JP7305396B2 - Spot welding method for galvanized steel sheets - Google Patents

Spot welding method for galvanized steel sheets Download PDF

Info

Publication number
JP7305396B2
JP7305396B2 JP2019061253A JP2019061253A JP7305396B2 JP 7305396 B2 JP7305396 B2 JP 7305396B2 JP 2019061253 A JP2019061253 A JP 2019061253A JP 2019061253 A JP2019061253 A JP 2019061253A JP 7305396 B2 JP7305396 B2 JP 7305396B2
Authority
JP
Japan
Prior art keywords
spot welding
steel
downslope
welding method
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019061253A
Other languages
Japanese (ja)
Other versions
JP2020157358A (en
Inventor
啓亮 中田
賢司 斉藤
幸博 内海
宗朗 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019061253A priority Critical patent/JP7305396B2/en
Publication of JP2020157358A publication Critical patent/JP2020157358A/en
Application granted granted Critical
Publication of JP7305396B2 publication Critical patent/JP7305396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、少なくとも亜鉛系めっき鋼板を含む複数枚の鋼板を接合するためのスポット溶接方法に関する。 The present invention relates to a spot welding method for joining a plurality of steel sheets including at least galvanized steel sheets.

近年、自動車の構造用部材に用いられる鋼板には、車体の軽量化と衝突安全性向上を両立させるために、高強度化とともに低強度鋼板並みの加工性が求められる。また鋼板表面に亜鉛系めっき層を形成した亜鉛系めっき鋼板は、耐食性に優れていることから、自動車の構造用部材として広く使用されており、高強度の亜鉛系めっき鋼板が各種開発されている。 In recent years, steel sheets used for automobile structural members are required to have high strength and workability comparable to low-strength steel sheets in order to achieve both weight reduction of the vehicle body and improvement of collision safety. In addition, zinc-based steel sheets, which have a zinc-based coating layer formed on the steel sheet surface, are widely used as structural members for automobiles because of their excellent corrosion resistance, and various high-strength zinc-based steel sheets have been developed. .

自動車の構造用部材は、複雑な形状を有しており、且つ各種の要求特性を満足させる必要があることから、自動車の構造用部材には、高強度鋼板や低強度鋼板等、様々な鋼板を接合した部材が適用されている。 Automobile structural members have complex shapes and must satisfy various required properties. are applied.

自動車の構造用部材の組み立て時の鋼板同士の接合には、主としてスポット溶接が採用されている。このスポット溶接では、複数枚の鋼板を含む板組を、一対の電極で挟んで加圧しつつ通電し、鋼板の接合界面を溶融・凝固させてナゲットを形成して鋼板同士を接合する。このときの通電は、チリ(散り)が発生しない溶接電流範囲で行われるが、このような溶接電流範囲においても溶接部に割れが生じることが知られている。 Spot welding is mainly used to join steel plates together when assembling structural members of automobiles. In this spot welding, a plate assembly including a plurality of steel plates is sandwiched between a pair of electrodes and energized while being pressurized to melt and solidify the joint interface of the steel plates to form a nugget and join the steel plates together. The energization at this time is performed within a welding current range in which no flash occurs, but it is known that cracks occur in the weld even in such a welding current range.

このような溶接部割れが生じるのは、鋼板表面の亜鉛系めっき層が、溶接時のジュール熱によって溶融して溶融亜鉛となり、鋼板の熱収縮による引張応力が溶接部に加わることによって、溶融亜鉛が結晶粒界に侵入して粒界強度を低下させる、いわゆる液体金属脆化(LME:Liquid Metal Embrittlement)に起因するとされている。 This kind of weld cracking occurs because the zinc-based coating layer on the surface of the steel sheet is melted by the Joule heat during welding to become molten zinc, and tensile stress due to thermal contraction of the steel sheet is applied to the welded area. is attributed to so-called liquid metal embrittlement (LME), in which the grain boundary is invaded to reduce the grain boundary strength.

このような液体金属脆化に起因する割れ(以下、「LME割れ」と呼ぶことがある)は、溶接される複数枚の鋼板のうち、少なくとも1枚が亜鉛系めっき鋼板である場合に生じる。 Such cracks caused by liquid metal embrittlement (hereinafter sometimes referred to as "LME cracks") occur when at least one of a plurality of steel sheets to be welded is a galvanized steel sheet.

LME割れの発生を防止する技術として、例えば特許文献1、2には、
「スポット溶接で形成されるナゲットが、下記(1)式で定義されるナゲット径d0以上で、且つ溶融残厚が0.05mm以上となるように、スポット溶接条件を調整して溶接する、高張力亜鉛めっき鋼板のスポット溶接方法。
As a technique for preventing the occurrence of LME cracking, for example, Patent Documents 1 and 2 include:
"The spot welding conditions are adjusted so that the nugget formed by spot welding has a nugget diameter d0 or more defined by the following formula (1) and a molten residual thickness of 0.05 mm or more. A spot welding method for tensile galvanized steel sheets.

d0=k√t …(1)
ここで、d0:所望のナゲット径(mm)
k:係数;3~6の2間で施工条件に合わせて選択される係数
t:鋼鈑板厚(mm) 」
が提案されている。
d0=k√t (1)
where d0: desired nugget diameter (mm)
k: coefficient; a coefficient selected between 3 and 6 according to the construction conditions t: steel plate thickness (mm)
is proposed.

一方、特許文献3には、アルミめっき鋼板同士またはアルミめっき鋼板と他の金属板を重ね合わせてスポット溶接する際に、電極チップの汚染や摩耗が生じることへの対策として、「溶接部に一定の交流サイクルで通電する本溶接工程の後工程として、通電量を漸減させるダウンスロープ工程を付加し、前記溶接部から前記電極チップへの熱伝導を徐々に減少させ、前記溶接部の冷却スピードを穏やかにする、アルミめっき鋼板のスポット溶接方法。」が提案されている。 On the other hand, in Patent Document 3, as a countermeasure against contamination and abrasion of the electrode tip when aluminized steel sheets or an aluminized steel sheet and another metal plate are superimposed and spot-welded, "a constant As a post-process of the main welding process in which electricity is supplied in an alternating current cycle, a downslope process is added to gradually reduce the amount of electricity to gradually reduce the heat conduction from the welded part to the electrode tip, and the cooling speed of the welded part is increased. Gentle, Spot Welding Method for Aluminized Steel Sheets." has been proposed.

特許第3849539号公報Japanese Patent No. 3849539 特許第3849525号公報Japanese Patent No. 3849525 特開2006-212649号公報JP 2006-212649 A

特許文献1、2は、ナゲットの板厚方向への溶け込みを比較的少なくし、鋼板表面から溶融金属までの最短距離で規定される溶融残厚を大きくすれば、すなわち扁平なナゲットを形成すれば、溶接部におけるLME割れ発生が抑制できるという着想の下でなされた技術である。 In Patent Documents 1 and 2, if the penetration of the nugget in the plate thickness direction is relatively small and the molten residual thickness defined by the shortest distance from the steel plate surface to the molten metal is increased, that is, if a flat nugget is formed , is a technique developed under the idea that the occurrence of LME cracks in welds can be suppressed.

しかしながら、溶融残厚の制御のみでは、主通電終了後の冷却過程で発生する引張応力を十分に緩和することが困難となる。そのため、複数枚の高張力亜鉛めっき鋼板を重ねてスポット溶接したときに、溶接部におけるLME割れ発生を十分に抑制できないという問題がある。 However, it is difficult to sufficiently relax the tensile stress generated in the cooling process after the end of the main energization only by controlling the residual thickness of the melt. Therefore, when a plurality of high-strength galvanized steel sheets are superimposed and spot-welded, there is a problem that the occurrence of LME cracks in the welded portion cannot be sufficiently suppressed.

一方、特許文献3は、少なくともアルミめっき鋼板を溶接対象としてスポット溶接したときに、亜鉛系めっき鋼板をスポット溶接とするときに比べて電極チップの汚染や摩耗が生じやすいことから、ダウンスロープ工程を付加することによって、電極チップが汚染、摩耗しても、溶接スポットに十分な電流密度を与え、必要十分な大きさのナゲットを形成する技術である。 On the other hand, in Patent Document 3, when spot welding is performed with at least an aluminum plated steel sheet as a welding target, contamination and wear of the electrode tip are more likely to occur than when spot welding is performed on a zinc-based plated steel sheet. By adding it, even if the electrode tip is contaminated and worn, it is a technology that gives a sufficient current density to the welding spot and forms a nugget of a necessary and sufficient size.

しかしながら、特許文献3の技術では、亜鉛系めっき鋼板をスポット溶接したときに発生しやすいLME割れに対して、ダウンスロープ工程がどのような効果を発揮するかについては何ら検討されていない。 However, in the technique of Patent Document 3, no study has been made as to what kind of effect the downslope process exerts on LME cracks that are likely to occur when zinc-based plated steel sheets are spot-welded.

本発明は上記のような事情に鑑みてなされたものであり、その目的は、亜鉛系めっき鋼板を含む複数枚の鋼板を接合するに際し、溶接部におけるLME割れ発生を抑制できるスポット溶接方法を提供することにある。 The present invention has been made in view of the circumstances as described above, and its object is to provide a spot welding method capable of suppressing the occurrence of LME cracks in welds when joining a plurality of steel sheets including zinc-based plated steel sheets. to do.

本発明の一局面は、
少なくとも1枚は亜鉛系めっき鋼板である2枚以上の鋼板を含む板組を、スポット溶接によって接合するにあたり、
前記板組を加圧しつつ主通電した後に、加圧を維持したままで電流値を段階的に下げて通電するダウンスロープ工程を含み、前記ダウンスロープ工程の開始から終了までの時間t(ms)を16≦t≦4000の範囲とする点に要旨を有するスポット溶接方法である。
One aspect of the present invention is
In joining a plate assembly including two or more steel plates, at least one of which is a zinc-based plated steel plate, by spot welding,
including a downslope step of stepwise decreasing the current value while maintaining the pressurization after main energization while pressurizing the plate assembly, and a time t (ms) from the start to the end of the downslope step. is in the range of 16≦t≦4000.

本実施形態のスポット溶接方法においては、前記2枚以上の鋼板のうち少なくとも1枚は、引張強度が980MPa以上の鋼板であることが好ましい。 In the spot welding method of this embodiment, at least one of the two or more steel plates is preferably a steel plate having a tensile strength of 980 MPa or more.

本発明の好ましい実施形態として、前記ダウンスロープ工程後に通電を停止し、加圧を保持する工程を16ms以上行ってもよい。 As a preferred embodiment of the present invention, the step of stopping the energization and holding the pressurization after the down slope step may be performed for 16 ms or more.

本発明によれば、亜鉛系めっき鋼板を含む2枚以上の鋼板をスポット溶接するに際し、溶接部におけるLME割れ発生が抑制できる。こうしたスポット溶接方法は、例えば自動車用部品、自動車の構造材や補強材等のように、高強度が要求される構造用部材の接合法として有用である。 ADVANTAGE OF THE INVENTION According to this invention, when spot-welding two or more steel sheets including a galvanized steel sheet, generation|occurrence|production of LME crack in a weld zone can be suppressed. Such a spot welding method is useful as a joining method for structural members that require high strength, such as automobile parts, structural materials and reinforcing materials for automobiles.

本発明者らは、亜鉛系めっき鋼板を含む2枚以上の鋼板をスポット溶接するに際し、溶接部におけるLME割れ発生を抑制するための条件について様々な角度から検討した。そして、接合される2枚以上の鋼板を含む板組を、加圧しつつ主通電した後に、加圧を維持したまま電流値を段階的に下げて通電するダウンスロープ工程を含んでスポット溶接を行えば、LME割れ発生を抑制した溶接部が得られるとの知見が得られた。 The present inventors have investigated from various angles the conditions for suppressing the occurrence of LME cracks in the weld zone when spot welding two or more steel sheets including a galvanized steel sheet. Then, spot welding is performed including a downslope process in which a plate assembly including two or more steel plates to be joined is energized while being pressurized, and then the current value is lowered step by step while the pressurization is maintained. For example, it has been found that a weld zone in which occurrence of LME cracking is suppressed can be obtained.

溶接部におけるLME割れは、主通電終了後の冷却過程において、鋼板表面の亜鉛系めっき層が溶融した溶融亜鉛が存在している状態で、鋼板の熱収縮による引張応力が溶接部に加わり、溶融亜鉛が結晶粒界に侵入して粒界強度を低下させることによって発生すると考えられる。そして引張応力は、主通電終了後、加圧がなくなることで発生する。また引張応力は溶接部内部で均等に負荷される訳ではなく、局部的に引張応力が高く、且つ溶融亜鉛が存在することにより、LME割れの発生位置や発生度合いが変化すると考えられる。 LME cracking in the weld zone occurs in the cooling process after the end of the main energization, in the presence of molten zinc in which the zinc-based coating layer on the steel sheet surface has melted, tensile stress due to thermal contraction of the steel sheet is applied to the weld zone, and the melting occurs. It is considered that zinc penetrates grain boundaries and lowers the grain boundary strength. The tensile stress is generated when the pressurization disappears after the main energization is completed. In addition, the tensile stress is not uniformly applied inside the welded portion, and it is considered that the position and degree of occurrence of LME cracks change due to the locally high tensile stress and the presence of molten zinc.

本発明者らは、主通電終了後も溶接部に加圧による圧縮応力を付与し続けることで、鋼板の熱収縮によって発生する引張応力をある程度緩和できると予想した。しかしながら、加圧の保持だけでは、LME割れ発生を十分に抑制できないことが判明した。 The inventors of the present invention expected that the tensile stress caused by thermal contraction of the steel sheet can be alleviated to some extent by continuing to apply compressive stress to the weld zone even after the end of the main energization. However, it has been found that the occurrence of LME cracks cannot be sufficiently suppressed only by maintaining the pressure.

そこで、板組を加圧しつつ主通電した後に、加圧を維持したままで電流値を段階的に下げて通電するダウンスロープ工程を含んでスポット溶接を行えば、LME割れ発生を抑制した溶接部が得られるとの知見が得られ、その条件について更に検討した。 Therefore, if spot welding is performed including a down-slope process in which the current value is gradually lowered while maintaining the pressure after main energization is performed while pressurizing the sheet assembly, the welded portion suppresses the occurrence of LME cracks. was obtained, and the conditions were further investigated.

その結果、ダウンスロープ工程の開始から終了までの時間を所定の範囲とすれば、LME割れ発生を抑制した溶接部が得られることを見出し、本発明を完成した。 As a result, the present inventors have found that a weld zone in which the occurrence of LME cracking is suppressed can be obtained by setting the time from the start to the end of the downslope process within a predetermined range, and completed the present invention.

すなわち、上記目的を達成することのできた本実施形態のスポット溶接方法は、少なくとも1枚は亜鉛系めっき鋼板である2枚以上の鋼板を含む板組を、スポット溶接によって接合するにあたり、前記板組を加圧しつつ主通電した後に、加圧を維持したままで電流値を段階的に下げて通電するダウンスロープ工程を含み、前記ダウンスロープ工程の開始から終了までの時間t(ms)を16≦t≦4000の範囲とすることを特徴とする。 That is, the spot welding method of the present embodiment, which has been able to achieve the above object, is a method for joining a set of plates including two or more steel plates, at least one of which is a zinc-plated steel plate, by spot welding. After main energization while pressurizing, a downslope step in which the current value is gradually lowered while maintaining the pressurization, and the time t (ms) from the start to the end of the downslope step is set to 16 ≤ The range of t≦4000 is characterized.

まず本実施形態のスポット溶接方法で規定する各要件について説明する。 First, each requirement defined in the spot welding method of this embodiment will be described.

[少なくとも1枚は亜鉛系めっき鋼板である2枚以上の鋼板を含む板組]
本実施形態のスポット溶接方法において、溶接対象となる板組は、少なくとも1枚は亜鉛系めっき鋼板である。板組に亜鉛系めっき鋼板を含まない場合には、スポット溶接時に鋼板表面に溶融金属が生成されないため、LME割れが発生することがない。したがって、本実施形態のスポット溶接方法によってLME割れ発生抑制効果を発揮させるためには、板組に含まれる鋼板のうち、少なくとも1枚は亜鉛系めっき鋼板である。
[A plate assembly containing two or more steel sheets, at least one of which is a galvanized steel sheet]
In the spot welding method of the present embodiment, at least one plate set to be welded is a zinc-based plated steel plate. When the plate assembly does not include a zinc-based plated steel sheet, no molten metal is generated on the surface of the steel sheet during spot welding, so LME cracking does not occur. Therefore, in order to exhibit the effect of suppressing the occurrence of LME cracks by the spot welding method of the present embodiment, at least one of the steel sheets included in the set of sheets is a galvanized steel sheet.

なお、この亜鉛系めっき鋼板の種類については、何ら限定するものではなく、例えば溶融亜鉛めっき鋼板(GI鋼板)、合金化溶融亜鉛めっき鋼板(GA鋼板)、電気亜鉛めっき鋼板(EG鋼板)のいずれも含む。また、亜鉛系めっきの種類についても、Zn-Mg-Al系めっき等、各種の亜鉛系めっきが使用できる。また本実施形態のスポット溶接方法において、板組の枚数は2~3枚程度が通常である。但し、板組の枚数はこれに限らず、必要に応じて4枚以上の板組であっても良い。 The type of the zinc-based plated steel sheet is not limited in any way. Also includes As for the type of zinc-based plating, various types of zinc-based plating such as Zn--Mg--Al-based plating can be used. In the spot welding method of the present embodiment, the number of plates is usually about 2-3. However, the number of board sets is not limited to this, and four or more board sets may be used as necessary.

[ダウンスロープ工程を含んでスポット溶接を行う]
本実施形態のスポット溶接方法では、前記板組を加圧しつつ主通電した後に、ダウンスロープ工程を含んでスポット溶接を行うことが重要である。主通電の後に、電流を段階的に下げるダウンスロープ工程を付加することで、溶接部の冷却速度が小さくなり、溶接部の変形抵抗をより小さくできるので、加圧による溶接部への圧縮応力の付与による引張応力緩和が得られる。なお、主通電するときの加圧は、通常電極による行われるが、他の加圧手段を採用してもよい。
[Perform spot welding including the down slope process]
In the spot welding method of the present embodiment, it is important to carry out spot welding including a down slope step after applying the main current while pressurizing the plate assembly. By adding a down-slope process in which the current is stepped down after the main energization, the cooling rate of the welded part is reduced and the deformation resistance of the welded part can be reduced. Tensile stress relaxation upon application is obtained. It should be noted that although the pressurization at the time of main energization is usually performed by electrodes, other pressurizing means may be employed.

[ダウンスロープ工程の開始から終了までの時間t(ms;ミリ・秒):16≦t≦4000]
LME割れ発生を抑制するには、主通電終了後の冷却過程で発生する引張応力を緩和することが重要であるが、そのためにはダウンスロープ工程の開始から終了までの時間(以下、「ダウンスロープ時間t」と呼ぶことがある)を適正な範囲に設定する必要がある。
ダウンスロープ時間tが16ms未満になると、溶接部の冷却速度を十分に小さくできず、LME割れ発生抑制効果が発揮できない。
[Time t (ms; milliseconds) from the start to the end of the downslope process: 16 ≤ t ≤ 4000]
In order to suppress the occurrence of LME cracking, it is important to relax the tensile stress generated in the cooling process after the end of the main energization. time t”) must be set within an appropriate range.
If the downslope time t is less than 16 ms, the cooling rate of the weld zone cannot be reduced sufficiently, and the effect of suppressing the occurrence of LME cracks cannot be exhibited.

したがって、ダウンスロープ時間tは16ms以上とする必要がある。ダウンスロープ時間tの下限は、好ましくは166ms以上であり、より好ましくは250ms以上であり、更に好ましくは500ms以上である。 Therefore, the downslope time t must be 16 ms or longer. The lower limit of the downslope time t is preferably 166 ms or longer, more preferably 250 ms or longer, and even more preferably 500 ms or longer.

しかしながら、ダウンスロープ時間tが長くなり過ぎると、入熱量が大きくなり、鋼板表面の温度が極めて高くなるため、LME割れが却って発生しやすくなる。このため、ダウンスロープ時間tは4000ms以下とする必要がある。ダウンスロープ時間tの上限は、好ましくは2000ms以下であり、より好ましくは1000ms以下である。 However, if the downslope time t becomes too long, the amount of heat input increases and the temperature of the surface of the steel sheet becomes extremely high, so LME cracking is more likely to occur. Therefore, the downslope time t must be 4000 ms or less. The upper limit of the downslope time t is preferably 2000 ms or less, more preferably 1000 ms or less.

なお、主通電の前の予熱通電や主通電の後の後熱通電を、必要によって行ってもよく、或は、ダウンスロープ工程後に、テンパー通電を行って溶接部を焼戻ししてもよい。ダウンスロープ工程での条件を満足していれば、予熱通電、主通電および後熱通電での条件は何ら限定されず、通常の通電条件であればよい。 A preheating energization before the main energization and a post-heating energization after the main energization may be performed if necessary, or a tempering energization may be performed after the downslope process to temper the welded portion. The conditions for the preheating energization, the main energization, and the post-heating energization are not limited as long as the conditions for the downslope process are satisfied, and normal energization conditions may be used.

上記各要件を満足させつつスポット溶接を行うことによって、溶接部におけるLME割れ発生が抑制できという効果が発揮される。 By performing spot welding while satisfying each of the above requirements, the effect of suppressing the occurrence of LME cracks in the weld zone is exhibited.

本実施形態のスポット溶接方法によって上記の効果が得られる理由については、その全てを解明できた訳ではないが、おそらく次のように考えることができる。すなわち、主通電の後に、電流を段階的に下げるダウンスロープ工程を付加することで、溶接部の冷却速度が小さくなり、溶接部の変形抵抗をより小さくできるので、加圧による溶接部への圧縮応力の付与による引張応力緩和によって、LME割れ発生抑制効果が最大限に引き出されると推察される。加えて、溶接部が高温で保持される時間が長くなるため、回復等によって、引張応力の絶対値が低下することも、LME割れ発生抑制効果に有利に作用すると推察される。 The reason why the spot welding method of the present embodiment achieves the above effects has not been clarified completely, but it can be considered as follows. That is, by adding a down-slope process in which the current is stepped down after the main energization, the cooling rate of the welded portion is reduced, and the deformation resistance of the welded portion can be reduced. It is presumed that the effect of suppressing the occurrence of LME cracks is maximized by the relaxation of tensile stress due to the application of stress. In addition, since the weld zone is held at a high temperature for a longer period of time, the reduction in the absolute value of the tensile stress due to recovery or the like is also presumed to act favorably on the effect of suppressing the occurrence of LME cracks.

本実施形態のスポット溶接方法においては、必要によって下記の要件を満足することが好ましい。 In the spot welding method of this embodiment, it is preferable to satisfy the following requirements as necessary.

[少なくとも1枚は、引張強度が980MPa以上の鋼板である]
板組に含まれる鋼板の引張強度については、何ら限定されないが、少なくとも1枚は引張強度が980MPa以上の鋼板であることが好ましい。上述のごとく、自動車の構造用部材には、各種特性が要求されるが、引張強度が980MPa以上である鋼板を少なくとも1枚含ませることによって、車体の軽量化と衝突安全性の向上に大きく寄与できる。
[At least one sheet is a steel plate having a tensile strength of 980 MPa or more]
The tensile strength of the steel plates included in the set of plates is not particularly limited, but it is preferable that at least one steel plate has a tensile strength of 980 MPa or more. As described above, structural members of automobiles are required to have various properties. By including at least one steel plate with a tensile strength of 980 MPa or more, it greatly contributes to weight reduction of the vehicle body and improvement of crash safety. can.

[ダウンスロープ工程後に通電を停止し、加圧を保持する工程を行う]
本実施形態のスポット溶接方法において、主通電およびダウンスロープ工程での通電を停止した後に、加圧を保持する工程を付加してもよい。このような加圧保持工程を含むことによって、引張応力の緩和効果がより一層発揮され、LME割れ発生を抑制した特性(この特性を、「耐LME割れ性」と呼ぶ)がより優れた溶接構造物を得ることができる。
[Electricity is stopped after the downslope process, and the process of maintaining pressurization is performed]
In the spot welding method of the present embodiment, a step of maintaining pressure may be added after stopping the energization in the main energization and the down slope process. By including such a pressurization and holding step, the tensile stress relaxation effect is further exhibited, and the welded structure has a more excellent property that suppresses the occurrence of LME cracking (this property is called “LME cracking resistance”). can get things.

上記のような加圧保持工程を付加する場合には、引張応力の緩和効果を発揮させるために、加圧の保持時間(以下、「ホールド時間」と呼ぶことがある)は、16ms以上であることが好ましく、より好ましくは80ms以上である。しかしながら、ホールド時間が長くなりすぎても、多数の打点をスポット溶接するための所要時間が長くなり、部材の生産性が低下するので、2000ms以下であることが好ましく、より好ましくは1000 ms以下、更に好ましくは500ms以下である。 In the case of adding the pressurization and holding step as described above, the pressurization holding time (hereinafter sometimes referred to as "hold time") is 16 ms or more in order to exert the effect of relaxing the tensile stress. is preferably 80 ms or more. However, if the hold time is too long, the time required for spot-welding a large number of welding points will increase, and the productivity of the member will decrease. More preferably, it is 500 ms or less.

[その他の要件]
板組に含まれる鋼板の化学成分組成は、何ら限定されない。例えば通常の高張力鋼や軟鋼の化学成分組成を満足している鋼板であってもよい。鋼板若しくは亜鉛系めっき鋼板の素地鋼板は、熱延鋼板または冷延鋼板のいずれであってもよい。また鋼板の製造条件(熱処理条件、焼鈍パターン、めっき層形成条件等)についても、何ら限定されず、通常の条件に従えばよい。
[Other requirements]
The chemical composition of the steel plates included in the set of plates is not limited at all. For example, it may be a steel plate that satisfies the chemical composition of ordinary high-strength steel or mild steel. The base steel sheet of the steel sheet or galvanized steel sheet may be either a hot-rolled steel sheet or a cold-rolled steel sheet. Also, the steel sheet production conditions (heat treatment conditions, annealing pattern, plating layer formation conditions, etc.) are not limited at all, and the usual conditions may be followed.

なお、加圧は主通電のときにも行なわれるが、加圧と同時に溶接電流を流す必要はなく、主通電を行う時期は、加圧後にある程度のスクイズ時間が経過してからであってもよい。 Although pressurization is also performed during main energization, there is no need to supply welding current at the same time as pressurization. good.

本実施形態のスポット溶接方法では、スポット溶接機の加圧方式(サーボ方式、エア方式)、電流方式(直流、交流)等は何ら限定されない。また電流の周波数についても、50Hz、60Hzのいずれも適用することができ、或いは100Hzの高周波であってもよい。上記各条件が本発明の効果に何ら影響を及ぼさない。 In the spot welding method of the present embodiment, the pressure method (servo method, air method), current method (direct current, alternating current), etc. of the spot welder are not limited at all. As for the frequency of the current, either 50 Hz or 60 Hz may be applied, or a high frequency of 100 Hz may be used. Each of the above conditions does not affect the effects of the present invention.

用いるスポット溶接機は、電流値と加圧力を制御可能なスポット溶接機であれば、本実施形態のスポット溶接方法の実施に適用できる。 Any spot welder that can control the current value and the applied pressure can be applied to the spot welding method of the present embodiment.

主通電する電流値は、チリが発生しない程度の電流値であることが好ましい。チリの発生は加圧力によっても影響され、この加圧力が高くなればなるほどチリが発生しにくくなるが、例えば加圧力が600kgf(5880N)では、主通電する電流値は12kA程度まで高めることができる。また主通電時の通電パターンについても、何ら限定されず、単段通電や2段階以上の多段通電のいずれも採用できる。 It is preferable that the current value for main energization is a current value to the extent that dust does not occur. The generation of dust is also affected by the applied pressure, and the higher the applied pressure, the less likely dust is generated. . Also, the energization pattern during the main energization is not limited at all, and either single-stage energization or multi-stage energization of two or more stages can be adopted.

ダウンスロープ工程終了時の電流値は、ダウンスロープ工程による耐LME割れ性を得ることができる範囲であれば、何ら限定されない。またダウンスロープ工程中の電流値の傾き(電流減少率)についても、ダウンスロープ工程による耐LME割れ性を得ることができる範囲であれば、何ら限定されない。 The current value at the end of the downslope process is not limited at all as long as it is within a range in which LME cracking resistance due to the downslope process can be obtained. Also, the slope of the current value (current reduction rate) during the downslope process is not limited as long as it is within a range in which LME cracking resistance due to the downslope process can be obtained.

加圧力は、健全なナゲット径が得られる電流範囲を確保するという観点から、少なくとも250kgf(2450N)以上であることが好ましい。より好ましくは300kgf(2940N)以上である。しかしながら、加圧力が高くなりすぎると、電極の摩耗が大きくなり、生産性が低下するので、600kgf(5880N)以下であることが好ましく、より好ましくは500kgf(490N)以下である。 The applied pressure is preferably at least 250 kgf (2450 N) or more from the viewpoint of ensuring a current range in which a sound nugget diameter can be obtained. More preferably, it is 300 kgf (2940 N) or more. However, if the pressure is too high, the wear of the electrodes will increase and the productivity will decrease.

電極の打角(鋼板表面に対する垂線と、電極中心線のなす角度)は、5°以下であることが好ましい。電極の打角は、LME割れ発生を防止するために、できるだけ小さい方がよい。また溶接部の強度を確保するために、適切なナゲット径を形成する上でも電極の打角は小さい方が好ましい。こうした観点から、電極の打角は5°以下であることが好ましい。 The striking angle of the electrode (the angle formed by the perpendicular to the surface of the steel sheet and the center line of the electrode) is preferably 5° or less. The striking angle of the electrode should be as small as possible in order to prevent LME cracking. Also, in order to ensure the strength of the welded portion, it is preferable that the striking angle of the electrode is small in order to form an appropriate nugget diameter. From this point of view, the striking angle of the electrode is preferably 5° or less.

上述したように、本発明の一局面は、少なくとも1枚は亜鉛系めっき鋼板である2枚以上の鋼板を含む板組を、スポット溶接によって接合するにあたり、前記板組を加圧しつつ主通電した後に、加圧を維持したままで電流値を段階的に下げて通電するダウンスロープ工程を含み、前記ダウンスロープ工程の開始から終了までの時間t(ms)を16≦t≦4000の範囲とするスポット溶接方法である。 As described above, in one aspect of the present invention, when spot welding a plate assembly including two or more steel plates, at least one of which is a zinc-based plated steel plate, the main current is applied while pressing the plate assembly. Later, a downslope step is included in which the current value is lowered stepwise while the pressure is maintained, and the time t (ms) from the start to the end of the downslope step is set in the range of 16 ≤ t ≤ 4000. It is a spot welding method.

このような構成を採用することによって、亜鉛系めっき鋼板を含む複数枚の鋼板を溶接するに際し、溶接部におけるLME割れ発生を抑制できるスポット溶接方法が実現できる。 By adopting such a configuration, it is possible to realize a spot welding method capable of suppressing the occurrence of LME cracks in welded portions when welding a plurality of steel sheets including zinc-based plated steel sheets.

本実施形態のスポット溶接方法においては、溶接対象となる2枚以上の鋼板のうち少なくとも1枚は、引張強度が980MPa以上の鋼板であることが好ましい。 In the spot welding method of the present embodiment, at least one of the two or more steel plates to be welded is preferably a steel plate having a tensile strength of 980 MPa or more.

溶接対象に引張強度が980MPa以上である鋼板を少なくとも1枚含ませることによって、車体の軽量化と衝突安全性の向上に大きく寄与できる。 By including at least one steel plate having a tensile strength of 980 MPa or more in the object to be welded, it is possible to greatly contribute to weight reduction of the vehicle body and improvement of collision safety.

また、本実施形態のスポット溶接方法において、主通電およびダウンスロープ工程での通電を停止した後に、加圧を保持する工程を16ms以上行ってもよい。 Further, in the spot welding method of the present embodiment, the step of holding the pressurization may be performed for 16 ms or more after stopping the energization in the main energization and the down slope step.

このような加圧保持工程を含むことによって、引張応力の緩和効果がより一層発揮され、耐LME割れ性がより優れた溶接構造物を得ることができる。 By including such a pressurizing and holding step, the effect of relaxing the tensile stress is further exhibited, and a welded structure having more excellent resistance to LME cracking can be obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前記、後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含有される。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples, and it is also possible to implement it by adding changes within the scope that can conform to the gist of the above and below. All of them are included in the technical scope of the present invention.

表1に示す強度クラス(鋼種)、板厚、めっきの種類の各種鋼板記号a~dを用いた。これらの鋼板に対し、下記表2に示す溶接条件でスポット溶接を実施し、溶接構造物を作製した。なお、表2に示した「電流値」は、交流の場合は、実効値を示している。また鋼板1~3はこの順で鋼板を重ね、各鋼板の接合される部分を重ねて、電極で加圧して、通電した。 Various steel plate symbols a to d for the strength class (steel type), plate thickness, and plating type shown in Table 1 were used. These steel plates were spot-welded under the welding conditions shown in Table 2 below to produce welded structures. The "current value" shown in Table 2 indicates an effective value in the case of alternating current. The steel plates 1 to 3 were stacked in this order, the portions to be joined of the steel plates were stacked, and pressure was applied with an electrode to conduct electricity.

Figure 0007305396000001
Figure 0007305396000001

このとき、サーボ式定置型交流スポット溶接機を用い、電極はキャップチップ型(DR型)、先端径:8mmのCu-Cr合金製電極を使用した。主通電時の通電パターンは、2段通電を採用し、前段の電流値より後段の電流値を高くなるように設定した。スポット溶接開始から終了までの加圧力は350kgf(3430N)の一定とし、電極の打角は5°の一定とした。スポット溶接は、室温(25℃)で実施し、スポット溶接中は常に電極内に水を流し、電極を冷却しながら行った。 At this time, a servo-type stationary AC spot welding machine was used, and the electrode was a cap tip type (DR type) electrode made of a Cu—Cr alloy with a tip diameter of 8 mm. Two-step energization was adopted for the energization pattern during the main energization, and the current value of the latter stage was set to be higher than the current value of the former stage. The pressure applied from the start to the end of spot welding was kept constant at 350 kgf (3430 N), and the striking angle of the electrode was kept constant at 5°. Spot welding was carried out at room temperature (25° C.), and the electrodes were cooled by constantly flowing water into the electrodes during the spot welding.

得られた溶接構造物の溶接部に対し、打角と平行方向で且つ鋼板板厚方向に切断後、断面を鏡面研磨およびエッチングし、投影機(倍率:10倍)によりLME割れの有無およびナゲット径を観察した。LME割れは、下記の基準で評価した。 After cutting the welded part of the obtained welded structure in the direction parallel to the striking angle and in the thickness direction of the steel plate, the cross section is mirror-polished and etched, and the presence or absence of LME cracks and nuggets are checked by a projector (magnification: 10 times). observed the diameter. LME cracking was evaluated according to the following criteria.

(評価基準)
○:LME割れ無し
×:LME割れ有り
(Evaluation criteria)
○: No LME cracks ×: LME cracks present

これらの結果を、鋼板1~3の適用鋼種(表1の鋼板記号a~d)、および溶接条件(ダウンスロープ時間t、ホールド時間)とともに下記表2に示す。なお、表2では、ダウンスロープ時間tおよびホールド時間については、[cyc/60Hz](cyc:サイクル)の単位で示した値と、[ms]に換算した値の両方を示す。 These results are shown in Table 2 below together with the applicable steel types of Steel Plates 1 to 3 (steel plate symbols a to d in Table 1) and welding conditions (down slope time t, hold time). Note that Table 2 shows both values expressed in units of [cyc/60 Hz] (cyc: cycle) and values converted into [ms] for the down slope time t and the hold time.

Figure 0007305396000002
Figure 0007305396000002

これらの結果から、次のように考察できる。試験No.1~4、7、9~12、15、16は、本実施形態で規定する要件を満足する発明例であり、LME割れが発生しておらず、耐LME割れ性に優れていることが分かる。またナゲット径については、ナゲット測定位置の上下の板のうち、最薄の鋼板の板圧をtminとしたとき、いずれも4√tminとなっていた(前記特許文献1、2参照)。 From these results, it can be considered as follows. Test no. 1 to 4, 7, 9 to 12, 15, and 16 are invention examples that satisfy the requirements specified in this embodiment, no LME cracking occurs, and excellent LME cracking resistance. . Regarding the nugget diameter, when t min is the plate pressure of the thinnest steel plate among the plates above and below the nugget measurement position, both were 4√t min (see Patent Documents 1 and 2).

これに対し、本実施形態で規定する要件を満たさない比較例では、耐LME割れ性が劣化している。具体的には、試験No.5、6、8、13、14および17は、ダウンスロープ工程が付加されておらず、溶接部の冷却速度が大きいため、溶接部の変形抵抗が大きくなり、加圧による溶接部への圧縮応力の付与による、LME割れ発生の抑制効果を最大限に引き出すことができていない。それに加えて、溶接部が高温で保持される時間が短くなるため、回復等による引張応力の緩和効果が発揮されず、耐LME割れ性が劣化した。またナゲット径については、いずれも4√tminとなっていた。 On the other hand, in Comparative Examples that do not satisfy the requirements defined in this embodiment, the LME cracking resistance is deteriorated. Specifically, Test No. In Nos. 5, 6, 8, 13, 14 and 17, no downslope process was added and the cooling rate of the welded portion was high, so the deformation resistance of the welded portion increased and compressive stress was applied to the welded portion due to pressurization. The effect of suppressing the occurrence of LME cracking cannot be maximized by the provision of. In addition, since the time during which the welded portion is held at a high temperature is shortened, the tensile stress mitigation effect due to recovery or the like is not exerted, and the LME cracking resistance is deteriorated. Also, the nugget diameter was 4√t min in all cases.

Claims (3)

少なくとも1枚は亜鉛系めっき鋼板である2枚以上の鋼板を含む板組を、スポット溶接によって接合するにあたり、
前記板組を加圧しつつ主通電した後に、加圧を維持したままで電流値を段階的に下げて通電するダウンスロープ工程を含み、前記ダウンスロープ工程の開始から終了までの時間t(ms)を250≦t≦4000の範囲とすることを特徴とするスポット溶接方法。
In joining a plate assembly including two or more steel plates, at least one of which is a zinc-based plated steel plate, by spot welding,
including a downslope step of stepwise decreasing the current value while maintaining the pressurization after main energization while pressurizing the plate assembly, and a time t (ms) from the start to the end of the downslope step. is in the range of 250 ≤ t ≤ 4000.
前記2枚以上の鋼板のうち少なくとも1枚は、引張強度が980MPa以上の鋼板である請求項1に記載のスポット溶接方法。 The spot welding method according to claim 1, wherein at least one of the two or more steel plates is a steel plate having a tensile strength of 980 MPa or more. 前記ダウンスロープ工程後に通電を停止し、加圧を保持する工程を16ms以上行う請求項1または2に記載のスポット溶接方法。 The spot welding method according to claim 1 or 2, wherein the step of stopping the energization and holding the pressurization after the down slope step is performed for 16 ms or longer.
JP2019061253A 2019-03-27 2019-03-27 Spot welding method for galvanized steel sheets Active JP7305396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061253A JP7305396B2 (en) 2019-03-27 2019-03-27 Spot welding method for galvanized steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061253A JP7305396B2 (en) 2019-03-27 2019-03-27 Spot welding method for galvanized steel sheets

Publications (2)

Publication Number Publication Date
JP2020157358A JP2020157358A (en) 2020-10-01
JP7305396B2 true JP7305396B2 (en) 2023-07-10

Family

ID=72640962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061253A Active JP7305396B2 (en) 2019-03-27 2019-03-27 Spot welding method for galvanized steel sheets

Country Status (1)

Country Link
JP (1) JP7305396B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236674A (en) 2002-02-15 2003-08-26 Mazda Motor Corp Method and equipment of spot welding of high tensile steel
JP2011005544A (en) 2009-05-27 2011-01-13 Nippon Steel Corp Spot welding method for high-strength steel sheet
WO2018123350A1 (en) 2016-12-26 2018-07-05 Jfeスチール株式会社 Resistance spot welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236674A (en) 2002-02-15 2003-08-26 Mazda Motor Corp Method and equipment of spot welding of high tensile steel
JP2011005544A (en) 2009-05-27 2011-01-13 Nippon Steel Corp Spot welding method for high-strength steel sheet
WO2018123350A1 (en) 2016-12-26 2018-07-05 Jfeスチール株式会社 Resistance spot welding method

Also Published As

Publication number Publication date
JP2020157358A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US10933488B2 (en) Method of resistance spot welding
JP6278154B2 (en) Resistance spot welding method and manufacturing method of welded member
TWI622445B (en) Spot welding method
EP3342524B1 (en) Resistance spot welding method and method for manufacturing welded member
JP2017047475A (en) Spot welding method
JP2017047476A (en) Spot welding method
WO2019156073A1 (en) Method for resistance spot welding, and method for producing resistance-spot-welded joint
KR102197434B1 (en) Resistance spot welding method
KR102491219B1 (en) Resistance spot welding member and manufacturing method thereof
WO2020105266A1 (en) Joined structure and method for manufacturing joined structure
JP7305396B2 (en) Spot welding method for galvanized steel sheets
US20240123539A1 (en) Resistance spot welded joint and method for manufacturing resistance spot welded joint
US20230045352A1 (en) Pre-coated steel sheet comprising an additional coating for increasing the mechanical strength of the weld metal zone of a welded steel part prepared from said pre-coated sheet.
WO2024122355A1 (en) Resistance spot welding method
JP7355282B1 (en) Welded joints, welded parts and manufacturing methods thereof, and resistance spot welding methods
JP7103923B2 (en) Joint structure and method for manufacturing the joint structure
JP7355281B1 (en) Welded joints, welded parts and manufacturing methods thereof, and resistance spot welding methods
US11772186B2 (en) Spot welding method
WO2023233705A1 (en) Welded joint, welding member and production method for same, and resistance spot welding method
WO2024063010A1 (en) Welded member and method for manufacturing same
JP2024086171A (en) Method for manufacturing spot welded joint, and spot welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R150 Certificate of patent or registration of utility model

Ref document number: 7305396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150