JP4753411B2 - Energization control method for spot resistance welding - Google Patents

Energization control method for spot resistance welding Download PDF

Info

Publication number
JP4753411B2
JP4753411B2 JP2004380432A JP2004380432A JP4753411B2 JP 4753411 B2 JP4753411 B2 JP 4753411B2 JP 2004380432 A JP2004380432 A JP 2004380432A JP 2004380432 A JP2004380432 A JP 2004380432A JP 4753411 B2 JP4753411 B2 JP 4753411B2
Authority
JP
Japan
Prior art keywords
current value
time
resistance welding
maintaining
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004380432A
Other languages
Japanese (ja)
Other versions
JP2006181621A (en
Inventor
陵 菊池
高史 新明
厚司 椋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2004380432A priority Critical patent/JP4753411B2/en
Publication of JP2006181621A publication Critical patent/JP2006181621A/en
Application granted granted Critical
Publication of JP4753411B2 publication Critical patent/JP4753411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Welding (AREA)

Description

本発明はスポット抵抗溶接の通電制御方法に関するものである。 The present invention relates to an energization control method for spot resistance welding.

スポット抵抗溶接は、電流を流した際に、重ね合わせた鋼板の接触箇所にナゲットと呼ばれる両鋼板の溶融した部分を形成し、このナゲットによって両鋼板を点状に溶接するものである。鋼板のスポット抵抗溶接には、ダイレクトスポット溶接、シリーズスポット溶接、インダイレクトスポット溶接が知られている。   In spot resistance welding, when a current is applied, a melted portion of both steel plates called a nugget is formed at a contact location of the stacked steel plates, and both steel plates are welded in a spot shape by this nugget. Direct spot welding, series spot welding, and indirect spot welding are known as spot resistance welding of steel plates.

ダイレクトスッポット溶接は、図1に示すように、重ね合わされた鋼板1、2を直接、上下の電極3、4で挟みながら加圧して、板厚方向に電流を流し、鋼板1、2の抵抗発熱を利用して点状の溶接部5を形成するものである。電極3、4は、それぞれ加圧制御装置6、7、電流制御装置8を備えており、それぞれ加圧力と通電される電流値などが制御されるようになっている。   In direct spot welding, as shown in FIG. 1, the stacked steel plates 1 and 2 are directly pressed between the upper and lower electrodes 3 and 4 to apply a current in the thickness direction, and the resistance heating of the steel plates 1 and 2. Is used to form the spot-like welded portion 5. The electrodes 3 and 4 are respectively provided with pressurization control devices 6 and 7 and a current control device 8 so that the pressurizing force and the current value to be energized are controlled.

また、シリーズスポット溶接は、図2に示すように、重ね合わされた鋼板1、2のうち、片側の鋼板1側の離れた位置に一対の電極3、4を押し当て、電流を流して点状の溶接部10を形成するものである。このシリーズスポット溶接は、多数の電極にて多点を同時に溶接することができ、溶接の高速化を図り得るため、現在、自動車のボデーの溶接等に用いられるようになっている。また、シリーズスポット溶接では、図3に示すように、一方の電極11のみ通電し、他方の電極12を給電端子(アース電極)として電流を通電した電極11側のみを溶接するようにしてもよい。 In addition, as shown in FIG. 2, in the series spot welding, a pair of electrodes 3 and 4 are pressed against a position separated from one side of the steel plate 1 among the superposed steel plates 1 and 2, and a current flows to form a spot shape. The welds 9 and 10 are formed. This series spot welding can be welded at multiple points with a large number of electrodes at the same time, and the speed of welding can be increased. Moreover, in series spot welding, as shown in FIG. 3, only one electrode 11 may be energized, and only the electrode 11 side through which current is energized may be welded using the other electrode 12 as a power supply terminal (ground electrode). .

また、インダイレクトスポット溶接は、図4又は図5に示すように、一方の電極13を鋼板1、2を重ね合わせた重合部14に押し当て、前記重合部14から離れた位置で他方の電極15を給電端子として他方の鋼板に取り付けて、重合部に点状の溶接部を形成するものである。斯かるインダイレクトスポット溶接は、例えば、図6に示すように、複雑な形状のワークに対して一対の電極では加圧角度を溶接部に直交させることが難しいような場合に、シリーズスポット溶接と同等の溶接を行なうことができる。このため、実用的には、例えば、自動車のドアアウターパネルとドアインナーパネルとをヘミング結合してなるパネル部品のヘミング結合部の溶接などに用いられている。   Indirect spot welding, as shown in FIG. 4 or 5, one electrode 13 is pressed against the overlapping portion 14 where the steel plates 1 and 2 are overlapped, and the other electrode is separated from the overlapping portion 14. 15 is attached to the other steel plate as a power feeding terminal, and a spot-like welded portion is formed in the overlapped portion. Such indirect spot welding is, for example, as shown in FIG. 6, when it is difficult to make the pressurization angle orthogonal to the welded part with a pair of electrodes for a workpiece having a complicated shape. Equivalent welding can be performed. For this reason, it is practically used for, for example, welding of a hemming joint portion of a panel component formed by hemming a door outer panel and a door inner panel of an automobile.

これらのスポット抵抗溶接における一般的な通電パターンは、例えば、通電初期に徐々に電流値を上げていき、その後、一定時間、一定の電流値を所定時間維持する電流値制御を行なうものが知られている。また、比較的低めの電流値で一定時間維持し、その後に一定時間比較的高めの電流値で一定時間維持するもの、比較的高めの電流値で一定時間維持し、その後に比較的低めの電流値で一定時間維持する電流値制御を行なうものが知られている。   A general energization pattern in these spot resistance welding is known, for example, in which the current value is gradually increased at the beginning of energization, and then the current value control is performed to maintain the constant current value for a predetermined time. ing. In addition, a relatively low current value is maintained for a certain period of time, then a relatively high current value is maintained for a certain period of time, a relatively high current value is maintained for a certain period of time, and then a relatively low current is maintained. A device that performs current value control that maintains a constant value for a certain time is known.

また、特開平11−333569号公報には、通電初期に大きな電流を流してナゲットを形成してから、定常電流を流すことが記載されている。
特開平11−333569号公報
Japanese Patent Application Laid-Open No. 11-333569 describes that a steady current is applied after a nugget is formed by applying a large current in the initial stage of energization.
Japanese Patent Laid-Open No. 11-333569

溶接部の溶接強度は引張せん断強度で評価され、引張せん断試験をしたときに、溶接部位が剥がれずに、母材が破断する場合を母材破断という。これに対し、引張せん断試験をしたときに溶接部位が外れる場合を界面破断という。溶接部位が母材破断すると、溶接部位の引張せん断強度が母材よりも強くなっていることを意味し、界面破断は溶接部位の強度が母材よりも劣ることを意味する。車の衝突性能を向上させるためには、溶接部位が母材破断する程度の強度を備えていることが求められている。   The weld strength of the welded portion is evaluated by the tensile shear strength. When the tensile shear test is performed, a case where the base material breaks without the welded part being peeled off is referred to as base material breakage. On the other hand, the case where the welded part is removed when the tensile shear test is performed is called interface fracture. When the welded part breaks the base material, it means that the tensile shear strength of the welded part is stronger than that of the base material, and the interfacial break means that the strength of the welded part is inferior to the base material. In order to improve the collision performance of a vehicle, it is required that the welded portion has a strength sufficient to break the base material.

溶接部位は、溶接時にスパッタが発生すると、スパッタの発生箇所を基点として、接合部に亀裂が進展し易くなり、溶接部位は母材破断せず、界面破断する頻度が高くなる。   When spatter is generated during welding at the welded part, cracks are likely to develop in the joint with the spattered part being the starting point, and the welded part does not break the base material and the frequency of interface fracture increases.

特に、780MPa級以上の超ハイテン材をスポット抵抗溶接する場合、超ハイテン材は母材強度が高いため、溶接部位に母材破断を起こさせるための条件が厳しくなり、母材破断を起こさせるために必要なナゲット径も大きなものになる。また、鋼板を重ね合わせた場合には鋼板に微少な隙間ができる。軟鋼板であれば、電極を押し当てた際の加圧力で隙間を無くし、鋼板間に十分な接触面積を確保することができる。しかし、超ハイテン材では母材表面が硬いために、鋼板間に隙間が残り、スポット溶接の通電初期に母材と電極との接触面積が小さくなり易い。また、超ハイテン材では母材間に塵が挟まった場合にも同様に母材間に隙間が生じ、接触面積が小さくなり易い。このように超ハイテン材では、鋼板間の接触面積が小さくなり、電流密度が高くなり易くスパッタが発生し易い。このため超ハイテン材は、スポット抵抗溶接する際に、スパッタを発生させずに、所要のナゲット径を安定した品質を得るのが難しい。   In particular, when spot resistance welding is performed on a super-high tensile material of 780 MPa class or higher, the super high-tensile material has a high base material strength, and therefore the conditions for causing the base material breakage at the welded part become severe and cause the base material breakage. The nugget diameter required for this is also large. Further, when the steel plates are overlapped, a minute gap is formed in the steel plate. If it is a mild steel plate, a clearance can be eliminated by the applied pressure when the electrodes are pressed against each other, and a sufficient contact area can be secured between the steel plates. However, since the surface of the base metal is hard in the super high tensile material, a gap remains between the steel plates, and the contact area between the base material and the electrode tends to be small at the initial stage of spot welding energization. Further, in the case of ultra-high tensile material, when dust is caught between the base materials, a gap is similarly generated between the base materials, and the contact area tends to be small. In this way, in the ultra high tensile material, the contact area between the steel plates is reduced, the current density is likely to be increased, and sputtering is likely to occur. For this reason, it is difficult to obtain a stable quality of a required nugget diameter without generating spatter when spot resistance welding is performed on an ultra-high tensile material.

また、スパッタの発生は、外板にスパッタが付着し、塗装品質が悪化したり、ナゲット径のばらつきが大きくなったりするため、品質管理を困難にする弊害があり、また外板に付着したスパッタやバリを除去するのに、工数が増えたり、粉塵が発生したりするなど、製造作業上の弊害も多い。   In addition, the occurrence of spatter has the detrimental effect of making quality control difficult because the spatter adheres to the outer plate and the coating quality deteriorates and the variation in nugget diameter increases. There are many adverse effects on manufacturing operations, such as increasing man-hours and generating dust to remove burrs and burrs.

本発明に係るスポット抵抗溶接の通電制御方法は、抵抗溶接の通電時間内に、溶接する780MPa級以上の超ハイテン材からなる鋼板に対してナゲットを成長させる程度の所定の高い電流値をスパッタの発生に至る時間よりも短い所定時間維持する時間帯と、スパッタを発生させずに前記鋼板を軟化させる程度の所定の低い電流値を所定時間維持する時間帯、前記高い電流値を維持する最初の時間帯から前記高い電流値を維持する最後の時間帯に亘り交互に繰り返すように、電極に通電することを特徴としている。 The energization control method for spot resistance welding according to the present invention has a predetermined high current value at which a nugget is grown on a steel plate made of an ultra-high tensile material of 780 MPa class or higher to be welded within the energization time of resistance welding. and times to maintain shorter than the time comes to generate a predetermined time, and a time zone for maintaining a predetermined time a predetermined low current value of the degree of softening of the steel sheet without causing sputtering to maintain the high current value The electrode is energized so as to alternately repeat from the first time zone to the last time zone maintaining the high current value .

このスポット抵抗溶接の通電制御方法によれば、抵抗溶接の通電時間内に、溶接する鋼板に対してナゲットを成長させる程度の高い電流値を維持する時間帯の間に、スパッタを発生させずに鋼板を軟化させる程度の低い電流値を挟んでいるので、徐々に接触面積を広くしながら、段階的にナゲットを成長させることができる。これにより、ナゲットが急成長するのを抑え、スパッタが発生するのを抑えることができるので、780MPa級以上の超ハイテン材をスポット抵抗溶接する場合においても、溶接部位の品質を確保し、効率良くスポット抵抗溶接を行うことができるようになる。   According to the energization control method of this spot resistance welding, spatter does not occur during a time period in which a current value high enough to grow a nugget on the steel plate to be welded is maintained within the energization time of resistance welding. Since a current value that is low enough to soften the steel plate is sandwiched, the nugget can be grown in stages while gradually increasing the contact area. As a result, it is possible to suppress the rapid growth of the nugget and suppress the occurrence of spatter. Therefore, even when spot resistance welding is performed on a super-high tensile material of 780 MPa class or higher, the quality of the welded part is ensured and efficient. Spot resistance welding can be performed.

以下、本発明の一実施形態に係るスポット抵抗溶接の通電制御方法を図面に基づいて説明する。   Hereinafter, an energization control method for spot resistance welding according to an embodiment of the present invention will be described with reference to the drawings.

このスポット抵抗溶接の通電制御方法は、図7に示すように、抵抗溶接の通電時間内に、高い電流値を維持する時間帯31a〜31dと、低い電流値を維持する時間帯32a〜32cを交互に繰り返す通電パターン30により、電極に通電するものである。斯かる通電パターンの制御は、例えば、溶接機に備えてある電流制御装置で行なうとよい。   As shown in FIG. 7, the spot resistance welding energization control method includes time zones 31a to 31d for maintaining a high current value and time zones 32a to 32c for maintaining a low current value within the energization time of resistance welding. The electrodes are energized by alternately energizing patterns 30. Such energization pattern control may be performed by, for example, a current control device provided in the welding machine.

高い電流値を維持する時間帯31a〜31dは、主に、溶接する鋼板に対してナゲットを成長させることを目的としている。すなわち、この時間帯31a〜31dでは、溶接する鋼板の内部に形成されたナゲットを成長させる程度に発熱を生じさせるような電流値で通電を行なう。ただし、このような電流値をあまり長く維持しつづけると、ナゲットが急成長し、スパッタが発生する可能性がある。このため、このスポット抵抗溶接の通電制御方法は、溶接する鋼板に対してナゲットを成長させるような高い電流値を維持しつづけることなく、スパッタが発生するよりも前に電流値を低くしている。   The time zones 31a to 31d for maintaining a high current value are mainly intended for growing nuggets on the steel plates to be welded. That is, in these time zones 31a to 31d, energization is performed at a current value that generates heat to such an extent that the nugget formed in the steel sheet to be welded is grown. However, if such a current value is kept too long, the nugget may grow rapidly and spatter may occur. For this reason, this current control method for spot resistance welding keeps the current value lower than before spatter occurs without continuing to maintain a high current value for growing nuggets on the steel sheet to be welded. .

低い電流値を維持する時間帯32a〜32cでは、主に、スパッタが発生する危険性を緩和するとともに、鋼板の表面を軟化させて押し当てた電極を鋼板になじませることを目的としている。この時間帯32a〜32cでは、スパッタを発生させず、鋼板表面を軟化させる程度の発熱を生じさせる電流値で通電を行なっており、鋼板内部に形成されるナゲットの急成長が抑制されるため、スパッタの発生が抑えられる。また、この間、鋼板が軟化されるので、電極に付与される加圧力により、電極が鋼板になじんでいき、徐々に鋼板と電極の接触面積が増える。これにより、低い電流値を維持する時間帯32a〜32cでは、スパッタが発生する危険性が緩和される。   In the time zones 32a to 32c in which the low current value is maintained, the purpose is mainly to alleviate the risk of spattering and to soften the surface of the steel plate so that the pressed electrode fits the steel plate. In these time zones 32a to 32c, energization is performed at a current value that generates heat to the extent that the steel sheet surface is softened without generating spatter, and the rapid growth of nuggets formed inside the steel sheet is suppressed. Sputtering is suppressed. In addition, since the steel plate is softened during this time, the electrode is adapted to the steel plate by the pressure applied to the electrode, and the contact area between the steel plate and the electrode gradually increases. Thereby, in the time slot | zones 32a-32c which maintain a low electric current value, the danger that a sputter | spatter will generate | occur | produce is eased.

この時間帯32a〜32cでは、スパッタが発生する状況が緩和されればよいので、スパッタが発生する状況が緩和されれば、効率良くナゲットを形成するため、再びナゲットを成長させる程度に電流値を高くするとよい。   In this time zone 32a to 32c, the situation in which spattering occurs may be relaxed. Therefore, if the situation in which sputtering occurs is mitigated, the nugget is efficiently formed. It should be high.

このように、スポット抵抗溶接の通電制御方法によれば、高い電流値を維持し続けることなく、高い電流値を維持する時間帯31a〜31dの間に、低い電流値を維持する時間帯32a〜32cを挟んでいるので、ナゲットが急成長してスパッタが発生することはない。また、低い電流値を維持する時間帯32a〜32cに、鋼板と電極との接触面積が広くなり、ナゲットが形成されている鋼板内部において、スパッタが発生する状況が緩和されるので、再び電流値を高くしてもすぐにスパッタが発生しない。   As described above, according to the energization control method of spot resistance welding, the time zone 32a to maintain the low current value during the time zone 31a to 31d to maintain the high current value without continuing to maintain the high current value. Since 32c is sandwiched, the nugget does not grow rapidly and spatter does not occur. In addition, the contact area between the steel plate and the electrode is widened in the time zones 32a to 32c for maintaining a low current value, and the situation where spatter is generated inside the steel plate on which the nugget is formed is alleviated. Spatter does not occur immediately even if the value is increased.

また、低い電流値を維持する時間帯32a〜32cで鋼板と電極の接触面積が大きくなっているので、その後、再びナゲットを成長させる程度に電流値を高くする場合、電流値を低くする前よりも電流値を高くしてもスパッタは発生しない。このため、図7に示す通電パターンでは、高い電流値を維持する時間帯31a〜31dにおいて、高い電流値を維持する時間帯31a〜31dと低い電流値を維持する時間帯32a〜32cを交互に繰り返すにつれて、高い電流値を維持する時間帯31a〜31dは、各時間帯31〜31毎に維持する電流値を徐々に高くしている。なお、徐々に鋼板と電極との接触面積が大きくなり、スパッタが発生する電流値の条件が高くなるので、低い電流値を維持する時間帯32a〜32cも、各時間帯32a〜32c毎に維持する電流値を徐々に高くしている。 Further, since the contact area between the steel plate and the electrode is increased in the time zones 32a to 32c for maintaining the low current value, when the current value is increased to such an extent that the nugget is grown again after that, the current value is decreased. However, spatter does not occur even when the current value is increased. Therefore, in the energization pattern shown in FIG. 7, in the time zones 31a to 31d for maintaining a high current value, the time zones 31a to 31d for maintaining a high current value and the time zones 32a to 32c for maintaining a low current value are alternated. as repeated, time zone 31a~31d to maintain a high current value is gradually increased current value to maintain the respective time slot 31 a to 31 c. In addition, since the contact area between the steel plate and the electrode gradually increases and the condition of the current value at which sputtering occurs increases, the time zones 32a to 32c for maintaining a low current value are also maintained for each time zone 32a to 32c. The current value is gradually increased.

なお、通電パターン30の各時間帯において、スパッタを発生させない程度に電流値を高くすればするほど、鋼板に投入される電気エネルギが高くなるので、効率よくナゲットを形成することができ、溶接に必要な時間を短縮することができる。   In addition, in each time zone of the energization pattern 30, as the current value is increased to such an extent that spatter does not occur, the electrical energy input to the steel sheet increases, so that the nugget can be formed efficiently and welding is performed. The required time can be shortened.

以上のように、このスポット抵抗溶接の通電制御方法によれば、スパッタの発生を抑制して、効率良くナゲットを形成できるので、安定して品質のよいスポット抵抗溶接を行なうことができ、製品の品質管理が容易になる。また、外板にスパッタが付着することや粉塵の発生が抑制されるので、作業性や作業環境の向上を図ることができる。   As described above, according to the energization control method of this spot resistance welding, the generation of spatter can be suppressed and the nugget can be formed efficiently, so that the spot resistance welding with high quality can be stably performed. Quality control becomes easy. Moreover, since spatter adheres to the outer plate and the generation of dust is suppressed, workability and work environment can be improved.

以下、このスポット抵抗溶接の通電制御方法を用いた通電パターンの一実施例を説明する。   Hereinafter, an embodiment of an energization pattern using the energization control method of spot resistance welding will be described.

なお、この実施例では、図1に示すダイレクトスポット溶接により、SPC780、厚さ1.2mmの鋼板を2枚重ねた重合部の溶接を行なった。また、この実施例では、電極3、4にR15の曲面形状を備えた電極を用いており、電極に340Kgfの加圧力を与えて溶接を行なった。また、電流制御装置には、単相交流式の電流制御装置を用いて電流の制御を行なった。   In this example, welding of a superposed portion in which two SPC780 and 1.2 mm-thick steel plates were stacked was performed by direct spot welding shown in FIG. In this example, electrodes 3 and 4 having an R15 curved surface were used, and welding was performed by applying a pressure of 340 kgf to the electrodes. Moreover, the current control was performed using a single-phase AC current control device.

この実施例で用いた通電パターンは、図8に示すように、通電時間の初期の0〜1cycleは徐々に電流値を上げ、1〜3cycleを6.5kAとし、3〜5cycleを6.3kAとし、5〜7cycleを7.6kAとし、7〜9cycleを7.3kAとし、9〜11cycleを8.0kAとし、11〜13cycleを7.8kAとし、13〜15cycleを8.6kAとする通電パターンにより行なった。なお、この実施形態では、周波数60Hzの交流でスポット溶接を行なっており、cycleは通電時間を設定する単位であり、1cycleは1/60secである。   In the energization pattern used in this example, as shown in FIG. 8, the current value is gradually increased in the initial 0 to 1 cycle of the energization time, 1 to 3 cycles is set to 6.5 kA, and 3 to 5 cycles is set to 6.3 kA. 5-7 cycles are set to 7.6 kA, 7-9 cycles are set to 7.3 kA, 9-11 cycles are set to 8.0 kA, 11-13 cycles are set to 7.8 kA, and 13-15 cycles are set to 8.6 kA. It was. In this embodiment, spot welding is performed with an alternating current having a frequency of 60 Hz, cycle is a unit for setting the energization time, and 1 cycle is 1/60 sec.

この実施例では、1〜3cycle、5〜7cycle、9〜11cycle、13〜15cycleの時間帯が、溶接する鋼板に対してナゲットを成長させる程度の高い電流値に維持した時間帯31a〜31dであり、3〜5cycle、7〜9cycle、11〜13cycleの時間帯がスパッタを発生させずに鋼板を軟化させる程度の低い電流値に維持した時間帯32a〜32cである。 In this embodiment, the time zones of 1 to 3 cycles, 5 to 7 cycles, 9 to 11 cycles, and 13 to 15 cycles are the time zones 31a to 31d maintained at a high current value that allows the nugget to grow on the steel plate to be welded. , 3~5cycle, 7~9cycle, time zone 11~13cycle is a time zone 32a~32c maintained to the extent of low current value to soften the steel sheet without causing sputtering.

また、この実施例では、高い電流値に維持する1〜3cycle、5〜7cycle、9〜11cycle、13〜15cycleの時間帯31a〜31dは、間に低い電流値に維持する時間帯32a〜32cを挟むことにより、スパッタが発生する状況が緩和されるので、各時間帯毎に維持する電流値を徐々に高くしている。これにより、鋼板に適切に電気エネルギを投入することができ、効率良くナゲットを成長させることができる。   In this embodiment, the time zones 31a to 31d of 1 to 3 cycles, 5 to 7 cycles, 9 to 11 cycles, and 13 to 15 cycles that are maintained at high current values are the time zones 32a to 32c that are maintained at low current values in between. By sandwiching, the situation where spatter is generated is alleviated, so that the current value maintained for each time zone is gradually increased. Thereby, electrical energy can be input appropriately to the steel sheet, and the nugget can be grown efficiently.

この通電パターンにより、斯かる鋼板の溶接において、スパッタの発生を抑制し、母材破断が生じる5.8mm以上のナゲット径を安定して形成することができ、また通電時間も開始から15cycleであり、効率良く溶接を行なうことができる。   With this energization pattern, it is possible to stably form a nugget diameter of 5.8 mm or more, in which the occurrence of spatter is suppressed in the welding of such steel sheets, and the base material breaks, and the energization time is 15 cycles from the start. It is possible to perform welding efficiently.

以上、本発明に係るスポット抵抗溶接の通電制御方法を、超ハイテン材の溶接に適用した実施例を説明したが、本発明に係るスポット抵抗溶接の通電制御方法は、上記の実施例に限定されるものではない。   As mentioned above, although the Example which applied the energization control method of spot resistance welding concerning the present invention to welding of super high-tensile material was described, the energization control method of spot resistance welding concerning the present invention is limited to the above-mentioned example. It is not something.

上記の実施例では鋼板を2枚重ねた重合部位の溶接を例示したが、これに限らず、スパッタの発生を抑制し、適切にナゲットを形成することができるので、鋼板を3枚以上重ねた重合部位の溶接にも適用することができる。また、ダイレクトスポット抵抗溶接に適用した実施例を例示したが、ダイレクトスポット抵抗溶接に限定されず、シリーズスポット抵抗溶接、インダイレクトスポット抵抗溶接など、種々のスポット抵抗溶接に適用することができる。 In the above-described embodiment, the welding of the overlapped portion where two steel plates are stacked is illustrated. However, the present invention is not limited to this, and spattering can be suppressed and nuggets can be appropriately formed, so that three or more steel plates are stacked. It can also be applied to welding at the polymerization site. Moreover, although the Example applied to direct spot resistance welding was illustrated, it is not limited to direct spot resistance welding, It can apply to various spot resistance welding, such as series spot resistance welding and indirect spot resistance welding.

また、上記の実施例で例示した通電パターンでは、高い電流値を維持する時間帯を4回設け、低い電流値を維持する時間帯を3回設けているが、高い電流値を維持する時間帯と低い電流値を維持する時間帯を繰り返す回数は上記の実施例に限定されるものではない。高い電流値を維持する時間帯と、低い電流値を維持する時間帯をそれぞれ2回づつ以上繰り返すように通電パターンを設定するとよい。   Moreover, in the energization pattern illustrated in the above embodiment, the time zone for maintaining a high current value is provided four times, and the time zone for maintaining a low current value is provided three times, but the time zone for maintaining a high current value is provided. The number of times of repeating the time zone for maintaining a low current value is not limited to the above embodiment. The energization pattern may be set so that the time zone for maintaining a high current value and the time zone for maintaining a low current value are repeated twice or more each time.

また、通電パターンは、溶接する鋼板の材質や、板厚、重ねる鋼板の枚数、用いるスポット抵抗溶接の工法、使用する電極など、溶接条件の違いにより、各時間帯の電流値及び各時間帯の通電時間などは適宜適切に変更するとよい。   In addition, the energization pattern depends on the welding conditions such as the material of the steel plate to be welded, the plate thickness, the number of steel plates to be stacked, the spot resistance welding method to be used, the electrode to be used, etc. The energization time and the like may be appropriately changed as appropriate.

また、通電初期は、鋼板間に微少な隙間があったり、鋼板間に塵が挟まっていたりして鋼板間の接触面積が小さい場合があるので、例えば、図9に示すように、本発明に係る通電パターンの前に、通電時間の初期に電流値を低く維持する時間帯33を設けてもよい。この時間帯33は、スパッタを発生させず、鋼板を軟化させる程度の発熱を鋼板に生じさせる程度の電流値及び通電時間を設定する。これにより、鋼板間に生じる微少な隙間を埋め、後半間の接触面積を十分に大きくすることができるので、スパッタの発生をより確実に抑えることができる。   Further, in the initial stage of energization, there may be a small gap between the steel plates, or dust may be sandwiched between the steel plates, so that the contact area between the steel plates may be small. For example, as shown in FIG. Before the energization pattern, a time zone 33 for keeping the current value low at the initial stage of the energization time may be provided. This time zone 33 sets a current value and energizing time that do not generate spatter and generate heat in the steel plate that softens the steel plate. As a result, a minute gap generated between the steel plates can be filled and the contact area in the second half can be sufficiently increased, so that the occurrence of spatter can be more reliably suppressed.

ダイレクトスポット抵抗溶接の溶接工法を示す図。The figure which shows the welding method of direct spot resistance welding. シリーズスポット抵抗溶接の溶接工法を示す図。The figure which shows the welding method of series spot resistance welding. シリーズスポット抵抗溶接の溶接工法を示す図。The figure which shows the welding method of series spot resistance welding. インダイレクトスポット抵抗溶接の溶接工法を示す図。The figure which shows the welding method of indirect spot resistance welding. インダイレクトスポット抵抗溶接の溶接工法を示す図。The figure which shows the welding method of indirect spot resistance welding. インダイレクトスポット抵抗溶接の溶接工法を示す図。The figure which shows the welding method of indirect spot resistance welding. 本発明の一実施形態に係るスポット抵抗溶接の通電制御方法の通電パターンを示す図。The figure which shows the electricity supply pattern of the electricity supply control method of the spot resistance welding which concerns on one Embodiment of this invention. 本発明に係るスポット抵抗溶接の通電制御方法の通電パターンの具体例を示す図。The figure which shows the specific example of the electricity supply pattern of the electricity supply control method of the spot resistance welding which concerns on this invention. 本発明の他の実施形態に係るスポット抵抗溶接の通電制御方法の通電パターンを示す図。The figure which shows the electricity supply pattern of the electricity supply control method of the spot resistance welding which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

30 通電パターン
31a〜31d 高い電流値を維持する時間帯
32a〜32c 低い電流値を維持する時間帯
30 Energizing patterns 31a to 31d Time zone for maintaining a high current value 32a to 32c Time zone for maintaining a low current value

Claims (2)

抵抗溶接の通電時間内に、溶接する780MPa級以上の超ハイテン材からなる鋼板に対してナゲットを成長させる程度の所定の高い電流値をスパッタの発生に至る時間よりも短い所定時間維持する時間帯と、スパッタを発生させずに前記鋼板を軟化させる程度の所定の低い電流値を所定時間維持する時間帯、前記高い電流値を維持する最初の時間帯から前記高い電流値を維持する最後の時間帯に亘り交互に繰り返すように、電極に通電することを特徴とするスポット抵抗溶接の通電制御方法。 A time period for maintaining a predetermined high current value for growing nuggets on a steel plate made of super high-tensile material of 780 MPa class or higher to be welded for a predetermined time shorter than the time until spattering occurs within the energization time of resistance welding. When, finally maintaining the high current value a predetermined low current value of the degree of softening of the steel sheet without causing sputtering and times to maintain a predetermined time from the first time period for maintaining the high current value An energization control method for spot resistance welding, wherein the electrode is energized so as to be alternately repeated over a period of time . 前記高い電流値を維持する時間帯では、該高い電流値を維持する時間帯と前記低い電流値を維持する時間帯を交互に繰り返すにつれて、各時間帯毎に維持する電流値を徐々に高くすることを特徴とする請求項1に記載のスポット抵抗溶接の通電制御方法。   In the time zone for maintaining the high current value, the current value to be maintained for each time zone is gradually increased as the time zone for maintaining the high current value and the time zone for maintaining the low current value are alternately repeated. The energization control method of spot resistance welding according to claim 1.
JP2004380432A 2004-12-28 2004-12-28 Energization control method for spot resistance welding Active JP4753411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380432A JP4753411B2 (en) 2004-12-28 2004-12-28 Energization control method for spot resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380432A JP4753411B2 (en) 2004-12-28 2004-12-28 Energization control method for spot resistance welding

Publications (2)

Publication Number Publication Date
JP2006181621A JP2006181621A (en) 2006-07-13
JP4753411B2 true JP4753411B2 (en) 2011-08-24

Family

ID=36735098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380432A Active JP4753411B2 (en) 2004-12-28 2004-12-28 Energization control method for spot resistance welding

Country Status (1)

Country Link
JP (1) JP4753411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619451A (en) * 2012-09-13 2015-05-13 大众汽车有限公司 Method for the resistance welding of components with a variable progression over time of the welding current, and component composite produced thereby

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057557B2 (en) * 2006-08-29 2012-10-24 ダイハツ工業株式会社 Series spot welding method and welding apparatus
JP5401047B2 (en) * 2008-03-31 2014-01-29 Jfeスチール株式会社 Series spot or indirect spot welding of high-tensile steel plate
JP2010188408A (en) * 2009-02-20 2010-09-02 Honda Motor Co Ltd Energization method for resistance welding
JP5584026B2 (en) * 2010-07-02 2014-09-03 株式会社ダイヘン Resistance welding control method
JP5814906B2 (en) 2012-12-10 2015-11-17 本田技研工業株式会社 Resistance welding method and resistance welding apparatus
BR112016000058B1 (en) 2013-07-11 2019-11-12 Nippon Steel & Sumitomo Metal Corp resistance spot welding method
US10207354B2 (en) 2013-09-04 2019-02-19 Jfe Steel Corporation Indirect spot welding apparatus
ES2764835T3 (en) 2013-12-20 2020-06-04 Nippon Steel Corp Resistance spot welding method
US11850674B2 (en) * 2018-03-23 2023-12-26 Honda Motor Co., Ltd. Spot welding method
CN116586732A (en) * 2023-05-23 2023-08-15 鞍钢股份有限公司 Three-layer steel plate resistance spot welding process and electrode used in same
JP7531028B1 (en) 2023-07-03 2024-08-08 株式会社アマダ Joining device and method for joining dissimilar materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248536A (en) * 1975-10-17 1977-04-18 Hitachi Ltd Resistance welding method
JP2732154B2 (en) * 1991-05-08 1998-03-25 ミヤチテクノス株式会社 Inverter type resistance welding control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619451A (en) * 2012-09-13 2015-05-13 大众汽车有限公司 Method for the resistance welding of components with a variable progression over time of the welding current, and component composite produced thereby
CN104619451B (en) * 2012-09-13 2017-12-15 大众汽车有限公司 By the variable time curve of welding current to the method for component resistance welding and thus manufactured composite component

Also Published As

Publication number Publication date
JP2006181621A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP5415896B2 (en) Indirect spot welding method
JP6019740B2 (en) Welding method
JP4836173B2 (en) Series spot welding equipment or indirect spot welding equipment
KR102010195B1 (en) Resistance spot welding method
JP4753411B2 (en) Energization control method for spot resistance welding
JP2006043731A (en) Method for controlling power-supply of spot welding
JP5599553B2 (en) Resistance spot welding method
JP2007268604A (en) Resistance spot welding method
JP5401047B2 (en) Series spot or indirect spot welding of high-tensile steel plate
JP5057557B2 (en) Series spot welding method and welding apparatus
JP5261984B2 (en) Resistance spot welding method
JP4139375B2 (en) Resistance welding electrode and resistance welding method
JP5609966B2 (en) Resistance spot welding method
WO2019160141A1 (en) Resistance spot welding method and method for manufacturing welded member
JP7335196B2 (en) Manufacturing method of resistance welded member
JP6160190B2 (en) Resistance spot welding method for dissimilar metal materials
JP2012187616A (en) Resistance welding apparatus and resistance welding method
JP5991444B2 (en) Resistance spot welding method
JP5625423B2 (en) Indirect spot welding method
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
JP4386431B2 (en) Laser welding method
JP2015131327A (en) Electric current waveform determination method on resistance spot welding and resistance spot welding method
JP2019147187A (en) Spot welding method
JP2014166646A (en) Solid-phase welding method for metal workpiece
JP6225717B2 (en) Formation method of welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100722

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250