JP2003236674A - Method and equipment of spot welding of high tensile steel - Google Patents

Method and equipment of spot welding of high tensile steel

Info

Publication number
JP2003236674A
JP2003236674A JP2002037815A JP2002037815A JP2003236674A JP 2003236674 A JP2003236674 A JP 2003236674A JP 2002037815 A JP2002037815 A JP 2002037815A JP 2002037815 A JP2002037815 A JP 2002037815A JP 2003236674 A JP2003236674 A JP 2003236674A
Authority
JP
Japan
Prior art keywords
current
steel sheet
welding
spot welding
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002037815A
Other languages
Japanese (ja)
Inventor
Katsunori Hanakawa
勝則 花川
Akiyoshi Murakami
士嘉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2002037815A priority Critical patent/JP2003236674A/en
Publication of JP2003236674A publication Critical patent/JP2003236674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of spot welding of high tensile steel plate and equipment for the method by which the generation of expulsion caused by a rapid increase in electric resistance due to a large hardness of a tensile steel plate and the poor fitness in the earlier stage of welding is suppressed, a sufficient nugget diameter is assured, the generation limit of the expulsion is expanded, an electric current path is surely secured, and the generation of crack is prevented by relaxing the decrease in the gradient of hardness of a heat-affected zone (HAZ) and a stress concentration due to the expansion of the HAZ. <P>SOLUTION: The spot welding is performed in a process which is provided with a first step S1 in which a nugget is generated by gradually increasing a supplied current to the high tensile steel plate, a second step S2 in which the supplied current is decreased after the first step S1, and a third step S3 in which a regular welding is performed by increasing the electric current after the second step S2 and the supplied current is gradually decreased. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、車体剛性部材と
してのルーフレインフォースメントやその他の高張力鋼
板をスポット溶接するような高張力鋼板のスポット溶接
方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for spot welding a high strength steel plate such as a roof reinforcement as a rigid member for a vehicle body or other high strength steel plate.

【0002】[0002]

【従来の技術】一般に、スポット溶接は図7に示すよう
に鋼板71,72を重ね合わせ、これら2枚の鋼板7
1,72を挟んで対向する一対の電極で挟持し、加圧し
た状態で通電することにより、ジュール熱による抵抗発
熱で、挟持部分の鋼板71,72同士を溶融して、ナゲ
ット(nugget、融合部)73を形成して接合させるもので
ある。
2. Description of the Related Art Generally, spot welding is performed by superposing steel plates 71 and 72 as shown in FIG.
By sandwiching the electrodes 1, 72 with a pair of electrodes facing each other, and energizing in a pressurized state, Joule heat causes resistance heating to melt the steel plates 71, 72 between the sandwiched portions, thereby nugget (nugget) fusion. Part) 73 is formed and joined.

【0003】上述のスポット溶接条件は、鋼板71,7
2の材質や板厚または重ね合わせ枚数などから生産に適
した最適電流範囲、加圧力が種々に設定される。溶接強
度は、通電電流が高くなる程、ナゲット73が成長する
ので該強度も高くなるが、通電電流が高くなるとチリ
(飛散する小粒の溶滴)が発生しやすくなる。
The above-mentioned spot welding conditions are steel plates 71, 7
The optimum current range and pressurizing force suitable for production are variously set depending on the material, plate thickness, number of superposed sheets, etc. The welding strength becomes higher as the energizing current increases so that the nugget 73 grows.
(Small droplets of droplets) easily occur.

【0004】最適電流範囲は、各加圧力において接合強
度を確保するためのナゲット73の径(ナゲット径)を確
保する最低電流と、チリが発生しない最高電流の範囲で
示され、一般的に安定した溶接品質を確保するためには
適正電流範囲は1KA以上が望ましい。
The optimum current range is indicated by the range of the minimum current for ensuring the diameter of the nugget 73 (nugget diameter) for ensuring the bonding strength at each pressing force and the maximum current at which dust does not occur, and is generally stable. It is desirable that the proper current range is 1 KA or more in order to ensure the above welding quality.

【0005】この適正電流範囲は電極の形状によっても
変化し、通常、図8に示す如く先端を偏平と成したCF
型の電極74と、図9に示すように先端を球状と成した
R型の電極75とが用いられるが、通電初期の抵抗を抑
えるには安定した電極接触面積を確保することが必要と
なり、鋼板71,72間の間隙や電極の打角のずれ等の
外乱の影響が小さいR型の電極75(図9参照)の方が有
利である。
This proper current range varies depending on the shape of the electrode, and normally, the CF having a flat tip as shown in FIG.
Although a type electrode 74 and an R type electrode 75 having a spherical tip as shown in FIG. 9 are used, it is necessary to secure a stable electrode contact area in order to suppress the resistance in the initial stage of energization. The R-type electrode 75 (see FIG. 9), which is less affected by disturbances such as the gap between the steel plates 71 and 72 and the deviation of the electrode striking angle, is more advantageous.

【0006】一方、通電方法は、通電を1回だけ行なう
1段通電方式(図10参照)と、図11に示すように、本
通電の前に予備通電を行なう2段通電方式(特開平11
−104849号公報参照)、すなわちワークとしての
鋼板71,72間の隙間が大きい場合、予備通電により
ワーク接触面同志のなじみをよくした後に、本通電によ
り接続する2段通電方式とがある。
On the other hand, the energization method includes a one-step energization method in which energization is performed only once (see FIG. 10) and a two-step energization method in which preliminary energization is performed before main energization as shown in FIG.
-104849), that is, when the gap between the steel plates 71 and 72 as the work is large, there is a two-step energization method in which the work contact surfaces are made familiar to each other by pre-energization and then the main contact is performed.

【0007】ところで、引張強度が500MPa以上の
高張力鋼板は、軟鋼板と比較して合金元素を多量に含有
すると共に、硬さも高く(一般の軟鋼板の硬さはHv9
0程度であるのに対して高張力鋼板の硬さはHv150
程度と高く)、なじみにくいので、通常の1段通電方式
(図10参照)では、充分な適正電流範囲を得ることがで
きず、HAZ部76(heat affected zoneの略で、溶接
時に熱影響を受けて金属組織や特性が変化した溶接金属
部、熱影響部のこと)の硬さも高くなり、疲労強度が低
下する等の問題点があった。
By the way, a high-tensile steel sheet having a tensile strength of 500 MPa or more contains a large amount of alloying elements as compared with a mild steel sheet and has a high hardness (the hardness of a general mild steel sheet is Hv9
The hardness of the high-strength steel plate is Hv150, while it is about 0.
It is difficult to get used to, so it is a normal one-step energization method.
In (see FIG. 10), a sufficient proper current range cannot be obtained, and the HAZ portion 76 (abbreviation of heat affected zone) is a weld metal portion whose heat treatment is affected by heat and changes in the metal structure and characteristics. There is a problem in that the hardness of the part) becomes high and the fatigue strength decreases.

【0008】この1段通電方式の問題点を検証するため
に、高張力鋼板として窒化鋼板(テストピース)を用して
スポット溶接を行なった結果、図8に示すCF型の電極
74によると1KA以上の適正電流範囲を確保することが
できたが、図9に示すR型の電極75では適正電流範囲
が1KA以下となった。
In order to verify the problem of this one-step energization method, spot welding was performed using a nitrided steel plate (test piece) as a high-strength steel plate. As a result, according to the CF type electrode 74 shown in FIG. Although the proper current range described above could be secured, the proper current range was 1 KA or less in the R-type electrode 75 shown in FIG.

【0009】ここで、CF型電極74(図8参照)で1KA
以上の適正電流範囲が得られたのは、窒化鋼板のテスト
ピースを用いて板間に隙間がない状態で溶接したので、
R型の電極75(図9参照)よりも、なじみが良好で、早
期にチリ発生が抑制できたことによるが、実際の生産に
際しては、設備や部品の形状等から板間隙が発生し、ま
た電極の打角が変化するために、R型の電極75を用い
た場合に比較して、適正電流範囲が悪化するものと推考
される。
Here, the CF type electrode 74 (see FIG. 8) is used for 1 KA.
The above proper current range was obtained because the test piece of the nitrided steel plate was used for welding with no gap between the plates,
It is more familiar than the R-type electrode 75 (see FIG. 9) and it is possible to suppress dust generation early, but in actual production, plate gaps occur due to the shape of equipment and parts, and It is considered that the appropriate current range is deteriorated as compared with the case where the R-type electrode 75 is used, because the hitting angle of the electrode changes.

【0010】つまり、実際の生産に際しては既述したよ
うに外乱の影響を受けにくいR型の電極75(図9参照)
を用いることが望ましく、このR型の電極75で適正電
流範囲を確保する必要がある。
That is, in the actual production, as described above, the R-type electrode 75 which is not easily affected by the disturbance (see FIG. 9).
It is desirable to use the R type electrode, and it is necessary to secure an appropriate current range with the R type electrode 75.

【0011】また上述の1段通電方式において窒化鋼板
をR型の電極75でスポット溶接したものに対して、引
張せん断試験を行なった結果、HAZ部76(図7参照)
と母材の境界で割れが発生し、強度が低下した。
A HAZ portion 76 (see FIG. 7) was obtained as a result of performing a tensile shearing test on a nitrided steel plate spot-welded with an R-shaped electrode 75 in the above-described one-step energization method.
A crack occurred at the boundary between the base metal and the base metal, and the strength decreased.

【0012】上述の適正電流範囲が得にくい要因は、窒
化によって鋼板の硬さがHv300程度に高くなってい
ることに加えて、表層に約15μm生成されるHv80
0程度の高硬度の窒化合物の層により、溶接初期のなじ
みが悪く、通電抵抗が急激に上昇した点と、窒化により
鋼板中に窒素と炭素が多量に固溶して融点が低下した点
との双方により、チリが発生しやすい状態になるからで
ある。
The reason why the above-mentioned appropriate current range is difficult to obtain is that the hardness of the steel sheet is increased to about Hv300 by nitriding and that Hv80 is generated in the surface layer of about 15 μm.
With a layer of nitrogen compound having a high hardness of about 0, the familiarity in the initial stage of welding was poor and the current-carrying resistance rapidly increased, and the fact that nitriding caused a large amount of solid solution of nitrogen and carbon in the steel sheet to lower the melting point. This is because both of them cause the dust to easily occur.

【0013】またHAZ部76と母材との境界で割れが
発生するのは、窒化によって鋼板中に窒素と炭素が多量
に固溶し、変態点が低下して、焼入れ性が増大したこと
により、溶接時の熱でHAZ部76の硬さが高くなり、
該部の高度傾斜が急斜面化し、歪が集中することによ
る。
The reason why cracking occurs at the boundary between the HAZ part 76 and the base metal is that nitriding causes a large amount of nitrogen and carbon to form a solid solution in the steel sheet, lowering the transformation point and increasing hardenability. , The heat of welding increases the hardness of the HAZ part 76,
This is because the altitude of the part is steeply sloped and the strain is concentrated.

【0014】そこで、上述のチリの発生を抑制するため
には、加圧力を高めることが有効であるが、窒化鋼板な
どの高張力鋼板ではその硬さが高いため過大な加圧力が
必要となり、現有設備を用いてスポット溶接を行なうこ
とが困難となる。
Therefore, in order to suppress the above-mentioned generation of dust, it is effective to increase the pressing force. However, in a high-tensile steel plate such as a nitrided steel plate, its hardness is high, so that an excessive pressing force is required. It will be difficult to perform spot welding using existing equipment.

【0015】このような問題点を解決するために図11
に示す2段階通電方式と、図12に示す2段通電方式と
が既に発明されている。
In order to solve such a problem, FIG.
The two-step energization method shown in Fig. 12 and the two-step energization method shown in Fig. 12 have been invented.

【0016】図11に示す2段通電方式は既述したよう
に、1段目の通電(予備通電)によりワーク接触面同志を
なじませ、2段目の通電(本通電)により溶接して、適正
電流範囲を得る方法である(特開平11−104849
号公報参照)。
As described above, in the two-step energization method shown in FIG. 11, the work contact surfaces are made to conform to each other by the first-step energization (preliminary energization), and welding is performed by the second-step energization (main energization). This is a method for obtaining an appropriate current range (Japanese Patent Laid-Open No. 11-104849).
(See Japanese Patent Publication).

【0017】この従来方法によれば、適正電流範囲が得
られる利点がある反面、HAZ部76の硬さ傾斜を改善
することができず、HAZ部76と母材の境界で割れが
発生する問題点があった。
According to this conventional method, although there is an advantage that an appropriate current range can be obtained, the hardness gradient of the HAZ portion 76 cannot be improved, and a crack occurs at the boundary between the HAZ portion 76 and the base material. There was a point.

【0018】一方、図12に示す2段通電方式は、1段
目の通電でワークにスポット溶接電流を流して溶接し、
2段目の通電でワークに一時的にテンパ処理電流を流し
て、焼もどし処理を行ない、さらに、その後に約35K
Nの過大な加圧力を付勢してワークを冷間加圧処理する
ものである(特開2001−170776号公報参照)。
On the other hand, in the two-step energization method shown in FIG. 12, a spot welding current is applied to the work piece for welding in the first energization,
Tempering current is temporarily applied to the work by the second-stage energization to perform the tempering process, and then about 35K.
The work is cold-pressurized by applying an excessive N pressure (see Japanese Patent Laid-Open No. 2001-170776).

【0019】この図12に示す従来方法によれば、HA
Z部76の硬さ傾斜が改善されるものの、適正電流範囲
が得にくい問題点があった。また、溶接後において電極
を利用して追加加圧(冷間加圧処理参照)を行なうこと
で、引張残留応力の低減、圧縮残留応力の付与が認めら
れるが、溶接時間は約300サイクル(約5秒)と長く、
特に、追加加圧終了までの処理時間が530〜540サ
イクル(但し、1サイクルは1/60秒)と長大なうえ、
別途、加圧設備を追加する必要があるため、現有設備を
用いてスポット溶接を行なうことが不可能な問題点があ
った。
According to the conventional method shown in FIG. 12, HA
Although the hardness gradient of the Z portion 76 is improved, there is a problem that it is difficult to obtain an appropriate current range. In addition, it is possible to reduce tensile residual stress and apply compressive residual stress by applying additional pressure (see cold pressure treatment) using the electrode after welding, but the welding time is approximately 300 cycles (approximately 5 seconds) and long,
In particular, the processing time until the end of additional pressurization is as long as 530 to 540 cycles (however, 1 cycle is 1/60 seconds), and
Since it is necessary to add pressure equipment separately, there is a problem that spot welding cannot be performed using existing equipment.

【0020】[0020]

【発明が解決しようとする課題】この発明は、高張力鋼
板への通電電流を漸変的に上昇させることによりナゲッ
ト生成を行ない、その後、一旦電流を下降させ、次に通
電電流を上昇させて本溶接とすると共に、漸変的に通電
電流を下降させることで、高張力鋼板の硬度が高く、溶
接初期のなじみ性が悪いことに起因して、通電抵抗が急
上昇して、チリが発生するのを抑制し、充分なナゲット
径の確保と、チリ発生限界の拡大を図ると共に、通電経
路を確実に確保することができ、しかも、熱影響部(H
AZ部)の硬度傾斜の緩斜面化と、HAZ部範囲の拡大
による応力の集中を緩和して、割れが生ずるのを防止す
ることができる高張力鋼板のスポット溶接方法およびそ
の装置の提供を目的とする。
SUMMARY OF THE INVENTION According to the present invention, a nugget is produced by gradually increasing the current passed through a high-strength steel sheet, and then the current is once dropped and then the current is raised. By performing main welding and gradually lowering the energizing current, the hardness of the high-strength steel plate is high and the conformability at the beginning of welding is poor, so the energizing resistance rises sharply and dust occurs. It is possible to secure a sufficient nugget diameter, expand the limit of dust generation, and ensure a current-carrying path, and to prevent the heat-affected zone (H
The purpose of the present invention is to provide a spot welding method for a high-strength steel plate and a device therefor capable of preventing the occurrence of cracks by relaxing the hardness gradient of the AZ part) and relaxing the stress concentration due to the expansion of the HAZ part range. And

【0021】[0021]

【課題を解決するための手段】この発明による高張力鋼
板のスポット溶接方法は、高張力鋼板をスポット溶接す
る高張力鋼板のスポット溶接方法であって、上記高張力
鋼板への通電電流を漸変的に上昇させることによりナゲ
ット生成を行なう第1ステップと、上記第1ステップの
後に電流下降させる第2ステップと、上記第2ステップ
後に電流上昇させて本溶接すると共に、漸変的に通電電
流を下降させる第3ステップとを備えた工程によりスポ
ット溶接を行なうものである。
A spot welding method for a high-strength steel sheet according to the present invention is a spot-welding method for a high-strength steel sheet for spot-welding a high-strength steel sheet, wherein a current applied to the high-strength steel sheet is gradually changed. First step of generating nugget by increasing the temperature, a second step of decreasing the current after the first step, and a step of increasing the current after the second step to perform the main welding and to gradually change the energizing current. Spot welding is performed by a process including a third step of lowering.

【0022】上記構成の高張力鋼板は、ガス軟窒化もし
くは塩浴窒化(タフトライド)された窒化鋼板(引張強度
約1000MPa)や焼入れ鋼板に設定してもよい。上
記構成によれば、第1ステップで、高張力鋼板への通電
電流を漸変的に上昇させてナゲットを生成し、次の第2
ステップで、通電電流を一旦下降させ、次に第3ステッ
プで、通電電流を上昇させて本溶接すると共に、本溶接
後に通電電流を漸変的に下降させるものである。
The high-strength steel sheet having the above-mentioned structure may be set to a gas soft-nitrided or salt-bath-nitrided (tufftrided) nitrided steel sheet (tensile strength of about 1000 MPa) or a hardened steel sheet. According to the above configuration, in the first step, the energizing current to the high-tensile steel plate is gradually increased to generate the nugget, and then the second step is performed.
In the step, the energizing current is once decreased, then in the third step, the energizing current is increased to perform the main welding, and the energizing current is gradually decreased after the main welding.

【0023】上述の第1ステップの処理により、高張力
鋼板の硬度が高く(高張力鋼板としての窒化鋼板を用い
た場合にはその表層部のビッカース硬さがHv800程
度にも高くなる)、溶接初期のなじみ性が悪いことに起
因して、通電抵抗が急上昇して、チリが発生するのを抑
制し、充分なナゲット径の確保と、チリ発生限界の拡大
を図ると共に、通電経路を確実に確保して、適正電流範
囲を得ることができる。
By the treatment of the above-mentioned first step, the hardness of the high-tensile steel plate is high (when the nitrided steel plate is used as the high-tensile steel plate, the Vickers hardness of the surface layer thereof is as high as Hv800), and the welding is performed. Due to the poor initial compatibility, the energization resistance is prevented from rapidly increasing and dust is suppressed, ensuring a sufficient nugget diameter and expanding the dust generation limit, and ensuring the energization path. It is possible to secure and obtain an appropriate current range.

【0024】また上述の第2ステップの処理により、電
流下降させることで、材料(高張力鋼板)の温度を一旦抑
制して、チリの発生をさらに抑止することができる。さ
らに上述の第3ステップの処理、なかんずく漸変的に通
電電流を下降させる焼もどしの効果により、HAZ部の
硬度傾斜の緩斜面化と、HAZ部範囲の拡大とから応力
の集中を緩和して、割れの発生を抑制することができ
る。
Further, by the process of the above-mentioned second step, by lowering the current, the temperature of the material (high-tensile steel plate) can be once suppressed, and the generation of dust can be further suppressed. Further, due to the effect of the above-mentioned third step treatment, in particular, tempering for gradually decreasing the energizing current, the concentration of stress is relieved from the gentle slope of the hardness gradient of the HAZ portion and the expansion of the HAZ portion range. It is possible to suppress the occurrence of cracks.

【0025】この発明の一実施態様においては、上記高
張力鋼板はその引張強度が500MPaを含むそれ以上
の値に設定されたものである。上記構成によれば、引張
強度≧500MPaで被溶接材料いわゆるワークの硬度
が高く、焼入れ性もよいという不利な条件であつても、
特に第1ステップの処理により溶接初期のなじみ性を確
保しつつ、通電経路を確保することができる。
In one embodiment of the present invention, the high-strength steel sheet has a tensile strength set to a value higher than 500 MPa. According to the above configuration, even under the disadvantageous conditions that the tensile strength ≧ 500 MPa, the hardness of the material to be welded, so-called work, is high, and the hardenability is good,
In particular, the process of the first step makes it possible to secure the energization path while securing the conformability at the initial stage of welding.

【0026】この発明の一実施態様においては、上記第
2ステップ終了から第3ステップ開始までの間に所定タ
イムラグが設けられたものである。上記構成によれば、
1段目の通電によるナゲット(またはナゲット核)生成後
に電流を一旦下降させ、この電流降下時点から本通電開
始までの間に所定タイムラグを設けるものである。1段
目の通電によるナゲット温度が高い時に続けて通電を行
なうと、材料の融点が低いことに起因して、材料が溶け
やすくなって、チリが発生するが、上記所定タイムラグ
により温度を抑制して、チリの発生をより一層良好に防
止することができる。
In one embodiment of the present invention, a predetermined time lag is provided between the end of the second step and the start of the third step. According to the above configuration,
The current is once decreased after the nugget (or nugget nucleus) is generated by the first-stage energization, and a predetermined time lag is provided between the time of the current drop and the start of the main energization. If current is continuously applied when the nugget temperature due to the first-stage current application is high, the material tends to melt due to the low melting point of the material and dust occurs, but the temperature is suppressed by the above-mentioned predetermined time lag. Therefore, it is possible to prevent the occurrence of dust even better.

【0027】この発明の一実施態様においては、被溶接
物は少なくともその被溶接面側が硬化された表面硬化鋼
板に設定されたものである。上記構成によれば、被溶接
物として上述の表面硬化鋼板を用いるので、被溶接面部
のなじみ性が悪くなるが、このような場合においても、
特に第1ステップの処理により溶接初期のなじみ性を確
保しつつ、通電経路を確実に得ることができる。
In one embodiment of the present invention, the object to be welded is set to a surface-hardened steel plate in which at least the surface to be welded is hardened. According to the above configuration, since the surface-hardened steel plate is used as the object to be welded, the conformability of the surface to be welded deteriorates, but even in such a case,
In particular, the process of the first step makes it possible to reliably obtain the energization path while ensuring the conformability at the initial stage of welding.

【0028】この発明の一実施態様においては、上記表
面硬化鋼板は窒化鋼板または/および焼入れ鋼板に設定
されたものである。上記構成によれば、被溶接物として
その表層部が硬さHv800程度の窒化鋼板または/お
よび焼入れ鋼板を用いるので、その表面硬度が特に高
く、被溶接面部のなじみ性が極めて悪いが、このような
場合においても、特に上述の第1ステップの処理により
溶接初期のなじみ性を確保しつつ、通電経路を確実に確
保することができる。
In one embodiment of the present invention, the surface-hardened steel plate is a nitrided steel plate and / or a hardened steel plate. According to the above configuration, since the nitrided steel plate or / and the hardened steel plate whose surface layer has a hardness of about Hv800 is used as the object to be welded, its surface hardness is particularly high, and the familiarity of the surface to be welded is extremely poor. Even in such a case, the energization path can be surely ensured while ensuring the conformability at the initial stage of welding by the process of the first step.

【0029】この発明の一実施態様においては、上記表
面硬化鋼板は、その硬化前に所定の形状に成形され、成
形後に硬化処理が施され、その後、硬化処理部位がスポ
ット溶接されるものである。
In one embodiment of the present invention, the surface-hardened steel sheet is formed into a predetermined shape before being hardened, subjected to a hardening treatment after the molding, and then spot-welded at the hardening portion. .

【0030】上記構成によれば、表面硬化鋼板の硬化処
理前に所定の形状に成形するので、成形性を確保するこ
とができ、その後、硬化処理および上記方法によるスポ
ット溶接を施すので、成形後の必要物性を得ることがで
きる。
According to the above construction, since the surface hardened steel sheet is formed into a predetermined shape before the hardening treatment, the formability can be ensured, and thereafter, the hardening treatment and the spot welding by the above method are performed. The required physical properties can be obtained.

【0031】この発明の一実施態様においては、上記第
3ステップの本溶接時の通電電流は、第1ステップのナ
ゲット生成時の通電電流より高く設定されたものであ
る。上記構成によれば、第1ステップのナゲット生成時
の通電電流(予備通電時の通電電流)は、チリが発生しな
い程度の比較的低い電流に設定することができるので、
チリ発生の抑制を確実化することができ、また第1ステ
ップの電流に対して高い値の通電電流(本通電)にて本溶
接を行なうので、この本溶接を確実化することができ
る。
In one embodiment of the present invention, the energizing current during the main welding in the third step is set higher than the energizing current during the nugget formation in the first step. According to the above configuration, the energization current during the nugget generation in the first step (the energization current during preliminary energization) can be set to a relatively low current at which dust does not occur.
The occurrence of dust can be reliably suppressed, and since the main welding is performed with a high-value energizing current (main energizing) with respect to the current in the first step, this main welding can be ensured.

【0032】この発明の一実施態様においては、上記第
1ステップにおける電流上昇開始から第3ステップにお
ける電流下降終了までを125サイクル以内で実行する
ものである。上記構成によれば、溶接に要する時間が1
25サイクル(但し、1サイクルは1/60秒)、望まし
くは50サイクル以内であるので、生産性のある溶接時
間を確保することができる。
In one embodiment of the present invention, the period from the start of the current increase in the first step to the end of the current decrease in the third step is executed within 125 cycles. According to the above configuration, the time required for welding is 1
Since it is within 25 cycles (however, 1 cycle is 1/60 seconds), preferably within 50 cycles, it is possible to secure a welding time with high productivity.

【0033】この発明によるスポット溶接装置は、高張
力鋼板をスポット溶接するスポット溶接装置であって、
対向配置された一対の電極と、上記電極を加圧する加圧
手段と、上記電極に対する通電電流を制御する制御手段
とを備え、上記制御手段は漸変的に通電電流を上昇させ
て高張力鋼板にナゲットを生成した後に電流下降させ、
その後電流上昇させて本溶接すると共に、漸変的に通電
電流を下降させるよう制御するものである。
The spot welding apparatus according to the present invention is a spot welding apparatus for spot welding a high-strength steel plate,
A pair of electrodes arranged to face each other, a pressurizing means for pressurizing the electrode, and a control means for controlling the energization current to the electrode, the control means gradually increasing the energization current, high tension steel plate After generating the nugget in the
After that, the current is increased to perform the main welding, and the energizing current is controlled to be gradually decreased.

【0034】上記構成によれば、まず通電電流を漸変的
に上昇させて被溶接物としての高張力鋼板にナゲットを
生成するので、高張力鋼板の硬度が高く、溶接初期のな
じみ性が悪いことに起因して、通電抵抗が急上昇して、
チリが発生するのを抑制し、充分なナゲット径の確保
と、チリ発生限界の拡大を図ると共に、通電経路を確実
に確保して、充分な適正電流範囲を得ることができる。
According to the above construction, first, the energizing current is gradually increased to generate the nugget on the high-tensile steel plate as the object to be welded, so that the high-tensile steel plate has high hardness and poor conformability at the initial stage of welding. Due to this, the energization resistance suddenly increased,
The generation of dust can be suppressed, a sufficient nugget diameter can be secured, the limit of dust generation can be expanded, and an energization path can be reliably secured to obtain a sufficient proper current range.

【0035】また、ナゲット生成後に電流を一旦下降さ
せることで、材料(被溶接部材としてのワーク)の温度を
一旦抑制(温度上昇の抑制)して、チリの発生をさらに抑
止することができる。
Further, by temporarily lowering the current after the nugget is formed, the temperature of the material (workpiece as the member to be welded) is once suppressed (temperature rise is suppressed), and the generation of dust can be further suppressed.

【0036】さらに、電流を上昇させて本溶接すると共
に、漸変的に通電電流を下降させて、焼もどしの効果を
得るので、HAZ部の硬度傾斜の緩斜面化と、HAZ部
範囲の拡大とから応力つまり歪の集中を緩和して、割れ
が発生するのを抑制することができるうえ、現有設備に
てスポット溶接を行なうことができる。
Further, the current is increased to perform the main welding, and the energizing current is gradually decreased to obtain the effect of tempering. Therefore, the hardness of the HAZ part is made gentle and the HAZ part range is expanded. Therefore, it is possible to reduce the concentration of stress, that is, strain, to suppress the occurrence of cracks, and to perform spot welding with existing equipment.

【0037】この発明の一実施態様においては、上記本
溶接時の通電電流(予備通電時の電流)はナゲット生成時
の通電電流(本通電時の電流)より高く設定されたもので
ある。上記構成によれば、ナゲット生成時の通電電流
は、チリが発生しない程度の比較的低い電流に設定する
ことができるので、チリ発生を確実に抑制することがで
き、またナゲット生成時の通電電流に対して高い値の通
電電流にて本溶接を行なうので、この本溶接を確実化す
ることができる。
In one embodiment of the present invention, the energizing current during main welding (current during preliminary energization) is set higher than the energizing current during nugget formation (current during main energization). According to the above configuration, the energization current during nugget generation can be set to a relatively low current at which dust does not occur, so it is possible to reliably suppress the occurrence of dust, and the energization current during nugget generation. Since the main welding is performed with a high value of energizing current, the main welding can be ensured.

【0038】[0038]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。図面は引張強度≧500MPaの高張力鋼板の
スポット溶接方法およびその装置を示すが、まず図1を
参照して高張力剛性のスポット溶接装置の構成について
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. The drawing shows a spot welding method and apparatus for high-tensile steel plates having a tensile strength of ≧ 500 MPa. First, the structure of a high-tensile-rigidity spot welding apparatus will be described with reference to FIG.

【0039】図1に示すように、このスポット溶接装置
は溶接ガン1と、制御部2とを備えている。上述の溶接
ガン1は加圧装置としてのシリンダ3の操作により移動
(上下動)および加圧される上部電極4(一方の可動電極)
と、この上部電極4と上下方向に対向するようにアーム
5に固定された下部電極6(他方の固定電極)と、溶接ト
ランス7と、ロボット接続部8とを備えている。
As shown in FIG. 1, this spot welding apparatus includes a welding gun 1 and a control unit 2. The welding gun 1 described above is moved by operating a cylinder 3 as a pressurizing device.
(Up and down) and pressurized upper electrode 4 (one movable electrode)
And a lower electrode 6 (the other fixed electrode) fixed to the arm 5 so as to face the upper electrode 4 in the vertical direction, a welding transformer 7, and a robot connecting portion 8.

【0040】ここで、上述の上下一対の電極4,6とし
てはR型の電極(図9参照)を用いることが望ましい。一
方、制御部2は、入力操作部9と、制御手段としてのC
PU10と、ROM11と、RAM12とを備えてい
る。
Here, it is desirable to use R-type electrodes (see FIG. 9) as the pair of upper and lower electrodes 4 and 6 described above. On the other hand, the control unit 2 includes an input operation unit 9 and a C as a control unit.
It has a PU 10, a ROM 11, and a RAM 12.

【0041】CPU10は、入力操作部9からの信号に
基づいて、ROM11に格納されたプログラムに従っ
て、シリンダ3および溶接トランス7を駆動制御し、ま
たRAM12(記憶手段)は通電パターン(図3参照)およ
びその通電電流値や通電サイクル数などの必要なデータ
を記憶する。
The CPU 10 drives and controls the cylinder 3 and the welding transformer 7 in accordance with a program stored in the ROM 11 based on a signal from the input operation section 9, and the RAM 12 (storage means) has an energization pattern (see FIG. 3). And necessary data such as the value of the energizing current and the number of energizing cycles are stored.

【0042】上述のCPU10は溶接トランス7を介し
て電極4,6に対する通電電流を制御する制御手段であ
って、このCPU10は溶接時に高張力鋼板に対する通
電電流を漸変的に上昇(図3のラインa参照)させた後
に、チリが発生しない程度の比較的低い電流(図3のラ
インb参照)を流して、高張力鋼板にナゲット(図7参
照)を生成し、その後、通電電流を一旦零に下降(図3の
ラインc参照)させ、この電流下流時点から所定タイム
ラグdを経た後に、通電電流を再び上昇(図3のライン
e参照)させて、ナゲット生成時の通電電流(図3のライ
ンb参照)よりも高い本溶接時の通電電流(図3のライン
f参照)にて本溶接すると共に、この本溶接後において
漸変的に通電電流を零まで下降(図3のラインg参照)さ
せて、焼もどしを行なうように制御すべく構成してい
る。
The above-mentioned CPU 10 is a control means for controlling the energizing current to the electrodes 4 and 6 via the welding transformer 7, and this CPU 10 gradually increases the energizing current to the high tensile steel plate during welding (see FIG. 3). (See line a), and then a relatively low current (see line b in FIG. 3) that does not cause dust is generated to generate a nugget (see FIG. 7) in the high-strength steel plate, and then the energizing current is temporarily changed. The current is lowered to zero (see line c in FIG. 3), and after a predetermined time lag d from this current downstream time, the energization current is increased again (see line e in FIG. 3) to generate the nugget current (FIG. 3). The main welding current (see line f in FIG. 3) is higher than that in the main welding, and the current gradually decreases to zero after the main welding (line g in FIG. 3). Control) to control tempering. It is structured to control.

【0043】図2は上記スポット溶接装置を用いて引張
強度≧500MPaの高張力鋼板をスポット溶接する場
合のスポット溶接方法を示す工程図であって、第1の工
程(アップスロープ工程U1)で一対の電極4,6間に例
えば合金元素が少ない軟鋼板と、合金元素が多い窒化鋼
板(少なくとも被溶接面側が硬化された表面硬化鋼板の
一例)との2枚の被溶接鋼板いわゆるワークを挟持し、
現有設備で加圧可能な所定の加圧力(数KNレベル)をシ
リンダ3にて付勢した状態下において、ワークに対する
通電電流を5〜30サイクルで漸変的に上昇させる(図
3のラインa参照)。
FIG. 2 is a process diagram showing a spot welding method in the case of spot welding a high-strength steel plate having a tensile strength of ≧ 500 MPa using the above spot welding apparatus, which is a pair in the first process (upslope process U1). Between two electrodes 4 and 6, for example, a so-called work piece to be welded is sandwiched between a mild steel sheet containing a small amount of alloying elements and a nitrided steel sheet containing a large amount of alloying elements (an example of a surface-hardened steel sheet having at least the surface to be welded hardened). ,
Under the condition that a predetermined pressurizing force (several KN level) that can be applied by the existing equipment is urged by the cylinder 3, the energizing current to the work is gradually increased in 5 to 30 cycles (line a in FIG. 3). reference).

【0044】次に第2の工程(通電工程)U2で、ワーク
に対して比較的低電流を5〜30サイクル通電して、ナ
ゲット(図7参照)の生成を行なう(図3のラインb参
照)。
Next, in the second step (energization step) U2, a relatively low current is applied to the work for 5 to 30 cycles to generate a nugget (see FIG. 7) (see line b in FIG. 3). ).

【0045】上述の第1の工程U1と第2の工程U2か
ら成る第1ステップS1の後に、第3の工程(クールダ
ウン工程)U3で、一旦、通電電流を零まで下降させる
(図3のラインC参照)。
After the first step S1 consisting of the above-mentioned first step U1 and second step U2, the energizing current is once decreased to zero in the third step (cool down step) U3.
(See line C in Figure 3).

【0046】この第3の工程U3による第2ステップS
2の終了から次の第3ステップS3に移行するまでの間
に、第4の工程U4(タイムラグ工程)で所定サイクル
(具体的には数サイクル)の経過を待機する(図3の所定
タイムラグd参照)。
Second step S in the third step U3
From the end of 2 to the next third step S3, a predetermined cycle in the fourth step U4 (time lag step)
It waits for the elapse of (specifically, several cycles) (see the predetermined time lag d in FIG. 3).

【0047】上述の所定タイムラグdの経過後に、図2
の第5の工程U5で、CPU10は溶接トランス7を介
して通電電流を上昇させて、ナゲット生成時の電流より
も高い通電電流にて5〜30サイクルの間、本溶接を実
行する(図3のラインf参照)。
After the elapse of the predetermined time lag d described above, FIG.
In the fifth step U5, the CPU 10 increases the energizing current through the welding transformer 7 and performs the main welding for 5 to 30 cycles at an energizing current higher than the current at the time of producing the nugget (FIG. 3). Line f)).

【0048】この第5の工程U5での本溶接の終了後
に、図2の第6の工程(ダウンスロープ工程)で、CPU
10は通電電流を10〜30サイクルかけて漸変的に零
まで下降させて、ワークに焼もどし効果を付与する(図
3のラインg参照)。なお、上述の第5の工程Uと第6
の工程U6とで第3ステップS3が形成される。この場
合、第1ステップS1における電流上昇開始時点t
ら第3ステップS3における電流下降終了時点tまで
は125サイクル以内、望ましくは50サイクル以内に
設定することができ、この短時間内でスポット溶接を実
行することができる。さらに図3に示す時点t〜t
までの間は所定の加圧力がワークに付勢されるものであ
る。
After the completion of the main welding in the fifth step U5, in the sixth step (downslope step) of FIG.
10 gradually changes the energizing current to zero over 10 to 30 cycles to give the work a tempering effect (see line g in FIG. 3). In addition, the fifth step U and the sixth step described above.
The third step S3 is formed by the process U6. In this case, the period from the current rise start time t 0 in the first step S1 to the current fall end time t n in the third step S3 can be set within 125 cycles, preferably within 50 cycles, and the spot can be set within this short time. Welding can be performed. Further, time points t 0 to t n shown in FIG.
Until then, a predetermined pressing force is applied to the work.

【0049】また上述のワークとしては窒化または焼入
れによる硬化処理前に予めプレス加工機等により所定の
形状にワーク成形し、この成形後に窒化または焼入れに
よる硬化処理を実行し、その後、硬化処理部位を図2に
工程図で示す方法によってスポット溶接するものであ
る。
Further, as the above-mentioned work, before the hardening treatment by nitriding or quenching, the work is molded into a predetermined shape by a press machine or the like in advance, and after this molding, the hardening treatment by nitriding or quenching is carried out, and then the hardening treated portion Spot welding is performed by the method shown in the process diagram of FIG.

【0050】上記方法によってスポット溶接された本実
施例品に対して溶接試験を行なった結果を、図4に実線
hで示す。ここで、図4の特性図は横軸にナゲット中央
からの距離をとり、縦軸に硬さ(ビッカース硬さ)をとっ
て、硬さの変化を示す特性図である。この場合、窒化処
理としてのガス軟窒化または塩浴窒化(タフトライド)し
た板厚0.8mmの窒化鋼板と、板厚が0.7mmの軟鋼板
とを2枚重ねとし、直径5.0mmφのR型の電極4,6
を用いてスポット溶接した。
The result of the welding test performed on the product of this example spot-welded by the above method is shown by a solid line h in FIG. Here, the characteristic diagram of FIG. 4 is a characteristic diagram showing the change in hardness, with the horizontal axis representing the distance from the center of the nugget and the vertical axis representing the hardness (Vickers hardness). In this case, the nitride steel sheet having a thickness of 0.8mm was gas soft or salt bath nitriding as nitriding treatment (Tufftride), plate thickness and the mild steel plate of 0.7mm and two-ply, diameter 5.0 mm phi R type electrodes 4, 6
Was used for spot welding.

【0051】本実施例品では、HAZ部から母材にかけ
ての硬さ傾斜部分の幅が約1.0mmとなり、硬さの勾配
を緩斜面化することができると共に、HAZ部範囲を拡
大することができたことで、歪の集中を抑制することが
でき、割れの発生を防止することができた。
In the product of this example, the width of the hardness inclined portion from the HAZ portion to the base material is about 1.0 mm, the hardness gradient can be made gentle and the range of the HAZ portion can be expanded. As a result, the concentration of strain can be suppressed and the occurrence of cracks can be prevented.

【0052】また窒化処理として塩浴窒化(タフトライ
ド)したものは適正電流範囲を1.0KAに拡大すること
ができ、ガス軟窒化したものでは適正電流範囲を2.0
KAに拡大することができた。
The suitable current range can be expanded to 1.0 KA for salt bath nitriding (tuftride) as the nitriding treatment, and the appropriate current range can be 2.0 for gas soft nitriding.
I was able to expand to KA.

【0053】上述の実施例品との比較を行なうために、
同一の鋼板の組合せ条件下において、従来の1段通電方
式(図10参照)にてスポット溶接したものを溶接試験し
た結果を図5、図6に実線i,jでそれぞれ示す。
In order to make a comparison with the above-mentioned embodiment,
Under the same combination condition of steel sheets, the results of the welding test of spot welding by the conventional one-step energization method (see FIG. 10) are shown by solid lines i and j in FIGS. 5 and 6, respectively.

【0054】実線iで示す比較例品はCF型の電極(図
8参照)を用い、加圧力3,43KNの加圧条件下にお
いて8.8KAの電流を15サイクル通電したもので、図
6に実線jで、また図4に点線jで示す比較例品はR型
の電極(図9参照)を用い、加圧力2.94KNの加圧条
件下において、6.2KAの電流を15サイクル通電した
ものである。なお、図5に点線kで示す特性は高張力鋼
板を一切用いることなく、2枚とも軟鋼板を用いてスポ
ット溶接した場合の試験結果である。
The comparative example shown by the solid line i is a CF type electrode (see FIG. 8), which is a current of 8.8 KA applied for 15 cycles under a pressure of 3,43 KN. The comparative example shown by the solid line j and by the dotted line j in FIG. 4 uses an R-type electrode (see FIG. 9), and a current of 6.2 KA was applied for 15 cycles under a pressurizing condition of a pressing force of 2.94 KN. It is a thing. The characteristic indicated by the dotted line k in FIG. 5 is the test result when spot welding was performed using both mild steel plates without using any high-tensile steel plates.

【0055】図5、図6に実線i,jで示す従来方法に
よるものは、窒化鋼板としてガス軟窒化した鋼板を用い
た時の適正電流範囲が0.4KAと低く、窒化鋼板として
塩浴窒化した鋼板を用いた時の適正電流範囲は0.2KA
とさらに低い結果となった。またHAZ部から母材にか
けての硬さ分布が急勾配であり、その幅は何れも約0.
5mmと僅少であった。
The conventional method shown by solid lines i and j in FIGS. 5 and 6 has a low proper current range of 0.4 KA when a gas nitrocarburized steel sheet is used as the nitriding steel sheet, and a salt bath nitriding sheet is used as the nitriding steel sheet. The proper current range is 0.2KA when using the steel plate
And the result was even lower. Further, the hardness distribution from the HAZ portion to the base material has a steep gradient, and the width thereof is about 0.
It was as small as 5 mm.

【0056】上述の従来方法による実線i,jの特性に
おいて、適正電流範囲が狭いのは、窒化鋼板が硬く、し
かも、その表層に極めて硬い化合物層が生成しているた
め、溶接初期のなじみが悪化し、通電経路が小となっ
て、これにより急激な発熱が発生し、また窒素と炭素の
固溶量が多いため、窒化鋼板の融点が低下し、早期に溶
融して、チリが発生し、チリ発生限界の電流が低くなる
ためである。
In the characteristics of the solid lines i and j obtained by the conventional method described above, the reason why the proper current range is narrow is that the nitrided steel sheet is hard and a very hard compound layer is formed on the surface thereof, so that the familiarity at the initial stage of welding is good. It deteriorates, the energization path becomes small, and this causes rapid heat generation, and since the amount of solid solution of nitrogen and carbon is large, the melting point of the nitrided steel sheet lowers, it melts early and dust occurs. This is because the current at the dust generation limit becomes low.

【0057】また図5、図6に実線i,jで示す比較例
品に対して、せん断引張強さを測定した結果、高い確率
でHAZ部と母材の境界で割れが発生し、強度低下し
た。これは、多量の窒素と炭素が固溶しているため、変
態点が低下し、焼入れ性が高まって、HAZ部の硬さが
高くなり、HAZ部から母材にかけての硬さ傾斜部分の
幅が約0.5mmと狭く、硬さが急勾配となって、歪が集
中しやすくなり、割れの発生に至るからである。
Further, as a result of measuring the shear tensile strength of the comparative example products shown by solid lines i and j in FIGS. 5 and 6, cracks occurred at the boundary between the HAZ part and the base metal with a high probability, and the strength was lowered. did. This is because a large amount of nitrogen and carbon are in solid solution, the transformation point is lowered, the hardenability is enhanced, the hardness of the HAZ part is increased, and the width of the hardness inclined part from the HAZ part to the base metal is increased. Is as narrow as about 0.5 mm, the hardness becomes steep, strain tends to concentrate, and cracking occurs.

【0058】このような各比較例品(実線i,j参照)に
対して上記実施例の方法によりスポット溶接された本実
施例品(図4の実線h参照)においては、HAZ部から母
材にかけての硬さ傾斜部分の幅を約1.0mmと拡大する
ことができ、硬さの勾配を緩斜面化し、HAZ部範囲を
拡大することができたことにより、歪の集中を抑制し
て、割れの発生を防止することができ、しかも、適正電
流範囲も1.0KAまたは2.0KAに拡大することができ
た。
In this example product (see solid line h in FIG. 4) spot-welded to each of the comparative example products (see solid lines i and j) by the method of the above-described embodiment, the HAZ portion is used as the base material. The width of the hardness sloped part to about 1.0 mm can be expanded, the hardness gradient can be made gentle, and the HAZ part range can be expanded, thus suppressing the concentration of strain, It was possible to prevent the occurrence of cracks, and the appropriate current range could be expanded to 1.0 KA or 2.0 KA.

【0059】このように上記実施例の高張力鋼板のスポ
ット溶接方法は、高張力鋼板をスポット溶接する高張力
鋼板のスポット溶接方法であって、上記高張力鋼板への
通電電流を漸変的に上昇(ラインa参照)させることによ
りナゲット生成を行なう第1ステップS1と、上記第1
ステップS1の後に電流下降(ラインc参照)させる第2
ステップS2と、上記第2ステップS2後に電流上昇
(ラインe参照)させて本溶接(ラインf参照)すると共
に、漸変的に通電電流を下降(ラインg参照)させる第3
ステップS3とを備えた工程によりスポット溶接を行な
うものである。
As described above, the spot-welding method for a high-tensile steel sheet of the above-mentioned embodiment is a spot-welding method for a high-tensile steel sheet for spot-welding a high-tensile steel sheet, and the energizing current to the high-tensile steel sheet is gradually changed. The first step S1 of generating a nugget by raising (see line a)
Second step of decreasing current (see line c) after step S1
Current increase after step S2 and second step S2
(Refer to line e) to carry out main welding (see line f) and gradually decrease the energizing current (see line g) Third
Spot welding is performed by the process including step S3.

【0060】この構成によれば、第1ステップS1で、
高張力鋼板を漸変的に通電電流を上昇させてナゲットを
生成し、次の第2ステップS2で、通電電流を一旦下降
させ、次に第3ステップS3で、通電電流を上昇させて
本溶接すると共に、本溶接後に通電電流を漸変的に下降
させるものである。
According to this configuration, in the first step S1,
The nugget is generated by gradually increasing the energizing current of the high-tensile steel plate, the energizing current is once decreased in the next second step S2, and then the energizing current is increased in the third step S3 to perform the main welding. In addition, the energizing current is gradually decreased after the main welding.

【0061】上述の第1ステップS1の処理により、高
張力鋼板の硬度が高く、溶接初期のなじみ性が悪いこと
に起因して、通電抵抗が急上昇して、チリが発生するの
を抑制し、充分なナゲット径の確保と、チリ発生限界の
拡大を図ると共に、通電経路を確実に確保して、適正電
流範囲を得ることができる。
By the above-described first step S1, it is possible to prevent the energization resistance from rapidly increasing and the occurrence of dust due to the high hardness of the high-tensile steel plate and the poor compatibility in the initial stage of welding. It is possible to secure a sufficient nugget diameter and increase the limit of dust generation, and to reliably secure a current-carrying path to obtain an appropriate current range.

【0062】また上述の第2ステップS2の処理によ
り、電流下降させることで、材料(高張力鋼板)の温度を
一旦抑制して、チリの発生をさらに抑止することができ
る。さらに上述の第3ステップS3の処理、なかんずく
漸変的に通電電流を下降(ラインg参照)させる焼もどし
の効果により、HAZ部の硬度傾斜の緩斜面化と、HA
Z部範囲の拡大とから応力の集中を緩和して、割れの発
生を抑制することができる。
Further, by the above-mentioned processing of the second step S2, by lowering the current, the temperature of the material (high-tensile steel plate) can be once suppressed, and the generation of dust can be further suppressed. Furthermore, due to the effect of the above-described third step S3, that is, tempering, which gradually decreases the energizing current (see line g), the HAZ part has a gentle slope, and
It is possible to suppress the concentration of stress due to the expansion of the Z portion range and suppress the occurrence of cracks.

【0063】加えて、上記高張力鋼板はその引張強度が
500MPaを含むそれ以上の値に設定されたものであ
る。この構成によれば、引張強度≧500MPaで被溶
接材料いわゆるワークの硬度が高く、焼入れ性もよいと
いう不利な条件であつても、特に第1ステップS1の処
理により溶接初期のなじみ性を確保しつつ、通電経路を
確保することができる。
In addition, the tensile strength of the high-tensile steel plate is set to a value higher than 500 MPa, including 500 MPa. According to this structure, even under the disadvantageous conditions that the tensile strength ≧ 500 MPa and the material to be welded, that is, the hardness of the work is high and the hardenability is good, the familiarity at the initial stage of welding is ensured by the process of the first step S1. At the same time, it is possible to secure an energization path.

【0064】また、上記第2ステップS2終了から第3
ステップS3開始までの間に所定タイムラグd(図3参
照)が設けられたものである。この構成によれば、1段
目の通電(ラインb参照)によるナゲット生成後に電流を
一旦下降(ラインc参照)させ、この電流降下時点から本
通電開始までの間に所定タイムラグdを設けるものであ
る。1段目の通電によるナゲット温度が高い時に続けて
通電を行なうと、材料の融点が低いことに起因して、材
料が溶けやすくなって、チリが発生するが、上記所定タ
イムラグdにより温度を抑制して、チリの発生をより一
層良好に防止することができる。
From the end of the second step S2 to the third step.
A predetermined time lag d (see FIG. 3) is provided before the start of step S3. According to this configuration, the current is once decreased (see line c) after the nugget is generated by the first-stage energization (see line b), and the predetermined time lag d is provided from the current drop time to the start of the main energization. is there. If current is continuously applied when the nugget temperature due to the first-stage current is high, the material is easily melted due to the low melting point of the material and dust occurs, but the temperature is suppressed by the predetermined time lag d. As a result, the generation of dust can be prevented even better.

【0065】さらに、被溶接物は少なくともその被溶接
面側が硬化された表面硬化鋼板に設定されたものであ
る。この構成によれば、被溶接物として上述の表面硬化
鋼板を用いるので、被溶接面部のなじみ性が悪くなる
が、このような場合においても、特に第1ステップS1
の処理により溶接初期のなじみ性を確保しつつ、通電経
路を確実に得ることができる。
Further, the object to be welded is set to a surface-hardened steel plate in which at least the surface to be welded is hardened. According to this configuration, since the surface-hardened steel plate described above is used as the object to be welded, the conformability of the surface to be welded deteriorates. Even in such a case, the first step S1
By this process, it is possible to reliably obtain the energization path while ensuring the conformability at the initial stage of welding.

【0066】加えて、上記表面硬化鋼板は窒化鋼板また
は/および焼入れ鋼板に設定されたものである。この構
成によれば、被溶接物として窒化鋼板または/および焼
入れ鋼板を用いるので、その表面硬度が特に高く、被溶
接面部のなじみ性が悪いが、このような場合において
も、特に上述の第1ステップS1の処理により溶接初期
のなじみ性を確保しつつ、通電経路を確実に確保するこ
とができる。
In addition, the surface hardened steel sheet is set to a nitrided steel sheet and / or a hardened steel sheet. According to this configuration, since the nitrided steel plate and / or the hardened steel plate is used as the object to be welded, its surface hardness is particularly high and the conformability of the surface to be welded is poor. By the process of step S1, it is possible to reliably secure the energization path while ensuring the conformability at the initial stage of welding.

【0067】また、上記表面硬化鋼板は、その硬化前に
所定の形状に成形され、成形後に硬化処理が施され、そ
の後、硬化処理部位がスポット溶接されるものである。
The surface-hardened steel sheet is formed into a predetermined shape before being hardened, subjected to a hardening treatment after the molding, and then spot-welded at the hardening portion.

【0068】この構成によれば、表面硬化鋼板の硬化処
理前に所定の形状に成形するので、成形性を確保するこ
とができ、その後、硬化処理および上記方法によるスポ
ット溶接を施すので、成形後の必要物性を得ることがで
きる。
According to this structure, since the surface-hardened steel sheet is formed into a predetermined shape before the hardening treatment, the formability can be ensured, and thereafter the hardening treatment and the spot welding by the above method are performed. The required physical properties can be obtained.

【0069】さらに、上記第3ステップS3の本溶接時
の通電電流は、第1ステップS1のナゲット生成時の通
電電流より高く設定されたものである。この構成によれ
ば、第1ステップS1のナゲット生成時の通電電流は、
チリが発生しない程度の比較的低い電流に設定すること
ができるので、チリ発生の抑制を確実化することがで
き、また第1ステップS1の電流に対して高い値の通電
電流にて本溶接を行なうので、この本溶接を確実化する
ことができる。
Further, the energizing current during the main welding in the third step S3 is set to be higher than the energizing current during the nugget formation in the first step S1. According to this configuration, the energizing current when the nugget is generated in the first step S1 is
Since the current can be set to a relatively low level at which dust does not occur, it is possible to ensure that the generation of dust is suppressed, and the main welding is performed with a high value of the energizing current with respect to the current in the first step S1. Since this is performed, this main welding can be ensured.

【0070】そのうえ、上記第1ステップS1における
電流上昇開始から第3ステップS3における電流下降終
了まで、つまり図3に示す時点t〜tまでを125
サイクル以内で実行するものである。この構成によれ
ば、溶接に要する時間が125サイクル(但し、1サイ
クルは1/60秒)、望ましくは50サイクル以内であ
るので、生産性のある溶接時間を確保することができ
る。
[0070] Moreover, the current starts rising in the first step S1 to the current fall ended in the third step S3, that is until the time t 0 ~t n shown in FIG. 3 125
It is executed within a cycle. According to this configuration, the time required for welding is 125 cycles (however, 1 cycle is 1/60 seconds), preferably within 50 cycles, so that it is possible to secure a welding time with high productivity.

【0071】一方、上記実施例のスポット溶接装置は、
高張力鋼板をスポット溶接するスポット溶接装置であっ
て、対向配置された一対の電極4,6と、上記電極4,
6を加圧する加圧手段(シリンダ3参照)と、上記電極
4,6に対する通電電流を制御する制御手段(CPU1
0参照)とを備え、上記制御手段(CPU10参照)は漸
変的に通電電流を上昇(ラインa参照)させて高張力鋼板
にナゲットを生成(ラインb参照)した後に電流下降(ラ
インc参照)させ、その後電流上昇(ラインe参照)させ
て本溶接(ラインf参照)すると共に、漸変的に通電電流
を下降(ラインg参照)させるよう制御するものである。
On the other hand, the spot welding apparatus of the above embodiment is
A spot welding apparatus for spot-welding a high-strength steel plate, comprising a pair of electrodes 4, 6 facing each other, the electrode 4,
Pressurizing means (see cylinder 3) for pressurizing 6 and control means (CPU 1 for controlling energizing current to the electrodes 4, 6)
0)), the control means (see CPU 10) gradually increases the energizing current (see line a) to generate a nugget on the high-strength steel sheet (see line b), and then lowers the current (see line c). ), And then the current is increased (see line e) to perform the main welding (see line f), and the energizing current is gradually decreased (see line g).

【0072】この構成によれば、まず通電電流を漸変的
に上昇させて被溶接物としての高張力鋼板にナゲットを
生成するので、高張力鋼板の硬度が高く、溶接初期のな
じみ性が悪いことに起因して、通電抵抗が急上昇して、
チリが発生するのを抑制し、充分なナゲット径の確保
と、チリ発生限界の拡大を図ると共に、通電経路を確実
に確保して、充分な適正電流範囲を得ることができる。
According to this structure, first, the energizing current is gradually increased to generate the nugget in the high-tensile steel plate as the object to be welded. Therefore, the high-tensile steel plate has high hardness and poor conformability in the initial stage of welding. Due to this, the energization resistance suddenly increased,
The generation of dust can be suppressed, a sufficient nugget diameter can be secured, the limit of dust generation can be expanded, and an energization path can be reliably secured to obtain a sufficient proper current range.

【0073】また、ナゲット生成後に電流を一旦下降さ
せることで、材料の温度を一旦抑制して、チリの発生を
さらに抑止することができる。
Further, by temporarily lowering the current after the nugget is formed, the temperature of the material can be temporarily suppressed and the generation of dust can be further suppressed.

【0074】さらに、電流を上昇させて本溶接すると共
に、漸変的に通電電流を下降させて、焼もどしの効果を
得るので、HAZ部の硬度傾斜の緩斜面化と、HAZ部
範囲の拡大とから応力つまり歪の集中を緩和して、割れ
が発生するのを抑制することができるうえ、現有設備に
てスポット溶接を行なうことができる。
Further, the current is increased to perform the main welding, and the energizing current is gradually decreased to obtain the effect of tempering. Therefore, the hardness gradient of the HAZ part is made gentle and the range of the HAZ part is expanded. Therefore, it is possible to reduce the concentration of stress, that is, strain, to suppress the occurrence of cracks, and to perform spot welding with existing equipment.

【0075】さらに、上記本溶接時の通電電流はナゲッ
ト生成時の通電電流より高く設定されたものである。こ
の構成によれば、ナゲット生成時の通電電流は、チリが
発生しない程度の比較的低い電流に設定することができ
るので、チリ発生を確実に抑制することができ、またナ
ゲット生成時の通電電流に対して高い値の通電電流にて
本溶接を行なうので、この本溶接を確実化することがで
きる。
Further, the energizing current during the main welding is set higher than the energizing current during the nugget formation. According to this configuration, the energizing current during nugget generation can be set to a relatively low current at which dust does not occur, so that the occurrence of dust can be reliably suppressed, and the energizing current during nugget generation can be suppressed. Since the main welding is performed with a high value of energizing current, the main welding can be ensured.

【0076】この発明の構成と、上述の実施例との対応
において、この発明の高張力鋼板は、実施例の引張強度
≧500MPaの窒化鋼板や焼入れ鋼板に対応し、以下
同様に、電極を加圧する加圧手段は、シリンダ3に対応
し、制御手段は、CPU10に対応するも、この発明
は、上述の実施例の構成のみに限定されるものではな
い。
In the correspondence between the constitution of the present invention and the above-mentioned embodiment, the high-tensile steel plate of the present invention corresponds to the nitrided steel plate or the hardened steel plate of the tensile strength ≧ 500 MPa of the embodiment, and the electrode is added in the same manner. The pressurizing means for pressing corresponds to the cylinder 3 and the control means corresponds to the CPU 10. However, the present invention is not limited to the configuration of the above-described embodiment.

【0077】上記実施例においては2段通電パターンと
成したが、これは多段通電パターンと成してもよい。
Although the two-step energization pattern is used in the above embodiment, it may be a multi-step energization pattern.

【0078】[0078]

【発明の効果】この発明によれば、高張力鋼板への通電
電流を漸変的に上昇させることによりナゲット生成を行
ない、その後、一旦電流を下降させ、次に通電電流を上
昇させて本溶接とすると共に、漸変的に通電電流を下降
させるので、高張力鋼板の硬度が高く、溶接初期のなじ
み性が悪いことに起因して、通電抵抗が急上昇して、チ
リが発生するのを抑制し、充分なナゲット径の確保と、
チリ発生限界の拡大を図ると共に、通電経路を確実に確
保することができ、しかも、熱影響部(HAZ部)の硬度
傾斜の緩斜面化と、HAZ部範囲の拡大による応力つま
り歪の集中を緩和して、割れが生ずるのを防止すること
ができる効果がある。
According to the present invention, the nugget is formed by gradually increasing the current passing through the high-strength steel sheet, then decreasing the current once and then increasing the current flowing through the main welding. In addition, the energization current is gradually decreased, so that the hardness of the high-strength steel plate is high and the conformability at the initial stage of welding is poor, so that the energization resistance rises sharply and suppresses the occurrence of dust. And secure a sufficient nugget diameter,
In addition to increasing the dust occurrence limit, it is possible to reliably secure the current-carrying path, and also to make the hardness slope of the heat-affected zone (HAZ part) gentle and to concentrate stress or strain by expanding the HAZ part range. There is an effect that it can be relaxed and cracking can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の高張力鋼板のスポット溶接装置を示
す系統図。
FIG. 1 is a system diagram showing a spot welding apparatus for a high-strength steel sheet according to the present invention.

【図2】 本発明の高張力鋼板のスポット溶接方法を示
す工程図。
FIG. 2 is a process diagram showing a spot welding method for a high-strength steel sheet according to the present invention.

【図3】 図2の方法による通電パターンを示す説明
図。
FIG. 3 is an explanatory view showing an energization pattern by the method of FIG.

【図4】 ナゲット中央からの距離に対する硬さの変化
を示す特性図。
FIG. 4 is a characteristic diagram showing a change in hardness with respect to the distance from the center of the nugget.

【図5】 従来の1段通電方式による硬さの変化を示す
特性図。
FIG. 5 is a characteristic diagram showing a change in hardness according to a conventional one-step energization method.

【図6】 従来の1段通電方式による硬さの変化を示す
特性図。
FIG. 6 is a characteristic diagram showing a change in hardness according to a conventional one-step energization method.

【図7】 ナゲットおよびHAZ部の説明図。FIG. 7 is an explanatory diagram of a nugget and a HAZ part.

【図8】 CF型電極の説明図。FIG. 8 is an explanatory diagram of a CF type electrode.

【図9】 R型電極の説明図。FIG. 9 is an explanatory diagram of an R-type electrode.

【図10】 従来の1段通電方法の通電パターンを示す
説明図。
FIG. 10 is an explanatory diagram showing an energization pattern of a conventional one-step energization method.

【図11】 従来の2段通電方法の通電パターンを示す
説明図。
FIG. 11 is an explanatory diagram showing an energization pattern of a conventional two-step energization method.

【図12】 従来の追加加圧方式の通電および加圧パタ
ーンを示す説明図。
FIG. 12 is an explanatory view showing a conventional energization and pressurization pattern of an additional pressurization method.

【符号の説明】[Explanation of symbols]

S1…第1ステップ S2…第2ステップ S3…第3ステップ d…所定タイムラグ 3…シリンダ(加圧手段) 4,6…電極 10…CPU(制御手段) S1 ... the first step S2 ... the second step S3 ... Third step d ... predetermined time lag 3 ... Cylinder (pressurizing means) 4, 6 ... Electrodes 10 ... CPU (control means)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】高張力鋼板をスポット溶接する高張力鋼板
のスポット溶接方法であって、上記高張力鋼板への通電
電流を漸変的に上昇させることによりナゲット生成を行
なう第1ステップと、上記第1ステップの後に電流下降
させる第2ステップと、上記第2ステップ後に電流上昇
させて本溶接すると共に、漸変的に通電電流を下降させ
る第3ステップとを備えた工程によりスポット溶接を行
なう高張力鋼板のスポット溶接方法。
1. A spot welding method for a high-strength steel sheet for spot-welding a high-strength steel sheet, comprising: a first step of gradually increasing an energizing current to the high-strength steel sheet to produce a nugget; The spot welding is performed by a process including a second step of decreasing the current after the first step and a third step of increasing the current and performing the main welding after the second step and gradually decreasing the energizing current. Spot welding method for tensile steel sheets.
【請求項2】上記高張力鋼板はその引張強度が500M
Paを含むそれ以上の値に設定された請求項1記載の高
張力鋼板のスポット溶接方法。
2. The high-strength steel plate has a tensile strength of 500M.
The spot welding method for a high-strength steel sheet according to claim 1, wherein the spot welding method is set to a value higher than that including Pa.
【請求項3】上記第2ステップ終了から第3ステップ開
始までの間に所定タイムラグが設けられた請求項1記載
の高張力鋼板のスポット溶接方法。
3. The spot-welding method for high-tensile steel sheet according to claim 1, wherein a predetermined time lag is provided between the end of the second step and the start of the third step.
【請求項4】被溶接物は少なくともその被溶接面側が硬
化された表面硬化鋼板に設定された請求項1記載の高張
力鋼板のスポット溶接方法。
4. The spot welding method for a high-strength steel plate according to claim 1, wherein the object to be welded is set to a surface-hardened steel plate in which at least the surface to be welded is hardened.
【請求項5】上記表面硬化鋼板は窒化鋼板または/およ
び焼入れ鋼板に設定された請求項4記載の高張力鋼板の
スポット溶接方法。
5. The spot welding method for a high-strength steel sheet according to claim 4, wherein the surface-hardened steel sheet is a nitrided steel sheet and / or a hardened steel sheet.
【請求項6】上記表面硬化鋼板は、その硬化前に所定の
形状に成形され、成形後に硬化処理が施され、その後、
硬化処理部位がスポット溶接される請求項5記載の高張
力鋼板のスポット溶接方法。
6. The surface-hardened steel sheet is formed into a predetermined shape before being hardened, and is then subjected to a hardening treatment, and thereafter,
The spot welding method for a high-strength steel sheet according to claim 5, wherein the hardening treatment site is spot-welded.
【請求項7】上記第3ステップの本溶接時の通電電流
は、第1ステップのナゲット生成時の通電電流より高く
設定された請求項1記載の高張力鋼板のスポット溶接方
法。
7. The spot welding method for a high-strength steel sheet according to claim 1, wherein the energizing current during the main welding in the third step is set higher than the energizing current during the nugget formation in the first step.
【請求項8】上記第1ステップにおける電流上昇開始か
ら第3ステップにおける電流下降終了までを125サイ
クル以内で実行する請求項1記載の高張力鋼板のスポッ
ト溶接方法。
8. The spot-welding method for a high-strength steel sheet according to claim 1, wherein the process from the start of the current increase in the first step to the end of the current decrease in the third step is executed within 125 cycles.
【請求項9】高張力鋼板をスポット溶接するスポット溶
接装置であって、対向配置された一対の電極と、上記電
極を加圧する加圧手段と、上記電極に対する通電電流を
制御する制御手段とを備え、上記制御手段は漸変的に通
電電流を上昇させて高張力鋼板にナゲットを生成した後
に電流下降させ、その後電流上昇させて本溶接すると共
に、漸変的に通電電流を下降させるよう制御するスポッ
ト溶接装置。
9. A spot welding apparatus for spot-welding a high-strength steel sheet, comprising: a pair of electrodes arranged to face each other; a pressurizing means for pressurizing the electrodes; and a control means for controlling a current supplied to the electrodes. The control means gradually increases the energizing current to generate a nugget in the high-tensile steel plate, and then lowers the current, and then increases the current to perform main welding, and controls to gradually lower the energizing current. Spot welding equipment.
【請求項10】上記本溶接時の通電電流はナゲット生成
時の通電電流より高く設定された請求項9記載のスポッ
ト溶接装置。
10. The spot welding apparatus according to claim 9, wherein the energizing current during the main welding is set higher than the energizing current during the nugget formation.
JP2002037815A 2002-02-15 2002-02-15 Method and equipment of spot welding of high tensile steel Pending JP2003236674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037815A JP2003236674A (en) 2002-02-15 2002-02-15 Method and equipment of spot welding of high tensile steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037815A JP2003236674A (en) 2002-02-15 2002-02-15 Method and equipment of spot welding of high tensile steel

Publications (1)

Publication Number Publication Date
JP2003236674A true JP2003236674A (en) 2003-08-26

Family

ID=27779299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037815A Pending JP2003236674A (en) 2002-02-15 2002-02-15 Method and equipment of spot welding of high tensile steel

Country Status (1)

Country Link
JP (1) JP2003236674A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055437A (en) * 2006-08-29 2008-03-13 Daihatsu Motor Co Ltd Method of series spot welding and joined body obtained by the same welding
JP2009001839A (en) * 2007-06-19 2009-01-08 Kobe Steel Ltd High strength spot welded joint
JP2010188408A (en) * 2009-02-20 2010-09-02 Honda Motor Co Ltd Energization method for resistance welding
JP2010207909A (en) * 2009-02-12 2010-09-24 Sumitomo Metal Ind Ltd Resistance welding method for high tensile strength steel sheet and method for producing resistance welded joint
JP2011005544A (en) * 2009-05-27 2011-01-13 Nippon Steel Corp Spot welding method for high-strength steel sheet
WO2011013793A1 (en) * 2009-07-31 2011-02-03 高周波熱錬株式会社 Welded structural member and welding method
JP2012157900A (en) * 2011-01-13 2012-08-23 Nippon Steel Corp Projection weld joint and method for production thereof
JP2013022637A (en) * 2011-07-25 2013-02-04 Nippon Steel & Sumitomo Metal Corp Prediction method of cross tensile strength in spot welding of quenched steel plate, and spot welding method using the same
WO2013058406A1 (en) * 2011-10-18 2013-04-25 Jfeスチール株式会社 Resistance spot welding method for high-tensile steel plates, and resistance spot welding joint
JP2013103273A (en) * 2011-11-17 2013-05-30 Jfe Steel Corp Resistance spot welding method for high-tensile steel sheet
CN103273262A (en) * 2013-03-22 2013-09-04 江苏鼎盛重工有限公司 Welding and reshaping method of lightering floating platform cantilever crane plate
WO2014002947A1 (en) 2012-06-29 2014-01-03 株式会社神戸製鋼所 Spot welding method
JP2014176856A (en) * 2013-03-13 2014-09-25 Aisin Takaoka Ltd Method for manufacturing welding-jointed body
WO2015005134A1 (en) 2013-07-11 2015-01-15 新日鐵住金株式会社 Resistive spot welding method
WO2015049998A1 (en) * 2013-10-04 2015-04-09 Jfeスチール株式会社 Resistance spot welding method
WO2015093568A1 (en) 2013-12-20 2015-06-25 新日鐵住金株式会社 Resistance spot welding method
WO2015170687A1 (en) * 2014-05-07 2015-11-12 新日鐵住金株式会社 Spot welding method
TWI511819B (en) * 2012-10-05 2015-12-11 China Steel Corp Three-layer steel sheet and welding method of the same
JP2016144835A (en) * 2015-02-06 2016-08-12 株式会社アマダホールディングス Tip bonding method and saw blade
CN106132622A (en) * 2013-12-27 2016-11-16 杰富意钢铁株式会社 Resistance spot welding method
KR20180011320A (en) 2015-07-10 2018-01-31 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
KR20180011319A (en) 2015-07-10 2018-01-31 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
KR101922503B1 (en) 2017-11-21 2018-11-28 한국생산기술연구원 Welding power control method
KR20190014073A (en) 2016-06-09 2019-02-11 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
WO2019035367A1 (en) 2017-08-18 2019-02-21 Jfeスチール株式会社 Resistance spot welding method and welding material manufacturing method
WO2019160141A1 (en) 2018-02-19 2019-08-22 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
US10406626B2 (en) 2013-09-12 2019-09-10 Nippon Steel Corporation Resistance spot welding method and welded structure
WO2020004117A1 (en) 2018-06-29 2020-01-02 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
WO2020004116A1 (en) 2018-06-29 2020-01-02 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
WO2020004115A1 (en) 2018-06-29 2020-01-02 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
WO2020095847A1 (en) * 2018-11-08 2020-05-14 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
JP2020157358A (en) * 2019-03-27 2020-10-01 株式会社神戸製鋼所 Spot welding method of galvanized steel plate
WO2021039866A1 (en) 2019-08-29 2021-03-04 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
JP2021079416A (en) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 Resistance spot welding method
WO2021177254A1 (en) * 2020-03-05 2021-09-10 Jfeスチール株式会社 Resistance spot welding method and manufacturing method for resistance spot welded joint
JP7476957B2 (en) 2021-04-12 2024-05-01 Jfeスチール株式会社 Resistance Spot Welding Method

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055437A (en) * 2006-08-29 2008-03-13 Daihatsu Motor Co Ltd Method of series spot welding and joined body obtained by the same welding
JP2009001839A (en) * 2007-06-19 2009-01-08 Kobe Steel Ltd High strength spot welded joint
JP2010207909A (en) * 2009-02-12 2010-09-24 Sumitomo Metal Ind Ltd Resistance welding method for high tensile strength steel sheet and method for producing resistance welded joint
JP2010188408A (en) * 2009-02-20 2010-09-02 Honda Motor Co Ltd Energization method for resistance welding
JP2011005544A (en) * 2009-05-27 2011-01-13 Nippon Steel Corp Spot welding method for high-strength steel sheet
JP5467480B2 (en) * 2009-07-31 2014-04-09 高周波熱錬株式会社 Welded structural member and welding method
WO2011013793A1 (en) * 2009-07-31 2011-02-03 高周波熱錬株式会社 Welded structural member and welding method
CN102596481A (en) * 2009-07-31 2012-07-18 高周波热炼株式会社 Welded structural member and welding method
US9498840B2 (en) 2009-07-31 2016-11-22 Neturen Co., Ltd. Welding structural part and welding method of the same
JP2012157900A (en) * 2011-01-13 2012-08-23 Nippon Steel Corp Projection weld joint and method for production thereof
JP2013022637A (en) * 2011-07-25 2013-02-04 Nippon Steel & Sumitomo Metal Corp Prediction method of cross tensile strength in spot welding of quenched steel plate, and spot welding method using the same
TWI468246B (en) * 2011-10-18 2015-01-11 Jfe Steel Corp Method of resistance spot welding of high tensile strength steel sheet and welding joint manufactured by the method
CN103889634B (en) * 2011-10-18 2016-02-10 杰富意钢铁株式会社 The resistance spot welding method of high-tensile steel and resistance spot welding seam
KR101588257B1 (en) 2011-10-18 2016-01-25 제이에프이 스틸 가부시키가이샤 Method of resistance spot welding of high-tensile strength steel sheet and welding joint manufactured by the method
KR20140076622A (en) * 2011-10-18 2014-06-20 제이에프이 스틸 가부시키가이샤 Resistance spot welding method for high-tensile steel plates, and resistance spot welding joint
CN103889634A (en) * 2011-10-18 2014-06-25 杰富意钢铁株式会社 Resistance spot welding method for high-tensile steel plates, and resistance spot welding joint
WO2013058406A1 (en) * 2011-10-18 2013-04-25 Jfeスチール株式会社 Resistance spot welding method for high-tensile steel plates, and resistance spot welding joint
JP2013086125A (en) * 2011-10-18 2013-05-13 Jfe Steel Corp Resistance spot welding method for high tensile strength steel sheet and resistance spot welded joint
JP2013103273A (en) * 2011-11-17 2013-05-30 Jfe Steel Corp Resistance spot welding method for high-tensile steel sheet
WO2014002947A1 (en) 2012-06-29 2014-01-03 株式会社神戸製鋼所 Spot welding method
US10040144B2 (en) 2012-06-29 2018-08-07 Kobe Steel, Ltd. Spot welding method
CN104411441A (en) * 2012-06-29 2015-03-11 株式会社神户制钢所 Spot welding method
EP2868419A4 (en) * 2012-06-29 2016-03-09 Kobe Steel Ltd Spot welding method
TWI511819B (en) * 2012-10-05 2015-12-11 China Steel Corp Three-layer steel sheet and welding method of the same
JP2014176856A (en) * 2013-03-13 2014-09-25 Aisin Takaoka Ltd Method for manufacturing welding-jointed body
CN103273262A (en) * 2013-03-22 2013-09-04 江苏鼎盛重工有限公司 Welding and reshaping method of lightering floating platform cantilever crane plate
US10265797B2 (en) 2013-07-11 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Resistance spot welding method
WO2015005134A1 (en) 2013-07-11 2015-01-15 新日鐵住金株式会社 Resistive spot welding method
US10406626B2 (en) 2013-09-12 2019-09-10 Nippon Steel Corporation Resistance spot welding method and welded structure
KR101831081B1 (en) * 2013-10-04 2018-02-21 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
US11504796B2 (en) 2013-10-04 2022-11-22 Jfe Steel Corporation Resistance spot welding method
JPWO2015049998A1 (en) * 2013-10-04 2017-03-09 Jfeスチール株式会社 Resistance spot welding method
CN105612020A (en) * 2013-10-04 2016-05-25 杰富意钢铁株式会社 Resistance spot welding method
WO2015049998A1 (en) * 2013-10-04 2015-04-09 Jfeスチール株式会社 Resistance spot welding method
JP5900699B2 (en) * 2013-10-04 2016-04-06 Jfeスチール株式会社 Resistance spot welding method
WO2015093568A1 (en) 2013-12-20 2015-06-25 新日鐵住金株式会社 Resistance spot welding method
KR20160045892A (en) 2013-12-20 2016-04-27 신닛테츠스미킨 카부시키카이샤 Resistance spot welding method
US10406627B2 (en) 2013-12-20 2019-09-10 Nippon Steel Corporation Resistance spot welding method
CN106132622A (en) * 2013-12-27 2016-11-16 杰富意钢铁株式会社 Resistance spot welding method
US10730134B2 (en) 2014-05-07 2020-08-04 Nippon Steel Corporation Spot welding method
CN106255566B (en) * 2014-05-07 2018-12-18 新日铁住金株式会社 Spot welding method
CN108857013A (en) * 2014-05-07 2018-11-23 新日铁住金株式会社 spot welding method
WO2015170687A1 (en) * 2014-05-07 2015-11-12 新日鐵住金株式会社 Spot welding method
JPWO2015170687A1 (en) * 2014-05-07 2017-04-20 新日鐵住金株式会社 Spot welding method
JP2016144835A (en) * 2015-02-06 2016-08-12 株式会社アマダホールディングス Tip bonding method and saw blade
KR20180011319A (en) 2015-07-10 2018-01-31 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
KR20180011320A (en) 2015-07-10 2018-01-31 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
US11065712B2 (en) 2016-06-09 2021-07-20 Jfe Steel Corporation Resistance spot welding method
KR20190014073A (en) 2016-06-09 2019-02-11 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
WO2019035367A1 (en) 2017-08-18 2019-02-21 Jfeスチール株式会社 Resistance spot welding method and welding material manufacturing method
US11623298B2 (en) 2017-08-18 2023-04-11 Jfe Steel Corporation Resistance spot welding method and weld member production method
KR20200037352A (en) 2017-08-18 2020-04-08 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and manufacturing method of welding member
KR101922503B1 (en) 2017-11-21 2018-11-28 한국생산기술연구원 Welding power control method
US11911837B2 (en) 2018-02-19 2024-02-27 Jfe Steel Corporation Resistance spot welding method and weld member production method
KR102303694B1 (en) 2018-02-19 2021-09-17 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and weld member production method
WO2019160141A1 (en) 2018-02-19 2019-08-22 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
KR20200118857A (en) 2018-02-19 2020-10-16 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and manufacturing method of welding member
KR20210019566A (en) 2018-06-29 2021-02-22 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and manufacturing method of welding member
WO2020004115A1 (en) 2018-06-29 2020-01-02 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
KR20210019565A (en) 2018-06-29 2021-02-22 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and manufacturing method of welding member
KR20210021569A (en) 2018-06-29 2021-02-26 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and manufacturing method of welding member
US11958123B2 (en) 2018-06-29 2024-04-16 Jfe Steel Corporation Resistance spot welding method and weld member production method
WO2020004117A1 (en) 2018-06-29 2020-01-02 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
US11904404B2 (en) 2018-06-29 2024-02-20 Jfe Steel Corporation Resistance spot welding method and weld member production method
WO2020004116A1 (en) 2018-06-29 2020-01-02 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
JPWO2020095847A1 (en) * 2018-11-08 2021-02-15 Jfeスチール株式会社 Resistance spot welding method and welding member manufacturing method
JP2021112773A (en) * 2018-11-08 2021-08-05 Jfeスチール株式会社 Resistance spot welding method, method for manufacturing welding member, and welding apparatus
WO2020095847A1 (en) * 2018-11-08 2020-05-14 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
JP7371664B2 (en) 2018-11-08 2023-10-31 Jfeスチール株式会社 Resistance spot welding method, method for manufacturing welded parts, and welding equipment
JP2020157358A (en) * 2019-03-27 2020-10-01 株式会社神戸製鋼所 Spot welding method of galvanized steel plate
JP7305396B2 (en) 2019-03-27 2023-07-10 株式会社神戸製鋼所 Spot welding method for galvanized steel sheets
KR20220038491A (en) 2019-08-29 2022-03-28 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and manufacturing method of a welded member
WO2021039866A1 (en) 2019-08-29 2021-03-04 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member
JP7201570B2 (en) 2019-11-20 2023-01-10 トヨタ自動車株式会社 Resistance spot welding method
JP2021079416A (en) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 Resistance spot welding method
JP6958765B1 (en) * 2020-03-05 2021-11-02 Jfeスチール株式会社 Resistance spot welding method and resistance spot welding joint manufacturing method
WO2021177254A1 (en) * 2020-03-05 2021-09-10 Jfeスチール株式会社 Resistance spot welding method and manufacturing method for resistance spot welded joint
JP7476957B2 (en) 2021-04-12 2024-05-01 Jfeスチール株式会社 Resistance Spot Welding Method

Similar Documents

Publication Publication Date Title
JP2003236674A (en) Method and equipment of spot welding of high tensile steel
JP5713147B2 (en) Overlap welding member, automotive part, overlapping portion welding method, and overlap welding member manufacturing method
TWI468246B (en) Method of resistance spot welding of high tensile strength steel sheet and welding joint manufactured by the method
KR102010195B1 (en) Resistance spot welding method
KR100711454B1 (en) Laser welding method for endless hot rolling and the apparatus therefor
JP5942392B2 (en) Resistance spot welding method for high strength steel sheet
KR20220127335A (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JPH06114564A (en) Method of joining high manganese cast steel switching member or manganese steel rail with carbon steel rail
JP5573128B2 (en) Resistance spot welding method
JP6313921B2 (en) Resistance spot welding method
KR100722130B1 (en) Spot welding method for high strength steel sheet
JP6052480B1 (en) Resistance spot welding method
JP2002103048A (en) Method for spot welding of high strength steel plate
JP5369393B2 (en) Forming material welding method and laser welding apparatus using high-strength steel sheet, forming material, processing method and molded product obtained thereby
JP5640409B2 (en) Method of manufacturing resistance spot welded joint
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP5806064B2 (en) Upset welding method
EP4119277A1 (en) Solid-phase spot-welding method and solid-phase spot-welding device
JPH11271146A (en) Quenching method for steel plate, quenching apparatus usint it and mash seam welding machine
KR20180011320A (en) Resistance spot welding method
JP7247768B2 (en) Resistance welding method for high-strength steel plates
JP4176590B2 (en) Closed loop type shear reinforcement
JP4176594B2 (en) Butt welding method and welding apparatus for closed loop type shear reinforcement
JP7399360B1 (en) Projection welding joint manufacturing method, projection welding joint, and automobile parts
JPH08155642A (en) Cladding by welding repair method of hot die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206