JP7371664B2 - Resistance spot welding method, method for manufacturing welded parts, and welding equipment - Google Patents

Resistance spot welding method, method for manufacturing welded parts, and welding equipment Download PDF

Info

Publication number
JP7371664B2
JP7371664B2 JP2021080019A JP2021080019A JP7371664B2 JP 7371664 B2 JP7371664 B2 JP 7371664B2 JP 2021080019 A JP2021080019 A JP 2021080019A JP 2021080019 A JP2021080019 A JP 2021080019A JP 7371664 B2 JP7371664 B2 JP 7371664B2
Authority
JP
Japan
Prior art keywords
welding
time
energization
welded
pressurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021080019A
Other languages
Japanese (ja)
Other versions
JP2021112773A5 (en
JP2021112773A (en
Inventor
央海 澤西
泰明 沖田
広志 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021112773A publication Critical patent/JP2021112773A/en
Publication of JP2021112773A5 publication Critical patent/JP2021112773A5/ja
Application granted granted Critical
Publication of JP7371664B2 publication Critical patent/JP7371664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor

Description

本発明は抵抗スポット溶接方法に関し、特に外乱の影響が大きい場合であっても、散りを発生させることなく安定して所望のナゲット径を確保することを可能ならしめようとするものである。 The present invention relates to a resistance spot welding method, and is intended to make it possible to stably secure a desired nugget diameter without causing expulsion, even when the influence of external disturbances is particularly large.

一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。
この溶接法は、重ね合わせた2枚以上の鋼板を挟んでその上下から一対の電極で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法であり、高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板が溶融し、凝固した部分である。このナゲットにより、鋼板同士が点状に接合される。
Generally, a resistance spot welding method, which is a type of lap resistance welding method, is used to join stacked steel plates together.
This welding method involves sandwiching two or more stacked steel plates, applying pressure from above and below with a pair of electrodes, and applying a high welding current between the top and bottom electrodes for a short period of time to join them. Point-shaped welds can be obtained by utilizing the resistance heat generation generated by applying a welding current of . These dot-shaped welds are called nuggets, and are the parts where when an electric current is applied to the stacked steel plates, the two steel plates melt and solidify at the point where they come into contact. These nuggets join the steel plates together in a dotted manner.

良好な溶接部品質を得るためには、ナゲット径が適正な範囲で形成されることが重要である。ナゲット径は、溶接電流、通電時間、電極形状および加圧力等の溶接条件によって定まる。従って、適切なナゲット径を形成するためには、被溶接材の材質、板厚および重ね枚数等の被溶接材条件に応じて、上記の溶接条件を適正に設定する必要がある。 In order to obtain good weld quality, it is important that the nugget diameter be formed within an appropriate range. The nugget diameter is determined by welding conditions such as welding current, current application time, electrode shape, and pressing force. Therefore, in order to form an appropriate nugget diameter, it is necessary to appropriately set the above-mentioned welding conditions according to the conditions of the material to be welded, such as the material, plate thickness, and number of stacked sheets.

例えば、自動車の製造に際しては、一台当たり数千点ものスポット溶接が施されており、また次々と流れてくる被処理材(ワーク)を溶接する必要がある。この時、各溶接箇所における被溶接材の材質、板厚および重ね枚数等の被溶接材の状態が同一であれば、溶接電流、通電時間および加圧力等の溶接条件も同一の条件で同一のナゲット径を得ることができる。しかしながら、連続した溶接では、電極の被溶接材接触面が次第に摩耗して接触面積が初期状態よりも次第に広くなる。このように接触面積が広くなった状態で、初期状態と同じ値の溶接電流を流すと、被溶接材中の電流密度が低下し、溶接部の温度上昇が低くなるため、ナゲット径は小さくなる。このため、数百~数千点の溶接毎に、電極の研磨または交換を行い、電極の先端径が拡大しすぎないようにしている。 For example, when manufacturing automobiles, thousands of spot welds are performed per automobile, and it is necessary to weld a continuous flow of materials (workpieces). At this time, if the conditions of the materials to be welded, such as the material, plate thickness, and number of stacked sheets, are the same at each welding location, the welding conditions such as welding current, energization time, and pressing force are also the same. The nugget diameter can be obtained. However, in continuous welding, the contact surface of the electrode to the welded material gradually wears out, and the contact area gradually becomes wider than the initial state. If the same value of welding current as in the initial state is applied with the contact area increased in this way, the current density in the welded material will decrease, the temperature rise in the weld will be lower, and the nugget diameter will become smaller. . For this reason, the electrode is polished or replaced every time several hundred to several thousand points are welded to prevent the tip diameter of the electrode from expanding too much.

その他、予め定めた回数の溶接を行うと溶接電流値を増加させて、電極の摩耗に伴う電流密度の低下を補償する機能(ステッパー機能)を備えた抵抗溶接装置が、従来から使用されている。このステッパー機能を使用するには、上述した溶接電流変化パターンを予め適正に設定しておく必要がある。しかしながら、このために、数多くの溶接条件および被溶接材条件に対応した溶接電流変化パターンを、試験等によって導き出すには、多くの時間とコストが必要になる。また、実際の施工においては、電極摩耗の進行状態にはバラツキがあるため、予め定めた溶接電流変化パターンが常に適正であるとはいえない。 In addition, resistance welding equipment that has a function (stepper function) that increases the welding current value after performing welding a predetermined number of times to compensate for the decrease in current density due to electrode wear has been used. . To use this stepper function, it is necessary to properly set the welding current change pattern described above in advance. However, for this reason, it takes a lot of time and cost to derive welding current change patterns corresponding to a large number of welding conditions and welding material conditions through tests or the like. Furthermore, in actual construction, there are variations in the progress of electrode wear, so it cannot be said that a predetermined welding current change pattern is always appropriate.

さらに、溶接に際して外乱が存在する場合、例えば、溶接する点の近くにすでに溶接した点(既溶接点)がある場合や、被溶接材の表面凹凸が大きく溶接する点の近くに被溶接材の接触点が存在する場合には、溶接時に既溶接点や接触点に電流が分流する。このような状態では、所定の条件で溶接しても、電極直下の溶接したい位置における電流密度は低下するため、やはり必要な径のナゲットは得られなくなる。この発熱量不足を補償し、必要な径のナゲットを得るには、予め高い溶接電流を設定することが必要となる。 Furthermore, if there is a disturbance during welding, for example, if there is a previously welded point (already welded point) near the welding point, or if the material to be welded has a large surface unevenness near the welding point, If a contact point exists, current is shunted to the already welded point or the contact point during welding. In such a state, even if welding is performed under predetermined conditions, the current density at the desired welding position directly under the electrode will decrease, so that a nugget with the required diameter will still not be obtained. In order to compensate for this lack of heat generation and obtain a nugget of the required diameter, it is necessary to set a high welding current in advance.

また、表面凹凸や部材の形状などにより溶接する点の周囲が強く拘束されている場合や、溶接点周囲の鋼板間に異物が挟まっていたりする場合には、鋼板間の板隙が大きくなることで鋼板同士の接触径が狭まり、散りが発生しやすくなることもある。 In addition, if the area around the welding point is strongly constrained due to surface irregularities or the shape of the parts, or if foreign objects are caught between the steel plates around the welding point, the gap between the steel plates will increase. This may narrow the contact diameter between the steel plates, making it easier for them to splinter.

上記の問題を解決するものとして、以下に述べるような技術が提案されている。
例えば、特許文献1には、高張力鋼板への通電電流を漸変的に上昇させることによりナゲット生成を行なう第1ステップと、上記第1ステップの後に電流下降させる第2ステップと、上記第2ステップ後に電流上昇させて本溶接すると共に、漸変的に通電電流を下降させる第3ステップとを備えた工程によりスポット溶接を行なうことで、通電初期のなじみ不良に起因する散りを抑制しようとする高張力鋼板のスポット溶接方法が記載されている。
The following techniques have been proposed to solve the above problems.
For example, Patent Document 1 describes a first step in which nuggets are generated by gradually increasing the current applied to a high-tensile steel plate, a second step in which the current is decreased after the first step, and a second step in which the current is lowered after the first step. Spot welding is performed through a process that includes main welding by increasing the current after the step, and a third step in which the applied current is gradually decreased, thereby attempting to suppress splintering caused by poor familiarization at the initial stage of energization. A method for spot welding high-strength steel plates is described.

特許文献2には、通電時間の初期にスパッタの発生を抑え得る程度の電流値に所定時間維持して被溶接物の表面を軟化させ、その後に電流値を所定時間高く維持してスパッタの発生を抑えつつナゲットを成長させるスポット溶接の通電制御方法が記載されている。 Patent Document 2 discloses that the surface of the workpiece is softened by maintaining the current value at a level that can suppress the generation of spatter for a predetermined period of time at the beginning of the energization time, and then maintaining the current value high for a predetermined period of time to generate spatter. A spot welding energization control method is described that allows nugget growth while suppressing nugget growth.

特許文献3には、推算した溶接部の温度分布と目標ナゲットを比較して溶接機の出力を制御することによって、設定したナゲット径を得ようとする抵抗溶接機の制御装置が記載されている。 Patent Document 3 describes a control device for a resistance welding machine that attempts to obtain a set nugget diameter by comparing the estimated temperature distribution of a welded part with a target nugget and controlling the output of the welding machine. .

特許文献4には、溶接電流とチップ間電圧を検出し、熱伝導計算により溶接部のシミュレーションを行い、溶接中における溶接部のナゲットの形成状態を推定することによって、良好な溶接を行おうとする抵抗溶接機の溶接条件制御方法が記載されている。 Patent Document 4 attempts to perform good welding by detecting welding current and tip-to-tip voltage, simulating the welding part by heat conduction calculation, and estimating the state of nugget formation in the welding part during welding. A method of controlling welding conditions for a resistance welding machine is described.

特許文献5には、被溶接物の板厚と通電時間とから、その被溶接物を良好に溶接することができる単位体積当たりの累積発熱量を計算し、計算された単位体積・単位時間当たりの発熱量を発生させる溶接電流または電圧に調整する処理を行う溶接システムを用いることにより、被溶接物の種類や電極の摩耗状態によらず良好な溶接を行おうとする抵抗溶接システムが記載されている。 Patent Document 5 discloses that the cumulative calorific value per unit volume that can satisfactorily weld the welded object is calculated from the plate thickness of the welded object and the energization time, and the calculated amount of heat per unit volume/unit time is calculated. A resistance welding system is described that attempts to perform good welding regardless of the type of workpiece or the wear state of the electrode by using a welding system that adjusts the welding current or voltage to generate a calorific value of There is.

特開2003-236674号公報Japanese Patent Application Publication No. 2003-236674 特開2006-43731号公報Japanese Patent Application Publication No. 2006-43731 特開平9-216071号公報Japanese Patent Application Publication No. 9-216071 特開平10-94883号公報Japanese Patent Application Publication No. 10-94883 特開平11-33743号公報Japanese Patent Application Publication No. 11-33743

しかしながら、特許文献1および2に記載の技術では、外乱の有無および大小によって適正となる溶接条件は変化すると考えられるため、想定以上の外乱、例えば、被溶接材となる金属板間の隙間や分流が生じた際には、散りを発生させることなく所望のナゲット径を確保することができないという問題があった。 However, with the techniques described in Patent Documents 1 and 2, it is thought that the appropriate welding conditions will change depending on the presence or absence of disturbance and its magnitude. When this occurs, there is a problem in that a desired nugget diameter cannot be secured without causing scattering.

また、特許文献3および4に記載の技術では、熱伝導モデル(熱伝導シミュレーション)等に基づいてナゲットの温度を推定するため、複雑な計算処理が必要であり、溶接制御装置の構成が複雑になるだけでなく、溶接制御装置自体が高価になるという問題があった。 In addition, the techniques described in Patent Documents 3 and 4 require complex calculation processing to estimate the nugget temperature based on a heat conduction model (heat conduction simulation), etc., and the configuration of the welding control device becomes complicated. In addition, there was a problem that the welding control device itself became expensive.

さらに、特許文献5に記載の技術では、累積発熱量を目標値に制御することによって、電極が一定量摩耗していたとしても良好な溶接を行うことができるものと考えられる。
しかしながら、設定した被溶接材条件と実際の被溶接材条件が大きく異なる場合、例えば、被溶接材となる金属板間に大きな隙間が存在している場合などには、最終的な累積発熱量を目標値に合わることができても、発熱の形態、つまり溶接部の温度分布の時間変化が目標とする良好な溶接部が得られる熱量パターンから外れ、必要とするナゲット径が得られなかったり、散りが発生したりする。
Furthermore, with the technique described in Patent Document 5, it is considered that by controlling the cumulative heat generation amount to a target value, it is possible to perform good welding even if the electrode is worn a certain amount.
However, if the set material conditions to be welded and the actual material conditions to be welded are significantly different, for example, if there is a large gap between the metal plates that are to be welded, the final cumulative calorific value cannot be calculated. Even if the target value can be met, the form of heat generation, that is, the time change in the temperature distribution of the weld zone, deviates from the heat amount pattern that would yield a good weld zone, and the required nugget diameter may not be obtained. , scattering may occur.

本発明は、上記の現状に鑑み開発されたものであって、外乱の影響、特に被溶接材を構成する金属板間の隙間(以下、「板隙」ともいう)が大きい場合であっても、散りの発生なしに、安定して所望のナゲット径を得ることができる抵抗スポット溶接方法を提供することを目的とする。
また、本発明は、上記の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法を提供することを目的とする。
The present invention has been developed in view of the above-mentioned current situation, and even when the influence of external disturbances, especially the gap between the metal plates constituting the material to be welded (hereinafter also referred to as "plate gap") is large, An object of the present invention is to provide a resistance spot welding method that can stably obtain a desired nugget diameter without causing expulsion.
Another object of the present invention is to provide a method for manufacturing a welded member, in which a plurality of stacked metal plates are joined by the above-described resistance spot welding method.

さて、発明者らは、上記の目的を達成すべく、鋭意検討を重ね、以下の知見を得た。
(1)板隙が大きい場合、通電開始時点では被溶接材を構成する金属板(以下、単に「金属板」ともいう)間の接触面積が小さいため、散りが発生しやすくなる。また、板隙が大きい場合に、金属板を電極で過度に加圧すると、金属板が大きく反る。これにより、金属板と電極の接触面積が過度に増大して電極への抜熱が促され、結果的に、ナゲット径やナゲット厚さが小さくなる場合もある。
(2)このような板隙の影響を緩和するには、板隙の大きさに応じて、通電時の加圧力を設定して、通電時、特には通電開始時点で、金属板間に適正な接触面積を確保することが有効である。
Now, in order to achieve the above object, the inventors have made extensive studies and have obtained the following knowledge.
(1) If the plate gap is large, the contact area between the metal plates (hereinafter also simply referred to as "metal plates") constituting the material to be welded is small at the time of starting energization, so expulsion is likely to occur. Further, if the metal plate is excessively pressurized with an electrode when the plate gap is large, the metal plate will warp significantly. As a result, the contact area between the metal plate and the electrode increases excessively, promoting heat removal to the electrode, and as a result, the nugget diameter and nugget thickness may become smaller.
(2) To alleviate the effect of such a plate gap, set the pressure force when energizing according to the size of the plate gap to ensure that the space between the metal plates is appropriate when energizing, especially at the beginning of energizing. It is effective to ensure a large contact area.

そこで、発明者らは、上記の知見を基に、板隙の大きさに応じて、通電時の加圧力を設定する方法について、さらに検討を重ね、以下の知見を得た。
(3)板隙の影響は、加圧を開始してから所定の設定加圧力に到達するまでの加圧力の指標となるパラメータに反映される、
例えば、金属板間に隙間がない場合と、金属板間に隙間がある場合に、それぞれ同じ条件で金属板を加圧していくと、加圧を開始してから所定の設定加圧力に到達するまでの時間やサーボモータの挙動が、それぞれ異なるものになる、
(4)よって、まず、通電開始前に、上記被溶接材を所定の設定加圧力(以下、初期設定加圧力ともいう)に到達するまで加圧し、
ついで、通電開始前の加圧開始時点から初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用い、図1に示すように、板隙の影響を考慮して、(初期設定加圧力:F0とは別途、)通電時の加圧力:FAを設定し通電を行う、特には、通電時の加圧力を、下記式(1)を満足する範囲内に設定し通電を行う、
ことにより、
通電開始時点で、金属板間に適切な接触面積を確保することができ、その結果、板隙の影響によらず、散りの発生なしに、安定して所望のナゲット径を得ること可能となる。
F0×(1+0.1×(TA-T0)/T0) ≦ FA ≦F0×(1+3.0×(TA-T0)/T0) ・・・(1)
ここで、
FA:本溶接における通電時の加圧力
F0:本溶接における初期設定加圧力
TA:本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
T0:被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
である。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
Therefore, based on the above knowledge, the inventors further studied the method of setting the pressing force during energization according to the size of the plate gap, and obtained the following knowledge.
(3) The influence of the plate gap is reflected in the parameter that is an index of the pressurizing force from the start of pressurization until reaching the predetermined set pressurizing force.
For example, if there is no gap between the metal plates and if there is a gap between the metal plates, if the metal plates are pressurized under the same conditions, the predetermined set pressure will be reached after the pressurization starts. The time it takes to reach this point and the behavior of the servo motor will be different for each.
(4) Therefore, first, before starting energization, pressurize the material to be welded until it reaches a predetermined set pressure (hereinafter also referred to as initial set pressure),
Then, as shown in Fig. 1, using parameters that serve as an index of the pressurizing force obtained from the time when pressurizing starts before starting energization until reaching the initial set pressurizing force, and taking into account the effect of the plate gap, (initial Separately from the set pressure force: F 0 ), set the pressure force when energizing: F A and energize. In particular, set the pressure force during energization within a range that satisfies the following formula (1) and energize it. I do,
By this,
It is possible to secure an appropriate contact area between the metal plates at the start of energization, and as a result, it is possible to stably obtain the desired nugget diameter without the influence of plate gaps and without the occurrence of expulsion. .
F 0 ×(1+0.1×(T A -T 0 )/T 0 ) ≦ F A ≦F 0 ×(1+3.0×(T A -T 0 )/T 0 ) ・・・(1)
here,
F A : Pressure force during current welding
F 0 : Initial setting force for main welding
T A : Time from the start of pressurization before starting energization to reaching the initial set pressurization force during main welding
T 0 : When there is no gap between the metal plates constituting the material to be welded, it is the time from the time when pressurization starts before starting energization until the initial set pressurizing force is reached.
The present invention was completed based on the above findings and further studies.

すなわち、本発明の要旨構成は次のとおりである。
1.複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接の通電開始前に、上記被溶接材を初期設定加圧力に到達するまで加圧し、
ついで、上記本溶接の通電開始前の加圧開始時点から上記初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、上記本溶接の通電時の加圧力を設定する、
抵抗スポット溶接方法。
That is, the gist of the present invention is as follows.
1. A resistance spot welding method in which a material to be welded, which is made up of multiple overlapping metal plates, is sandwiched between a pair of electrodes and joined by applying electricity while applying pressure,
Before starting energization for main welding, pressurize the above-mentioned material to be welded until it reaches the initial setting pressure,
Next, the pressurizing force at the time of energization for the main welding is set using a parameter that is an index of the pressurizing force obtained from the time when pressurization is started before the start of energization for the main welding to the time when the initial setting pressurizing force is reached. ,
Resistance spot welding method.

2.前記本溶接の通電時の加圧力を、次式(1)を満足する範囲内に設定する、前記1に記載の抵抗スポット溶接方法。
F0×(1+0.1×(TA-T0)/T0) ≦ FA ≦F0×(1+3.0×(TA-T0)/T0) ・・・(1)
ここで、
FA:本溶接における通電時の加圧力
F0:本溶接における初期設定加圧力
TA:本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
T0:被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
である。
2. 2. The resistance spot welding method according to item 1, wherein the applied force during energization in the main welding is set within a range that satisfies the following formula (1).
F 0 ×(1+0.1×(T A -T 0 )/T 0 ) ≦ F A ≦F 0 ×(1+3.0×(T A -T 0 )/T 0 ) ・・・(1)
here,
F A : Pressure force during current welding
F 0 : Initial setting force for main welding
T A : Time from the start of pressurization before starting energization to reaching the initial set pressurization force during main welding
T 0 : When there is no gap between the metal plates constituting the material to be welded, it is the time from the time when pressurization starts before starting energization until the initial set pressurizing force is reached.

3.前記本溶接に先立ち、テスト溶接を行うものとし、
該テスト溶接では、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
また、前記本溶接の通電では、前記テスト溶接における単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を目標値に設定し、該目標値に従って通電量を制御する、前記1または2に記載の抵抗スポット溶接方法。
3. Prior to the main welding, test welding shall be performed,
In this test welding, we calculated the time change curve of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount per unit volume, which are calculated from the electrical characteristics between the electrodes when applying current using constant current control to form a proper nugget. let me remember,
Further, in the energization of the main welding, the time change curve of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount per unit volume in the test welding are set as target values, and the amount of energization is controlled according to the target values. 2. The resistance spot welding method according to 1 or 2.

4.前記1~3のいずれかに記載の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法。 4. A method for manufacturing a welded member, comprising joining a plurality of stacked metal plates by the resistance spot welding method according to any one of 1 to 3 above.

本発明によれば、外乱の影響、特に板隙が大きい場合であっても、散りの発生なしに、良好なナゲットを得ることができる。
また、本発明によれば、自動車の製造などの実作業において次々と流れてくる被処理材を連続的に溶接する(溶接位置や被処理材ごとに外乱の状態が変動する)場合であっても、外乱の状態の変動に有効に対応して所望のナゲット径を安定的に確保することが可能となり、その結果、作業効率や歩留まりの向上という点でも極めて有利となる。
According to the present invention, good nuggets can be obtained without scattering even under the influence of disturbances, especially when the plate gap is large.
Further, according to the present invention, in actual work such as automobile manufacturing, when materials to be processed are continuously welded one after another (the state of disturbance varies depending on the welding position and each material to be processed), Also, it becomes possible to stably secure a desired nugget diameter by effectively responding to fluctuations in the state of disturbance, and as a result, it is extremely advantageous in terms of improving work efficiency and yield.

本発明の一実施形態に係る抵抗スポット溶接方法の加圧力と時間、および、溶接電流と時間の関係を示す図である。It is a figure showing the relationship between pressing force and time, and welding current and time of the resistance spot welding method concerning one embodiment of the present invention. (a)被溶接材となる金属板間に隙間がない場合と、(b)金属板間に隙間がある場合に、それぞれ同じ条件で被溶接材となる金属板を加圧していったときの、加圧力と時間、および、溶接電流と時間の関係を示す図である。(a) When there is no gap between the metal plates to be welded, and (b) When there is a gap between the metal plates, the pressure is applied to the metal plates to be welded under the same conditions. FIG. 2 is a diagram showing the relationship between pressing force and time, and welding current and time. (a)2枚重ねの板組み、および、(b)3枚重ねの板組みに対して、板隙(外乱)のない状態で溶接を行う場合の一例を模式的に示す図である。FIG. 6 is a diagram schematically showing an example of a case where welding is performed in a state where there is no plate gap (disturbance) for (a) a two-ply plate assembly and (b) a three-ply plate assembly. (a)板隙のある2枚重ねの板組み、および、(b)板隙のある3枚重ねの板組みに対して、溶接を行う場合の一例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of welding for (a) a two-ply plate assembly with a plate gap, and (b) a three-ply plate assembly with a plate gap; テスト溶接における1段通電の一例を模式的に示す図である。It is a figure which shows typically an example of 1 stage energization in test welding. テスト溶接における2段通電の一例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of two-stage energization in test welding.

本発明を、以下の実施形態に基づき説明する。
本発明の一実施形態は、複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接の通電開始前に、上記被溶接材を初期設定加圧力に到達するまで加圧し、
ついで、上記本溶接の通電開始前の加圧開始時点から上記初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、上記本溶接の通電時の加圧力を設定する、というものである。
なお、本溶接とは、対象とする被溶接材を実際に溶接する工程を意味し、後述するテスト溶接と区別するために使用する。
The present invention will be explained based on the following embodiments.
One embodiment of the present invention is a resistance spot welding method in which a material to be welded, which is a plurality of overlapping metal plates, is sandwiched between a pair of electrodes and joined by applying current while applying pressure.
Before starting energization for main welding, pressurize the above-mentioned material to be welded until it reaches the initial setting pressure,
Next, the pressurizing force at the time of energization for the main welding is set using a parameter that is an index of the pressurizing force obtained from the time when pressurization is started before the start of energization for the main welding to the time when the initial setting pressurizing force is reached. .
Note that main welding refers to the process of actually welding the target materials to be welded, and is used to distinguish it from test welding, which will be described later.

なお、本発明の一実施形態に係る抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能であればよく、形式(定置式、ロボットガン等)、電極形状等はとくに限定されない。 Note that the welding device that can be used in the resistance spot welding method according to the embodiment of the present invention may be any type as long as it is equipped with a pair of upper and lower electrodes and can arbitrarily control the pressurizing force and welding current during welding. (stationary type, robot gun, etc.), and the shape of the electrode is not particularly limited.

以下、本発明の一実施形態に係る抵抗スポット溶接方法の本溶接について、説明する。 Hereinafter, main welding of the resistance spot welding method according to an embodiment of the present invention will be explained.

(1)本溶接
上述したように、板隙の影響を緩和するには、板隙の大きさに応じて、通電時の加圧力を設定して、通電時、特には通電開始時点で、金属板間に適正な接触面積を確保することが有効である。
また、板隙の影響は、加圧を開始してから所定の設定加圧力に到達するまでの加圧力の指標となるパラメータに反映される。
よって、本溶接の通電開始前に、被溶接材を初期設定加圧力に到達するまで加圧し、ついで、本溶接の通電開始前の加圧開始時点から初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、本溶接の通電時の加圧力を設定することが重要となる。
(1) Main welding As mentioned above, in order to alleviate the effect of the plate gap, the pressure force at the time of energization is set according to the size of the plate gap, and the welding It is effective to ensure an appropriate contact area between the plates.
Further, the influence of the plate gap is reflected in a parameter that is an index of the pressurizing force from the start of pressurization until reaching a predetermined set pressurizing force.
Therefore, before the start of energization for main welding, the material to be welded is pressurized until the initial set pressure is reached, and then the pressure obtained from the time when pressure starts before the start of energization for main welding until the initial set pressure is reached. It is important to use a parameter that serves as an index of the pressurizing force to set the pressurizing force during energization for main welding.

例えば、図2に示すように、金属板間に隙間がない場合と、金属板間に隙間がある場合に、それぞれ同じ条件で金属板を加圧していくと、加圧を開始してから所定の設定加圧力に到達するまでの時間:TAが、それぞれ異なるものとなる。
すなわち、金属板間に隙間がない場合、電極による加圧開始後は、比較的短い時間で初期設定加圧力に到達する。一方、金属板間に板隙がある場合、加圧の初期段階では金属板を変形させて板隙を潰す(金属板間を接触させる)ことになるので、初期設定加圧力に到達達するまでの時間が長くなる。
よって、加圧開始から設定加圧力に達するまでの時間:TAなどの上記通電開始前の加圧開始時点から上記初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用い、図1に示すように、板隙の影響を考慮して、(初期設定加圧力:F0とは別途、)通電時の加圧力:FAを設定し通電を行う、特には、通電時の加圧力を、下記式(1)を満足する範囲内に設定し通電を行うことにより、通電開始時点で、金属板間に適正な接触面積を確保することができ、その結果、板隙の影響によらず、散りの発生なしに、安定して所望のナゲット径を得ること可能となる。
F0×(1+0.1×(TA-T0)/T0) ≦ FA ≦F0×(1+3.0×(TA-T0)/T0) ・・・(1)
ここで、
FA:本溶接における通電時の加圧力
F0:本溶接における初期設定加圧力
TA:本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
T0:被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間
である。
For example, as shown in Figure 2, if the metal plates are pressurized under the same conditions when there is no gap between the metal plates and when there is a gap between the metal plates, the predetermined amount will be The time it takes to reach the set pressure: T A will be different for each.
That is, if there is no gap between the metal plates, the initial set pressure is reached in a relatively short time after the electrodes start applying pressure. On the other hand, if there is a gap between the metal plates, in the initial stage of pressurization the metal plates are deformed to collapse the gap (bringing the metal plates into contact), so it takes a long time until the initial set pressure is reached. It takes longer.
Therefore, the time from the start of pressurization until reaching the set pressurizing force: A parameter that is an index of the pressurizing force obtained from the time when pressurizing starts before the start of energization to reaching the above-mentioned initial set pressurizing force, such as T A , is used. , as shown in Figure 1, taking into account the influence of the plate gap, set the pressing force when energizing: F A (separately from the initial setting pressing force: F 0 ) and energizing. In particular, when energizing By setting the pressing force within the range that satisfies the following formula (1) and energizing, it is possible to secure an appropriate contact area between the metal plates at the start of energization, and as a result, the gap between the plates is reduced. Regardless of the influence, it becomes possible to stably obtain a desired nugget diameter without the occurrence of expulsion.
F 0 ×(1+0.1×(T A -T 0 )/T 0 ) ≦ F A ≦F 0 ×(1+3.0×(T A -T 0 )/T 0 ) ・・・(1)
here,
F A : Pressure force during current welding
F 0 : Initial setting force for main welding
T A : Time from the start of pressurization before starting energization to reaching the initial set pressurization force during main welding
T 0 : When there is no gap between the metal plates constituting the material to be welded, it is the time from the time when pressurization is started before starting energization until the initial set pressurizing force is reached.

ここで、本溶接における通電時の加圧力:FAがF0×(1+0.1×(TA-T0)/T0)未満になると、通電開始時点で、金属板間に十分な接触面積を確保することが困難となる。一方、FAがF0×(1+3.0×(TA-T0)/T0) になると、金属板と電極の接触面積が過度に増大して電極への抜熱が促され、結果的に、ナゲット径やナゲット厚さが小さくなるおそれがある。
そのため、本溶接の通電開始前の加圧開始時点から初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、板隙の影響を加味して本溶接の通電時の加圧力を設定し通電を行うことが重要であり、特には、本溶接の通電時の加圧力を、上掲式(1)を満足する範囲内に設定し通電を行うことが好ましい。上掲式(1)について、より好ましくは、F0×(1+0.2×(TA-T0)/T0)以上、F0×(1+2.0×(TA-T0)/T0)以下である。
Here, if the pressurizing force during energization in main welding : F A becomes less than F 0 × (1+ 0.1 It becomes difficult to secure the area. On the other hand , when F A becomes F 0 × (1+ 3.0 In other words, the nugget diameter and nugget thickness may become smaller.
Therefore, using parameters that serve as an index of the pressurization force obtained from the time when pressurization starts before the start of current application in main welding until the initial setting pressure force is reached, and taking into account the influence of the plate gap, It is important to set the pressing force and conduct energization, and in particular, it is preferable to set the pressing force during energization during main welding within a range that satisfies formula (1) above. Regarding the above formula (1), more preferably F 0 ×(1+0.2×(T A -T 0 )/T 0 ) or more, F 0 ×(1+2.0×(T A -T 0 )/T 0 ) or less.

また、加圧力の指標となるパラメータとしては、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間、
・本溶接における通電開始前の加圧開始時点から通電開始時点までの時間、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータのトルク、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータの回転速度、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのひずみ、
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの電極変位量、および
・本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの電極変位速度、
などが挙げられ、これらのパラメータを用いて、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定し、通電を行うことが好ましい。
In addition, the parameters that serve as indicators of pressurizing force are:
・The time from the start of pressurization before the start of energization until the initial setting pressure is reached during main welding,
・Time from the start of pressurization before the start of energization to the start of energization in main welding,
・The torque of the welding gun's servo motor from the time when pressurization starts before the start of energization until the initial setting pressure is reached during main welding,
・The rotation speed of the servo motor of the welding gun from the time when pressurization starts before the start of energization in main welding until the initial setting pressurization force is reached,
・Distortion of the welding gun from the time of starting pressurization before starting energization until reaching the initial setting pressurizing force during main welding,
・Amount of electrode displacement from the time of starting pressurization before starting energization in main welding until reaching the initial setting pressure force, and ・Electrode displacement from the time of starting pressure before starting energization until reaching the initial setting pressure force in main welding displacement speed,
It is preferable to use these parameters to set the pressure force during energization in main welding within a range that satisfies the above formula (1), and then energize.

例えば、本溶接における通電開始前の加圧開始時点から通電開始時点までの時間は、[本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間]+[本溶接における初期設定加圧力への到達時点から通電開始時点までの時間]で表せる。
よって、本溶接における通電開始前の加圧開始時点から通電開始時点までの時間を、加圧力の指標となるパラメータとする場合には、[本溶接における通電開始前の加圧開始時点から通電開始時点までの時間]から[本溶接における初期設定加圧力への到達時点から通電開始時点までの時間]を減じるなどして、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定することが可能である。
また、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータのトルク(以下、単にトルクともいう)を、加圧力の指標となるパラメータとする場合、電極が被溶接材である金属板に接触すると、トルクが急激に増加しはじめ、その後、鋼板に十分な加圧力が付与された時点で、トルクは安定した値に達して飽和する。
よって、トルクの増加開始から飽和までの時間を、加圧開始時点から初期設定加圧力に到達するまでの時間とする(換言すれば、トルクの増加開始時点を加圧開始時点、トルクの増加が飽和してトルクが一定となった時点を初期設定加圧力への到達時点と判断する)ことにより、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定することが可能である。
さらに、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータの回転速度(以下、単に回転速度ともいう)を、加圧力の指標となるパラメータとする場合、電極が被溶接材である金属板に接触すると、回転速度は不安定になり、その後、徐々に減少していく。そして、初期設定加圧力に達すると電極は動かなくなるため、回転速度は0となる。
よって、回転速度が不安定になり減少を開始してから0に到達するまでの時間を、加圧開始時点から初期設定加圧力に到達するまでの時間とする(換言すれば、回転速度が不安定になった時点を加圧開始時点、回転速度が0になった時点を初期設定加圧力への到達時点と判断する)ことにより、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定することが可能である。
また、トルクの増加開始時点を加圧開始時点、回転速度が0となった時点を初期設定加圧力への到達時点と判断するなど、複数の加圧力の指標となるパラメータを組み合わせることで、本溶接における通電時の加圧力を、上掲式(1)を満足する範囲内に設定してもよい。
For example, the time from the time when pressure starts before energization starts to the time when energization starts in main welding is [time from the time when pressure starts before energization starts in main welding until reaching the initial set pressure] + [main welding] It can be expressed as the time from the time when the initial setting pressure is reached to the time when energization starts].
Therefore, when using the time from the time when pressure starts before the start of energization in main welding to the time when energization starts as a parameter that serves as an index of the welding force, By subtracting [the time from the time when the initial setting pressure force is reached to the time when energization starts] from [the time up to the time], the pressure force at the time of energization in the main welding satisfies the above formula (1). It is possible to set it within the range.
In addition, when the torque of the welding gun's servo motor (hereinafter also simply referred to as torque) from the time when pressurization starts before the start of current application until the initial setting pressurization force is reached during main welding is used as a parameter that is an index of the pressurization force. When the electrode comes into contact with the metal plate that is the material to be welded, the torque begins to increase rapidly, and then, when a sufficient pressing force is applied to the steel plate, the torque reaches a stable value and becomes saturated.
Therefore, the time from the start of torque increase until saturation is the time from the time when pressurization starts until the initial set pressure is reached (in other words, the time when torque starts to increase is the time when pressurization starts, and the time when torque increases is (The moment when the torque becomes saturated and constant is determined to be the time when the initial setting force is reached), the force when energizing in main welding is set within a range that satisfies the above formula (1). Is possible.
Furthermore, the rotational speed of the welding gun's servo motor (hereinafter also simply referred to as rotational speed) from the time when pressurization starts before the start of energization in main welding until it reaches the initial setting pressurization force is used as a parameter that is an index of the pressurization force. In this case, when the electrode comes into contact with the metal plate that is the material to be welded, the rotation speed becomes unstable and then gradually decreases. Then, when the initial setting pressure is reached, the electrode stops moving, so the rotation speed becomes zero.
Therefore, the time from when the rotation speed becomes unstable and starts decreasing until it reaches 0 is the time from the time when pressurization starts until the initial set pressure is reached (in other words, when the rotation speed becomes unstable) The time when the rotation speed becomes stable is determined as the time to start pressurization, and the time when the rotation speed becomes 0 is determined as the time when the initial setting pressure is reached. ) can be set within a range that satisfies.
In addition, by combining parameters that serve as indicators of multiple pressurizing forces, such as determining the point at which the torque starts to increase as the point at which pressurization starts, and the point at which the rotation speed reaches 0 as the point at which the initial set pressurizing force is reached, this The pressurizing force during energization during welding may be set within a range that satisfies the above formula (1).

加えて、本溶接における初期設定加圧力は、被溶接材を構成する金属板の材質や厚さなどに応じて、適宜、設定すればよい。
例えば、被溶接材として厚さ:1.6mm、材質:めっき無しまたは表面にZnを含むめっきを施した270~2000MPa級鋼板を2枚重ねた板組を使用する場合、初期設定加圧力は1.0~7.0kNとすることが好ましい。
また、被溶接材として厚さ:1.6mm、材質:めっき無しまたは表面にZnを含むめっきを施した270~2000MPa級鋼板を3枚重ねた板組を使用する場合、初期設定加圧力は2.0kN~10.0kNとすることが好ましい。
In addition, the initial setting pressure force in the main welding may be appropriately set depending on the material, thickness, etc. of the metal plate constituting the welded material.
For example, when using a stack of two 270 to 2000 MPa grade steel plates with a thickness of 1.6 mm and a material with no plating or surface plating containing Zn as the material to be welded, the initial setting pressure is 1.0 to 2000 MPa. It is preferable to set it to 7.0kN.
In addition, when using a stack of three 270 to 2000 MPa class steel plates with a thickness of 1.6 mm and material: unplated or plated with Zn on the surface as the material to be welded, the initial setting pressure is 2.0 kN. It is preferable to set it to ~10.0kN.

また、被溶接材を構成する金属板間に隙間がない、特には、外乱がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間:T0は、例えば、金属板間に隙間のない、本溶接と同じ板厚、材質の金属板から構成される被溶接材を別途用意し、本溶接と同じ加圧条件で、当該被溶接材を加圧することにより、求めればよい。
加えて、後述するテスト溶接を行う場合には、テスト溶接時の設定加圧力を、そのまま本溶接の初期設定加圧力としてもよい。
なお、一般的な抵抗スポット溶接装置では、加圧開始時点から設定加圧力に到達するまでの間のある加圧力(以下、切り替え設定値といもいう)に到達した時点で、制御方式を切り替える設定(位置制御→トルク制御)がなされており、通常、同じ加圧力手段を使用し、かつ当該切り替え設定値を同じにすれば、同じ条件で加圧されていると言える。
In addition, when there is no gap between the metal plates constituting the material to be welded, especially when there is no disturbance, the time from the start of pressurization before starting energization to the time when the initial setting pressure is reached: T 0 is, for example, , by preparing a separate material to be welded consisting of metal plates of the same thickness and material as the main welding, with no gaps between the metal plates, and pressurizing the material to be welded under the same pressure conditions as the main welding. , all you have to do is ask.
In addition, when performing test welding, which will be described later, the pressurizing force set during the test welding may be used as the initial setting pressurizing force for the main welding.
In addition, in general resistance spot welding equipment, the control method is set to be switched when a certain pressure (hereinafter referred to as the switching setting value) is reached between the time when pressure starts and the set pressure is reached. (position control→torque control), and normally, if the same pressurizing force means is used and the switching setting value is the same, it can be said that pressurization is performed under the same conditions.

さらに、本溶接における通電は、特に限定されず、定電流制御により行ってもよいし、後述するテスト溶接を行ったのちに、当該テスト溶接で設定した目標値に従って、通電量を制御する適応制御溶接を行ってもよい。 Furthermore, energization in main welding is not particularly limited, and may be performed by constant current control, or by adaptive control that controls the amount of energization according to the target value set in the test welding after performing test welding, which will be described later. Welding may also be performed.

例えば、定電流制御の場合、溶接電流および通電時間は、被溶接材を構成する金属板の材質や厚さなどに応じて、適宜、設定すればよく、例えば、一般的な2枚重ね以上の板組みを使用する場合、溶接電流は3.0~14.0kA、通電時間は100~1000msとすることが好適である。
また、本溶接の通電を2段以上の多段ステップに分割してもよく、例えば、ナゲットを形成する通電(本通電)の前に、接触径を安定化させるための予通電を行ってもよいし、後熱処理のための後通電を行ってもよい。これらの予通電および後通電は、定電流制御により行っても、アップスロープ状やダウンスロープ状の通電パターンとしてもよい。また、各通電間に通電休止時間を設けてもよい。
For example, in the case of constant current control, the welding current and energization time can be set appropriately depending on the material and thickness of the metal plates that make up the welded material. When using a plate assembly, it is preferable that the welding current is 3.0 to 14.0 kA and the current application time is 100 to 1000 ms.
In addition, the energization for main welding may be divided into two or more multi-stage steps. For example, before the energization to form the nugget (main energization), pre-energization may be performed to stabilize the contact diameter. However, post-energization may be performed for post-heat treatment. These pre-energization and post-energization may be performed by constant current control, or may be performed in an upslope or downslope energization pattern. Furthermore, an energization pause time may be provided between each energization.

また、適応制御溶接の場合、後述するテスト溶接により得た目標値(単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量)を基準として溶接を行い、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線に沿っている場合には、そのまま溶接を行って溶接を終了する。ただし、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの通電時間内で補償すべく、本溶接での単位体積当たりの累積発熱量が目標値として設定した単位体積当たりの累積発熱量と一致するように通電量を制御する。 In addition, in the case of adaptive control welding, welding is performed based on the target values (time change curve of instantaneous heat generation per unit volume and cumulative heat generation) obtained from test welding described later, and the time of instantaneous heat generation per unit volume is If the amount of change is along the standard time change curve, welding is continued and the welding is completed. However, if the amount of change over time in the instantaneous heat generation amount per unit volume deviates from the standard time change curve, in order to compensate for the deviation within the remaining energization time, the cumulative amount per unit volume during main welding is The amount of energization is controlled so that the amount of heat generated matches the cumulative amount of heat generated per unit volume set as a target value.

さらに、後述するテスト溶接において通電を2段以上の多段ステップに分割し、当該多段ステップに分割した溶接条件に基づき適応制御溶接の目標値を設定する場合には、本溶接の適応制御溶接も、テスト溶接において多段ステップに分割した溶接条件と同様に、多段ステップに分割して行う、ステップ毎の適応制御溶接を行うことが好ましい。 Furthermore, in test welding described later, when energization is divided into two or more multi-steps and the target value of adaptive control welding is set based on the welding conditions divided into the multi-steps, the adaptive control welding of main welding is also It is preferable to perform step-by-step adaptive control welding, which is performed by dividing into multiple steps, similar to the welding conditions in which test welding is divided into multiple steps.

ここで、ステップ毎の適応制御溶接では、いずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を当該ステップの残りの通電時間内で補償すべく、当該ステップでの単位体積当たりの累積発熱量が、テスト溶接の当該ステップでの単位体積当たりの累積発熱量と一致するように、通電量を制御する。 Here, in step-by-step adaptive control welding, if the amount of time change in instantaneous heat generation per unit volume deviates from the standard time change curve in any step, the amount of deviation is calculated from the rest of the step. In order to compensate within the current application time, the amount of current applied is controlled so that the cumulative amount of heat generated per unit volume in the relevant step matches the cumulative amount of heat generated per unit volume in the relevant step of test welding.

なお、発熱量の算出方法については特に制限はないが、特許文献5にその一例が開示されており、本発明でもこの方法を採用することができる。この方法による単位体積・単位時間当たりの発熱量qおよび単位体積当たりの累積発熱量Qの算出要領は次のとおりである。
被溶接材の合計厚みをt、被溶接材の電気抵抗率をr、電極間電圧をV、溶接電流をIとし、電極と被溶接材が接触する面積をSとする。この場合、溶接電流は横断面積がSで、厚みtの柱状部分を通過して抵抗発熱を発生させる。この柱状部分における単位体積・単位時間当たりの発熱量qは次式(2)で求められる。
q=(V・I)/(S・t) --- (2)
また、この柱状部分の電気抵抗Rは、次式(3)で求められる。
R=(r・t)/S --- (3)
(3)式をSについて解いてこれを(2)式に代入すると、発熱量qは次式(4)
q=(V・I・R)/(r・t
=(V)/(r・t) --- (4)
となる。
Note that there is no particular restriction on the method of calculating the calorific value, but an example thereof is disclosed in Patent Document 5, and this method can also be adopted in the present invention. The procedure for calculating the calorific value q per unit volume/unit time and the cumulative calorific value Q per unit volume using this method is as follows.
The total thickness of the material to be welded is t, the electrical resistivity of the material to be welded is r, the voltage between the electrodes is V, the welding current is I, and the area where the electrode and the material to be welded are in contact is S. In this case, the welding current passes through a columnar portion with a cross-sectional area of S and a thickness of t, generating resistance heat generation. The calorific value q per unit volume/unit time in this columnar portion is determined by the following equation (2).
q=(V・I)/(S・t) --- (2)
Further, the electrical resistance R of this columnar portion is determined by the following equation (3).
R=(r・t)/S --- (3)
Solving equation (3) for S and substituting this into equation (2), the calorific value q is given by the following equation (4)
q=(V・I・R)/(r・t 2 )
=(V 2 )/(r・t 2 ) --- (4)
becomes.

上掲式(4)から明らかなように、単位体積・単位時間当たりの発熱量qは、電極間電圧Vと被溶接物の合計厚みtと被溶接物の電気抵抗率rから算出でき、電極と被溶接物が接触する面積Sによる影響を受けない。なお、(4)式は電極間電圧Vから発熱量を計算しているが、電極間電流Iから発熱量qを計算することもでき、このときにも電極と被溶接物が接触する面積Sを用いる必要がない。そして、単位体積・単位時間当たりの発熱量qを通電期間にわたって累積すれば、溶接に加えられる単位体積当たりの累積発熱量Qが得られる。(4)式から明らかなように、この単位体積当たりの累積発熱量Qもまた電極と被溶接材が接触する面積Sを用いないで算出することができる。
以上、特許文献5記載の方法によって、累積発熱量Qを算出する場合について説明したが、その他の算出式を用いても良いのは言うまでもない。
As is clear from the above equation (4), the calorific value q per unit volume/unit time can be calculated from the interelectrode voltage V, the total thickness t of the welded object, and the electrical resistivity r of the welded object. It is not affected by the contact area S between the welded object and the welded object. Although equation (4) calculates the amount of heat generated from the interelectrode voltage V, it is also possible to calculate the amount of heat q from the interelectrode current I, and in this case, the area S where the electrode and the workpiece are in contact There is no need to use Then, by accumulating the calorific value q per unit volume/unit time over the energization period, the cumulative calorific value Q per unit volume added to welding is obtained. As is clear from equation (4), the cumulative calorific value Q per unit volume can also be calculated without using the area S where the electrode and the material to be welded are in contact.
The case where the cumulative calorific value Q is calculated by the method described in Patent Document 5 has been described above, but it goes without saying that other calculation formulas may be used.

(2)テスト溶接
上記の本溶接の通電において、適応制御溶接を行う場合には、本溶接に先立ち、テスト溶接を行い、該テスト溶接において、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させる。
すなわち、テスト溶接では、被溶接材と同じ鋼種、厚みの予備溶接試験を、既溶接点への分流や板隙のない状態で、定電流制御にて種々の条件で行い、テスト溶接における最適条件を見つける。
そして、上記の条件で通電を行い、この通電の際の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を、本溶接における目標値として、記憶させる。なお、電極間の電気特性とは、電極間抵抗または電極間電圧を意味する。
また、上述したように、テスト溶接における通電を2段以上の多段ステップに分割し、本溶接において、ステップ毎の適応制御溶接を行ってもよい。
(2) Test welding If adaptive control welding is performed in the above-mentioned main welding energization, test welding is performed prior to main welding, and in the test welding, current is applied under constant current control to form a proper nugget. The time change curve of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount per unit volume, which are calculated from the electrical characteristics between the electrodes in the case, are stored.
In other words, in test welding, preliminary welding tests on the same steel type and thickness as the material to be welded are performed under various conditions with constant current control, without branching to existing welding points or gaps, to determine the optimal conditions for test welding. Find.
Then, energization is carried out under the above conditions, and the time change curve of instantaneous heat generation per unit volume and cumulative heat generation per unit volume, which are calculated from the electrical characteristics between the electrodes during energization, are calculated as the target for this welding. Store it as a value. Note that the electrical property between the electrodes means the resistance between the electrodes or the voltage between the electrodes.
Further, as described above, the energization in the test welding may be divided into two or more multi-steps, and the adaptive control welding may be performed for each step in the main welding.

なお、使用する被溶接材は特に制限はなく、軟鋼から超高張力鋼板までの各種強度を有する鋼板およびめっき鋼板、アルミ合金などの軽金属板の溶接にも適用でき、3枚以上の鋼板を重ねた板組みにも適用できる。 There are no particular restrictions on the materials to be welded, and it can be applied to welding steel plates with various strengths from mild steel to ultra-high tensile strength steel plates, as well as light metal plates such as plated steel plates and aluminum alloys. It can also be applied to plate construction.

また、上記の本発明の一実施形態に係る抵抗スポット溶接方法では、被溶接材に板隙がある場合を例示して説明したが、溶接点の近傍に既溶接点がある場合においても、所望のナゲット径を安定的に確保する効果が得られる。
すなわち、溶接点の近傍に既溶接点がある場合、既溶接点での溶接の際のシートセパレーションの影響で、被溶接材となる金属板間に僅かな隙間が生じる。よって、溶接点と既溶接点の距離が近く、特に、被溶接材を構成する金属板が高張力鋼板などの場合には、この隙間を加圧によって潰すことが困難となって、金属板間で十分な接触面積が確保できず、既溶接点への分流が生じやすくなる。
本発明の一実施形態に係る抵抗スポット溶接方法によれば、上記のような板隙がある場合にも、通電開始時点での加圧力を適正に制御して、金属板間に適正な接触面積を確保することが可能となる。また、特に、適応制御溶接を行う場合、既溶接点への分流が回避されることで、適応制御溶接における発熱量の誤認識をより有効に防止することが可能となる。
Further, in the resistance spot welding method according to the embodiment of the present invention, the case where there is a gap in the material to be welded has been explained as an example, but even when there is an existing welding point in the vicinity of the welding point, it is possible to This has the effect of stably securing a nugget diameter of .
That is, when there is an existing welding point in the vicinity of the welding point, a slight gap is created between the metal plates to be welded due to the influence of sheet separation during welding at the existing welding point. Therefore, when the distance between the welding point and the already welded point is close, especially when the metal plate constituting the material to be welded is a high-tensile steel plate, it becomes difficult to close this gap by applying pressure, and the gap between the metal plates becomes small. , sufficient contact area cannot be secured, and flow is likely to flow to the already welded point.
According to the resistance spot welding method according to an embodiment of the present invention, even when there is a gap between the metal plates as described above, the pressing force at the start of energization can be appropriately controlled to maintain an appropriate contact area between the metal plates. It becomes possible to secure the following. In addition, especially when performing adaptive control welding, by avoiding flow diversion to already welded points, it becomes possible to more effectively prevent misrecognition of the amount of heat generated in adaptive control welding.

そして、上記した抵抗スポット溶接方法を用いて重ね合わせた複数枚の金属板を接合することで、外乱の状態の変動に有効に対応して所望のナゲット径を安定的に確保しつつ、種々の溶接部材、特には、自動車部品等の溶接部材を製造することができる。 By joining multiple overlapping metal plates using the above-mentioned resistance spot welding method, the desired nugget diameter can be stably secured while effectively responding to fluctuations in disturbance conditions. Welded parts, in particular welded parts such as automobile parts, can be manufactured.

表1に示す金属板の板組みについて、図3(a)および(b)のような板隙(外乱)がない状態、または、図4(a)および(b)のような板隙がある状態で、表2に示す条件で本溶接を行い、溶接継手を作製した。ここで、No.1、2、4~13では、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間を、加圧力の指標となるパラメータとして、本溶接の通電時の加圧力を設定した。一方、No.3では、通電時の加圧力を初期設定加圧力のままとして、本溶接の通電を行った。
なお、図4(a)および(b)では、金属板間にスペーサを挿入し、上下からクランプすることで(図示せず)、種々の板隙厚さtgとなる板隙を設けた。なお、スペーサ間距離はいずれも40mmとした。
Regarding the metal plate assembly shown in Table 1, there is no plate gap (disturbance) as shown in Figures 3 (a) and (b), or there is a plate gap as shown in Figures 4 (a) and (b). In this state, main welding was performed under the conditions shown in Table 2 to produce a welded joint. Here, No. In 1, 2, 4 to 13, the time from the start of pressurization before the start of energization in main welding until the initial setting pressure is reached is used as a parameter serving as an index of the pressure force, and the pressure force during energization in main welding is It was set. On the other hand, No. In No. 3, energization for main welding was carried out with the pressure applied during energization kept at the initial setting pressure.
In FIGS. 4A and 4B, spacers were inserted between the metal plates and clamped from above and below (not shown) to provide gaps having various thicknesses tg. Note that the distance between spacers was 40 mm in both cases.

また、一部の実施例については、本溶接の前に、図3に示す板隙のない状態で、表2に示す条件でテスト溶接を行い、加圧開始から初期設定加圧力に到達するまでの時間を測定するとともに、テスト溶接の通電時における、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させた。
なお、テスト溶接の通電は、図5のような1段通電、または、図6のような2段通電とし、テスト溶接で2段通電を行ったものについては、本溶接でステップ毎の適応制御溶接を行った。
さらに、テスト溶接を行わなかったものについては、別途、金属板間に隙間のない、本溶接と同じ板厚、材質の金属板から構成される被溶接材(外乱がない被溶接材)を用意し、本溶接と同じ加圧条件で、被溶接材を加圧することにより、加圧開始から初期設定加圧力に達するまでの時間を測定した。
これらの測定した被溶接材を構成する金属板間に隙間がない場合の、通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間を表2に併記する。
In addition, for some examples, test welding was performed under the conditions shown in Table 2 in a state without the plate gap shown in Fig. 3 before the main welding, and from the start of pressurization until the initial setting pressure was reached. In addition to measuring the time, the time change curve of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount per unit volume during test welding were memorized.
The energization for test welding is either one-step energization as shown in Figure 5 or two-stage energization as shown in Figure 6.If two-step energization is performed during test welding, adaptive control is applied for each step during main welding. Performed welding.
Furthermore, for those for which test welding was not performed, separately prepare a welding material (material to be welded without disturbance) consisting of metal plates of the same thickness and material as the actual welding, with no gaps between the metal plates. Then, by pressurizing the material to be welded under the same pressurizing conditions as for the main welding, the time from the start of pressurization until reaching the initial set pressurizing force was measured.
Table 2 also shows the time taken from the start of pressurization before the start of energization until the initial set pressurizing force is reached when there is no gap between the metal plates constituting the measured materials to be welded.

得られた各溶接継手について、溶接部を切断し、断面をエッチング後、光学顕微鏡により観察し、ナゲット径および散り発生の有無から、以下の3段階で評価した。
◎(合格、特に優れる):板隙によらず、ナゲット径が4.5√t´以上(t´:板組みのうち最も薄い金属板の板厚(mm))で、かつ散りの発生なし
○(合格、優れる):板隙によらず、ナゲット径が4.0√t´以上で、かつ、散りの発生無し(ただし、◎(合格、特に優れる)は除く)
×:板隙によっては、ナゲット径が4.0√t´未満、および/または、散りが発生
For each of the obtained welded joints, the welded portion was cut, the cross section was etched, and then observed using an optical microscope, and evaluated in the following three grades based on the nugget diameter and the presence or absence of expulsion.
◎ (Passed, particularly excellent): Regardless of the plate gap, the nugget diameter is 4.5√t' or more (t': thickness of the thinnest metal plate in the plate assembly (mm)), and there is no scattering ○ ( Pass, excellent): Regardless of the plate gap, the nugget diameter is 4.0√t' or more, and there is no scattering (excluding ◎ (pass, particularly excellent))
×: Depending on the plate gap, the nugget diameter is less than 4.0√t' and/or scattering occurs.

Figure 0007371664000001
Figure 0007371664000001

Figure 0007371664000002
Figure 0007371664000002

Figure 0007371664000003
Figure 0007371664000003

発明例ではいずれも、板隙によらず、散りの発生なく、十分な大きさのナゲット径が得られた。一方、比較例では、板隙によっては、十分なナゲット径が得られなかったり、散りが発生したりした。
なお、加圧力の指標となるパラメータとして、本溶接における通電開始前の加圧開始時点から通電開始時点までの時間、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータのトルク、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのサーボモータの回転速度、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの溶接ガンのひずみ、本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの電極変位量、および本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの電極変位速度を用いた場合にも、上記と同様の結果が得られた。
In all of the invention examples, a sufficiently large nugget diameter was obtained without any scattering, regardless of the plate gap. On the other hand, in the comparative example, depending on the plate gap, a sufficient nugget diameter could not be obtained or scattering occurred.
In addition, the parameters that serve as indicators of the pressurizing force are the time from the start of pressurization before starting energization in main welding to the time of starting energization, and the time from the start of pressurization before starting energization in main welding until the initial setting pressure is reached. The torque of the servo motor of the welding gun, the rotational speed of the welding gun servo motor from the time of starting pressure before starting energization in main welding until the initial setting pressure is reached, the time of starting pressure before starting energization in main welding. Distortion of the welding gun from the time it reaches the initial set pressure, the amount of electrode displacement from the start of pressure before starting current welding until it reaches the initial set pressure, and the pressure before starting current welding during main welding. Similar results were obtained when the electrode displacement rate from the starting point until reaching the initial set pressure force was used.

11,12:金属板
14:電極
15:スペーサ
11, 12: Metal plate 14: Electrode 15: Spacer

Claims (4)

複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接の通電開始前に、上記被溶接材を初期設定加圧力に到達するまで加圧し、
ついで、上記本溶接の通電開始前の加圧開始時点から上記初期設定加圧力に到達するまでに得られる加圧力の指標となるパラメータを用いて、上記本溶接の通電時の加圧力を設定し、
上記加圧力の指標となるパラメータとして、上記本溶接における通電開始前の加圧開始時点から初期設定加圧力に到達するまでの時間、および、上記本溶接における通電開始前の加圧開始時点から通電開始時点までの時間のうちの少なくとも一方を用いる、
抵抗スポット溶接方法。
A resistance spot welding method in which a material to be welded, which is made up of multiple overlapping metal plates, is sandwiched between a pair of electrodes and joined by applying electricity while applying pressure,
Before starting energization for main welding, pressurize the above-mentioned material to be welded until it reaches the initial setting pressure,
Next, the pressurizing force at the time of energization for the main welding is set using the parameter that is an index of the pressurizing force obtained from the time when pressurization is started before the start of energization for the above-mentioned main welding until the above-mentioned initial setting pressurizing force is reached. ,
The parameters that serve as indicators of the above-mentioned pressurizing force are the time from the time when pressurization starts before the start of energization in the above-mentioned main welding until the initial setting pressure is reached, and the time from the time when the pressurization starts before the start of energization in the above-mentioned main welding to the time when energization starts. using at least one of the time up to the starting point ;
Resistance spot welding method.
前記本溶接に先立ち、テスト溶接を行うものとし、
該テスト溶接では、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
また、前記本溶接の通電では、前記テスト溶接における単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を目標値に設定し、該目標値に従って通電量を制御する、請求項1に記載の抵抗スポット溶接方法。
Prior to the main welding, test welding shall be performed,
In this test welding, we calculated the time change curve of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount per unit volume, which are calculated from the electrical characteristics between the electrodes when applying current using constant current control to form a proper nugget. let me remember,
Further, in the energization of the main welding, the time change curve of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount per unit volume in the test welding are set as target values, and the amount of energization is controlled according to the target values. Item 1. The resistance spot welding method according to item 1.
請求項1または2に記載の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法。 A method for manufacturing a welded member, comprising joining a plurality of stacked metal plates by the resistance spot welding method according to claim 1 or 2. 請求項1または2に記載の抵抗スポット溶接方法に使用する、溶接装置。 A welding device used in the resistance spot welding method according to claim 1 or 2.
JP2021080019A 2018-11-08 2021-05-10 Resistance spot welding method, method for manufacturing welded parts, and welding equipment Active JP7371664B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018210874 2018-11-08
JP2018210874 2018-11-08
JP2020505936A JP6904479B2 (en) 2018-11-08 2019-11-01 Resistance spot welding method and welding member manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020505936A Division JP6904479B2 (en) 2018-11-08 2019-11-01 Resistance spot welding method and welding member manufacturing method

Publications (3)

Publication Number Publication Date
JP2021112773A JP2021112773A (en) 2021-08-05
JP2021112773A5 JP2021112773A5 (en) 2022-09-08
JP7371664B2 true JP7371664B2 (en) 2023-10-31

Family

ID=70611812

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020505936A Active JP6904479B2 (en) 2018-11-08 2019-11-01 Resistance spot welding method and welding member manufacturing method
JP2021080019A Active JP7371664B2 (en) 2018-11-08 2021-05-10 Resistance spot welding method, method for manufacturing welded parts, and welding equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020505936A Active JP6904479B2 (en) 2018-11-08 2019-11-01 Resistance spot welding method and welding member manufacturing method

Country Status (2)

Country Link
JP (2) JP6904479B2 (en)
WO (1) WO2020095847A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055797B (en) * 2022-05-28 2023-10-31 一汽丰田汽车(成都)有限公司长春丰越分公司 Method capable of eliminating splashing generated by robot resistance welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218379A (en) 1999-01-27 2000-08-08 Kawasaki Heavy Ind Ltd Method and device for controlling motor servo type resistance welding equipment
JP2003236674A (en) 2002-02-15 2003-08-26 Mazda Motor Corp Method and equipment of spot welding of high tensile steel
JP2006043731A (en) 2004-08-04 2006-02-16 Daihatsu Motor Co Ltd Method for controlling power-supply of spot welding
WO2016174842A1 (en) 2015-04-27 2016-11-03 Jfeスチール株式会社 Resistance spot welding method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379323B2 (en) * 1996-02-07 2003-02-24 松下電器産業株式会社 Control device of resistance welding machine
JP3161339B2 (en) * 1996-09-24 2001-04-25 松下電器産業株式会社 Method for controlling welding conditions of resistance welding machine
JPH10263839A (en) * 1997-03-25 1998-10-06 Nachi Fujikoshi Corp Method and circuit for correcting pressurizing force of welding gun
JP3886603B2 (en) * 1997-07-14 2007-02-28 株式会社ナ・デックス Resistance welding system using cumulative heat generation per unit volume as an index
DE10258059B4 (en) * 2002-12-11 2006-12-14 Nimak-Automatisierte-Schweisstechnik Gmbh Method for controlling a tool pressing force in joining devices
PL1990122T4 (en) * 2007-05-07 2012-02-29 Nimak Gmbh Method for operating an electrode pressure unit for a welding clamp and corresponding welding clamp
JP6590121B1 (en) * 2018-02-19 2019-10-16 Jfeスチール株式会社 Resistance spot welding method and manufacturing method of welded member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218379A (en) 1999-01-27 2000-08-08 Kawasaki Heavy Ind Ltd Method and device for controlling motor servo type resistance welding equipment
JP2003236674A (en) 2002-02-15 2003-08-26 Mazda Motor Corp Method and equipment of spot welding of high tensile steel
JP2006043731A (en) 2004-08-04 2006-02-16 Daihatsu Motor Co Ltd Method for controlling power-supply of spot welding
WO2016174842A1 (en) 2015-04-27 2016-11-03 Jfeスチール株式会社 Resistance spot welding method

Also Published As

Publication number Publication date
JP6904479B2 (en) 2021-07-14
JPWO2020095847A1 (en) 2021-02-15
WO2020095847A1 (en) 2020-05-14
JP2021112773A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
KR101906084B1 (en) Resistance spot welding method
KR101953054B1 (en) Resistance spot welding method and method for manufacturing resistance spot welded joint
WO2017212916A1 (en) Resistance spot welding method
CN110997210B (en) Resistance spot welding method and method for manufacturing welded member
KR102303694B1 (en) Resistance spot welding method and weld member production method
JP7371664B2 (en) Resistance spot welding method, method for manufacturing welded parts, and welding equipment
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
JP6892038B1 (en) Resistance spot welding method and welding member manufacturing method
CN112262012B (en) Resistance spot welding method and method for manufacturing welded member
JP6241580B1 (en) Resistance spot welding method
JP6856181B1 (en) Resistance spot welding method and welding member manufacturing method
JP6658992B1 (en) Resistance spot welding method and method for manufacturing welded member
JP6658993B1 (en) Resistance spot welding method and method for manufacturing welded member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7371664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150