JP6913062B2 - Resistance spot welding method and welding member manufacturing method - Google Patents

Resistance spot welding method and welding member manufacturing method Download PDF

Info

Publication number
JP6913062B2
JP6913062B2 JP2018153664A JP2018153664A JP6913062B2 JP 6913062 B2 JP6913062 B2 JP 6913062B2 JP 2018153664 A JP2018153664 A JP 2018153664A JP 2018153664 A JP2018153664 A JP 2018153664A JP 6913062 B2 JP6913062 B2 JP 6913062B2
Authority
JP
Japan
Prior art keywords
welding
energization
main
calorific value
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018153664A
Other languages
Japanese (ja)
Other versions
JP2019034341A (en
Inventor
央海 澤西
央海 澤西
松田 広志
広志 松田
池田 倫正
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019034341A publication Critical patent/JP2019034341A/en
Priority to JP2020174242A priority Critical patent/JP6969649B2/en
Application granted granted Critical
Publication of JP6913062B2 publication Critical patent/JP6913062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は抵抗スポット溶接方法に関し、とくに分流や板隙などの外乱の影響が大きい場合であっても、散りを発生させることなく安定してナゲット径を確保することを可能ならしめようとするものである。 The present invention relates to a resistance spot welding method, and aims to make it possible to stably secure a nugget diameter without causing scattering even when the influence of disturbance such as diversion or plate gap is large. Is.

一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。
この溶接法は、重ね合わせた2枚以上の鋼板を挟んでその上下から一対の電極で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法であり、高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板が溶融し、凝固した部分である。このナゲットにより、鋼板同士が点状に接合される。
Generally, a resistance spot welding method, which is a kind of lap resistance welding method, is used for joining the stacked steel plates.
This welding method is a method in which two or more stacked steel plates are sandwiched and pressed by a pair of electrodes from above and below, and a high current welding current is applied between the upper and lower electrodes for a short time to join them. A point-shaped welded portion can be obtained by utilizing the resistance heat generated by passing the welding current of. This point-shaped welded portion is called a nugget, and is a portion where both steel plates are melted and solidified at a contact point between the steel plates when an electric current is passed through the stacked steel plates. With this nugget, the steel plates are joined in dots.

良好な溶接部品質を得るためには、ナゲット径が適正な範囲で形成されることが重要である。ナゲット径は、溶接電流、通電時間、電極形状および加圧力等の溶接条件によって定まる。従って、適切なナゲット径を形成するためには、被溶接材の材質、板厚および重ね枚数等の被溶接材条件に応じて、上記の溶接条件を適正に設定する必要がある。 In order to obtain good weld quality, it is important that the nugget diameter is formed in an appropriate range. The nugget diameter is determined by welding conditions such as welding current, energization time, electrode shape and pressing force. Therefore, in order to form an appropriate nugget diameter, it is necessary to appropriately set the above welding conditions according to the conditions of the material to be welded, such as the material of the material to be welded, the plate thickness, and the number of stacked sheets.

例えば、自動車の製造に際しては、一台当たり数千点ものスポット溶接が施されており、また次々と流れてくる被処理材(ワーク)を溶接する必要がある。この時、各溶接箇所における被溶接材の材質、板厚および重ね枚数等の被溶接材の状態が同一であれば、溶接電流、通電時間および加圧力等の溶接条件も同一の条件で同一のナゲット径を得ることができる。しかしながら、連続した溶接では、電極の被溶接材接触面が次第に摩耗して接触面積が初期状態よりも次第に広くなる。このように接触面積が広くなった状態で、初期状態と同じ値の溶接電流を流すと、被溶接材中の電流密度が低下し、溶接部の温度上昇が低くなるため、ナゲット径は小さくなる。このため、数百〜数千点の溶接毎に、電極の研磨または交換を行い、電極の先端径が拡大しすぎないようにしている。 For example, in the manufacture of automobiles, thousands of spot welds are performed on each vehicle, and it is necessary to weld the materials (workpieces) to be treated that flow one after another. At this time, if the state of the material to be welded such as the material, plate thickness and the number of layers of the material to be welded at each welding location is the same, the welding conditions such as the welding current, energization time and pressing force are also the same under the same conditions. You can get the nugget diameter. However, in continuous welding, the contact surface of the electrode to be welded is gradually worn and the contact area is gradually wider than in the initial state. If a welding current of the same value as the initial state is applied in a state where the contact area is widened in this way, the current density in the material to be welded decreases and the temperature rise of the welded portion decreases, so that the nugget diameter becomes smaller. .. Therefore, the electrode is polished or replaced every several hundred to several thousand points of welding so that the tip diameter of the electrode does not expand too much.

その他、予め定めた回数の溶接を行うと溶接電流値を増加させて、電極の摩耗に伴う電流密度の低下を補償する機能(ステッパー機能)を備えた抵抗溶接装置が、従来から使用されている。このステッパー機能を使用するには、上述した溶接電流変化パターンを予め適正に設定しておく必要がある。しかしながら、このために、数多くの溶接条件および被溶接材条件に対応した溶接電流変化パターンを、試験等によって導き出すには、多くの時間とコストが必要になる。また、実際の施工においては、電極摩耗の進行状態にはバラツキがあるため、予め定めた溶接電流変化パターンが常に適正であるとはいえない。 In addition, a resistance welding device having a function (stepper function) of increasing the welding current value when welding is performed a predetermined number of times to compensate for a decrease in current density due to electrode wear has been conventionally used. .. In order to use this stepper function, it is necessary to properly set the above-mentioned welding current change pattern in advance. However, for this reason, it takes a lot of time and cost to derive a welding current change pattern corresponding to a large number of welding conditions and welding material conditions by a test or the like. Further, in actual construction, since the progress state of electrode wear varies, it cannot be said that the predetermined welding current change pattern is always appropriate.

さらに、溶接に際して外乱が存在する場合、例えば、溶接する点の近くにすでに溶接した点(既溶接点)がある場合や、被溶接材の表面凹凸が大きく溶接する点の近くに被溶接材の接触点が存在する場合には、溶接時に既溶接点や接触点に電流が分流する。このような状態では、所定の条件で溶接しても、電極直下の溶接したい位置における電流密度は低下するため、やはり必要な径のナゲットは得られなくなる。この発熱量不足を補償し、必要な径のナゲットを得るには、予め高い溶接電流を設定することが必要となる。 Further, when there is a disturbance during welding, for example, when there is an already welded point (already welded point) near the welding point, or when the surface unevenness of the material to be welded is large, the material to be welded is near the point where it is welded. If there is a contact point, a current is diverted to the existing weld point or contact point during welding. In such a state, even if welding is performed under predetermined conditions, the current density at the position to be welded immediately below the electrode decreases, so that a nugget having a required diameter cannot be obtained. In order to compensate for this insufficient calorific value and obtain a nugget with a required diameter, it is necessary to set a high welding current in advance.

また、表面凹凸や部材の形状などにより溶接する点の周囲が強く拘束されている場合や、溶接点周囲の鋼板間に異物が挟まっていたりする場合には、鋼板間の板隙が大きくなることで鋼板同士の接触径が狭まり、散りが発生しやすくなることもある。 In addition, when the circumference of the welding point is strongly restrained by the surface unevenness or the shape of the member, or when foreign matter is caught between the steel plates around the welding point, the plate gap between the steel plates becomes large. In some cases, the contact diameter between the steel sheets is narrowed, and scattering is likely to occur.

上記の問題を解決するものとして、以下に述べるような技術が提案されている。
例えば、特許文献1には、高張力鋼板への通電電流を漸変的に上昇させることによりナゲット生成を行なう第1ステップと、上記第1ステップの後に電流下降させる第2ステップと、上記第2ステップ後に電流上昇させて本溶接すると共に、漸変的に通電電流を下降させる第3ステップとを備えた工程によりスポット溶接を行なうことで、通電初期のなじみ不良に起因する散りを抑制しようとする高張力鋼板のスポット溶接方法が記載されている。
The following techniques have been proposed to solve the above problems.
For example, Patent Document 1 describes a first step of generating a nugget by gradually increasing the energizing current of a high-strength steel plate, a second step of lowering the current after the first step, and the second step. After the step, the current is increased for main welding, and spot welding is performed by a step including a third step of gradually decreasing the energizing current in an attempt to suppress scattering due to poor familiarity at the initial stage of energization. A method of spot welding a high-strength steel plate is described.

特許文献2には、通電時間の初期にスパッタの発生を抑え得る程度の電流値に所定時間維持して被溶接物の表面を軟化させ、その後に電流値を所定時間高く維持してスパッタの発生を抑えつつナゲットを成長させるスポット溶接の通電制御方法が記載されている。 In Patent Document 2, the surface of the workpiece is softened by maintaining a current value that can suppress the occurrence of spatter at the initial stage of the energization time for a predetermined time, and then the current value is maintained high for a predetermined time to generate spatter. The energization control method of spot welding that grows the nugget while suppressing the pressure is described.

特許文献3には、推算した溶接部の温度分布と目標ナゲットを比較して溶接機の出力を制御することによって、設定したナゲット径を得ようとする抵抗溶接機の制御装置が記載されている。 Patent Document 3 describes a control device for a resistance welder that attempts to obtain a set nugget diameter by controlling the output of the welder by comparing the estimated temperature distribution of the welded portion with the target nugget. ..

特許文献4には、溶接電流とチップ間電圧を検出し、熱伝導計算により溶接部のシミュレーションを行い、溶接中における溶接部のナゲットの形成状態を推定することによって、良好な溶接を行おうとする抵抗溶接機の溶接条件制御方法が記載されている。 Patent Document 4 attempts to perform good welding by detecting the welding current and the inter-chip voltage, simulating the welded portion by heat conduction calculation, and estimating the nugget formation state of the welded portion during welding. The welding condition control method of the resistance welding machine is described.

特許文献5には、被溶接物の板厚と通電時間とから、その被溶接物を良好に溶接することができる単位体積当たりの累積発熱量を計算し、計算された単位体積・単位時間当たりの発熱量を発生させる溶接電流または電圧に調整する処理を行う溶接システムを用いることにより、被溶接物の種類や電極の摩耗状態によらず良好な溶接を行おうとする抵抗溶接システムが記載されている。 In Patent Document 5, the cumulative calorific value per unit volume at which the object to be welded can be welded satisfactorily is calculated from the plate thickness of the object to be welded and the energization time, and the calculated unit volume and per unit time. A resistance welding system that attempts to perform good welding regardless of the type of object to be welded or the wear state of the electrodes is described by using a welding system that adjusts to the welding current or voltage that generates the calorific value of the above. There is.

特開2003−236674号公報Japanese Unexamined Patent Publication No. 2003-236674 特開2006−43731号公報Japanese Unexamined Patent Publication No. 2006-43731 特開平9−216071号公報Japanese Unexamined Patent Publication No. 9-216071 特開平10−94883号公報Japanese Unexamined Patent Publication No. 10-94883 特開平11−33743号公報Japanese Unexamined Patent Publication No. 11-33743 国際公開2014/136507号International Publication No. 2014/136507

しかしながら、特許文献1および2に記載の技術では、外乱の有無および大小によって適正となる溶接条件は変化すると考えられるため、想定以上の板隙や分流が生じた際には、散りを発生させることなく所望のナゲット径を確保することができないという問題があった。 However, in the techniques described in Patent Documents 1 and 2, it is considered that the appropriate welding conditions change depending on the presence or absence of disturbance and the magnitude of the disturbance. There was a problem that the desired nugget diameter could not be secured.

また、特許文献3および4に記載の技術では、熱伝導モデル(熱伝導シミュレーション)等に基づいてナゲットの温度を推定するため、複雑な計算処理が必要であり、溶接制御装置の構成が複雑になるだけでなく、溶接制御装置自体が高価になるという問題があった。 Further, in the techniques described in Patent Documents 3 and 4, since the temperature of the nugget is estimated based on a heat conduction model (heat conduction simulation) or the like, complicated calculation processing is required, and the configuration of the welding control device becomes complicated. Not only that, there is a problem that the welding control device itself becomes expensive.

さらに、特許文献5に記載の技術では、累積発熱量を目標値に制御することによって、電極が一定量摩耗していたとしても良好な溶接を行うことができるものと考えられる。しかしながら、設定した被溶接材条件と実際の被溶接材条件が大きく異なる場合、例えば近くに前述した既溶接点などの外乱が存在する場合や、発熱量の時間変化パターンが短時間で大きく変化する場合、例えば目付量の多い溶融亜鉛めっき鋼板の溶接の場合などには、適応制御が追随できず、最終的な累積発熱量を目標値に合わることができても、発熱の形態、つまり溶接部の温度分布の時間変化が目標とする良好な溶接部が得られる熱量パターンから外れ、必要とするナゲット径が得られなかったり、散りが発生したりする。
例えば、分流の影響が大きな場合に累積発熱量を合わせようとすると、鋼板間ではなく電極−鋼板間近傍での発熱が著しくなり、鋼板表面からの散りが発生しやすくなるという問題がある。
Further, in the technique described in Patent Document 5, it is considered that by controlling the cumulative calorific value to a target value, good welding can be performed even if the electrodes are worn by a certain amount. However, when the set conditions for the material to be welded and the actual conditions for the material to be welded are significantly different, for example, when there is a disturbance such as the already welded point described above nearby, or when the time change pattern of the calorific value changes significantly in a short time. In this case, for example, in the case of welding a hot-dip galvanized steel sheet with a large amount of grain, adaptive control cannot follow and even if the final cumulative calorific value can be matched to the target value, the form of heat generation, that is, welding. The time variation of the temperature distribution of the part deviates from the calorific value pattern that can obtain the target good welded part, and the required nugget diameter cannot be obtained or scattering occurs.
For example, if the cumulative heat generation amount is adjusted when the influence of the diversion is large, the heat generation becomes remarkable not between the steel plates but near the electrode and the steel plate, and there is a problem that the heat is easily scattered from the surface of the steel plate.

加えて、特許文献3〜5の技術は全て、電極先端が摩耗した場合の変化に対してはある程度は有効であるが、既溶接点との距離が短い場合など、分流の影響が大きい場合については何ら検討がなされておらず、実際に適応制御が働かない場合があった。 In addition, all the techniques of Patent Documents 3 to 5 are effective to some extent against the change when the electrode tip is worn, but when the influence of the diversion is large such as when the distance to the existing welding point is short. Has not been examined at all, and there were cases where adaptive control did not actually work.

そこで、発明者らは先に、上記の問題を解決するものとして、
「複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
通電パターンを2段以上の多段ステップに分割して、溶接を実施するものとし、
まず、本溶接に先立ち、各ステップ毎に、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させるテスト溶接を行い、
ついで、本溶接として、該テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、いずれかのステップにおいて、瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合に、その差を当該ステップの残りの通電時間内で補償すべく、本溶接の累積発熱量がテスト溶接で予め求めた累積発熱量と一致するように通電量を制御する適応制御溶接を行うことを特徴とする抵抗スポット溶接方法。」を開発し、特許文献6において開示した。
Therefore, the inventors first, as a solution to the above problem,
"In a resistance spot welding method in which a material to be welded, which is a stack of multiple metal plates, is sandwiched between a pair of electrodes and energized while being pressurized.
Welding shall be carried out by dividing the energization pattern into two or more multi-step steps.
First, prior to the main welding, the time change and unit volume of the instantaneous calorific value per unit volume calculated from the electrical characteristics between the electrodes when energized by constant current control to form an appropriate nugget for each step. Perform test welding to memorize the cumulative calorific value per hit as a target value.
Then, as the main welding, welding is started based on the time change curve of the instantaneous calorific value per unit volume obtained in the test welding, and in any step, the time when the time change amount of the instantaneous calorific value is the reference. When the change curve is deviated, the energization amount is controlled so that the cumulative calorific value of the main welding matches the cumulative calorific value obtained in advance in the test welding in order to compensate for the difference within the remaining energization time of the step. A resistance spot welding method characterized by performing adaptive control welding. Was developed and disclosed in Patent Document 6.

特許文献6の技術により、電極先端が摩耗したり、外乱が存在するような場合であっても、良好な径のナゲットを得ることができるようになった。 According to the technique of Patent Document 6, a nugget having a good diameter can be obtained even when the tip of the electrode is worn or a disturbance is present.

しかしながら、特許文献6の技術では、外乱の影響が特に大きい場合、通電パターンを2段以上の多段ステップに分割するタイミングを厳密に設定する必要があり、このタイミングを決定するために多くの予備試験を行う必要があり、作業工数の点に課題を残していた。 However, in the technique of Patent Document 6, when the influence of disturbance is particularly large, it is necessary to strictly set the timing for dividing the energization pattern into two or more stages, and many preliminary tests are performed to determine this timing. It was necessary to do this, leaving a problem in terms of work man-hours.

本発明は、上掲した特許文献6の改良発明に係るものであって、電極先端が摩耗したり、外乱が存在するような場合であっても、作業工数を低減しつつ、散りの発生や通電時間の増加なしに適切な径のナゲットを得ることができる抵抗スポット溶接方法を提供することを目的とする。
また、本発明は、上記の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法を提供することを目的とする。
The present invention relates to the improved invention of Patent Document 6 described above, and even when the tip of the electrode is worn or a disturbance is present, the work man-hours are reduced and scattering is generated. It is an object of the present invention to provide a resistance spot welding method capable of obtaining a nugget having an appropriate diameter without increasing the energization time.
Another object of the present invention is to provide a method for manufacturing a welded member, which joins a plurality of overlapping metal plates by the above-mentioned resistance spot welding method.

さて、発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。
まず、発明者らは、特許文献6の技術において、通電パターンを分割することなくテスト溶接を行い、このテスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として適応制御溶接を行うことを試みた。
しかし、外乱の影響が大きい場合には、やはり適応制御が追随できず、本溶接の発熱の形態、つまり溶接部の温度分布の時間変化が、目標とする良好な溶接部が得られる熱量パターンから外れ、必要とするナゲット径が得られなかったり、散りが発生したりするという問題が生じた。
Now, the inventors have made extensive studies to achieve the above-mentioned purpose.
First, in the technique of Patent Document 6, the inventors perform test welding without dividing the energization pattern, and based on the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value obtained by this test welding. We tried to perform adaptive control welding.
However, when the influence of disturbance is large, adaptive control cannot follow, and the form of heat generation in the main weld, that is, the time change of the temperature distribution of the weld, is based on the calorific value pattern that can obtain the target good weld. There was a problem that it came off, the required nugget diameter could not be obtained, and scattering occurred.

そこで、発明者らがさらに検討を重ねたところ、
・テスト溶接条件を見直す、具体的には、
実際の溶接で想定される外乱のある状態を模擬したうえでテスト溶接を行うとともに、
テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、
本溶接の予通電および本通電では、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行う、
ことが有効であり、
・これにより、より広い範囲の外乱の状態に対して、適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能となり、その結果、通電パターンを分割するタイミングを決定するための予備試験に係る工数を低減することが可能となる、
・また、特に、自動車の製造などの実作業においては、次々と流れてくる被処理材を連続的に溶接するが、施工条件や被処理材の寸法誤差などによって、通常、溶接位置や被処理材ごとに外乱の状態は変動する、
・この点、上記の溶接方法によれば、外乱のない状態でのテスト溶接により得られた時間変化曲線等を基準とした場合に比べ、より広い範囲の外乱の状態に対して適応制御が有効に働くので、外乱の状態の変動に有効に対応して所望のナゲット径を安定的に確保することが可能となって、実作業での作業効率や歩留まりの向上という点からも有利になる、
との知見を得た。
Therefore, when the inventors further examined it,
・ Review the test welding conditions, specifically
In addition to performing test welding after simulating the state of disturbance expected in actual welding,
In test welding and main welding, pre-energization is performed before main energization, respectively.
In the pre-energization and main energization of the main welding, adaptive control welding is performed based on the time change curve and the cumulative calorific value of the instantaneous calorific value stored during the pre-energization and main energization of the test welding.
Is effective,
-This makes it possible to match the heat quantity pattern of the welded part during adaptive control welding to the heat quantity pattern in test welding for a wider range of disturbance conditions, and as a result, the timing of dividing the energization pattern can be determined. It is possible to reduce the man-hours required for the preliminary test for determination.
-In particular, in actual work such as automobile manufacturing, the materials to be treated that flow one after another are continuously welded, but due to construction conditions and dimensional errors of the materials to be treated, the welding position and the material to be treated are usually welded. The state of disturbance varies from material to material,
-In this respect, according to the above welding method, adaptive control is effective for a wider range of disturbance conditions than when the time change curve obtained by test welding without disturbance is used as a reference. It is possible to stably secure the desired nugget diameter in response to fluctuations in the state of disturbance, which is advantageous in terms of improving work efficiency and yield in actual work.
I got the knowledge.

ここで、実際の溶接で想定される外乱のある状態を模擬したうえでテスト溶接を行うとともに、テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、本溶接の予通電および本通電では、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行う、ことにより、より広い範囲の外乱の状態に対して、適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能となる理由について、発明者らは、次のように考えている。
すなわち、
(a)テスト溶接を、上掲した特許文献6のように外乱のない状態で行う場合、外乱の影響が特に大きい状態で適応制御を有効に働かせるには、テスト溶接条件を非常に厳密に設定する必要があり、このテスト溶接条件を導出するには、多くの予備試験を行う必要がある。
(b)この点、テスト溶接において、実際の溶接で想定される外乱のある状態を模擬すれば、外乱の影響が大きい場合でも、適応制御を有効に働かせることが可能となる。
(c)しかし、本溶接における実際の外乱の影響が小さい場合に、厳しい外乱を模擬して得たテスト溶接の熱量パターンに沿って適応制御溶接を行うと、通電初期に溶接電流が過大となり易く、散り発生のリスクが高まる。
また、本溶接における実際の外乱の影響が、テスト溶接で想定した外乱の影響よりも著しく大きい場合には、なおも溶接電流が不十分となって、十分なナゲット径が得られない場合がある。
(d)この点、テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、本溶接の予通電および本通電では、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行うことにより、予通電の開始時点で、本溶接における実際の外乱の状態と、テスト溶接で想定した外乱の状態との間に差があったとしても、本通電の開始時点では、被溶接材である金属板間の通電経路の状態が近くなって、その差が大幅に緩和される。
(e)そのため、実際の溶接で想定される外乱のある状態を模擬したうえでテスト溶接を行うとともに、テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、本溶接の予通電および本通電では、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行うことにより、より広い範囲の外乱の状態に対して、適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能になる、
と発明者らは考えている。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
Here, the test welding is performed after simulating the state of disturbance assumed in the actual welding, and in the test welding and the main welding, the pre-energization is performed before the main welding, respectively, and the pre-energization and the main welding of the main welding are performed. In energization, adaptive control welding is performed based on the time change curve of the instantaneous calorific value memorized during the pre-energization of the test welding and the cumulative calorific value, and by performing adaptive control welding based on the cumulative calorific value, it is possible to deal with a wider range of disturbance conditions. The inventors consider the reason why the calorific value pattern of the welded portion at the time of adaptive control welding can be made to follow the calorific value pattern at the test welding as follows.
That is,
(A) When the test welding is performed in a state without disturbance as in Patent Document 6 described above, the test welding conditions are set very strictly in order for the adaptive control to work effectively in a state where the influence of the disturbance is particularly large. And many preliminary tests need to be done to derive this test welding condition.
(B) In this respect, in the test welding, if a state with a disturbance assumed in actual welding is simulated, the adaptive control can be effectively operated even when the influence of the disturbance is large.
(C) However, when the influence of the actual disturbance in the main welding is small, if the adaptive control welding is performed according to the calorific value pattern of the test welding obtained by simulating the severe disturbance, the welding current tends to become excessive at the initial stage of energization. , The risk of scattering increases.
Further, when the influence of the actual disturbance in the main welding is significantly larger than the influence of the disturbance assumed in the test welding, the welding current may still be insufficient and a sufficient nugget diameter may not be obtained. ..
(D) In this regard, in the test welding and the main welding, pre-energization is performed before the main energization, respectively, and in the pre-energization and the main energization of the main welding, the instantaneous calorific value stored during the pre-energization and the main energization of the test welding is performed. By performing adaptive control welding based on the time change curve and cumulative calorific value, there is a difference between the actual disturbance state in the main welding and the disturbance state assumed in the test welding at the start of pre-energization. Even if there is, at the start of the main energization, the state of the energization path between the metal plates to be welded becomes close, and the difference is greatly alleviated.
(E) Therefore, the test welding is performed after simulating the state of disturbance expected in the actual welding, and the test welding and the main welding are pre-energized before the main welding, respectively, and the pre-energization of the main welding is performed. In the main energization, by pre-energizing the test welding and performing adaptive control welding based on the time change curve of the instantaneous calorific value stored during the main energization and the cumulative calorific value, a wider range of disturbance conditions can be obtained. , It becomes possible to make the calorific value pattern of the welded part in adaptive control welding follow the calorific value pattern in test welding.
The inventors think.
The present invention has been completed with further studies based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1. 複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接と、該本溶接に先立つテスト溶接とを行うとともに、該本溶接および該テスト溶接ではそれぞれ予通電および本通電を行うものとし、
前記テスト溶接では、
外乱のある状態を模擬したうえで、予通電および本通電を定電流制御により行い、
また、該予通電および該本通電においてそれぞれ、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
前記本溶接では、
予通電および本通電をそれぞれ、前記テスト溶接の予通電および本通電で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行い、
該予通電または該本通電において、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電または該本通電の通電時間内で補償すべく、該予通電または該本通電での単位体積当たりの累積発熱量がそれぞれ、前記テスト溶接の予通電または本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する、
抵抗スポット溶接方法。
That is, the gist structure of the present invention is as follows.
1. 1. This is a resistance spot welding method in which a material to be welded, which is a stack of multiple metal plates, is sandwiched between a pair of electrodes and energized while being pressurized.
Main welding and test welding prior to the main welding shall be performed, and pre-energization and main energization shall be performed in the main welding and the test welding, respectively.
In the test welding,
After simulating a state with disturbance, pre-energization and main energization are performed by constant current control.
In addition, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume calculated from the electrical characteristics between the electrodes when forming an appropriate nugget in the pre-energization and the main energization, respectively. Remember,
In the main welding,
Pre-energization and main energization are performed by welding based on the time change curve and cumulative calorific value of the instantaneous calorific value per unit volume stored in the pre-energization and main energization of the test welding, respectively.
In the pre-energization or the main energization, when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve, the deviation amount is used as the remaining pre-energization or the main energization time. In order to compensate within, the cumulative calorific value per unit volume in the pre-energization or the main energization matches the cumulative calorific value per unit volume obtained in advance in the pre-energization or the main energization of the test welding, respectively. Control the amount of electricity,
Resistance spot welding method.

2.前記テスト溶接の予通電の溶接電流をI1、前記テスト溶接の本通電の溶接電流をI2としたとき、I1<I2の関係を満足する、前記1に記載の抵抗スポット溶接方法。 2. The resistance spot welding method according to 1 above, which satisfies the relationship of I1 <I2 when the pre-energized welding current of the test welding is I1 and the main current welding current of the test welding is I2.

3.前記テスト溶接を、溶接位置から6〜30mm隔てた箇所に既溶接点がある状態で行う、前記1または2に記載の抵抗スポット溶接方法。 3. 3. The resistance spot welding method according to 1 or 2 above, wherein the test welding is performed with a welded point at a position 6 to 30 mm away from the welding position.

4.前記テスト溶接を、前記被溶接材となる金属板同士の合わせ面において0.2〜3.0mmの隙間がある状態で行う、前記1または2に記載の抵抗スポット溶接方法。 4. The resistance spot welding method according to 1 or 2, wherein the test welding is performed with a gap of 0.2 to 3.0 mm on the mating surfaces of the metal plates to be welded.

5.前記1〜4のいずれかに記載の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法。 5. A method for manufacturing a welded member, wherein a plurality of overlapping metal plates are joined by the resistance spot welding method according to any one of 1 to 4.

本発明によれば、作業工数を低減しつつ、散りの発生や通電時間の増加なしに適切な径のナゲットを得ることが可能となる。
また、本発明によれば、自動車の製造などの実作業において次々と流れてくる被処理材を連続的に溶接する(溶接位置や被処理材ごとに外乱の状態が変動する)場合であっても、散りの発生なしに適切な径のナゲットを安定して得ることができるので、実作業における作業効率や歩留まりの向上という点でも有利となる。
According to the present invention, it is possible to obtain a nugget having an appropriate diameter without causing scattering or increasing the energizing time while reducing the work man-hours.
Further, according to the present invention, it is a case where the materials to be treated that flow one after another in actual work such as manufacturing of an automobile are continuously welded (the state of disturbance varies depending on the welding position and the material to be treated). However, since a nugget having an appropriate diameter can be stably obtained without the occurrence of scattering, it is also advantageous in terms of improving work efficiency and yield in actual work.

既溶接点のある板組みに対してテスト溶接を行う場合の一例を模式的に示す図である。It is a figure which shows typically an example of the case where the test welding is performed on the plate assembly which has already welded points. 既溶接点のある板組みに対してテスト溶接を行う場合の別の例を模式的に示す図である。It is a figure which shows typically another example in the case of performing test welding on the plate assembly which has the existing welding points. 板隙のある板組みに対してテスト溶接を行う場合の一例を模式的に示す図である。It is a figure which shows typically an example of the case where the test welding is performed on the plate assembly with a plate gap. 板隙のある板組みに対してテスト溶接を行う場合の別の例を模式的に示す図である。It is a figure which shows typically another example in the case of performing test welding on a plate assembly with a plate gap. 外乱のない状態でテスト溶接を行う場合の一例を模式的に示す図である。It is a figure which shows typically an example of the case where the test welding is performed in the state of no disturbance. 外乱のない状態でテスト溶接を行う場合の別の例を模式的に示す図である。It is a figure which shows another example typically in the case of performing test welding in a state without disturbance. 定電流制御による通電パターンの一例を模式的に示す図である。It is a figure which shows typically an example of the energization pattern by constant current control. 定電流制御による通電パターンの別の例を模式的に示す図である。It is a figure which shows another example of the energization pattern by a constant current control schematically.

本発明を、以下の実施形態に基づき説明する。
本発明の一実施形態は、複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接と、該本溶接に先立つテスト溶接とを行うとともに、該本溶接および該テスト溶接ではそれぞれ予通電および本通電を行うものとし、
前記テスト溶接では、
外乱のある状態を模擬したうえで、予通電および本通電を定電流制御により行い、
また、該予通電および該本通電においてそれぞれ、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
前記本溶接では、
予通電および本通電をそれぞれ、前記テスト溶接の予通電および本通電で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行い、
該予通電または該本通電において、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電または該本通電の通電時間内で補償すべく、該予通電または該本通電での単位体積当たりの累積発熱量がそれぞれ、前記テスト溶接の予通電または本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御するものである。
The present invention will be described based on the following embodiments.
One embodiment of the present invention is a resistance spot welding method in which a material to be welded in which a plurality of metal plates are superposed is sandwiched between a pair of electrodes and energized while being pressurized.
Main welding and test welding prior to the main welding shall be performed, and pre-energization and main energization shall be performed in the main welding and the test welding, respectively.
In the test welding,
After simulating a state with disturbance, pre-energization and main energization are performed by constant current control.
In addition, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume calculated from the electrical characteristics between the electrodes when forming an appropriate nugget in the pre-energization and the main energization, respectively. Remember,
In the main welding,
Pre-energization and main energization are performed by welding based on the time change curve and cumulative calorific value of the instantaneous calorific value per unit volume stored in the pre-energization and main energization of the test welding, respectively.
In the pre-energization or the main energization, when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve, the deviation amount is used as the remaining pre-energization or the main energization time. In order to compensate within, the cumulative calorific value per unit volume in the pre-energization or the main energization matches the cumulative calorific value per unit volume obtained in advance in the pre-energization or the main energization of the test welding, respectively. It controls the amount of energization.

なお、本発明の一実施形態に係る抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能であればよく、加圧機構(エアシリンダやサーボモータ等)、形式(定置式、ロボットガン等)、電極形状等はとくに限定されない。また、電極間の電気特性とは、電極間抵抗あるいは電極間電圧を意味する。 The welding device that can be used in the resistance spot welding method according to the embodiment of the present invention may be provided with a pair of upper and lower electrodes and can arbitrarily control the pressing force and the welding current during welding. The pressure mechanism (air cylinder, servo motor, etc.), type (stationary type, robot gun, etc.), electrode shape, etc. are not particularly limited. The electrical characteristics between the electrodes mean the resistance between the electrodes or the voltage between the electrodes.

以下、本発明の一実施形態に係る抵抗スポット溶接方法のテスト溶接と本溶接について、説明する。 Hereinafter, the test welding and the main welding of the resistance spot welding method according to the embodiment of the present invention will be described.

・テスト溶接
テスト溶接では、外乱のある状態、具体的には、本溶接で想定される外乱のある状態を模擬したうえで、予通電および本通電をそれぞれ定電流制御により行い、該予通電および該本通電においてそれぞれ、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させる。
-Test welding In test welding, after simulating a state with disturbance, specifically, a state with disturbance assumed in main welding, pre-energization and main energization are performed by constant current control, respectively, and the pre-energization and main energization are performed. In each of the main currents, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume calculated from the electrical characteristics between the electrodes when forming an appropriate nugget are stored.

ここで、本溶接で想定される外乱とは、分流や板隙などの外乱、具体的には、溶接位置(電極中心位置)から40mm以内にある既溶接点や、被溶接材となる金属板同士の合わせ面における0.2mm以上の隙間などが挙げられる。 Here, the disturbance assumed in the main welding is a disturbance such as a diversion or a plate gap, specifically, an already welded point within 40 mm from the welding position (electrode center position), or a metal plate to be welded. Examples thereof include a gap of 0.2 mm or more on the mating surfaces of each other.

例えば、溶接位置から40mm以内に既溶接点があることが想定される場合、テスト溶接は、溶接位置から6〜30mm隔てた箇所に既溶接点がある状態で行うことが好適である。より好適には、溶接位置から6〜20mm隔てた箇所に既溶接点がある状態で行うことが好適である。また、通常、想定されるような、溶接位置から既溶接点までの距離の下限は6mm程度である。さらに、テスト溶接で模擬する既溶接点の数は、1点でもよく、また、2点以上でもよい。また、テスト溶接で模擬する既溶接点の数の上限は特に限定されず、想定される既溶接点数のうち、最も多い点数とするのが好適である。さらに、テスト溶接で模擬する既溶接点の大きさは、想定される既溶接点の大きさと同程度の大きさとすればよい。
なお、ここでいう溶接位置と既溶接点との距離は、それぞれの中心間距離である。
For example, when it is assumed that there is a pre-welded point within 40 mm from the welding position, it is preferable to perform test welding with the pre-welded point at a position 6 to 30 mm away from the welding position. More preferably, it is performed in a state where there is a welded point at a position 6 to 20 mm away from the welding position. Further, as is usually assumed, the lower limit of the distance from the welding position to the existing welding point is about 6 mm. Further, the number of existing welding points simulated in the test welding may be one point or two or more points. Further, the upper limit of the number of existing weld points simulated in the test welding is not particularly limited, and it is preferable to set the maximum number of existing weld points among the assumed existing weld points. Further, the size of the existing welding point simulated by the test welding may be set to be about the same as the size of the assumed existing welding point.
The distance between the welding position and the existing welding point referred to here is the distance between the centers.

加えて、被溶接材となる金属板同士の合わせ面において0.2mm以上の隙間があることが想定される場合、テスト溶接は、被溶接材となる金属板同士の合わせ面において0.2〜3.0mmの隙間がある状態で行うことが好適である。より好適には、被溶接材となる金属板同士の合わせ面において0.5〜2.0mmの隙間がある状態で行う。また、想定される被溶接材となる金属板同士の合わせ面の隙間の上限は、現実的に3.0mm程度である。
なお、金属板同士の合わせ面の隙間とは、電極により加圧される前の溶接位置での金属板同士の合わせ面の隙間(合わせ面間の距離)である。
In addition, if it is assumed that there is a gap of 0.2 mm or more on the mating surfaces of the metal plates to be welded, the test welding will be performed from 0.2 to 0.2 on the mating surfaces of the metal plates to be welded. It is preferable to carry out with a gap of 3.0 mm. More preferably, it is carried out in a state where there is a gap of 0.5 to 2.0 mm on the mating surfaces of the metal plates to be welded. Further, the upper limit of the gap between the mating surfaces of the metal plates to be welded is practically about 3.0 mm.
The gap between the mating surfaces of the metal plates is the gap between the mating surfaces of the metal plates (distance between the mating surfaces) at the welding position before being pressurized by the electrodes.

なお、上記以外のテスト溶接条件については、被溶接材と同じ鋼種、厚みの予備溶接試験を、上記の外乱を想定した状態で、定電流制御にて種々の条件で行うことにより、適宜、設定すればよい。 The test welding conditions other than the above are appropriately set by performing a preliminary welding test of the same steel type and thickness as the material to be welded under various conditions under constant current control under the assumption of the above disturbance. do it.

また、テスト溶接、さらには後述する本溶接において、本通電の前に予通電を行うことが重要である。
というのは、実際の溶接で想定される外乱のある状態を模擬したうえでテスト溶接を行うとともに、テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、当該本溶接の予通電および本通電ではそれぞれ、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行う、ことにより、
本溶接の予通電の開始時点で、本溶接における実際の外乱の状態と、テスト溶接で想定した外乱の状態との間に差があったとしても、本溶接の本通電の開始時点では、被溶接材である金属板間の通電経路の状態が近くなって、その差が大幅に緩和される。
その結果、より広い範囲の外乱の状態に対して、適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能になるからである。
Further, in test welding and further in main welding described later, it is important to perform pre-energization before main current energization.
This is because the test welding is performed after simulating the state of disturbance expected in the actual welding, and in the test welding and the main welding, pre-energization is performed before the main energization, respectively, and the pre-energization of the main welding is performed. And in the main energization, the pre-energization of the test welding and the adaptive control welding based on the time change curve of the instantaneous calorific value stored during the main energization and the cumulative calorific value are performed, respectively.
Even if there is a difference between the actual disturbance state in the main welding and the disturbance state assumed in the test welding at the start of the pre-energization of the main welding, it is covered at the start of the main energization of the main welding. The state of the energization path between the metal plates, which are the welding materials, becomes closer, and the difference is greatly reduced.
As a result, it becomes possible to make the calorific value pattern of the welded portion at the time of adaptive control welding follow the calorific value pattern at the test welding for a wider range of disturbance states.

なお、予通電とは、ナゲットを拡大させる前に被溶接材となる金属板を軟化させて、金属板間の通電経路を確保するための通電である。予通電においては、ナゲットは形成されていなくてもよいし、散りを発生させない程度の小さいナゲット(たとえばナゲット径4√t´以下程度(t´:隣り合う2枚の金属板のうち薄い方の金属板の板厚(mm))は形成されていてもよい。
また、予通電条件については特に限定されるものではないが、予通電時の定電流制御による溶接電流I1は2〜13kA、通電時間は20〜400msとすることが好ましい。
The pre-energization is energization for softening the metal plate to be welded before expanding the nugget to secure an energization path between the metal plates. In the pre-energization, the nugget does not have to be formed, and the nugget is small enough not to generate scattering (for example, the nugget diameter is about 4√t'or less (t': the thinner of the two adjacent metal plates). The plate thickness (mm) of the metal plate may be formed.
The pre-energization conditions are not particularly limited, but it is preferable that the welding current I1 by constant current control during pre-energization is 2 to 13 kA and the energization time is 20 to 400 ms.

さらに、本通電条件についても特に限定されるものではないが、予通電時の定電流制御による溶接電流I1、本通電時の定電流制御による溶接電流I2について、I1<I2の関係を満足させることが好ましい。
なお、通電時間は20〜1000msとすることが好ましい。
Further, the main energization condition is not particularly limited, but the relationship of I1 <I2 is satisfied with respect to the welding current I1 by the constant current control at the time of pre-energization and the welding current I2 by the constant current control at the time of the main energization. Is preferable.
The energizing time is preferably 20 to 1000 ms.

加えて、予通電と本通電の間で通電休止時間を設けてもよい。その場合、通電休止時間は20〜400msとすることが好ましい。
なお、本願でいう定電流制御には、図7のように溶接電流を一定とする場合だけでなく、図8のように、予通電および/または本通電において溶接電流を直線的(連続的)に増加・減少させる場合も含むものとする。なお、溶接電流を直線的(連続的)に増加・減少させる場合、各通電における溶接電流はその平均値を基準として、I1<I2の関係を満足させることが好ましい。
In addition, an energization pause time may be provided between the pre-energization and the main energization. In that case, the energization suspension time is preferably 20 to 400 ms.
In the constant current control referred to in the present application, not only when the welding current is constant as shown in FIG. 7, but also when the welding current is linearly (continuously) in pre-energization and / or main energization as shown in FIG. It shall include the case of increasing / decreasing. When the welding current is linearly (continuously) increased or decreased, it is preferable that the welding current at each energization satisfies the relationship of I1 <I2 with reference to the average value.

・本溶接
上記のテスト溶接後、本溶接を行う。本溶接では、予通電および本通電をそれぞれ、前記テスト溶接の予通電および本通電で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行い、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線に沿っている場合には、そのまま溶接を行って溶接を終了する。
ただし、該予通電または該本通電において、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電または該本通電の通電時間内で補償すべく、該予通電または該本通電での単位体積当たりの累積発熱量がそれぞれ、前記テスト溶接の予通電または本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する。
(すなわち、予通電時に、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電の通電時間内で補償すべく、該予通電での単位体積当たりの累積発熱量が、前記テスト溶接の予通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する。
また、本通電時に、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該本通電の通電時間内で補償すべく、該本通電での単位体積当たりの累積発熱量が、前記テスト溶接の本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する。)
これにより、電極先端が摩耗したり、分流や板隙などの外乱の影響が大きい状態であっても、必要な累積発熱量を確保して、適正なナゲット径を得ることができる。
-Main welding After the above test welding, perform main welding. In the main welding, the pre-energization and the main energization are performed based on the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value stored in the pre-energization and the main energization of the test welding, respectively, and the welding is performed per unit volume. If the amount of time change of the instantaneous calorific value of is along the time change curve which is the reference, welding is performed as it is and welding is completed.
However, in the pre-energization or the main energization, if the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve, the deviation amount is used for the remaining pre-energization or the main energization. In order to compensate within the energization time, the cumulative calorific value per unit volume in the pre-energization or the main energization coincides with the cumulative calorific value per unit volume obtained in advance in the pre-energization or the main energization of the test welding, respectively. The amount of energization is controlled so as to.
(That is, when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve at the time of pre-energization, the deviation amount is compensated within the remaining energization time of the pre-energization. The energization amount is controlled so that the cumulative calorific value per unit volume in the pre-energization matches the cumulative calorific value per unit volume obtained in advance in the pre-energization of the test welding.
In addition, when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve at the time of main energization, the deviation amount is compensated within the remaining energization time of the main energization. The amount of energization is controlled so that the cumulative calorific value per unit volume in the main energization matches the cumulative calorific value per unit volume obtained in advance in the main energization of the test welding. )
As a result, even if the tip of the electrode is worn or the influence of disturbance such as diversion or plate gap is large, the required cumulative calorific value can be secured and an appropriate nugget diameter can be obtained.

なお、発熱量の算出方法については特に制限はないが、特許文献5にその一例が開示されており、本発明でもこの方法を採用することができる。この方法による単位体積・単位時間当たりの発熱量qおよび単位体積当たりの累積発熱量Qの算出要領は次のとおりである。
被溶接材の合計厚みをt、被溶接材の電気抵抗率をr、電極間電圧をV、溶接電流をIとし、電極と被溶接材が接触する面積をSとする。この場合、溶接電流は横断面積がSで、厚みtの柱状部分を通過して抵抗発熱を発生させる。この柱状部分における単位体積・単位時間当たりの発熱量qは次式(1)で求められる。
q=(V・I)/(S・t) --- (1)
また、この柱状部分の電気抵抗Rは、次式(2)で求められる。
R=(r・t)/S --- (2)
(2)式をSについて解いてこれを(1)式に代入すると、発熱量qは次式(3)
q=(V・I・R)/(r・t2
=(V2)/(r・t2) --- (3)
となる。
The method for calculating the calorific value is not particularly limited, but an example thereof is disclosed in Patent Document 5, and this method can also be adopted in the present invention. The procedure for calculating the calorific value q per unit volume / unit time and the cumulative calorific value Q per unit volume by this method is as follows.
Let t be the total thickness of the material to be welded, r be the electrical resistivity of the material to be welded, V be the voltage between the electrodes, I be the welding current, and S be the area where the electrodes and the material to be welded come into contact. In this case, the welding current has a cross-sectional area of S and passes through a columnar portion having a thickness t to generate resistance heat. The calorific value q per unit volume and unit time in this columnar portion is calculated by the following equation (1).
q = (VI) / (ST) --- (1)
Further, the electric resistance R of this columnar portion is obtained by the following equation (2).
R = (rt) / S --- (2)
When equation (2) is solved for S and this is substituted into equation (1), the calorific value q is calculated by the following equation (3).
q = (V ・ I ・ R) / (r ・ t 2 )
= (V 2 ) / (r · t 2 ) --- (3)
Will be.

上掲式(3)から明らかなように、単位体積・単位時間当たりの発熱量qは、電極間電圧Vと被溶接物の合計厚みtと被溶接物の電気抵抗率rから算出でき、電極と被溶接物が接触する面積Sによる影響を受けない。なお、(3)式は電極間電圧Vから発熱量を計算しているが、電極間電流Iから発熱量qを計算することもでき、このときにも電極と被溶接物が接触する面積Sを用いる必要がない。そして、単位体積・単位時間当たりの発熱量qを通電期間にわたって累積すれば、溶接に加えられる単位体積当たりの累積発熱量Qが得られる。(3)式から明らかなように、この単位体積当たりの累積発熱量Qもまた電極と被溶接材が接触する面積Sを用いないで算出することができる。
以上、特許文献5記載の方法によって、累積発熱量Qを算出する場合について説明したが、その他の算出式を用いても良いのは言うまでもない。
As is clear from the above equation (3), the calorific value q per unit volume / unit time can be calculated from the voltage V between the electrodes, the total thickness t of the work piece, and the electrical resistivity r of the work piece. It is not affected by the area S in which the object to be welded and the object to be welded come into contact with each other. In Eq. (3), the calorific value is calculated from the voltage V between the electrodes, but the calorific value q can also be calculated from the current I between the electrodes. There is no need to use. Then, by accumulating the calorific value q per unit volume and unit time over the energization period, the cumulative calorific value Q per unit volume applied to welding can be obtained. As is clear from the equation (3), the cumulative calorific value Q per unit volume can also be calculated without using the area S where the electrode and the material to be welded contact.
The case where the cumulative calorific value Q is calculated by the method described in Patent Document 5 has been described above, but it goes without saying that other calculation formulas may be used.

また、本溶接における溶接電流以外の条件(予通電および本通電における通電時間および設定加圧力)については、テスト溶接時の条件と同じにすればよい。 In addition, the conditions other than the welding current in the main welding (pre-energization, energization time in the main energization, and set pressing force) may be the same as those in the test welding.

なお、使用する被溶接材は特に制限はなく、軟鋼から超高張力鋼板までの各種強度を有する鋼板およびめっき鋼板、アルミ合金などの軽金属板の溶接にも適用でき、3枚以上の金属板を重ねた板組みにも適用できる。 The material to be welded is not particularly limited, and can be applied to welding of steel plates having various strengths from mild steel to ultra-high-strength steel plates and light metal plates such as plated steel plates and aluminum alloys, and three or more metal plates can be used. It can also be applied to stacked boards.

また、ナゲット形成のための通電の後に、溶接部の熱処理のための後通電を加えてもよい。この場合、通電条件は特に限定されず、それ以前のステップの溶接電流との大小関係も特に限定されない。さらに、通電中の加圧力は一定であってもよいし、適宜、変化させてもよい。 Further, after the energization for forming the nugget, the post-energization for heat treatment of the welded portion may be applied. In this case, the energization condition is not particularly limited, and the magnitude relationship with the welding current of the previous step is not particularly limited. Further, the pressing force during energization may be constant or may be changed as appropriate.

以下、本発明の実施形態に従う実施例について説明する。
なお、実施例の条件は、本発明の実施可能性および効果を確認するために採用したものであり、本発明は、これら実施例の条件に限定されるものではない。また、本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
表1に示す2枚重ねまたは3枚重ねの金属板の板組みについて、表2に示す条件で抵抗スポット溶接を行い、溶接継手を作製した。
ここで、テスト溶接は、図1〜4に示すような外乱を模擬した状態、または図5および6のような外乱のない状態で行った。図中、符号11〜13は金属板、14は電極、15はスペーサ、16は既溶接点である。なお、図1および図2に示すように、既溶接点16は2点とし、溶接位置(電極間中心)が既溶接点同士の中間(既溶接点との距離Lがそれぞれ同じ)となるように調整した。なお、既溶接点の金属板間におけるナゲット径(ただし、3枚重ねの板組みでは、板組みのうち最も薄い金属板とそれに接する金属板との間(例えば、表1の板組No.Fの場合、金属板11−12間)におけるナゲット径)は、4√t´(t´:隣り合う2枚の金属板のうち薄い方の金属板の板厚(mm)。ただし、3枚重ねの板組みの場合は、板組みのうち最も薄い金属板の板厚(mm))とした。
また、図3および図4では、各金属板11〜13間にスペーサ15を挿入し、上下からクランプすることで(図示せず)、種々の板隙厚さtgとなる板隙を設けた(3枚重ねの板組みの場合、金属板11、12の間の板隙厚さtgと、金属板12、13の間の板隙厚さtgとは、同じ値である)。なお、板隙間距離はいずれも60mmとした。
さらに、テスト溶接は、表2に示す条件で、本通電のみ、または、予通電および本通電を定電流制御により行い、その際の単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を記憶させた。また、一部の条件では、予通電と本通電の間の通電休止時間を設けた。
Hereinafter, examples according to the embodiment of the present invention will be described.
The conditions of the examples are adopted to confirm the feasibility and effect of the present invention, and the present invention is not limited to the conditions of these examples. Further, the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
A welded joint was produced by performing resistance spot welding under the conditions shown in Table 2 for the two-layer or three-layer metal plate assembly shown in Table 1.
Here, the test welding was performed in a state simulating the disturbance as shown in FIGS. 1 to 4 or in a state without disturbance as shown in FIGS. 5 and 6. In the figure, reference numerals 11 to 13 are metal plates, 14 is an electrode, 15 is a spacer, and 16 is a welded point. As shown in FIGS. 1 and 2, the existing welding points 16 are set to two points, and the welding positions (centers between electrodes) are intermediate between the existing welding points (the distance L from the existing welding points is the same). Adjusted to. It should be noted that the nugget diameter between the metal plates at the welded point (however, in the case of a three-ply plate assembly, between the thinnest metal plate of the plate assembly and the metal plate in contact with the metal plate (for example, the plate assembly No. F in Table 1). In the case of, the nugget diameter) in (between 11 and 12 of the metal plates) is 4√t'(t': the thickness (mm) of the thinner metal plate of the two adjacent metal plates. In the case of the plate assembly, the thickness (mm) of the thinnest metal plate among the plate assembly was used.
Further, in FIGS. 3 and 4, by inserting the spacer 15 between the metal plates 11 to 13 and clamping from above and below (not shown), plate gaps having various plate gap thicknesses tg are provided (not shown). In the case of a three-ply plate assembly, the plate gap thickness tg between the metal plates 11 and 12 and the plate gap thickness tg between the metal plates 12 and 13 are the same value). The plate gap distance was set to 60 mm.
Further, in the test welding, under the conditions shown in Table 2, only the main energization or the pre-energization and the main energization are performed by constant current control, and the time change curve and the cumulative calorific value of the instantaneous calorific value per unit volume at that time are obtained. I remembered it. Further, under some conditions, an energization suspension time was provided between the pre-energization and the main energization.

加えて、本溶接では、テスト溶接で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行った。ここで、通電時間や加圧力、予通電と本通電の間の通電休止時間などといった条件は、テスト溶接と本溶接で同じである。
なお、溶接機にはインバータ直流抵抗スポット溶接機を用い、電極にはDR形先端径6mmのクロム銅電極を用いた。
In addition, in the main welding, welding was performed based on the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value stored in the test welding. Here, conditions such as energization time, pressing force, energization suspension time between pre-energization and main energization are the same for test welding and main welding.
An inverter DC resistance spot welder was used as the welder, and a DR type chrome copper electrode having a tip diameter of 6 mm was used as the electrode.

得られた各継手について、溶接部を切断し断面をエッチング後、光学顕微鏡により観察し、金属板間におけるナゲット径(ただし、3枚重ねの板組みでは、板組みのうち最も薄い金属板とそれに接する金属板との間におけるナゲット径)が目標径である5√t´以上(t´:隣り合う2枚の金属板のうち薄い方の金属板の板厚(mm)、ただし、3枚重ねの板組みの場合では、板組みのうち最も薄い金属板の板厚(mm))であり、かつ散りが発生しなかった場合を◎と評価した。
また、ナゲット径が4.5√t´以上5√t´未満、かつ散りが発生しなかった場合を○と評価した。一方、ナゲット径が4.5√t´未満であるか、散りが発生した場合を×と評価した。
For each of the obtained joints, the welded part is cut, the cross section is etched, and then observed with an optical microscope. The target diameter (nugget diameter between the metal plates in contact) is 5√t'or more (t': the thickness of the thinner metal plate of the two adjacent metal plates (mm), but three layers are stacked. In the case of the plate assembly of, the case where the thickness of the thinnest metal plate among the plate assembly (mm) and no scattering occurred was evaluated as ⊚.
In addition, the case where the nugget diameter was 4.5√t'or more and less than 5√t' and no scattering occurred was evaluated as ◯. On the other hand, when the nugget diameter was less than 4.5√t'or when scattering occurred, it was evaluated as x.

Figure 0006913062
Figure 0006913062

Figure 0006913062
Figure 0006913062
Figure 0006913062
Figure 0006913062
Figure 0006913062
Figure 0006913062

発明例ではいずれも、広い範囲の外乱の状態に対して、散りの発生なく、4.5√t´以上の径を有するナゲットが得られ、広い範囲の外乱の状態に対して、本溶接の適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能であった。
一方、比較例では、外乱の状態によっては、散りの発生を招いたり、十分な径のナゲットを得ることができず、種々の外乱の状態に対して、本溶接の適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることはできなかった。
In each of the examples of the invention, a nugget having a diameter of 4.5√t'or more can be obtained without occurrence of scattering in a wide range of disturbance states, and adaptive control of this welding is performed in a wide range of disturbance states. It was possible to make the calorific value pattern of the welded portion at the time of welding follow the calorific value pattern in the test welding.
On the other hand, in the comparative example, depending on the state of disturbance, scattering may occur or a nugget having a sufficient diameter cannot be obtained. The calorific value pattern of was not able to follow the calorific value pattern in the test welding.

11,12,13:金属板
14:電極
15:スペーサ
16:既溶接点
11, 12, 13: Metal plate 14: Electrode 15: Spacer 16: Already welded point

Claims (2)

複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接と、該本溶接に先立つテスト溶接とを行うとともに、該本溶接および該テスト溶接ではそれぞれ予通電および本通電を行うものとし、
前記テスト溶接では、
前記被溶接材となる金属板同士の合わせ面において0.2〜2.0mmの隙間がある状態とし、そのうえで、予通電および本通電を定電流制御により行い、
また、該予通電および該本通電においてそれぞれ、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
前記本溶接では、
予通電および本通電をそれぞれ、前記テスト溶接の予通電および本通電で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行い、
該予通電または該本通電において、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電または該本通電の通電時間内で補償すべく、該予通電または該本通電での単位体積当たりの累積発熱量がそれぞれ、前記テスト溶接の予通電または本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御し、
前記テスト溶接の予通電の溶接電流をI1、前記テスト溶接の本通電の溶接電流をI2としたとき、I1<I2の関係を満足する、
抵抗スポット溶接方法。
This is a resistance spot welding method in which a material to be welded, which is a stack of multiple metal plates, is sandwiched between a pair of electrodes and energized while being pressurized.
Main welding and test welding prior to the main welding shall be performed, and pre-energization and main energization shall be performed in the main welding and the test welding, respectively.
In the test welding,
A gap of 0.2 to 2.0 mm is provided on the mating surfaces of the metal plates to be welded, and then pre-energization and main energization are performed by constant current control.
In addition, the time change curve of the instantaneous calorific value per unit volume and the cumulative calorific value per unit volume calculated from the electrical characteristics between the electrodes when forming an appropriate nugget in the pre-energization and the main energization, respectively. Remember,
In the main welding,
Pre-energization and main energization are performed by welding based on the time change curve and cumulative calorific value of the instantaneous calorific value per unit volume stored in the pre-energization and main energization of the test welding, respectively.
In the pre-energization or the main energization, when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve, the deviation amount is used as the remaining pre-energization or the main energization time. In order to compensate within, the cumulative calorific value per unit volume in the pre-energization or the main energization matches the cumulative calorific value per unit volume obtained in advance in the pre-energization or the main energization of the test welding, respectively. Control the amount of electricity ,
When the welding current of the pre-energization of the test welding is I1 and the welding current of the main current of the test welding is I2, the relationship of I1 <I2 is satisfied .
Resistance spot welding method.
請求項1に記載の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法。
A method for manufacturing a welded member, in which a plurality of overlapping metal plates are joined by the resistance spot welding method according to claim 1.
JP2018153664A 2017-08-18 2018-08-17 Resistance spot welding method and welding member manufacturing method Active JP6913062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020174242A JP6969649B2 (en) 2017-08-18 2020-10-15 Resistance spot welding method and welding member manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017157918 2017-08-18
JP2017157918 2017-08-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020174242A Division JP6969649B2 (en) 2017-08-18 2020-10-15 Resistance spot welding method and welding member manufacturing method

Publications (2)

Publication Number Publication Date
JP2019034341A JP2019034341A (en) 2019-03-07
JP6913062B2 true JP6913062B2 (en) 2021-08-04

Family

ID=65636450

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018153664A Active JP6913062B2 (en) 2017-08-18 2018-08-17 Resistance spot welding method and welding member manufacturing method
JP2020174242A Active JP6969649B2 (en) 2017-08-18 2020-10-15 Resistance spot welding method and welding member manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020174242A Active JP6969649B2 (en) 2017-08-18 2020-10-15 Resistance spot welding method and welding member manufacturing method

Country Status (1)

Country Link
JP (2) JP6913062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453515B2 (en) 2020-02-18 2024-03-21 日本製鉄株式会社 Resistance spot welding joint manufacturing method, resistance spot welding method, resistance spot welding joint, automobile parts, and hat-shaped parts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920523B2 (en) * 2013-03-08 2016-05-18 Jfeスチール株式会社 Resistance spot welding method
CA2926914A1 (en) * 2013-12-20 2015-06-25 Nippon Steel & Sumitomo Metal Corporation Resistance spot welding method
WO2015099192A1 (en) * 2013-12-27 2015-07-02 Jfeスチール株式会社 Resistance spot welding method

Also Published As

Publication number Publication date
JP2021003733A (en) 2021-01-14
JP6969649B2 (en) 2021-11-24
JP2019034341A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6108030B2 (en) Resistance spot welding method
JP5999293B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
KR101974298B1 (en) Resistance spot welding method
WO2017212916A1 (en) Resistance spot welding method
JP6471841B1 (en) Resistance spot welding method and manufacturing method of welded member
JP6590121B1 (en) Resistance spot welding method and manufacturing method of welded member
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
JP6904479B2 (en) Resistance spot welding method and welding member manufacturing method
JP6892038B1 (en) Resistance spot welding method and welding member manufacturing method
JP6652228B1 (en) Resistance spot welding method and method for manufacturing welded member
JP6856181B1 (en) Resistance spot welding method and welding member manufacturing method
JP6241580B1 (en) Resistance spot welding method
JP6658993B1 (en) Resistance spot welding method and method for manufacturing welded member
JP6658992B1 (en) Resistance spot welding method and method for manufacturing welded member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201028

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201110

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201120

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201201

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210526

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210601

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210706

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210709

R150 Certificate of patent or registration of utility model

Ref document number: 6913062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150