JP2019034341A - Resistance spot welding method and manufacturing method for welding member - Google Patents

Resistance spot welding method and manufacturing method for welding member Download PDF

Info

Publication number
JP2019034341A
JP2019034341A JP2018153664A JP2018153664A JP2019034341A JP 2019034341 A JP2019034341 A JP 2019034341A JP 2018153664 A JP2018153664 A JP 2018153664A JP 2018153664 A JP2018153664 A JP 2018153664A JP 2019034341 A JP2019034341 A JP 2019034341A
Authority
JP
Japan
Prior art keywords
welding
energization
main
test
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018153664A
Other languages
Japanese (ja)
Other versions
JP6913062B2 (en
Inventor
央海 澤西
Chikaumi Sawanishi
央海 澤西
松田 広志
Hiroshi Matsuda
広志 松田
池田 倫正
Tomomasa Ikeda
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019034341A publication Critical patent/JP2019034341A/en
Priority to JP2020174242A priority Critical patent/JP6969649B2/en
Application granted granted Critical
Publication of JP6913062B2 publication Critical patent/JP6913062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a resistance spot welding method by which a nugget with an appropriate diameter can be obtained without occurrence of scatter and an increase of energization time, while reducing man days for work even in a case where the leading end of an electrode wears and/or disturbance is present.SOLUTION: Preliminary energization and main energization are carried out in both main welding and test welding. In the test welding, a disturbed state is simulated, and the preliminary energization and the main energization are carried out under constant-current control. A time change curve of a quantity of instantaneous heat generation per unit volume and a cumulative quantity of heat generation per unit volume, which are calculated from an electrical characteristic between electrodes when an appropriate nugget is formed, are stored for each of the preliminary energization and the main energization. In the main welding, welding is carried out using, as a reference, the time change curve of the quantity of instantaneous heat generation per unit volume and the cumulative quantity of heat generation, stored for each of the preliminary energization and the main energization for the test welding.SELECTED DRAWING: Figure 1

Description

本発明は抵抗スポット溶接方法に関し、とくに分流や板隙などの外乱の影響が大きい場合であっても、散りを発生させることなく安定してナゲット径を確保することを可能ならしめようとするものである。   The present invention relates to a resistance spot welding method, and in particular, it is intended to make it possible to stably secure a nugget diameter without causing scattering even when the influence of disturbance such as diversion or plate gap is large. It is.

一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。
この溶接法は、重ね合わせた2枚以上の鋼板を挟んでその上下から一対の電極で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法であり、高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板が溶融し、凝固した部分である。このナゲットにより、鋼板同士が点状に接合される。
In general, a resistance spot welding method, which is a kind of a lap resistance welding method, is used for joining the stacked steel plates.
This welding method is a method in which two or more superposed steel plates are sandwiched and pressed with a pair of electrodes from above and below, and a high-current welding current is passed between the upper and lower electrodes for a short time to join them. A spot-like welded portion can be obtained by utilizing the resistance heat generated by passing the welding current. This spot-like welded portion is called a nugget and is a portion where both steel plates are melted and solidified at the contact points of the steel plates when current is passed through the stacked steel plates. With this nugget, the steel plates are joined in a dot shape.

良好な溶接部品質を得るためには、ナゲット径が適正な範囲で形成されることが重要である。ナゲット径は、溶接電流、通電時間、電極形状および加圧力等の溶接条件によって定まる。従って、適切なナゲット径を形成するためには、被溶接材の材質、板厚および重ね枚数等の被溶接材条件に応じて、上記の溶接条件を適正に設定する必要がある。   In order to obtain good weld quality, it is important that the nugget diameter is formed in an appropriate range. The nugget diameter is determined by welding conditions such as welding current, energization time, electrode shape, and applied pressure. Therefore, in order to form an appropriate nugget diameter, it is necessary to appropriately set the above-described welding conditions in accordance with the welded material conditions such as the material of the welded material, the plate thickness, and the number of stacked sheets.

例えば、自動車の製造に際しては、一台当たり数千点ものスポット溶接が施されており、また次々と流れてくる被処理材(ワーク)を溶接する必要がある。この時、各溶接箇所における被溶接材の材質、板厚および重ね枚数等の被溶接材の状態が同一であれば、溶接電流、通電時間および加圧力等の溶接条件も同一の条件で同一のナゲット径を得ることができる。しかしながら、連続した溶接では、電極の被溶接材接触面が次第に摩耗して接触面積が初期状態よりも次第に広くなる。このように接触面積が広くなった状態で、初期状態と同じ値の溶接電流を流すと、被溶接材中の電流密度が低下し、溶接部の温度上昇が低くなるため、ナゲット径は小さくなる。このため、数百〜数千点の溶接毎に、電極の研磨または交換を行い、電極の先端径が拡大しすぎないようにしている。   For example, in the manufacture of automobiles, thousands of spot welding is performed per vehicle, and it is necessary to weld workpieces (workpieces) that flow one after another. At this time, if the condition of the material to be welded, such as the material of the material to be welded at each welding location, the plate thickness, and the number of stacked sheets, is the same, the welding conditions such as welding current, energization time, and pressure are the same under the same conditions. The nugget diameter can be obtained. However, in continuous welding, the contact surface of the electrode to be welded material gradually wears, and the contact area gradually becomes wider than the initial state. When a welding current having the same value as that in the initial state is applied in a state where the contact area is increased in this way, the current density in the material to be welded is lowered and the temperature rise of the welded portion is lowered, so the nugget diameter is reduced. . For this reason, the electrode is ground or exchanged every several hundred to several thousand points of welding so that the tip diameter of the electrode does not become too large.

その他、予め定めた回数の溶接を行うと溶接電流値を増加させて、電極の摩耗に伴う電流密度の低下を補償する機能(ステッパー機能)を備えた抵抗溶接装置が、従来から使用されている。このステッパー機能を使用するには、上述した溶接電流変化パターンを予め適正に設定しておく必要がある。しかしながら、このために、数多くの溶接条件および被溶接材条件に対応した溶接電流変化パターンを、試験等によって導き出すには、多くの時間とコストが必要になる。また、実際の施工においては、電極摩耗の進行状態にはバラツキがあるため、予め定めた溶接電流変化パターンが常に適正であるとはいえない。   In addition, a resistance welding apparatus having a function (stepper function) that increases a welding current value when a predetermined number of times of welding is performed and compensates for a decrease in current density due to electrode wear has been conventionally used. . In order to use this stepper function, it is necessary to appropriately set the above-described welding current change pattern in advance. However, for this purpose, much time and cost are required to derive a welding current change pattern corresponding to a large number of welding conditions and workpiece conditions by testing or the like. Moreover, in actual construction, since the progress of electrode wear varies, a predetermined welding current change pattern is not always appropriate.

さらに、溶接に際して外乱が存在する場合、例えば、溶接する点の近くにすでに溶接した点(既溶接点)がある場合や、被溶接材の表面凹凸が大きく溶接する点の近くに被溶接材の接触点が存在する場合には、溶接時に既溶接点や接触点に電流が分流する。このような状態では、所定の条件で溶接しても、電極直下の溶接したい位置における電流密度は低下するため、やはり必要な径のナゲットは得られなくなる。この発熱量不足を補償し、必要な径のナゲットを得るには、予め高い溶接電流を設定することが必要となる。   Furthermore, when there is a disturbance during welding, for example, when there is a point that has already been welded (an already welded point) near the point to be welded, If a contact point exists, current is shunted to the already-welded point or the contact point during welding. In such a state, even if welding is performed under a predetermined condition, the current density at the position to be welded directly under the electrode is lowered, so that a nugget having a necessary diameter cannot be obtained. In order to compensate for this shortage of heat generation and obtain a nugget with a required diameter, it is necessary to set a high welding current in advance.

また、表面凹凸や部材の形状などにより溶接する点の周囲が強く拘束されている場合や、溶接点周囲の鋼板間に異物が挟まっていたりする場合には、鋼板間の板隙が大きくなることで鋼板同士の接触径が狭まり、散りが発生しやすくなることもある。   Also, if the periphery of the welding point is strongly constrained due to surface irregularities or the shape of the member, or if foreign matter is sandwiched between the steel plates around the welding point, the gap between the steel plates will increase. In this case, the contact diameter between the steel plates is narrowed, and scattering is likely to occur.

上記の問題を解決するものとして、以下に述べるような技術が提案されている。
例えば、特許文献1には、高張力鋼板への通電電流を漸変的に上昇させることによりナゲット生成を行なう第1ステップと、上記第1ステップの後に電流下降させる第2ステップと、上記第2ステップ後に電流上昇させて本溶接すると共に、漸変的に通電電流を下降させる第3ステップとを備えた工程によりスポット溶接を行なうことで、通電初期のなじみ不良に起因する散りを抑制しようとする高張力鋼板のスポット溶接方法が記載されている。
In order to solve the above problems, the following techniques have been proposed.
For example, Patent Document 1 discloses a first step in which nugget generation is performed by gradually increasing an energization current to a high-tensile steel plate, a second step in which current is decreased after the first step, and the second step. After the step, the current is increased and main welding is performed, and spot welding is performed by a process including a third step for gradually decreasing the energization current, thereby attempting to suppress scattering due to the familiarity failure at the initial energization. A method for spot welding high strength steel sheets is described.

特許文献2には、通電時間の初期にスパッタの発生を抑え得る程度の電流値に所定時間維持して被溶接物の表面を軟化させ、その後に電流値を所定時間高く維持してスパッタの発生を抑えつつナゲットを成長させるスポット溶接の通電制御方法が記載されている。   In Patent Document 2, the current value is maintained at a current value that can suppress the occurrence of spatter at the beginning of the energization time for a predetermined time to soften the surface of the workpiece, and then the current value is maintained high for a predetermined time to generate spatter. An energization control method for spot welding in which nuggets are grown while suppressing the above is described.

特許文献3には、推算した溶接部の温度分布と目標ナゲットを比較して溶接機の出力を制御することによって、設定したナゲット径を得ようとする抵抗溶接機の制御装置が記載されている。   Patent Document 3 describes a resistance welding machine control device that obtains a set nugget diameter by comparing the estimated temperature distribution of a welded portion with a target nugget to control the output of the welding machine. .

特許文献4には、溶接電流とチップ間電圧を検出し、熱伝導計算により溶接部のシミュレーションを行い、溶接中における溶接部のナゲットの形成状態を推定することによって、良好な溶接を行おうとする抵抗溶接機の溶接条件制御方法が記載されている。   In Patent Document 4, welding current and chip-to-chip voltage are detected, a weld is simulated by heat conduction calculation, and the formation state of the nugget of the weld during welding is estimated to perform good welding. A welding condition control method for a resistance welder is described.

特許文献5には、被溶接物の板厚と通電時間とから、その被溶接物を良好に溶接することができる単位体積当たりの累積発熱量を計算し、計算された単位体積・単位時間当たりの発熱量を発生させる溶接電流または電圧に調整する処理を行う溶接システムを用いることにより、被溶接物の種類や電極の摩耗状態によらず良好な溶接を行おうとする抵抗溶接システムが記載されている。   In Patent Document 5, a cumulative heat generation amount per unit volume capable of satisfactorily welding the workpiece is calculated from the thickness of the workpiece and energization time, and the calculated unit volume / unit time is calculated. Describes a resistance welding system that performs good welding regardless of the type of workpiece and the wear state of the electrodes by using a welding system that adjusts the welding current or voltage to generate a heat generation amount of Yes.

特開2003−236674号公報JP 2003-236684 A 特開2006−43731号公報JP 2006-43731 A 特開平9−216071号公報Japanese Patent Laid-Open No. 9-216071 特開平10−94883号公報JP-A-10-94883 特開平11−33743号公報JP 11-33743 A 国際公開2014/136507号International Publication No. 2014/136507

しかしながら、特許文献1および2に記載の技術では、外乱の有無および大小によって適正となる溶接条件は変化すると考えられるため、想定以上の板隙や分流が生じた際には、散りを発生させることなく所望のナゲット径を確保することができないという問題があった。   However, in the techniques described in Patent Documents 1 and 2, it is considered that the appropriate welding conditions change depending on the presence or absence of the disturbance and the magnitude of the disturbance. There was a problem that a desired nugget diameter could not be secured.

また、特許文献3および4に記載の技術では、熱伝導モデル(熱伝導シミュレーション)等に基づいてナゲットの温度を推定するため、複雑な計算処理が必要であり、溶接制御装置の構成が複雑になるだけでなく、溶接制御装置自体が高価になるという問題があった。   Further, in the techniques described in Patent Documents 3 and 4, since the temperature of the nugget is estimated based on a heat conduction model (heat conduction simulation) or the like, complicated calculation processing is necessary, and the configuration of the welding control device is complicated. In addition, there is a problem that the welding control device itself is expensive.

さらに、特許文献5に記載の技術では、累積発熱量を目標値に制御することによって、電極が一定量摩耗していたとしても良好な溶接を行うことができるものと考えられる。しかしながら、設定した被溶接材条件と実際の被溶接材条件が大きく異なる場合、例えば近くに前述した既溶接点などの外乱が存在する場合や、発熱量の時間変化パターンが短時間で大きく変化する場合、例えば目付量の多い溶融亜鉛めっき鋼板の溶接の場合などには、適応制御が追随できず、最終的な累積発熱量を目標値に合わることができても、発熱の形態、つまり溶接部の温度分布の時間変化が目標とする良好な溶接部が得られる熱量パターンから外れ、必要とするナゲット径が得られなかったり、散りが発生したりする。
例えば、分流の影響が大きな場合に累積発熱量を合わせようとすると、鋼板間ではなく電極−鋼板間近傍での発熱が著しくなり、鋼板表面からの散りが発生しやすくなるという問題がある。
Furthermore, with the technique described in Patent Document 5, it is considered that good welding can be performed by controlling the accumulated heat generation amount to a target value even if the electrode is worn by a certain amount. However, if the set welding material conditions and the actual welding material conditions are significantly different, for example, when there is a disturbance such as the already-welded point nearby, or the temporal change pattern of the heat generation amount changes greatly in a short time. For example, in the case of welding of hot dip galvanized steel sheet with a large amount of fabric, adaptive control cannot follow, and even if the final accumulated heat generation can be adjusted to the target value, the form of heat generation, that is, welding The time variation of the temperature distribution of the part deviates from the calorific value pattern from which the desired good weld is obtained, and the required nugget diameter cannot be obtained or scattering occurs.
For example, when the cumulative heat generation amount is to be adjusted when the influence of the diversion is large, heat is generated not only between the steel plates but in the vicinity of the electrode-steel plate, and scattering from the steel plate surface tends to occur.

加えて、特許文献3〜5の技術は全て、電極先端が摩耗した場合の変化に対してはある程度は有効であるが、既溶接点との距離が短い場合など、分流の影響が大きい場合については何ら検討がなされておらず、実際に適応制御が働かない場合があった。   In addition, all of the techniques of Patent Documents 3 to 5 are effective to some extent when the electrode tip is worn, but when the influence of the diversion is large, such as when the distance from the welded point is short. Has not been studied at all, and in some cases, adaptive control did not actually work.

そこで、発明者らは先に、上記の問題を解決するものとして、
「複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
通電パターンを2段以上の多段ステップに分割して、溶接を実施するものとし、
まず、本溶接に先立ち、各ステップ毎に、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させるテスト溶接を行い、
ついで、本溶接として、該テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、いずれかのステップにおいて、瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合に、その差を当該ステップの残りの通電時間内で補償すべく、本溶接の累積発熱量がテスト溶接で予め求めた累積発熱量と一致するように通電量を制御する適応制御溶接を行うことを特徴とする抵抗スポット溶接方法。」を開発し、特許文献6において開示した。
Therefore, the inventors firstly solved the above problem as follows:
“In a resistance spot welding method in which a material to be welded on which a plurality of metal plates are superimposed is sandwiched between a pair of electrodes and energized while being pressed and joined.
We shall divide the energization pattern into two or more multi-steps and perform welding.
First, prior to the main welding, for each step, the temporal change in instantaneous calorific value per unit volume and unit volume calculated from the electrical characteristics between the electrodes when energizing with constant current control to form an appropriate nugget at each step Test welding to memorize the cumulative calorific value per hit as a target value,
Next, as the main welding, welding is started on the basis of the time variation curve of the instantaneous calorific value per unit volume obtained by the test welding, and at any step, the time at which the temporal variation of the instantaneous calorific value is the reference is started. In order to compensate for the difference within the remaining energization time of the step when it deviates from the change curve, the energization amount is controlled so that the cumulative heat generation amount of the main welding matches the cumulative heat generation amount obtained in advance by test welding. A resistance spot welding method characterized by performing adaptive control welding. Was developed and disclosed in US Pat.

特許文献6の技術により、電極先端が摩耗したり、外乱が存在するような場合であっても、良好な径のナゲットを得ることができるようになった。   With the technique of Patent Document 6, a nugget with a good diameter can be obtained even when the electrode tip is worn or a disturbance exists.

しかしながら、特許文献6の技術では、外乱の影響が特に大きい場合、通電パターンを2段以上の多段ステップに分割するタイミングを厳密に設定する必要があり、このタイミングを決定するために多くの予備試験を行う必要があり、作業工数の点に課題を残していた。   However, in the technique of Patent Document 6, when the influence of the disturbance is particularly large, it is necessary to strictly set the timing for dividing the energization pattern into two or more multi-steps, and many preliminary tests are performed to determine this timing. There was a problem in terms of work man-hours.

本発明は、上掲した特許文献6の改良発明に係るものであって、電極先端が摩耗したり、外乱が存在するような場合であっても、作業工数を低減しつつ、散りの発生や通電時間の増加なしに適切な径のナゲットを得ることができる抵抗スポット溶接方法を提供することを目的とする。
また、本発明は、上記の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法を提供することを目的とする。
The present invention relates to the improved invention of Patent Document 6 listed above, and even when the electrode tip is worn or there is a disturbance, the occurrence of scattering is reduced while reducing the work man-hours. It is an object of the present invention to provide a resistance spot welding method capable of obtaining a nugget having an appropriate diameter without increasing energization time.
Moreover, this invention aims at providing the manufacturing method of the welding member which joins the several metal plate piled up by said resistance spot welding method.

さて、発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。
まず、発明者らは、特許文献6の技術において、通電パターンを分割することなくテスト溶接を行い、このテスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として適応制御溶接を行うことを試みた。
しかし、外乱の影響が大きい場合には、やはり適応制御が追随できず、本溶接の発熱の形態、つまり溶接部の温度分布の時間変化が、目標とする良好な溶接部が得られる熱量パターンから外れ、必要とするナゲット径が得られなかったり、散りが発生したりするという問題が生じた。
Now, the inventors have made extensive studies to achieve the above object.
First, the inventors performed test welding without dividing the energization pattern in the technique of Patent Document 6, and based on the time variation curve of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount obtained by this test welding. As an attempt to perform adaptive control welding.
However, when the influence of the disturbance is large, adaptive control cannot be followed, and the form of heat generation in the main welding, that is, the temporal change in the temperature distribution of the welded portion, is determined from the heat quantity pattern that provides the desired good welded portion. There arises a problem that the required nugget diameter cannot be obtained or scattering occurs.

そこで、発明者らがさらに検討を重ねたところ、
・テスト溶接条件を見直す、具体的には、
実際の溶接で想定される外乱のある状態を模擬したうえでテスト溶接を行うとともに、
テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、
本溶接の予通電および本通電では、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行う、
ことが有効であり、
・これにより、より広い範囲の外乱の状態に対して、適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能となり、その結果、通電パターンを分割するタイミングを決定するための予備試験に係る工数を低減することが可能となる、
・また、特に、自動車の製造などの実作業においては、次々と流れてくる被処理材を連続的に溶接するが、施工条件や被処理材の寸法誤差などによって、通常、溶接位置や被処理材ごとに外乱の状態は変動する、
・この点、上記の溶接方法によれば、外乱のない状態でのテスト溶接により得られた時間変化曲線等を基準とした場合に比べ、より広い範囲の外乱の状態に対して適応制御が有効に働くので、外乱の状態の変動に有効に対応して所望のナゲット径を安定的に確保することが可能となって、実作業での作業効率や歩留まりの向上という点からも有利になる、
との知見を得た。
Therefore, when the inventors further studied,
・ Review the test welding conditions. Specifically,
While performing test welding after simulating the state of disturbance expected in actual welding,
In test welding and main welding, pre-energization is performed before main energization,
In the pre-energization and main energization of the main welding, adaptive control welding is performed based on the temporal change curve of the instantaneous calorific value and the cumulative calorific value memorized at the time of pre-energization and main energization of the test welding.
Is effective,
This makes it possible to match the heat quantity pattern of the welded part during adaptive control welding to the heat quantity pattern in test welding for a wider range of disturbance conditions, and as a result, the timing of dividing the energization pattern It becomes possible to reduce the man-hour related to the preliminary test for determining,
・ In particular, in actual work such as automobile manufacturing, the materials to be processed that are flowing one after another are continuously welded. However, depending on the construction conditions and dimensional errors of the materials to be processed, etc. The state of disturbance varies from material to material.
-In this respect, according to the welding method described above, adaptive control is effective for a wider range of disturbance conditions than when the time change curve obtained by test welding in the absence of disturbance is used as a reference. Therefore, it is possible to stably secure a desired nugget diameter in response to fluctuations in the state of disturbance, which is advantageous from the viewpoint of improving work efficiency and yield in actual work.
And gained knowledge.

ここで、実際の溶接で想定される外乱のある状態を模擬したうえでテスト溶接を行うとともに、テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、本溶接の予通電および本通電では、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行う、ことにより、より広い範囲の外乱の状態に対して、適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能となる理由について、発明者らは、次のように考えている。
すなわち、
(a)テスト溶接を、上掲した特許文献6のように外乱のない状態で行う場合、外乱の影響が特に大きい状態で適応制御を有効に働かせるには、テスト溶接条件を非常に厳密に設定する必要があり、このテスト溶接条件を導出するには、多くの予備試験を行う必要がある。
(b)この点、テスト溶接において、実際の溶接で想定される外乱のある状態を模擬すれば、外乱の影響が大きい場合でも、適応制御を有効に働かせることが可能となる。
(c)しかし、本溶接における実際の外乱の影響が小さい場合に、厳しい外乱を模擬して得たテスト溶接の熱量パターンに沿って適応制御溶接を行うと、通電初期に溶接電流が過大となり易く、散り発生のリスクが高まる。
また、本溶接における実際の外乱の影響が、テスト溶接で想定した外乱の影響よりも著しく大きい場合には、なおも溶接電流が不十分となって、十分なナゲット径が得られない場合がある。
(d)この点、テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、本溶接の予通電および本通電では、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行うことにより、予通電の開始時点で、本溶接における実際の外乱の状態と、テスト溶接で想定した外乱の状態との間に差があったとしても、本通電の開始時点では、被溶接材である金属板間の通電経路の状態が近くなって、その差が大幅に緩和される。
(e)そのため、実際の溶接で想定される外乱のある状態を模擬したうえでテスト溶接を行うとともに、テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、本溶接の予通電および本通電では、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行うことにより、より広い範囲の外乱の状態に対して、適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能になる、
と発明者らは考えている。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
Here, test welding is performed after simulating the state of disturbance expected in actual welding, and pre-energization is performed before main energization in test welding and main welding, respectively. In energization, adaptive control welding based on the time variation curve of the instantaneous calorific value memorized at the time of pre-energization of test welding and main energization and the cumulative calorific value is performed. The inventors consider the reason why the heat quantity pattern of the welded part at the time of adaptive control welding can be made to conform to the heat quantity pattern in test welding as follows.
That is,
(A) When test welding is performed without disturbance as in Patent Document 6 listed above, the test welding conditions are set very strictly in order to make adaptive control work effectively in a state where the influence of disturbance is particularly large. In order to derive this test welding condition, it is necessary to perform many preliminary tests.
(B) In this respect, in the test welding, if a state with a disturbance assumed in actual welding is simulated, even when the influence of the disturbance is large, the adaptive control can be effectively operated.
(C) However, if the effect of the actual disturbance in the main welding is small, if the adaptive control welding is performed along the heat quantity pattern of test welding obtained by simulating a severe disturbance, the welding current tends to be excessive at the beginning of energization. , The risk of scattering increases.
In addition, when the influence of the actual disturbance in the main welding is significantly larger than the influence of the disturbance assumed in the test welding, the welding current may still be insufficient and a sufficient nugget diameter may not be obtained. .
(D) In this point, in test welding and main welding, pre-energization is performed before main energization, and in the pre-energization and main energization in main welding, the instantaneous heating value stored at the time of pre-energization and main energization of test welding is stored. By performing adaptive control welding based on the time-varying curve and cumulative heat generation, there is a difference between the actual disturbance state in main welding and the disturbance state assumed in test welding at the start of pre-energization. Even if there is, the state of the energization path between the metal plates that are the welded materials is close at the start of the main energization, and the difference is greatly reduced.
(E) Therefore, test welding is performed after simulating the state of disturbance expected in actual welding, and pre-energization is performed before main energization in test welding and main welding, respectively. In the main energization, the pre-energization of the test welding and the time-dependent curve of the instantaneous calorific value memorized during the main energization and the adaptive control welding based on the cumulative calorific value are applied to a wider range of disturbance conditions. , It becomes possible to match the heat quantity pattern of the welded part during adaptive control welding with the heat quantity pattern in test welding.
The inventors think.
The present invention has been completed based on the above findings and further studies.

すなわち、本発明の要旨構成は次のとおりである。
1. 複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接と、該本溶接に先立つテスト溶接とを行うとともに、該本溶接および該テスト溶接ではそれぞれ予通電および本通電を行うものとし、
前記テスト溶接では、
外乱のある状態を模擬したうえで、予通電および本通電を定電流制御により行い、
また、該予通電および該本通電においてそれぞれ、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
前記本溶接では、
予通電および本通電をそれぞれ、前記テスト溶接の予通電および本通電で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行い、
該予通電または該本通電において、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電または該本通電の通電時間内で補償すべく、該予通電または該本通電での単位体積当たりの累積発熱量がそれぞれ、前記テスト溶接の予通電または本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する、
抵抗スポット溶接方法。
That is, the gist configuration of the present invention is as follows.
1. It is a resistance spot welding method in which a material to be welded in which a plurality of metal plates are overlapped is sandwiched between a pair of electrodes, and energized while being pressed and joined.
The main welding and the test welding prior to the main welding are performed, and in the main welding and the test welding, pre-energization and main energization are performed,
In the test welding,
After simulating a state with disturbance, pre-energization and main energization are performed by constant current control.
In addition, the time variation curve of instantaneous calorific value per unit volume and the cumulative calorific value per unit volume, which are calculated from the electrical characteristics between the electrodes when an appropriate nugget is formed in the pre-energization and the main energization, respectively. Remember,
In the main welding,
Pre-energization and main energization are performed on the basis of the time variation curve of the instantaneous calorific value per unit volume and the cumulative calorific value memorized in the pre-energization and main energization of the test welding, respectively.
In the pre-energization or the main energization, when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve, the deviation amount is determined as the remaining pre-energization or main energization time. So that the accumulated heat generation amount per unit volume in the pre-energization or the main energization matches the cumulative heat generation amount per unit volume determined in advance in the pre-energization or the main energization of the test welding. Control the energization amount,
Resistance spot welding method.

2.前記テスト溶接の予通電の溶接電流をI1、前記テスト溶接の本通電の溶接電流をI2としたとき、I1<I2の関係を満足する、前記1に記載の抵抗スポット溶接方法。 2. 2. The resistance spot welding method according to 1, wherein a relationship of I1 <I2 is satisfied, where I1 is a pre-energization welding current for the test welding and I2 is a main energization current for the test welding.

3.前記テスト溶接を、溶接位置から6〜30mm隔てた箇所に既溶接点がある状態で行う、前記1または2に記載の抵抗スポット溶接方法。 3. 3. The resistance spot welding method according to 1 or 2, wherein the test welding is performed in a state where there is an already-welded point at a position 6 to 30 mm apart from the welding position.

4.前記テスト溶接を、前記被溶接材となる金属板同士の合わせ面において0.2〜3.0mmの隙間がある状態で行う、前記1または2に記載の抵抗スポット溶接方法。 4). 3. The resistance spot welding method according to 1 or 2, wherein the test welding is performed in a state where there is a gap of 0.2 to 3.0 mm on a mating surface between metal plates to be welded.

5.前記1〜4のいずれかに記載の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法。 5. The manufacturing method of the welding member which joins the several metal plate piled up by the resistance spot welding method in any one of said 1-4.

本発明によれば、作業工数を低減しつつ、散りの発生や通電時間の増加なしに適切な径のナゲットを得ることが可能となる。
また、本発明によれば、自動車の製造などの実作業において次々と流れてくる被処理材を連続的に溶接する(溶接位置や被処理材ごとに外乱の状態が変動する)場合であっても、散りの発生なしに適切な径のナゲットを安定して得ることができるので、実作業における作業効率や歩留まりの向上という点でも有利となる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the nugget of a suitable diameter, without generation | occurrence | production of scattering and increase in energization time, reducing work man-hours.
In addition, according to the present invention, the materials to be processed flowing one after another in actual work such as automobile manufacturing are continuously welded (the state of disturbance varies for each welding position and materials to be processed). However, since a nugget with an appropriate diameter can be stably obtained without occurrence of scattering, it is advantageous in terms of improving work efficiency and yield in actual work.

既溶接点のある板組みに対してテスト溶接を行う場合の一例を模式的に示す図である。It is a figure which shows typically an example in the case of performing test welding with respect to the board assembly with an already-welded point. 既溶接点のある板組みに対してテスト溶接を行う場合の別の例を模式的に示す図である。It is a figure which shows typically another example in the case of performing test welding with respect to the board assembly with an already-welded point. 板隙のある板組みに対してテスト溶接を行う場合の一例を模式的に示す図である。It is a figure which shows typically an example in the case of performing test welding with respect to the board assembly with a board gap. 板隙のある板組みに対してテスト溶接を行う場合の別の例を模式的に示す図である。It is a figure which shows typically another example in the case of performing test welding with respect to the board assembly with a clearance gap. 外乱のない状態でテスト溶接を行う場合の一例を模式的に示す図である。It is a figure which shows typically an example in the case of performing test welding in a state without a disturbance. 外乱のない状態でテスト溶接を行う場合の別の例を模式的に示す図である。It is a figure which shows typically another example in the case of performing test welding in a state without a disturbance. 定電流制御による通電パターンの一例を模式的に示す図である。It is a figure which shows typically an example of the electricity supply pattern by constant current control. 定電流制御による通電パターンの別の例を模式的に示す図である。It is a figure which shows typically another example of the electricity supply pattern by constant current control.

本発明を、以下の実施形態に基づき説明する。
本発明の一実施形態は、複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接と、該本溶接に先立つテスト溶接とを行うとともに、該本溶接および該テスト溶接ではそれぞれ予通電および本通電を行うものとし、
前記テスト溶接では、
外乱のある状態を模擬したうえで、予通電および本通電を定電流制御により行い、
また、該予通電および該本通電においてそれぞれ、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
前記本溶接では、
予通電および本通電をそれぞれ、前記テスト溶接の予通電および本通電で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行い、
該予通電または該本通電において、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電または該本通電の通電時間内で補償すべく、該予通電または該本通電での単位体積当たりの累積発熱量がそれぞれ、前記テスト溶接の予通電または本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御するものである。
The present invention will be described based on the following embodiments.
One embodiment of the present invention is a resistance spot welding method in which a material to be welded in which a plurality of metal plates are overlapped is sandwiched between a pair of electrodes and energized and joined while being pressurized,
The main welding and the test welding prior to the main welding are performed, and in the main welding and the test welding, pre-energization and main energization are performed,
In the test welding,
After simulating a state with disturbance, pre-energization and main energization are performed by constant current control.
In addition, the time variation curve of instantaneous calorific value per unit volume and the cumulative calorific value per unit volume, which are calculated from the electrical characteristics between the electrodes when an appropriate nugget is formed in the pre-energization and the main energization, respectively. Remember,
In the main welding,
Pre-energization and main energization are performed on the basis of the time variation curve of the instantaneous calorific value per unit volume and the cumulative calorific value memorized in the pre-energization and main energization of the test welding, respectively.
In the pre-energization or the main energization, when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve, the deviation amount is determined as the remaining pre-energization or main energization time. So that the accumulated heat generation amount per unit volume in the pre-energization or the main energization matches the cumulative heat generation amount per unit volume determined in advance in the pre-energization or the main energization of the test welding. It controls the energization amount.

なお、本発明の一実施形態に係る抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能であればよく、加圧機構(エアシリンダやサーボモータ等)、形式(定置式、ロボットガン等)、電極形状等はとくに限定されない。また、電極間の電気特性とは、電極間抵抗あるいは電極間電圧を意味する。   Note that a welding apparatus that can be used in the resistance spot welding method according to an embodiment of the present invention is only required to have a pair of upper and lower electrodes and to arbitrarily control the pressing force and the welding current during welding. The pressure mechanism (air cylinder, servo motor, etc.), type (stationary, robot gun, etc.), electrode shape, etc. are not particularly limited. Moreover, the electrical property between electrodes means the resistance between electrodes or the voltage between electrodes.

以下、本発明の一実施形態に係る抵抗スポット溶接方法のテスト溶接と本溶接について、説明する。   Hereinafter, test welding and main welding of the resistance spot welding method according to an embodiment of the present invention will be described.

・テスト溶接
テスト溶接では、外乱のある状態、具体的には、本溶接で想定される外乱のある状態を模擬したうえで、予通電および本通電をそれぞれ定電流制御により行い、該予通電および該本通電においてそれぞれ、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させる。
・ Test welding In test welding, a state with a disturbance, specifically, a state with a disturbance assumed in main welding is simulated, and then pre-energization and main energization are performed by constant current control, respectively. In the main energization, the temporal change curve of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount per unit volume, which are calculated from the electrical characteristics between the electrodes when an appropriate nugget is formed, are stored.

ここで、本溶接で想定される外乱とは、分流や板隙などの外乱、具体的には、溶接位置(電極中心位置)から40mm以内にある既溶接点や、被溶接材となる金属板同士の合わせ面における0.2mm以上の隙間などが挙げられる。   Here, the disturbance assumed in the main welding is a disturbance such as a shunt flow or a sheet gap, specifically, an already-welded point within 40 mm from the welding position (electrode center position) or a metal plate to be welded. Examples include a gap of 0.2 mm or more on the mating surfaces.

例えば、溶接位置から40mm以内に既溶接点があることが想定される場合、テスト溶接は、溶接位置から6〜30mm隔てた箇所に既溶接点がある状態で行うことが好適である。より好適には、溶接位置から6〜20mm隔てた箇所に既溶接点がある状態で行うことが好適である。また、通常、想定されるような、溶接位置から既溶接点までの距離の下限は6mm程度である。さらに、テスト溶接で模擬する既溶接点の数は、1点でもよく、また、2点以上でもよい。また、テスト溶接で模擬する既溶接点の数の上限は特に限定されず、想定される既溶接点数のうち、最も多い点数とするのが好適である。さらに、テスト溶接で模擬する既溶接点の大きさは、想定される既溶接点の大きさと同程度の大きさとすればよい。
なお、ここでいう溶接位置と既溶接点との距離は、それぞれの中心間距離である。
For example, when it is assumed that there is an already-welded point within 40 mm from the welding position, it is preferable that the test welding is performed in a state where the already-welded point is located at a position 6 to 30 mm away from the welding position. More preferably, it is preferable to carry out in a state where there is an already-welded point at a position 6 to 20 mm apart from the welding position. Moreover, the lower limit of the distance from the welding position to the already-welded point is normally about 6 mm as expected. Further, the number of already welded points simulated by test welding may be one point or two or more points. In addition, the upper limit of the number of already welded points simulated by test welding is not particularly limited, and it is preferable to set the highest number among the assumed number of already welded points. Furthermore, the size of the already welded point simulated by the test welding may be the same size as the assumed size of the already welded point.
In addition, the distance of the welding position here and an already-welded point is distance between each center.

加えて、被溶接材となる金属板同士の合わせ面において0.2mm以上の隙間があることが想定される場合、テスト溶接は、被溶接材となる金属板同士の合わせ面において0.2〜3.0mmの隙間がある状態で行うことが好適である。より好適には、被溶接材となる金属板同士の合わせ面において0.5〜2.0mmの隙間がある状態で行う。また、想定される被溶接材となる金属板同士の合わせ面の隙間の上限は、現実的に3.0mm程度である。
なお、金属板同士の合わせ面の隙間とは、電極により加圧される前の溶接位置での金属板同士の合わせ面の隙間(合わせ面間の距離)である。
In addition, when it is assumed that there is a gap of 0.2 mm or more at the mating surface between the metal plates to be welded, the test welding is performed at 0.2 to 0.2 at the mating surface between the metal plates to be welded. It is preferable to carry out with a gap of 3.0 mm. More preferably, it is performed in a state where there is a gap of 0.5 to 2.0 mm on the mating surfaces of the metal plates to be welded. In addition, the upper limit of the gap between the joining surfaces of the metal plates that are assumed to be welded is practically about 3.0 mm.
Note that the gap between the mating surfaces of the metal plates is the gap (distance between the mating surfaces) between the metal plates at the welding position before being pressed by the electrodes.

なお、上記以外のテスト溶接条件については、被溶接材と同じ鋼種、厚みの予備溶接試験を、上記の外乱を想定した状態で、定電流制御にて種々の条件で行うことにより、適宜、設定すればよい。   The test welding conditions other than the above are set as appropriate by conducting a preliminary welding test of the same steel type and thickness as the material to be welded under various conditions under constant current control, assuming the above disturbance. do it.

また、テスト溶接、さらには後述する本溶接において、本通電の前に予通電を行うことが重要である。
というのは、実際の溶接で想定される外乱のある状態を模擬したうえでテスト溶接を行うとともに、テスト溶接および本溶接において、それぞれ本通電の前に予通電を行い、当該本溶接の予通電および本通電ではそれぞれ、テスト溶接の予通電および本通電時に記憶させた瞬時発熱量の時間変化曲線および累積発熱量を基準とした適応制御溶接を行う、ことにより、
本溶接の予通電の開始時点で、本溶接における実際の外乱の状態と、テスト溶接で想定した外乱の状態との間に差があったとしても、本溶接の本通電の開始時点では、被溶接材である金属板間の通電経路の状態が近くなって、その差が大幅に緩和される。
その結果、より広い範囲の外乱の状態に対して、適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能になるからである。
Further, it is important to perform pre-energization before main energization in test welding and further in main welding described later.
This is because test welding is performed after simulating the state of disturbance expected in actual welding, and pre-energization is performed before main energization in test welding and main welding, respectively. In the main energization, pre-energization of test welding and adaptive control welding based on the time variation curve of the instantaneous calorific value memorized during the main energization and the cumulative calorific value, respectively,
Even if there is a difference between the actual state of disturbance in main welding and the state of disturbance assumed in test welding at the start of pre-energization in main welding, The state of the current-carrying path between the metal plates that are the welding materials becomes closer, and the difference is greatly reduced.
As a result, the heat quantity pattern of the welded part during adaptive control welding can be made to conform to the heat quantity pattern in test welding for a wider range of disturbance conditions.

なお、予通電とは、ナゲットを拡大させる前に被溶接材となる金属板を軟化させて、金属板間の通電経路を確保するための通電である。予通電においては、ナゲットは形成されていなくてもよいし、散りを発生させない程度の小さいナゲット(たとえばナゲット径4√t´以下程度(t´:隣り合う2枚の金属板のうち薄い方の金属板の板厚(mm))は形成されていてもよい。
また、予通電条件については特に限定されるものではないが、予通電時の定電流制御による溶接電流I1は2〜13kA、通電時間は20〜400msとすることが好ましい。
Note that pre-energization is energization for securing an energization path between metal plates by softening a metal plate to be welded before enlarging the nugget. In pre-energization, the nugget does not have to be formed, and the nugget is small enough not to cause scattering (for example, the nugget diameter is about 4√t ′ or less (t ′: the thinner of the two adjacent metal plates) The thickness (mm) of the metal plate may be formed.
The pre-energization conditions are not particularly limited, but the welding current I1 by constant current control during pre-energization is preferably 2 to 13 kA, and the energization time is preferably 20 to 400 ms.

さらに、本通電条件についても特に限定されるものではないが、予通電時の定電流制御による溶接電流I1、本通電時の定電流制御による溶接電流I2について、I1<I2の関係を満足させることが好ましい。
なお、通電時間は20〜1000msとすることが好ましい。
Further, the main energization conditions are not particularly limited, but satisfy the relationship of I1 <I2 with respect to the welding current I1 by constant current control during pre-energization and the welding current I2 by constant current control during main energization. Is preferred.
The energization time is preferably 20 to 1000 ms.

加えて、予通電と本通電の間で通電休止時間を設けてもよい。その場合、通電休止時間は20〜400msとすることが好ましい。
なお、本願でいう定電流制御には、図7のように溶接電流を一定とする場合だけでなく、図8のように、予通電および/または本通電において溶接電流を直線的(連続的)に増加・減少させる場合も含むものとする。なお、溶接電流を直線的(連続的)に増加・減少させる場合、各通電における溶接電流はその平均値を基準として、I1<I2の関係を満足させることが好ましい。
In addition, an energization stop time may be provided between pre-energization and main energization. In that case, the energization stop time is preferably 20 to 400 ms.
In the constant current control referred to in the present application, not only the welding current is made constant as shown in FIG. 7, but also the welding current is linearly (continuously) in pre-energization and / or main energization as shown in FIG. This includes cases where the number is increased or decreased. In addition, when increasing / decreasing a welding current linearly (continuously), it is preferable that the welding current in each energization satisfies the relationship of I1 <I2 on the basis of the average value.

・本溶接
上記のテスト溶接後、本溶接を行う。本溶接では、予通電および本通電をそれぞれ、前記テスト溶接の予通電および本通電で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行い、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線に沿っている場合には、そのまま溶接を行って溶接を終了する。
ただし、該予通電または該本通電において、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電または該本通電の通電時間内で補償すべく、該予通電または該本通電での単位体積当たりの累積発熱量がそれぞれ、前記テスト溶接の予通電または本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する。
(すなわち、予通電時に、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電の通電時間内で補償すべく、該予通電での単位体積当たりの累積発熱量が、前記テスト溶接の予通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する。
また、本通電時に、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該本通電の通電時間内で補償すべく、該本通電での単位体積当たりの累積発熱量が、前記テスト溶接の本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する。)
これにより、電極先端が摩耗したり、分流や板隙などの外乱の影響が大きい状態であっても、必要な累積発熱量を確保して、適正なナゲット径を得ることができる。
・ Main welding After the above test welding, main welding is performed. In the main welding, the pre-energization and the main energization are performed based on the time variation curve of the instantaneous calorific value per unit volume and the cumulative calorific value memorized in the pre-energization and main energization of the test welding, respectively. If the instantaneous change in the amount of instantaneous heat is along the reference time change curve, welding is performed as it is, and the welding is terminated.
However, in the pre-energization or the main energization, when the temporal change in the instantaneous calorific value per unit volume deviates from the reference time change curve, the deviation is determined as the remaining pre-energization or the main energization. In order to compensate within the energization time, the accumulated heat generation amount per unit volume in the pre-energization or the main energization matches the cumulative heat generation amount per unit volume determined in advance in the pre-energization or main energization of the test welding, respectively. The energization amount is controlled as follows.
(That is, when pre-energization, when the temporal change in instantaneous calorific value per unit volume deviates from the standard time change curve, to compensate for the deviation within the remaining pre-energization time, The energization amount is controlled so that the accumulated heat generation amount per unit volume in the pre-energization coincides with the cumulative heat generation amount per unit volume obtained in advance in the pre-energization of the test welding.
Further, when the time variation of instantaneous calorific value per unit volume deviates from the reference time variation curve during main energization, the deviation is compensated within the remaining energization time of the main energization. The energization amount is controlled so that the accumulated heat generation amount per unit volume in the main energization matches the accumulated heat generation amount per unit volume obtained in advance in the main energization of the test welding. )
As a result, even when the tip of the electrode is worn or the influence of disturbance such as diversion or plate gap is large, a necessary accumulated heat generation amount can be secured and an appropriate nugget diameter can be obtained.

なお、発熱量の算出方法については特に制限はないが、特許文献5にその一例が開示されており、本発明でもこの方法を採用することができる。この方法による単位体積・単位時間当たりの発熱量qおよび単位体積当たりの累積発熱量Qの算出要領は次のとおりである。
被溶接材の合計厚みをt、被溶接材の電気抵抗率をr、電極間電圧をV、溶接電流をIとし、電極と被溶接材が接触する面積をSとする。この場合、溶接電流は横断面積がSで、厚みtの柱状部分を通過して抵抗発熱を発生させる。この柱状部分における単位体積・単位時間当たりの発熱量qは次式(1)で求められる。
q=(V・I)/(S・t) --- (1)
また、この柱状部分の電気抵抗Rは、次式(2)で求められる。
R=(r・t)/S --- (2)
(2)式をSについて解いてこれを(1)式に代入すると、発熱量qは次式(3)
q=(V・I・R)/(r・t2
=(V2)/(r・t2) --- (3)
となる。
Note that there is no particular limitation on the method of calculating the calorific value, but an example thereof is disclosed in Patent Document 5, and this method can also be adopted in the present invention. The calculation procedure of the calorific value q per unit volume and unit time and the cumulative calorific value Q per unit volume by this method is as follows.
The total thickness of the material to be welded is t, the electrical resistivity of the material to be welded is r, the voltage between the electrodes is V, the welding current is I, and the area where the electrode and the material to be welded are in contact is S. In this case, the welding current has a cross-sectional area S and passes through a columnar portion having a thickness t to generate resistance heat. The calorific value q per unit volume and unit time in the columnar part is obtained by the following equation (1).
q = (V · I) / (S · t) --- (1)
Moreover, the electrical resistance R of this columnar part is calculated | required by following Formula (2).
R = (r · t) / S --- (2)
When the equation (2) is solved for S and is substituted into the equation (1), the calorific value q is expressed by the following equation (3)
q = (V · I · R) / (r · t 2 )
= (V 2 ) / (r · t 2 ) --- (3)
It becomes.

上掲式(3)から明らかなように、単位体積・単位時間当たりの発熱量qは、電極間電圧Vと被溶接物の合計厚みtと被溶接物の電気抵抗率rから算出でき、電極と被溶接物が接触する面積Sによる影響を受けない。なお、(3)式は電極間電圧Vから発熱量を計算しているが、電極間電流Iから発熱量qを計算することもでき、このときにも電極と被溶接物が接触する面積Sを用いる必要がない。そして、単位体積・単位時間当たりの発熱量qを通電期間にわたって累積すれば、溶接に加えられる単位体積当たりの累積発熱量Qが得られる。(3)式から明らかなように、この単位体積当たりの累積発熱量Qもまた電極と被溶接材が接触する面積Sを用いないで算出することができる。
以上、特許文献5記載の方法によって、累積発熱量Qを算出する場合について説明したが、その他の算出式を用いても良いのは言うまでもない。
As is apparent from the above equation (3), the calorific value q per unit volume / unit time can be calculated from the voltage V between electrodes, the total thickness t of the workpiece, and the electrical resistivity r of the workpiece, And the area S where the workpiece is in contact is not affected. In addition, although the calorific value is calculated from the interelectrode voltage V in the expression (3), the calorific value q can also be calculated from the interelectrode current I, and at this time, the area S where the electrode and the workpiece are in contact with each other Need not be used. And if the calorific value q per unit volume and unit time is accumulated over the energization period, the cumulative calorific value Q per unit volume applied to welding is obtained. As is clear from the equation (3), the cumulative calorific value Q per unit volume can also be calculated without using the area S where the electrode and the workpiece are in contact.
The case where the cumulative heat generation amount Q is calculated by the method described in Patent Document 5 has been described above, but it goes without saying that other calculation formulas may be used.

また、本溶接における溶接電流以外の条件(予通電および本通電における通電時間および設定加圧力)については、テスト溶接時の条件と同じにすればよい。   The conditions other than the welding current in the main welding (the energization time and the set pressure in the pre-energization and the main energization) may be the same as the conditions in the test welding.

なお、使用する被溶接材は特に制限はなく、軟鋼から超高張力鋼板までの各種強度を有する鋼板およびめっき鋼板、アルミ合金などの軽金属板の溶接にも適用でき、3枚以上の金属板を重ねた板組みにも適用できる。   The material to be welded is not particularly limited, and can be applied to the welding of light metal plates such as steel plates with various strengths from mild steel to ultra-high-strength steel plates, plated steel plates, and aluminum alloys. It can also be applied to stacked plates.

また、ナゲット形成のための通電の後に、溶接部の熱処理のための後通電を加えてもよい。この場合、通電条件は特に限定されず、それ以前のステップの溶接電流との大小関係も特に限定されない。さらに、通電中の加圧力は一定であってもよいし、適宜、変化させてもよい。   Further, after energization for nugget formation, post-energization for heat treatment of the welded portion may be applied. In this case, the energization conditions are not particularly limited, and the magnitude relationship with the welding current of the previous step is not particularly limited. Furthermore, the applied pressure during energization may be constant or may be changed as appropriate.

以下、本発明の実施形態に従う実施例について説明する。
なお、実施例の条件は、本発明の実施可能性および効果を確認するために採用したものであり、本発明は、これら実施例の条件に限定されるものではない。また、本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
表1に示す2枚重ねまたは3枚重ねの金属板の板組みについて、表2に示す条件で抵抗スポット溶接を行い、溶接継手を作製した。
ここで、テスト溶接は、図1〜4に示すような外乱を模擬した状態、または図5および6のような外乱のない状態で行った。図中、符号11〜13は金属板、14は電極、15はスペーサ、16は既溶接点である。なお、図1および図2に示すように、既溶接点16は2点とし、溶接位置(電極間中心)が既溶接点同士の中間(既溶接点との距離Lがそれぞれ同じ)となるように調整した。なお、既溶接点の金属板間におけるナゲット径(ただし、3枚重ねの板組みでは、板組みのうち最も薄い金属板とそれに接する金属板との間(例えば、表1の板組No.Fの場合、金属板11−12間)におけるナゲット径)は、4√t´(t´:隣り合う2枚の金属板のうち薄い方の金属板の板厚(mm)。ただし、3枚重ねの板組みの場合は、板組みのうち最も薄い金属板の板厚(mm))とした。
また、図3および図4では、各金属板11〜13間にスペーサ15を挿入し、上下からクランプすることで(図示せず)、種々の板隙厚さtgとなる板隙を設けた(3枚重ねの板組みの場合、金属板11、12の間の板隙厚さtgと、金属板12、13の間の板隙厚さtgとは、同じ値である)。なお、板隙間距離はいずれも60mmとした。
さらに、テスト溶接は、表2に示す条件で、本通電のみ、または、予通電および本通電を定電流制御により行い、その際の単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を記憶させた。また、一部の条件では、予通電と本通電の間の通電休止時間を設けた。
Examples according to embodiments of the present invention will be described below.
The conditions of the examples are employed to confirm the feasibility and effects of the present invention, and the present invention is not limited to the conditions of these examples. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
Resistance spot welding was performed on the two-layer or three-layer metal plate assembly shown in Table 1 under the conditions shown in Table 2 to produce a welded joint.
Here, the test welding was performed in a state simulating disturbance as shown in FIGS. 1 to 4 or in a state without disturbance as shown in FIGS. In the figure, reference numerals 11 to 13 are metal plates, 14 are electrodes, 15 is a spacer, and 16 is a welded point. As shown in FIGS. 1 and 2, the number of welded points 16 is two, and the welding position (center between the electrodes) is intermediate between the already welded points (the distance L to the already welded point is the same). Adjusted. It should be noted that the nugget diameter between the metal plates at the weld point (in the case of a three-layer plate assembly, between the thinnest metal plate of the plate assemblies and the metal plate in contact therewith (for example, plate assembly No. In this case, the nugget diameter) between the metal plates 11 and 12) is 4√t ′ (t ′: the thickness (mm) of the thin metal plate of the two adjacent metal plates. In the case of this plate assembly, the thickness (mm) of the thinnest metal plate in the plate assembly was used.
Moreover, in FIG.3 and FIG.4, the spacer 15 was inserted between each metal plates 11-13, and it clamped from the upper and lower sides (not shown), and provided the clearance gap which becomes various clearance gap thickness tg ( In the case of a three-layer plate assembly, the gap thickness tg between the metal plates 11 and 12 and the gap thickness tg between the metal plates 12 and 13 are the same value). The plate gap distance was 60 mm.
Furthermore, in the test welding, the main energization only, or the pre-energization and the main energization are performed by constant current control under the conditions shown in Table 2, and the time variation curve of the instantaneous calorific value per unit volume and the cumulative calorific value are obtained. I remembered it. In some conditions, an energization stop time between pre-energization and main energization was provided.

加えて、本溶接では、テスト溶接で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行った。ここで、通電時間や加圧力、予通電と本通電の間の通電休止時間などといった条件は、テスト溶接と本溶接で同じである。
なお、溶接機にはインバータ直流抵抗スポット溶接機を用い、電極にはDR形先端径6mmのクロム銅電極を用いた。
In addition, in this welding, welding was performed based on the time change curve of the instantaneous calorific value per unit volume memorized in the test welding and the cumulative calorific value. Here, conditions such as energization time, applied pressure, energization stop time between pre-energization and main energization are the same in test welding and main welding.
An inverter DC resistance spot welder was used as the welding machine, and a chromium copper electrode having a DR tip diameter of 6 mm was used as the electrode.

得られた各継手について、溶接部を切断し断面をエッチング後、光学顕微鏡により観察し、金属板間におけるナゲット径(ただし、3枚重ねの板組みでは、板組みのうち最も薄い金属板とそれに接する金属板との間におけるナゲット径)が目標径である5√t´以上(t´:隣り合う2枚の金属板のうち薄い方の金属板の板厚(mm)、ただし、3枚重ねの板組みの場合では、板組みのうち最も薄い金属板の板厚(mm))であり、かつ散りが発生しなかった場合を◎と評価した。
また、ナゲット径が4.5√t´以上5√t´未満、かつ散りが発生しなかった場合を○と評価した。一方、ナゲット径が4.5√t´未満であるか、散りが発生した場合を×と評価した。
For each of the obtained joints, the welded portion was cut and the cross section was etched, then observed with an optical microscope, and the nugget diameter between the metal plates (however, in the three-layer plate assembly, the thinnest metal plate and the The target diameter is 5√t 'or more (t': the thickness of the thin metal plate of the two adjacent metal plates (mm)), but the three layers overlap. In the case of this plate assembly, the case of the thinnest metal plate thickness (mm) of the plate assembly and no occurrence of scattering was evaluated as ◎.
A case where the nugget diameter was 4.5√t ′ or more and less than 5√t ′ and no scattering occurred was evaluated as “good”. On the other hand, the case where the nugget diameter was less than 4.5√t ′ or scattering occurred was evaluated as x.

Figure 2019034341
Figure 2019034341

Figure 2019034341
Figure 2019034341
Figure 2019034341
Figure 2019034341
Figure 2019034341
Figure 2019034341

発明例ではいずれも、広い範囲の外乱の状態に対して、散りの発生なく、4.5√t´以上の径を有するナゲットが得られ、広い範囲の外乱の状態に対して、本溶接の適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることが可能であった。
一方、比較例では、外乱の状態によっては、散りの発生を招いたり、十分な径のナゲットを得ることができず、種々の外乱の状態に対して、本溶接の適応制御溶接時における溶接部の熱量パターンを、テスト溶接における熱量パターンに沿わせることはできなかった。
In each of the invention examples, a nugget having a diameter of 4.5√t ′ or more is obtained without occurrence of scattering for a wide range of disturbance states, and adaptive control of the main welding is performed for a wide range of disturbance states. It was possible to match the heat quantity pattern of the welded part at the time of welding with the heat quantity pattern in the test welding.
On the other hand, in the comparative example, depending on the state of disturbance, the occurrence of scattering or a nugget with a sufficient diameter cannot be obtained. It was not possible to match the heat quantity pattern of the heat quantity pattern in the test welding.

11,12,13:金属板
14:電極
15:スペーサ
16:既溶接点
11, 12, 13: Metal plate 14: Electrode 15: Spacer 16: Welded point

Claims (5)

複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
本溶接と、該本溶接に先立つテスト溶接とを行うとともに、該本溶接および該テスト溶接ではそれぞれ予通電および本通電を行うものとし、
前記テスト溶接では、
外乱のある状態を模擬したうえで、予通電および本通電を定電流制御により行い、
また、該予通電および該本通電においてそれぞれ、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化曲線および単位体積当たりの累積発熱量を記憶させ、
前記本溶接では、
予通電および本通電をそれぞれ、前記テスト溶接の予通電および本通電で記憶させた単位体積当たりの瞬時発熱量の時間変化曲線および累積発熱量を基準として溶接を行い、
該予通電または該本通電において、単位体積当たりの瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その外れ量を残りの該予通電または該本通電の通電時間内で補償すべく、該予通電または該本通電での単位体積当たりの累積発熱量がそれぞれ、前記テスト溶接の予通電または本通電で予め求めた単位体積当たりの累積発熱量と一致するように通電量を制御する、
抵抗スポット溶接方法。
It is a resistance spot welding method in which a material to be welded in which a plurality of metal plates are overlapped is sandwiched between a pair of electrodes, and energized while being pressed and joined.
The main welding and the test welding prior to the main welding are performed, and in the main welding and the test welding, pre-energization and main energization are performed,
In the test welding,
After simulating a state with disturbance, pre-energization and main energization are performed by constant current control.
In addition, the time variation curve of instantaneous calorific value per unit volume and the cumulative calorific value per unit volume, which are calculated from the electrical characteristics between the electrodes when an appropriate nugget is formed in the pre-energization and the main energization, respectively. Remember,
In the main welding,
Pre-energization and main energization are performed on the basis of the time variation curve of the instantaneous calorific value per unit volume and the cumulative calorific value memorized in the pre-energization and main energization of the test welding, respectively.
In the pre-energization or the main energization, when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve, the deviation amount is determined as the remaining pre-energization or main energization time. So that the accumulated heat generation amount per unit volume in the pre-energization or the main energization matches the cumulative heat generation amount per unit volume determined in advance in the pre-energization or the main energization of the test welding. Control the energization amount,
Resistance spot welding method.
前記テスト溶接の予通電の溶接電流をI1、前記テスト溶接の本通電の溶接電流をI2としたとき、I1<I2の関係を満足する、請求項1に記載の抵抗スポット溶接方法。   2. The resistance spot welding method according to claim 1, wherein a relation of I1 <I2 is satisfied, where I1 is a pre-energization welding current for the test welding and I2 is a main current for the test welding. 前記テスト溶接を、溶接位置から6〜30mm隔てた箇所に既溶接点がある状態で行う、請求項1または2に記載の抵抗スポット溶接方法。   The resistance spot welding method according to claim 1 or 2, wherein the test welding is performed in a state where there is an already-welded point at a position 6 to 30 mm away from a welding position. 前記テスト溶接を、前記被溶接材となる金属板同士の合わせ面において0.2〜3.0mmの隙間がある状態で行う、請求項1または2に記載の抵抗スポット溶接方法。   The resistance spot welding method according to claim 1 or 2, wherein the test welding is performed in a state where there is a gap of 0.2 to 3.0 mm on a mating surface between the metal plates to be welded. 請求項1〜4のいずれかに記載の抵抗スポット溶接方法により、重ね合わせた複数枚の金属板を接合する、溶接部材の製造方法。   The manufacturing method of the welding member which joins the several metal plate piled up by the resistance spot welding method in any one of Claims 1-4.
JP2018153664A 2017-08-18 2018-08-17 Resistance spot welding method and welding member manufacturing method Active JP6913062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020174242A JP6969649B2 (en) 2017-08-18 2020-10-15 Resistance spot welding method and welding member manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017157918 2017-08-18
JP2017157918 2017-08-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020174242A Division JP6969649B2 (en) 2017-08-18 2020-10-15 Resistance spot welding method and welding member manufacturing method

Publications (2)

Publication Number Publication Date
JP2019034341A true JP2019034341A (en) 2019-03-07
JP6913062B2 JP6913062B2 (en) 2021-08-04

Family

ID=65636450

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018153664A Active JP6913062B2 (en) 2017-08-18 2018-08-17 Resistance spot welding method and welding member manufacturing method
JP2020174242A Active JP6969649B2 (en) 2017-08-18 2020-10-15 Resistance spot welding method and welding member manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020174242A Active JP6969649B2 (en) 2017-08-18 2020-10-15 Resistance spot welding method and welding member manufacturing method

Country Status (1)

Country Link
JP (2) JP6913062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453515B2 (en) 2020-02-18 2024-03-21 日本製鉄株式会社 Resistance spot welding joint manufacturing method, resistance spot welding method, resistance spot welding joint, automobile parts, and hat-shaped parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136507A1 (en) * 2013-03-08 2014-09-12 Jfeスチール株式会社 Resistive spot welding method
WO2015093568A1 (en) * 2013-12-20 2015-06-25 新日鐵住金株式会社 Resistance spot welding method
WO2015099192A1 (en) * 2013-12-27 2015-07-02 Jfeスチール株式会社 Resistance spot welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136507A1 (en) * 2013-03-08 2014-09-12 Jfeスチール株式会社 Resistive spot welding method
WO2015093568A1 (en) * 2013-12-20 2015-06-25 新日鐵住金株式会社 Resistance spot welding method
WO2015099192A1 (en) * 2013-12-27 2015-07-02 Jfeスチール株式会社 Resistance spot welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453515B2 (en) 2020-02-18 2024-03-21 日本製鉄株式会社 Resistance spot welding joint manufacturing method, resistance spot welding method, resistance spot welding joint, automobile parts, and hat-shaped parts

Also Published As

Publication number Publication date
JP6913062B2 (en) 2021-08-04
JP6969649B2 (en) 2021-11-24
JP2021003733A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP5900699B2 (en) Resistance spot welding method
JP5825454B1 (en) Resistance spot welding method
JP5999293B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
WO2014136507A1 (en) Resistive spot welding method
WO2016174842A1 (en) Resistance spot welding method
WO2017212916A1 (en) Resistance spot welding method
JP6471841B1 (en) Resistance spot welding method and manufacturing method of welded member
JP6590121B1 (en) Resistance spot welding method and manufacturing method of welded member
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
JP6652228B1 (en) Resistance spot welding method and method for manufacturing welded member
JP6241580B1 (en) Resistance spot welding method
JP2021112773A (en) Resistance spot welding method, method for manufacturing welding member, and welding apparatus
JP6658993B1 (en) Resistance spot welding method and method for manufacturing welded member
JP6658992B1 (en) Resistance spot welding method and method for manufacturing welded member
JP6856181B1 (en) Resistance spot welding method and welding member manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201028

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201120

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201201

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210526

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210601

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210706

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210709

R150 Certificate of patent or registration of utility model

Ref document number: 6913062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150