05-10 | Resistance spot welding method, method for manufacturing welded parts, and welding equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018210874 | 2018-11-08 | ||
JP2018210874 | 2018-11-08 | ||
PCT/JP2019/043102 WO2020095847A1 (en) | 2018-11-08 | 2019-11-01 | Resistance spot welding method and method for manufacturing welded member |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021080019A Division JP7371664B2 (en) | 2018-11-08 | 2021-05-10 | Resistance spot welding method, method for manufacturing welded parts, and welding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020095847A1 JPWO2020095847A1 (en) | 2021-02-15 |
JP6904479B2 true JP6904479B2 (en) | 2021-07-14 |
Family
ID=70611812
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020505936A Active JP6904479B2 (en) | 2018-11-08 | 2019-11-01 | Resistance spot welding method and welding member manufacturing method |
JP2021080019A Active JP7371664B2 (en) | 2018-11-08 | 2021-05-10 | Resistance spot welding method, method for manufacturing welded parts, and welding equipment |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021080019A Active JP7371664B2 (en) | 2018-11-08 | 2021-05-10 | Resistance spot welding method, method for manufacturing welded parts, and welding equipment |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6904479B2 (en) |
WO (1) | WO2020095847A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115055797B (en) * | 2022-05-28 | 2023-10-31 | 一汽丰田汽车(成都)有限公司长春丰越分公司 | Method capable of eliminating splashing generated by robot resistance welding |
WO2024157898A1 (en) * | 2023-01-23 | 2024-08-02 | Jfeスチール株式会社 | Resistance spot welding method and welded joint manufacturing method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3379323B2 (en) * | 1996-02-07 | 2003-02-24 | 松下電器産業株式会社 | Control device of resistance welding machine |
JP3161339B2 (en) * | 1996-09-24 | 2001-04-25 | 松下電器産業株式会社 | Method for controlling welding conditions of resistance welding machine |
JPH10263839A (en) * | 1997-03-25 | 1998-10-06 | Nachi Fujikoshi Corp | Method and circuit for correcting pressurizing force of welding gun |
JP3886603B2 (en) * | 1997-07-14 | 2007-02-28 | 株式会社ナ・デックス | Resistance welding system using cumulative heat generation per unit volume as an index |
JP3661008B2 (en) * | 1999-01-27 | 2005-06-15 | 川崎重工業株式会社 | Control method and control apparatus for electric servo resistance welding apparatus |
JP2003236674A (en) * | 2002-02-15 | 2003-08-26 | Mazda Motor Corp | Method and equipment of spot welding of high tensile steel |
DE10258059B4 (en) * | 2002-12-11 | 2006-12-14 | Nimak-Automatisierte-Schweisstechnik Gmbh | Method for controlling a tool pressing force in joining devices |
JP2006043731A (en) * | 2004-08-04 | 2006-02-16 | Daihatsu Motor Co Ltd | Method for controlling power-supply of spot welding |
EP2105237A3 (en) * | 2007-05-07 | 2009-10-14 | Nimak GmbH | Method for operating an electrode pressure unit for a welding clamp and corresponding welding clamp |
US10773334B2 (en) * | 2015-04-27 | 2020-09-15 | Jfe Steel Corporation | Resistance spot welding method |
CN111770807B (en) * | 2018-02-19 | 2022-03-08 | 杰富意钢铁株式会社 | Resistance spot welding method and method for manufacturing welded member |
-
2019
- 2019-11-01 WO PCT/JP2019/043102 patent/WO2020095847A1/en active Application Filing
- 2019-11-01 JP JP2020505936A patent/JP6904479B2/en active Active
-
2021
- 2021-05-10 JP JP2021080019A patent/JP7371664B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2021112773A (en) | 2021-08-05 |
WO2020095847A1 (en) | 2020-05-14 |
JP7371664B2 (en) | 2023-10-31 |
JPWO2020095847A1 (en) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6108030B2 (en) | Resistance spot welding method | |
KR101974298B1 (en) | Resistance spot welding method | |
JP5999293B1 (en) | Resistance spot welding method and resistance spot welding joint manufacturing method | |
CN110997210B (en) | Resistance spot welding method and method for manufacturing welded member | |
WO2017212916A1 (en) | Resistance spot welding method | |
JP2021112773A (en) | Resistance spot welding method, method for manufacturing welding member, and welding apparatus | |
KR102303694B1 (en) | Resistance spot welding method and weld member production method | |
JP6969649B2 (en) | Resistance spot welding method and welding member manufacturing method | |
JP6892038B1 (en) | Resistance spot welding method and welding member manufacturing method | |
JP6856181B1 (en) | Resistance spot welding method and welding member manufacturing method | |
JP6241580B1 (en) | Resistance spot welding method | |
WO2020004115A1 (en) | Resistance spot welding method and method for manufacturing welded member | |
JP6892039B1 (en) | Resistance spot welding method and welding member manufacturing method | |
WO2020004116A1 (en) | Resistance spot welding method and method for manufacturing welded member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210316 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210525 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6904479 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |