JP5625423B2 - Indirect spot welding method - Google Patents

Indirect spot welding method Download PDF

Info

Publication number
JP5625423B2
JP5625423B2 JP2010066709A JP2010066709A JP5625423B2 JP 5625423 B2 JP5625423 B2 JP 5625423B2 JP 2010066709 A JP2010066709 A JP 2010066709A JP 2010066709 A JP2010066709 A JP 2010066709A JP 5625423 B2 JP5625423 B2 JP 5625423B2
Authority
JP
Japan
Prior art keywords
electrode
current value
spot welding
metal plate
energizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010066709A
Other languages
Japanese (ja)
Other versions
JP2011194459A (en
Inventor
松下 宗生
宗生 松下
池田 倫正
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010066709A priority Critical patent/JP5625423B2/en
Publication of JP2011194459A publication Critical patent/JP2011194459A/en
Application granted granted Critical
Publication of JP5625423B2 publication Critical patent/JP5625423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には離れた位置で給電端子を取り付け、これら溶接電極と給電端子との間で通電して溶接を行うインダイレクトスポット溶接方法に関するものである。   The present invention presses a welding electrode while pressing a welding electrode against a metal plate from one surface side against a member in which at least two metal plates are overlapped, and feed terminal at a position away from the metal plate on the other surface side And an indirect spot welding method in which welding is performed by energizing between the welding electrode and the power supply terminal.

自動車ボディーや自動車部品の溶接に際しては、従来から抵抗スポット溶接、主にダイレクトスポット溶接が使用されてきたが、最近では、シリーズスポット溶接やインダイレクトスポット溶接等が使用されるようになってきた。   Conventionally, resistance spot welding, mainly direct spot welding, has been used for welding automobile bodies and parts, but recently, series spot welding, indirect spot welding, and the like have been used.

上記した3種類のスポット溶接の特徴を、図1を用いて説明する。
いずれのスポット溶接も、重ね合わせた少なくとも2枚の鋼板を溶接により接合する点では変わりはない。
図1(a)は、ダイレクトスポット溶接法を示したものである。この溶接は、同図に示すとおり、重ね合わせた2枚の金属板1,2を挟んでその上下から一対の電極3,4を加圧しつつ電流を流し、金属板の抵抗発熱を利用して、点状の溶接部5を得る方法である。なお、電極3,4はいずれも、加圧制御装置6,7および電流制御装置8をそなえており、これらによって加圧力と通電する電流値が制御できる仕組みになっている。
The characteristics of the above three types of spot welding will be described with reference to FIG.
In any spot welding, there is no change in that at least two superposed steel plates are joined by welding.
FIG. 1A shows the direct spot welding method. In this welding, as shown in the figure, a current is applied while pressing a pair of electrodes 3 and 4 from above and below between the two stacked metal plates 1 and 2, and the resistance heating of the metal plates is used. This is a method for obtaining a spot-like welded portion 5. Each of the electrodes 3 and 4 includes pressurization control devices 6 and 7 and a current control device 8, so that the pressurizing force and the current value to be energized can be controlled by these.

図1(b)に示すシリーズスポット溶接法は、重ね合わせた2枚の金属板11,12に対し、離れた位置で、同一面側(同一方向)から一対の電極13,14を加圧しつつ電流を流し、点状の溶接部15-1,15-2を得る方法である。   In the series spot welding method shown in FIG. 1 (b), a pair of electrodes 13 and 14 are pressed from the same surface side (in the same direction) at a position apart from two superimposed metal plates 11 and 12. In this method, a current is passed to obtain the spot welds 15-1 and 15-2.

図1(c)に示すインダイレクトスポット溶接法は、重ね合わせた2枚の金属板21,22に対し、一方の金属板21には電極23を加圧しながら押し当て、他方の金属板22には離れた位置で給電端子24を取り付け、これらの間で通電することにより、金属板21,22に点状の溶接部25を形成する方法である。   In the indirect spot welding method shown in FIG. 1 (c), the electrode 23 is pressed against one metal plate 21 while pressing the two metal plates 21, 22, and the other metal plate 22 is pressed against the other metal plate 22. Is a method of forming a spot-like welded portion 25 on the metal plates 21 and 22 by attaching the power supply terminal 24 at a distant position and energizing between them.

上記した3種類の溶接法のうち、スペース的に余裕があり、金属板を上下から挟む開口部が得られる場合には、ダイレクトスポット溶接法が用いられる。
しかしながら、実際の溶接に際しては、十分なスペースがなかったり、閉断面構造で金属板を上下から挟むことができない場合も多く、かような場合には、シリーズスポット溶接法やインダイレクトスポット溶接法が用いられる。
Of the three types of welding methods described above, direct spot welding is used when there is sufficient space and an opening that sandwiches the metal plate from above and below is obtained.
However, in actual welding, there are many cases where there is not enough space or the metal plate cannot be sandwiched from above and below with a closed cross-sectional structure. In such cases, the series spot welding method or the indirect spot welding method is used. Used.

しかしながら、シリーズスポット溶接法やインダイレクトスポット溶接法を上記のような用途に使用する際には、重ね合わせた金属板は一方向からのみ電極により加圧され、その反対側は支持の無い中空の状態になっている。従って、両側から電極で挟むダイレクトスポット溶接法のように電極直下に局部的に高い加圧力を与えることができない。また、通電中に電極が金属板に沈み込んでいくため、電極−金属板、金属板−金属板間の接触状態が変化する。このような理由により、重ね合わせた金属板間で電流の通電経路が安定せず、溶融接合部が形成されにくいという問題があった。   However, when the series spot welding method or the indirect spot welding method is used for the above-mentioned applications, the stacked metal plates are pressed by the electrode only from one direction, and the opposite side is a hollow with no support. It is in a state. Therefore, it is not possible to apply a high applied pressure directly under the electrodes as in the direct spot welding method in which the electrodes are sandwiched from both sides. Further, since the electrode sinks into the metal plate during energization, the contact state between the electrode-metal plate and the metal plate-metal plate changes. For these reasons, there is a problem in that the current energization path is not stable between the stacked metal plates, and it is difficult to form a melt-bonded portion.

上記の問題を解決するものとして、シリーズスポット溶接については、特許文献1に、「金属板を重ねた接触点にナゲットを形成するため、溶接初期に大電流を流して電極ナゲットを形成してから、定常電流を流す」ことが記載されている。また、特許文献2では、「電極を接触させる位置に他の部分よりも一段高い座面を形成し、座面を押しつぶすように加圧接触させて溶接することにより、バック電極なしに十分な溶接強度が得られる」ことが記載されている。   In order to solve the above-mentioned problem, for series spot welding, in Patent Document 1, “To form a nugget at a contact point where metal plates are overlapped, a large current is passed in the initial stage of welding to form an electrode nugget. , A steady current is passed ”. Further, in Patent Document 2, “welding is sufficient without a back electrode by forming a seat surface that is one step higher than the other parts at the position where the electrode is brought into contact, and press-contacting so as to crush the seat surface. It is described that strength can be obtained.

一方、インダイレクトスポット溶接については、シリーズスポット溶接にも適用できる技術として、特許文献3に、「シリーズスポット溶接又はインダイレクトスポット溶接の通電時に、電流値を高く維持する時間帯と電流値を低く維持する時間帯を交互に繰り返す」ことからなる溶接法、さらには「電流値を高く維持する時間帯と電流値を低く維持する時間帯を交互に繰り返すにつれて、電流値を高く維持する時間帯の電流値を徐々に高くする」ことからなる溶接方法が開示されている。   On the other hand, for indirect spot welding, as a technique that can be applied to series spot welding, Patent Document 3 states, “When a series spot welding or indirect spot welding is energized, a time zone in which a current value is kept high and a current value are made low. A welding method that consists of alternately repeating the time period to maintain, and further, the time period in which the current value is kept high as the time period in which the current value is kept high and the time period in which the current value is kept low are alternately repeated. A welding method comprising “gradually increasing the current value” is disclosed.

特開平11-333569号公報Japanese Patent Laid-Open No. 11-333569 特開2002-239742号公報JP 2002-239742 A 特開2006-198676号公報JP 2006-198676

しかしながら、特許文献1は、シリーズスポット溶接については有効であると考えられるが、溶接方法の異なるインダイレクトスポット溶接に対しては有効であるとは限らないという問題があった。
また、特許文献2も、シリーズスポット溶接については有効であると考えられるが、インダイレクトスポット溶接に対しては有効であるとは限らず、しかも電極を接触させる位置に他の部分よりも一段高い座面をプレスなどで形成する工程が必要になるという問題があった。
However, Patent Document 1 is considered effective for series spot welding, but has a problem that it is not always effective for indirect spot welding with different welding methods.
Patent Document 2 is also considered effective for series spot welding, but is not necessarily effective for indirect spot welding, and is one step higher than the other parts at the position where the electrode is brought into contact. There is a problem that a process of forming the seating surface with a press or the like is required.

さらに、特許文献3には、同文献に開示の技術に従う通電パターンによって溶接された「金属板11,12の重合部の金属組織を観察すると、金属板11,12の重合部の金属が、従来の通常のナゲットに比べて細かく部分的に溶融して再結晶したものが多数形成される事象が見られ、所謂、拡散接合の状態で接合している場合であり、従来の通常のナゲットとは異なる事象で接合している場合もある。」(同文献3の段落〔0038〕)とあり、必ずしもダイレクトスポット溶接で見られるナゲットのように完全に溶融した状態で碁石形に形成されているとは限らないという問題があった。
輸送機器メーカーにおける現状のスポット溶接部の管理基準では、ダイレクトスポット溶接で得られるような完全に溶融した状態を経た碁石形のナゲットであることを要求されることが多いため、接合強度が得られても完全に溶融した状態で形成された碁石形のナゲットが得られなければ管理基準を満足しないという問題がある。
Furthermore, Patent Document 3 discloses that when the metal structure of the overlapped portion of the metal plates 11 and 12 welded by the energization pattern according to the technique disclosed in the same document is observed, the metal in the overlapped portion of the metal plates 11 and 12 is conventionally Compared to ordinary nuggets, a large number of finely melted and recrystallized items are observed, which is the case of joining in the so-called diffusion bonding state. There are also cases where they are joined by different events "(paragraph [0038] of the same document 3), and it is necessarily formed into a meteorite shape in a completely melted state like a nugget seen in direct spot welding. There was a problem that was not limited.
The current management standards for spot welds in transportation equipment manufacturers often require that they be a meteorite-shaped nugget that has been completely melted, as obtained by direct spot welding, so that joint strength can be obtained. However, if a meteorite-shaped nugget formed in a completely molten state is not obtained, there is a problem that the management standard is not satisfied.

本発明は、上記の現状に鑑み開発されもので、重ね合わせた金属板を一方向からのみ電極で加圧し、その反対側は支持の無い中空の状態で溶接するインダイレクトスポット溶接に際し、溶融した状態で形成された碁石形のナゲットを安定して得ることができるインダイレクトスポット溶接方法を提案することを目的とする。   The present invention has been developed in view of the above-described present situation, and the superimposed metal plates are pressurized with an electrode only from one direction, and the opposite side is melted during indirect spot welding for welding in a hollow state without support. It is an object to propose an indirect spot welding method capable of stably obtaining a meteorite-shaped nugget formed in a state.

さて、発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、以下に述べる知見を得た。
a)重ね合わせた金属板を一方向からのみ電極で加圧し、その反対側は支持の無い中空の状態でインダイレクトスポット溶接を行う場合、両側から電極で挟むダイレクトスポット溶接法のように電極直下に局部的に高い加圧力を与えることができないため、電極直下の重ね合わせた金属板間で高い電流密度が得られず、また通電中に電極が鋼板に沈み込んでいくため、電極−金属板、金属板−金属板間の接触面積が増大し、電極−金属板、金属板−金属板間の電流密度が低下する。そのため、インダイレクトスポット溶接では、ダイレクトスポット溶接法のように電極直下の重ね合わせた金属板間に溶融部が形成されるのに十分な発熱が得難く、溶融接合部が形成されにくい。
b)上記の問題を解決するには、通電中の電流値およびその時間を細かく制御する、または通電中の電極の加圧力およびその時間を細かく制御する、さらには通電中の電流値と電極の加圧力およびの時間を細かく制御することが有効である。
c)特に、通電開始からの通電時間、加圧時間をそれぞれ独立に3段階に分け、通電時間、加圧時間の各段階における電流値および/または電極の加圧力を個別に制御することにより、健全な碁石形のナゲットからなる溶融接合部を安定して形成することができる。
本発明は、上記の知見に立脚するものである。
As a result of intensive studies to solve the above problems, the inventors have obtained the following knowledge.
a) When the superimposed metal plates are pressed with an electrode only from one direction and indirect spot welding is performed in a hollow state with no support on the opposite side, directly under the electrode as in the direct spot welding method sandwiched between the electrodes from both sides Since a high applied pressure cannot be applied locally, a high current density cannot be obtained between the stacked metal plates directly under the electrodes, and the electrodes sink into the steel plate during energization. The contact area between the metal plate and the metal plate increases, and the current density between the electrode and the metal plate and between the metal plate and the metal plate decreases. Therefore, in indirect spot welding, it is difficult to obtain a heat generation enough to form a melted portion between the metal plates stacked immediately below the electrodes as in the direct spot welding method, and it is difficult to form a melted joint.
b) In order to solve the above problem, the current value during energization and its time are finely controlled, or the applied pressure and time during energization of the electrode are finely controlled. It is effective to finely control the pressure and time.
c) In particular, the energization time and the pressurization time from the start of energization are each independently divided into three stages, and the current value and / or the applied pressure of the electrode at each stage of the energization time and the pressurization time are individually controlled, It is possible to stably form a melt-bonded portion made of a healthy meteorite-shaped nugget.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には該溶接電極と離隔した位置に給電端子を取り付け、該溶接電極と該給電端子との間で通電して溶接を行うインダイレクトスポット溶接法において、電極の加圧力および通電する電流値に関して、通電開始から3つの時間帯t1,t2,t3に区分し、最初の時間帯t1では、加圧力F1で加圧しかつ電流値C1で通電して溶融部の形成を開始し、次の時間帯t2では、F1よりも低い加圧力F2で加圧しかつC1よりも高い電流値C2で通電して溶融部をさらに成長させ、さらに次の時間帯t3では、F2と同じかまたはF2よりも低い加圧力F3で加圧しかつC2よりも高い電流値C3で通電することで溶融部をさらに成長させていくことを特徴とするインダイレクトスポット溶接方法。
2.前記1において、時間帯t 1 ,t 2 ,t 3 における通電時間がそれぞれ、t 1 :0.02〜0.30s、t 2 :0.02〜0.30s、t 3 :0.10〜0.60sであり、各時間帯t 1 ,t 2 ,t 3 における加圧力がそれぞれ、F 1 :300〜2000N、F 2 :100〜1500N、F 3 :100〜1500Nであり、さらに各時間帯t 1 ,t 2 ,t 3 における電流値がそれぞれ、C 1 :2.0〜10.0 kA、C 2 :2.5〜11.0 kA、C 3 :3.0〜12.0 kAであることを特徴とするインダイレクトスポット溶接方法。
That is, the gist configuration of the present invention is as follows.
1. Pressing the welding electrode against the metal plate from one side while pressing the welding electrode against a member on which at least two metal plates are overlapped, and feeding the terminal on the other side of the metal plate at a position separated from the welding electrode In the indirect spot welding method in which welding is performed by energizing between the welding electrode and the power supply terminal, three time zones t 1 and t 2 from the start of energization are applied to the electrode pressing force and the current value to be energized. , divided into t 3, the first time period t 1, by energizing pressurized and current value C 1 under a pressure F 1 to initiate the formation of the fusion zone, in the next time period t 2, from F 1 It is energized further grow the fused portion at high current value C 2 than pressurize and C 1 at a low pressure F 2 also further in the next time period t 3, lower than the same or F 2 and F 2 the melted portion by energizing at high current value C 3 than pressurize and C 2 with pressure F 3 Indirect spot welding method characterized by gradually grown al.
2. In the above 1, the energization times in the time zones t 1 , t 2 , and t 3 are t 1 : 0.02 to 0.30 s, t 2 : 0.02 to 0.30 s, and t 3 : 0.10 to 0.60 s, respectively. 1, t 2, pressure in the t 3, respectively, F 1: 300~2000N, F 2 : 100~1500N, F 3: a 100~1500N, and each time slot t 1, current at t 2, t 3 The indirect spot welding method, wherein the values are C 1 : 2.0 to 10.0 kA, C 2 : 2.5 to 11.0 kA, and C 3 : 3.0 to 12.0 kA, respectively.

.少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には該溶接電極と離隔した位置に給電端子を取り付け、該溶接電極と該給電端子との間で通電して溶接を行うインダイレクトスポット溶接法において、電極の加圧力に関しては、通電開始から3つの時間帯tF1,tF2,tF3に区分し、最初の時間帯tF1では、加圧力F1で加圧し、次の時間帯tF2では、F1よりも低い加圧力F2で加圧し、さらに次の時間帯tF3では、F2と同じかまたはF2よりも低い加圧力F3で加圧する一方、通電する電流値に関しては、時間帯tF1,tF2,tF3とは独立して、通電開始から3つの時間帯tC1,tC2,tC3に区分し、最初の時間帯tC1では、電流値C1で通電して溶融部の形成を開始し、次の時間帯tC2では、C1よりも高い電流値C2で通電して溶融部をさらに成長させ、さらに次の時間帯tC3では、C2よりも高い電流値C3で通電することで溶融部をさらに成長させていくことを特徴とするインダイレクトスポット溶接方法。
4.前記3において、時間帯t F1 ,t F2 ,t F3 における通電時間がそれぞれ、t F1 :0.02〜0.30s、t F2 :0.02〜0.30s、t F3 :0.10〜0.60sであり、各時間帯t F1 ,t F2 ,t F3 における加圧力がそれぞれ、F 1 :300〜2000N、F 2 :100〜1500N、F 3 :100〜1500Nであり、また時間帯t C1 ,t C2 ,t C3 における通電時間がそれぞれ、t C1 :0.02〜0.30s、t C2 :0.02〜0.30s、t C3 :0.10〜0.60sであり、各時間帯t C1 ,t C2 ,t C3 における電流値がそれぞれ、C 1 :2.0〜10.0 kA、C 2 :2.5〜11.0 kA、C 3 :3.0〜12.0 kAであることを特徴とするインダイレクトスポット溶接方法。
3 . Pressing the welding electrode against the metal plate from one side while pressing the welding electrode against a member on which at least two metal plates are overlapped, and feeding the terminal on the other side of the metal plate at a position separated from the welding electrode In the indirect spot welding method in which welding is performed by energizing between the welding electrode and the power supply terminal, the electrode pressing force is applied to three time zones t F1 , t F2 and t F3 from the start of energization. In the first time zone t F1 , pressurization is performed with the pressurizing force F 1 , in the next time zone t F2 , pressurization is performed with the pressurizing force F 2 lower than F 1 , and in the next time zone t F3 , F is applied. while pressurizing the same or F 2 low pressure F 3 than 2, with respect to the current value to be supplied, the time period t F1, t F2, t F3 independently of the three time periods t from start of energization C1, divided into t C2, t C3, the first time period t C1, by energizing a current value C 1 soluble Start the formation parts, in the next time period t C2, high further grow the fused portion by energizing at high current value C 2 than C 1, further in the next time period t C3, than C 2 current indirect spot welding method characterized in that will further grow the fused portion by energizing a value C 3.
4). In the above 3, the energization times in the time zones t F1 , t F2 , and t F3 are t F1 : 0.02 to 0.30 s, t F2 : 0.02 to 0.30 s, and t F3 : 0.10 to 0.60 s, respectively. F1, t F2, pressure at t F3, respectively, F 1: 300~2000N, F 2 : 100~1500N, F 3: a 100~1500N, also the time zone t C1, t C2, t energizing time at C3 Are t C1 : 0.02 to 0.30 s, t C2 : 0.02 to 0.30 s, and t C3 : 0.10 to 0.60 s . The current values in the respective time zones t C1 , t C2 , and t C3 are C 1 : 2.0 , respectively. ~10.0 kA, C 2: 2.5~11.0 kA , C 3: 3.0~12.0 indirect spot welding method, which is a kA.

前記1〜4のいずれかにおいて、前記溶接電極として、先端が曲面形状になる電極を使用することを特徴とするインダイレクトスポット溶接方法。 5 . 5. The indirect spot welding method according to any one of 1 to 4 , wherein an electrode having a curved tip is used as the welding electrode.

本発明によれば、インダイレクトスポット溶接では、従来難しいとされた、溶融した状態で形成された碁石形のナゲットを安定して得ることができる。   According to the present invention, it is possible to stably obtain a meteorite-shaped nugget formed in a molten state, which has been conventionally difficult in indirect spot welding.

ダイレクトスポット溶接法(a)、シリーズスポット溶接法(b)およびインダイレクトスポット溶接法(c)の溶接要領の説明図である。It is explanatory drawing of the welding point of the direct spot welding method (a), the series spot welding method (b), and the indirect spot welding method (c). 本発明に従う基本的な通電時間と加圧力の関係(a)および通電時間と電流値の関係(b)を示した図である。It is the figure which showed the relationship (a) of basic energization time and pressurization force according to this invention, and the relationship (b) of energization time and electric current value. 実施例1の溶接要領の説明図である。It is explanatory drawing of the welding point of Example 1. FIG.

以下、本発明を図面に従い具体的に説明する。
図2(a)、(b)に、本発明の基本的な通電時間と加圧力の関係および通電時間と電流値の関係をそれぞれ示す。
本発明では、電極の加圧力、通電する電流値に関して、通電開始からの時間帯を同時にまたはそれぞれ独立して3つに区分し、それぞれの時間帯において電極の加圧力Fおよび通電する電流値Cの両方を制御する。ここで、加圧力Fと電流値Cを同時に制御する場合には、区分した各時間帯をt1,t2,t3とし、また加圧力Fと電流値Cを独立して制御する場合には、加圧力Fを区分する時間帯をtF1,tF2,tF3、電流値Cを区分する時間帯をtC1,tC21,tC3とし、各時間帯での加圧力をF1,F2,F3電流値をC1,C2,C3で示す。
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIGS. 2A and 2B show the basic relationship between energization time and applied pressure and the relationship between energization time and current value, respectively.
In the present invention, with respect to the electrode pressing force and the current value to be energized, the time zone from the start of energization is divided into three simultaneously or independently, and the electrode pressing force F and the current value C to be energized in each time zone. Control both. Here, when the pressing force F and the current value C are controlled simultaneously, the divided time zones are t 1 , t 2 and t 3, and when the pressing force F and the current value C are controlled independently. , T F1 , t F2 , t F3 are time zones for dividing the applied pressure F, t C1 , t C21 , t C3 are time zones for dividing the current value C, and the applied pressure in each time zone is F 1 , F 2 and F 3 current values are indicated by C 1 , C 2 and C 3 .

本発明において、時間帯t1では、加圧力F1で加圧し、電流値C1を通電する。
この時間帯t1は、電極を重ね合わせた金属板に加圧しながら押し当てつつ、通電を開始し、金属板間の接触抵抗による発熱から溶融部の形成を始める時間帯である。重ね合わせた金属板を一方向からのみ電極により加圧し、その反対側は支持の無い中空の状態でインダイレクトスポット溶接を行う際には、加圧力F1は両側から電極で挟むダイレクトスポット溶接法のような高い加圧力とすることができないが、加圧力F1が低すぎると電極と金属板との間の接触面積が極度に小さくなり、電流密度が過度に上昇して金属板表面付近で優先的に溶融する。一方で、金属板間においては、通電経路が安定しないため発熱、溶融が得られない。さらに、加圧力F1が低い場合には溶融に伴う体積膨張により溶融金属が飛散し表面形状が著しく損なわれる不具合が発生することがある。従って加圧力F1は、金属板間の発熱、溶融状態が得られ、さらに上述のような表面形状の不具合が生じないよう、適宜選択する必要がある。
In the present invention, in the time zone t 1 , the pressure is increased with the applied pressure F 1 and the current value C 1 is energized.
This time zone t 1 is a time zone in which energization is started while pressing the metal plate on which the electrodes are overlapped, and the formation of the melted portion is started from the heat generated by the contact resistance between the metal plates. When the superimposed metal plates are pressed with an electrode only from one direction and indirect spot welding is performed in a hollow state with no support on the opposite side, the direct pressure welding method in which the pressing force F 1 is sandwiched between the electrodes from both sides However, if the pressure F 1 is too low, the contact area between the electrode and the metal plate becomes extremely small, and the current density increases excessively near the surface of the metal plate. Melt preferentially. On the other hand, heat generation and melting cannot be obtained between the metal plates because the energization path is not stable. Further, when the applied pressure F 1 is low, there may be a problem that the molten metal is scattered due to volume expansion accompanying melting and the surface shape is significantly impaired. Therefore, it is necessary to select the pressurizing force F 1 as appropriate so that the heat generation and the molten state between the metal plates can be obtained, and the above-described surface shape defects do not occur.

また、電流値C1は、金属板間からの発熱により溶融が開始するのに十分な高さの電流値とする必要があるが、高すぎると電極と接触する金属板の表面付近での発熱、溶融により金属板間が密着し、発熱、溶融が始まる前に金属板間の接触面積が増大し、電流密度が低下するために溶融に至るまでの十分な発熱が得られない。さらに電流値C1が高くなると、前述したような電極と接触する金属板の表面付近で優先的に溶融し、溶融金属が飛散により、えぐれた形状となり外観が著しく損なわれるばかりか、継手強度も低下する不具合が発生することがある。従って電流値C1は、金属板の表面付近での発熱、溶融を抑え、金属板間の接触面積が適正に保持され、溶融に至るまでの十分な発熱が得られるような電流密度となり、しかも上述したような表面形状の不具合が生じないよう、適宜選択する必要がある。 Further, the current value C 1 needs to be a current value high enough to start melting due to heat generation between the metal plates, but if it is too high, heat generation near the surface of the metal plate in contact with the electrode The metal plates are brought into close contact with each other by melting, the contact area between the metal plates is increased before heat generation and melting starts, and the current density is lowered, so that sufficient heat generation until melting is not obtained. When the current value C 1 further increases, the metal plate preferentially melts in the vicinity of the surface of the metal plate in contact with the electrode as described above, and the molten metal is scattered, resulting in a poor shape, and the joint strength is also significantly impaired. Deteriorating defects may occur. Therefore, the current value C 1 is a current density that suppresses heat generation and melting near the surface of the metal plate, maintains a proper contact area between the metal plates, and obtains sufficient heat generation until melting. It is necessary to select appropriately so that the above-described surface shape defects do not occur.

次に、時間帯t2では、加圧力F2で加圧し、電流値C2を通電する。
この時間帯t2は、時間帯t1で形成が始まった溶融部をさらに成長させていく段階である。しかしながら、通電による発熱で電極周辺の金属板が軟化し、電極の反対側は支持の無い中空の状態でインダイレクトスポット溶接を行う際には、金属板が軟化すると電極先端が金属板に沈み込み、電極と金属板、金属板と金属板の間の接触面積が増大し電流密度が低下するため、ナゲットを成長させるに十分な発熱が得られない。従って、この時間帯t2では、加圧力F2を加圧力F1よりも低い加圧力とし、電極先端が金属板に沈み込むのを抑える必要がある。
Next, at time period t 2, pressurized with pressure F 2, the current value C 2 is energized.
This time zone t 2 is a stage in which the melted portion that has been formed in the time zone t 1 is further grown. However, the metal plate around the electrode softens due to heat generated by energization, and when the indirect spot welding is performed in a hollow state with no support on the opposite side of the electrode, the tip of the electrode sinks into the metal plate when the metal plate softens. Since the contact area between the electrode and the metal plate or between the metal plate and the metal plate is increased and the current density is lowered, heat generation sufficient for growing the nugget cannot be obtained. Accordingly, in this time zone t 2 , it is necessary to suppress the electrode tip from sinking into the metal plate by setting the pressure F 2 to be lower than the pressure F 1 .

一方、電流値C2については、電流値C1よりも高い電流値として、前述した電極の沈み込みによる接触面積の増大に起因して電流密度が低下することを抑止することが重要である。しかしながら、電流値C2が高すぎると、電極と接触する金属板の表面付近での発熱により金属板の軟化が助長され、電極先端が金属板に沈み込み金属板間の接触面積が増大し電流密度が低下するため、時間帯t1で形成された溶融部をさらに拡大するのに十分な発熱が得られない。また、電流値C2が高くなると、電極と接触する側の金属板、もしくは反対側の金属板の表面から溶融金属が飛散し、えぐれた形状となり外観が著しく損なわれるばかりか、継手強度も低下する不具合が発生することがある。従って電流値C2は、金属板の表面での発熱による軟化を抑え、電極先端の金属板への沈み込みを抑制することにより、金属板間の接触面積が適正に保持され、時間帯t1で形成された溶融部をさらに拡大するのに十分な発熱が得られるような電流密度となり、しかも上述したような表面形状の不具合が生じないよう、適宜選択する必要がある。 On the other hand, regarding the current value C 2 , it is important to suppress the current density from being lowered due to the increase in the contact area due to the above-described sinking of the electrode as a current value higher than the current value C 1 . However, the current value C 2 is too high, the softening of the metal plate is facilitated by heating in the vicinity of the surface of the metal plate in contact with the electrode, the electrode tip increases the contact area between the metal plates sink to the metal plate current Since the density decreases, heat generation sufficient to further expand the melted portion formed in the time zone t 1 cannot be obtained. Further, if the current value C 2 is increased, the side of the metal plate in contact with the electrode, or the opposite side of the scattered molten metal from the surface of the metal plate, not only the appearance becomes scooped shape is seriously impaired, even joint strength decreases Malfunction may occur. Therefore, the current value C 2 suppresses softening due to heat generation on the surface of the metal plate and suppresses the sinking of the electrode tip into the metal plate, so that the contact area between the metal plates is properly maintained, and the time zone t 1 It is necessary to select appropriately so that the current density is such that sufficient heat generation can be obtained to further expand the melted portion formed in step 1, and the above-described surface shape defects do not occur.

次に、時間帯t3では、加圧力F3で加圧し、電流値C3を通電する。
この時間帯t3は、時間帯t2までに形成された溶融部をさらに成長させていく段階である。しかしながら、通電による発熱で電極周辺の金属板が軟化し、電極の反対側は支持の無い中空の状態でインダイレクトスポット溶接を行う際には、金属板が軟化すると電極先端が金属板に沈み込み、電極と金属板、金属板と金属板の間の接触面積が増大し電流密度が低下するため、ナゲットを成長させるに十分な発熱が得られない。従って、この時間帯t3では、加圧力F3を加圧力F2よりも低い加圧力とし、電極先端が金属板に沈み込むのを抑える必要がある。しかしながら、加圧力F2が十分に低い場合には、加圧力F3を加圧力F2と同じとすることができる。
Next, in the time zone t 3 , the pressure value F 3 is pressurized and the current value C 3 is energized.
This time zone t 3 is a stage in which the melted portion formed up to the time zone t 2 is further grown. However, the metal plate around the electrode softens due to heat generated by energization, and when the indirect spot welding is performed in a hollow state with no support on the opposite side of the electrode, the tip of the electrode sinks into the metal plate when the metal plate softens. Since the contact area between the electrode and the metal plate or between the metal plate and the metal plate is increased and the current density is lowered, heat generation sufficient for growing the nugget cannot be obtained. Accordingly, in this time zone t 3 , it is necessary to suppress the electrode tip from sinking into the metal plate by setting the pressure F 3 to be lower than the pressure F 2 . However, when the applied pressure F 2 is sufficiently low, the applied pressure F 3 can be made the same as the applied pressure F 2 .

一方、電流値C3については、電流値C2よりも高い電流値として、前述した電極の沈み込みによる接触面積の増大に起因して電流密度が低下することを抑止することが重要である。しかしながら、電流値C3が高すぎると、電極と接触する金属板の表面付近での発熱により金属板の軟化が助長され、電極先端が金属板に沈み込み金属板間の接触面積が増大し電流密度が低下するため、時間帯t2で形成された溶融部をさらに拡大するのに十分な発熱が得られない。さらに電流値C3が高くなると、電極と接触する側の金属板、もしくは反対側の金属板の表面から溶融金属が飛散し、えぐれた形状となり外観が著しく損なわれるばかりか、継手強度も低下する不具合が発生することがある。従って電流値C3は、金属板の表面での発熱による軟化を抑え、電極先端の金属板への沈み込みを抑制することにより、金属板間の接触面積が適正に保持され、時間帯 2 で形成された溶融部をさらに拡大するのに十分な発熱が得られるような電流密度となり、しかも上述したような表面形状の不具合が生じないよう、適宜選択する必要がある。 On the other hand, regarding the current value C 3 , it is important that the current value is higher than the current value C 2 to prevent the current density from being lowered due to the increase in the contact area caused by the above-described electrode sinking. However, if the current value C 3 is too high, the softening of the metal plate is facilitated by heating in the vicinity of the surface of the metal plate in contact with the electrode, the electrode tip increases the contact area between the metal plates sink to the metal plate current Since the density is lowered, heat generation sufficient to further expand the melted portion formed in the time zone t 2 cannot be obtained. When the current value C 3 further increases, the molten metal scatters from the surface of the metal plate in contact with the electrode or the opposite side of the metal plate, resulting in a poor shape, and the joint strength also decreases. Problems may occur. Therefore, the current value C 3 suppresses softening due to heat generation on the surface of the metal plate, and suppresses sinking of the electrode tip into the metal plate, so that the contact area between the metal plates is properly maintained, and the time zone t 2 It is necessary to select appropriately so that the current density is such that sufficient heat generation can be obtained to further expand the melted portion formed in step 1, and the above-described surface shape defects do not occur.

以上、通電開始から3つの時間帯に区分し、加圧力Fと電流値Cの両方を同時に制御する場合について説明したが、加圧力Fと電流値Cをそれぞれ独立して制御することもできる。
すなわち、加圧力Fに関しては、通電開始から時間帯tF1,tF2,tF3に区分し、加圧力F2を加圧力F1より低くし、加圧力Fを加圧力F2より低くするかまたは同じとする一方、電流値Cに関しては、時間帯tF1,tF2,tF3とは別に独立して、通電開始から時間帯tC1,tC2,tC3に区分し、電流値C2を電流値C1より高くし、電流値C3を電流値C2より高くする方法とすることもできる。このように、加圧力と電流値を、それぞれ独立して制御することによって、より高い効果を得ることができる。
As described above, the case where the energization is divided into three time zones and both the pressing force F and the current value C are controlled at the same time has been described. However, the pressing force F and the current value C can be controlled independently.
That is, the applied pressure F is divided into time zones t F1 , t F2 and t F3 from the start of energization, the applied pressure F 2 is made lower than the applied pressure F 1 , and the applied pressure F 3 is made lower than the applied pressure F 2 . On the other hand, the current value C is divided into time zones t C1 , t C2 , and t C3 from the start of energization independently of the time zones t F1 , t F2 , and t F3. Alternatively , 2 may be set higher than the current value C 1 and the current value C 3 may be set higher than the current value C 2 . Thus, a higher effect can be acquired by controlling a pressurizing force and an electric current value each independently.

ここに、通電開始から3つの時間帯t1,t2,t3に区分し、加圧力Fと電流値Cの両方を同時に制御する場合、時間帯t1,t2,t3における通電時間はそれぞれ、t1:0.02〜0.30s、t2:0.02〜0.30s、t3:0.10〜0.60s程度とすることが好ましい。また、各時間帯t1,t2,t3における加圧力はそれぞれ、F1:300〜2000N、F2:100〜1500N、F3:100〜1500N程度、電流値はそれぞれC1:2.0〜10.0 kA、C2:2.5〜11.0 kA、C3:3.0〜12.0 kA程度とすることが好ましい。
さらに、加圧力Fと電流値Cをそれぞれ独立して制御する場合には、加圧力Fに関しては、tF1:0.02〜0.30s、tF2:0.02〜0.30s、tF3:0.10〜0.60s程度とし、各時間帯tF1,tF2,tF3における加圧力をそれぞれF1:300〜2000N、F2:100〜1500N、F3:100〜1500N程度とすることが、また電流値Cに関しては、tC1:0.02〜0.30s、tC2:0.02〜0.30s、tC3:0.10〜0.60s程度とし、各時間帯tC1,tC2,tC3における電流値をそれぞれC1:2.0〜10.0 kA、C2:2.5〜11.0 kA、 3 :3.0〜12.0 kA程度とすることが好ましい。
Here, when it is divided into three time zones t 1 , t 2 , t 3 from the start of energization and both the applied pressure F and the current value C are controlled simultaneously, the energization time in the time zones t 1 , t 2 , t 3 Are preferably about t 1 : 0.02 to 0.30 s, t 2 : 0.02 to 0.30 s, and t 3 : about 0.10 to 0.60 s. In addition, the applied pressure in each of the time zones t 1 , t 2 , and t 3 is F 1 : 300 to 2000 N, F 2 : 100 to 1500 N, F 3 : 100 to 1500 N, and the current values are C 1 : 2.0 to 10.0 kA, C 2 : 2.5 to 11.0 kA, and C 3 : 3.0 to 12.0 kA are preferable.
Further, when the pressure F and the current value C are controlled independently, t F1 : 0.02 to 0.30 s, t F2 : 0.02 to 0.30 s, t F3 : 0.10 to 0.60 s. The applied pressure in each of the time zones t F1 , t F2 , t F3 is set to about F 1 : 300 to 2000 N, F 2 : 100 to 1500 N, F 3 : 100 to 1500 N, and the current value C , T C1 : 0.02 to 0.30 s, t C2 : 0.02 to 0.30 s, t C3 : 0.10 to 0.60 s, and current values in the respective time zones t C1 , t C2 , and t C3 are C 1 : 2.0 to 10.0 kA, respectively. C 2 : 2.5 to 11.0 kA, C 3 : preferably about 3.0 to 12.0 kA.

さらに、本発明のインダイレクトスポット溶接では、溶接電極として、先端が曲面形状になる電極を使用することが好ましい。電極の先端を曲面形状とすることにより、通電初期に、電極と金属板との間の十分な接触面積を確保し、電流密度が過度に上昇して金属板表面が溶融飛散し、表面形状が著しく損なわれる不具合を回避することができ、さらに金属板と金属板の間で必要十分な加圧接触状態を形成し、電流密度を適正に保持し、溶融を開始させるために十分な発熱が得られる。また、通電後期には、金属板の発熱、軟化により、電極先端が金属板に沈み込み、電極と金属板、金属板と金属板の間の接触面積が増大するため、電流密度が低下し溶融ナゲットを成長させるのに十分な発熱が得られないことがあるが、電極の先端を曲面形状とすることにより、電極先端の沈み込みに対し、一様な接触面積の増大を回避することができる。   Furthermore, in the indirect spot welding of the present invention, it is preferable to use an electrode having a curved end at the tip as the welding electrode. By making the tip of the electrode a curved surface, a sufficient contact area between the electrode and the metal plate is ensured in the initial stage of energization, the current density increases excessively, the metal plate surface is melted and scattered, and the surface shape is Problems that are significantly impaired can be avoided, and furthermore, a necessary and sufficient pressure contact state is formed between the metal plates, the current density is appropriately maintained, and sufficient heat generation is obtained to start melting. Also, in the latter half of the energization, due to heat generation and softening of the metal plate, the tip of the electrode sinks into the metal plate, increasing the contact area between the electrode and the metal plate, and between the metal plate and the metal plate. Although heat generation sufficient for growth may not be obtained, by making the tip of the electrode a curved surface, it is possible to avoid a uniform increase in contact area with respect to the sinking of the tip of the electrode.

電極先端の曲面は、一様な曲率、もしくは先端を中心とする所定の半径の円を境界として先端に近い側では比較的大きな曲率、先端から遠い側では比較的小さな曲率とすることができる。一様な曲率とする場合、その曲率半径は、10〜80mmとすることが望ましい。また、先端を中心とする所定の半径の円を境界として先端に近い側では比較的大きな曲率、先端から遠い側では比較的小さな曲率とする場合、先端を中心とする所定の円の半径は、4〜10mm、先端に近い側の曲率半径は、10〜80mm、先端から遠い側の曲率半径は、4〜12mmとすることが望ましい。   The curved surface of the electrode tip can have a uniform curvature, or a relatively large curvature on the side near the tip with a circle having a predetermined radius centered on the tip, and a relatively small curvature on the side far from the tip. In the case of a uniform curvature, the radius of curvature is desirably 10 to 80 mm. In addition, when a circle with a predetermined radius centered on the tip is a boundary and a relatively large curvature is near the tip, and a relatively small curvature is on the side far from the tip, the radius of the predetermined circle centered on the tip is It is desirable that the radius of curvature on the side close to the tip is 4 to 10 mm, 10 to 80 mm, and the radius of curvature on the side far from the tip is 4 to 12 mm.

インダイレクトスポット溶接法を、図3に示すような構成で実施した。上鋼板として、板厚が0.7mmで、表1に示す化学成分になる引張強さ:270 MPa以上のSPC270鋼板を、また下鋼板として、板厚が1.2mmで同じく表1に示す化学成分になるSPC270鋼板を、図に示すような凹形状の金属製治具の上に配置し、支持間隔を30mmとし、治具下部にアース電極を取付け、上方から電極で加圧し、溶接を行った。また、上記の重ねた上、下鋼板の両端をクランプで治具上に拘束し、上、下鋼板間を密着させることにより、通電時に鋼板間で分流を起こりやすくさせ、意図的に電極直下にナゲットが形成されにくい条件を設定した。加圧力、電流値の通電開始からの時間帯、それぞれの時間帯での加圧力、電流値の条件を表2に示す。全ての条件において、通電開始から終了までの時間を0.28sとした。
溶接に際しては、クロム銅合金を材質とし、先端に曲率半径40mmの一様な曲率を持つ形状の電極および直流インバータ式の電源を使用した。
The indirect spot welding method was performed with a configuration as shown in FIG. The upper steel plate has a thickness of 0.7mm and the chemical strength shown in Table 1. The tensile strength is 270 MPa or more SPC270 steel plate, and the lower steel plate has a thickness of 1.2mm and the same chemical composition shown in Table 1. The SPC270 steel plate to be formed was placed on a concave metal jig as shown in the figure, the support interval was set to 30 mm, a ground electrode was attached to the lower part of the jig, and the electrode was pressurized from above and welded. In addition, by constraining both ends of the lower steel plate on the jig with the clamps above, and bringing the upper and lower steel plates into close contact with each other, it is easy to cause a shunt between the steel plates when energized, and intentionally directly under the electrodes Conditions were set to make nuggets difficult to form. Table 2 shows the time periods from the start of energization of the applied pressure and current value, and the applied pressure and current values in each time period. Under all conditions, the time from the start to the end of energization was 0.28 s.
For welding, an electrode having a uniform curvature with a radius of curvature of 40 mm and a DC inverter type power source were used.

表2中、発明例1〜6は、時間帯t1,t2,t3において、加圧力F2をF1より低くし、F3をF2より低くするかまたはF2と同じとし、かつ電流値C2をC1より高く、C3をC2より高くして、加圧力Fと電流値Cの両方を同時に制御した場合である。発明例7〜12は、加圧力Fに関しては、通電開始から時間帯tF1,tF2,tF3に区分し、加圧力F2をF1より低くし、F3をF2より低くするかまたはF2と同じとし、電流値Cに関しては、時間帯tF1,tF2,tF3とは独立して、通電開始から時間帯tC1,tC2,tC3に区分し、電流値C2をC1より高く、C3をC2より高くして、加圧力Fと電流値Cの両方を独立して制御した場合である。
なお、比較例1〜6は、加圧力F、電流値Cを通電開始から終了まで一定で実施した場合、比較例7は、時間帯t1,t2において、加圧力F2をF1より低くし、かつ電流値C2をC1より低くして、加圧力Fと電流値Cの両方を同時に制御した場合、比較例8は、加圧力Fに関しては、通電開始から時間帯tF1,tF2に区分し、加圧力F2をF1より低くし、電流値Cに関しては、時間帯tF1,tF2とは独立して、通電開始から時間帯tC1,tC2に区分し、電流値C2をC1より低くして、加圧力Fと電流値Cの両方を独立に制御した場合である。
In Table 2, Invention Examples 1 to 6, in the time period t 1, t 2, t 3, the pressure F 2 lower than F 1, or F 2 and the same city to the F 3 below F 2, In addition, the current value C 2 is set higher than C 1 and C 3 is set higher than C 2 , and both the pressing force F and the current value C are controlled simultaneously. In Invention Examples 7 to 12, with respect to the pressurizing force F, it is divided into time zones t F1 , t F2 , t F3 from the start of energization, and is the pressurizing force F 2 lower than F 1 and F 3 lower than F 2 ? or the same city as F 2, with respect to the current value C, and independent of the time zone t F1, t F2, t F3 , divided from the start of energization to the time zone t C1, t C2, t C3 , the current value C 2 Is higher than C 1 , C 3 is higher than C 2 , and both the applied pressure F and the current value C are controlled independently.
In Comparative Examples 1 to 6, pressure F, when carried out at a constant current value C to end the energization start, Comparative Example 7, in the time period t 1, t 2, the pressure F 2 from F 1 When both the applied pressure F and the current value C are controlled at the same time with the current value C 2 being lower than C 1 and the current value C 2 being simultaneously controlled, the comparative example 8 is the time zone t F1 , It is divided into t F2 , the applied pressure F 2 is set lower than F 1 , and the current value C is divided into time zones t C1 and t C2 from the start of energization independently of the time zones t F1 and t F2 , This is a case where the current value C 2 is set lower than C 1 and both the pressurizing force F and the current value C are controlled independently.

表3に、表2に示す通電パターンで溶接したときの各継手のナゲット径、ナゲット厚さ、ナゲット厚さ/径および外観不具合について調べた結果を示す。
なお、表3においてナゲット径は、溶接部を中心で切断した断面において、上鋼板、下鋼板間で形成される溶融部の重ね線上での長さとした。ナゲット厚さは、溶接部を中心で切断した断面において、上鋼板、下鋼板間に形成される溶融部の最大厚さとした。また、ナゲット厚さ/径は、上述したナゲット厚さをナゲット径で除したものである。ここに、ナゲット径が2.5mm以上で、かつナゲット厚さ/径が0.1以上であれば、溶融した状態で形成された碁石形の好適なナゲットと判断することができる。
さらに、溶接部が溶融飛散しておこる外観不具合に関しては、電極と鋼板間で起こる表面えぐれの発生に関して開示した。
Table 3 shows the results of examining the nugget diameter, the nugget thickness, the nugget thickness / diameter, and the appearance defect of each joint when welding with the energization pattern shown in Table 2.
In Table 3, the nugget diameter is the length of the melted portion formed between the upper steel plate and the lower steel plate on the overlap line in the cross section cut around the weld. The nugget thickness was the maximum thickness of the melted portion formed between the upper steel plate and the lower steel plate in the cross section cut at the center of the weld. The nugget thickness / diameter is obtained by dividing the above-described nugget thickness by the nugget diameter. Here, if the nugget diameter is 2.5 mm or more and the nugget thickness / diameter is 0.1 or more, it can be determined as a suitable meteorite-shaped nugget formed in a molten state.
Furthermore, regarding the appearance defect caused by melting and scattering of the welded portion, it has been disclosed regarding the occurrence of surface cracking that occurs between the electrode and the steel plate.

Figure 0005625423
Figure 0005625423

Figure 0005625423
Figure 0005625423

Figure 0005625423
Figure 0005625423

表3に示したとおり、本発明に従いインダイレクトスポット溶接を行った発明例1〜12は、意図的に設定された電極直下にナゲットが形成されにくい条件下においても、いずれも、十分なナゲット径と、この径に対して十分な厚さを有する溶融ナゲットを得ることができ、また外観不具合は全く観察されなかった。
これに対し、比較例1では、表面えぐれ、表面散りが発生した。また、比較例3はナゲット径が2.7mmとなったが、十分なナゲット厚さが得られず、ナゲット厚さ/径が0.1より小さくなった。その他の比較例では、ナゲットの形成そのものが観察されなかった。
As shown in Table 3, inventive examples 1 to 12 in which indirect spot welding was performed according to the present invention had a sufficient nugget diameter even under a condition in which nuggets were hardly formed directly under an intentionally set electrode. As a result, a molten nugget having a sufficient thickness with respect to this diameter could be obtained, and no appearance defect was observed.
On the other hand, in Comparative Example 1, surface erosion and surface scattering occurred. In Comparative Example 3, the nugget diameter was 2.7 mm, but a sufficient nugget thickness was not obtained, and the nugget thickness / diameter was smaller than 0.1. In other comparative examples, the nugget formation itself was not observed.

本発明によれば、重ね合わせた金属板を一方向からのみ電極で加圧し、その反対側は支持の無い中空の状態で行うインダイレクトスポット溶接において、十分なナゲット径と、この径に対して十分な厚さを有する碁石形の溶融ナゲットを安定して形成することができる。   According to the present invention, in an indirect spot welding in which the stacked metal plates are pressed with an electrode only from one direction and the opposite side is carried out in a hollow state without support, a sufficient nugget diameter and against this diameter A meteorite-shaped molten nugget having a sufficient thickness can be stably formed.

1,2 金属板
3,4 電極
5 溶接部
6,7 加圧制御装置
8 電流制御装置
11,12 金属板
13,14 電極
15-1,15-2 溶接部
21,22 金属板
23 電極
24 給電端子
25 溶接部
1, 2 Metal plate 3, 4 Electrode 5 Welded part 6, 7 Pressure controller 8 Current controller
11, 12 Metal plate
13, 14 electrodes
15-1, 15-2 Welded part
21,22 Metal plate
23 electrodes
24 Power supply terminal
25 welds

Claims (5)

少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には該溶接電極と離隔した位置に給電端子を取り付け、該溶接電極と該給電端子との間で通電して溶接を行うインダイレクトスポット溶接法において、電極の加圧力および通電する電流値に関して、通電開始から3つの時間帯t1,t2,t3に区分し、最初の時間帯t1では、加圧力F1で加圧しかつ電流値C1で通電して溶融部の形成を開始し、次の時間帯t2では、F1よりも低い加圧力F2で加圧しかつC1よりも高い電流値C2で通電して溶融部をさらに成長させ、さらに次の時間帯t3では、F2と同じかまたはF2よりも低い加圧力F3で加圧しかつC2よりも高い電流値C3で通電することで溶融部をさらに成長させていくことを特徴とするインダイレクトスポット溶接方法。 Pressing the welding electrode against the metal plate from one side while pressing the welding electrode against a member on which at least two metal plates are overlapped, and feeding the terminal on the other side of the metal plate at a position separated from the welding electrode In the indirect spot welding method in which welding is performed by energizing between the welding electrode and the power supply terminal, three time zones t 1 and t 2 from the start of energization are applied to the electrode pressing force and the current value to be energized. , divided into t 3, the first time period t 1, by energizing pressurized and current value C 1 under a pressure F 1 to initiate the formation of the fusion zone, in the next time period t 2, from F 1 It is energized further grow the fused portion at high current value C 2 than pressurize and C 1 at a low pressure F 2 also further in the next time period t 3, lower than the same or F 2 and F 2 the melted portion by energizing at high current value C 3 than pressurize and C 2 with pressure F 3 Indirect spot welding method characterized by gradually grown al. 請求項1において、時間帯tThe time zone t according to claim 1. 11 ,t, T 22 ,t, T 3Three における通電時間がそれぞれ、tEnergizing time at t 11 :0.02〜0.30s、t: 0.02 to 0.30 s, t 22 :0.02〜0.30s、t: 0.02 to 0.30 s, t 3Three :0.10〜0.60sであり、各時間帯t: 0.10 to 0.60 s, each time zone t 11 ,t, T 22 ,t, T 3Three における加圧力がそれぞれ、FThe applied pressure at F is F 11 :300〜2000N、F: 300-2000N, F 22 :100〜1500N、F: 100-1500N, F 3Three :100〜1500Nであり、さらに各時間帯t: 100-1500N, and each time zone t 11 ,t, T 22 ,t, T 3Three における電流値がそれぞれ、CCurrent values at C are respectively C 11 :2.0〜10.0 kA、C: 2.0 to 10.0 kA, C 22 :2.5〜11.0 kA、C: 2.5-11.0 kA, C 3Three :3.0〜12.0 kAであることを特徴とするインダイレクトスポット溶接方法。: 3.0 to 12.0 kA, an indirect spot welding method. 少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には該溶接電極と離隔した位置に給電端子を取り付け、該溶接電極と該給電端子との間で通電して溶接を行うインダイレクトスポット溶接法において、電極の加圧力に関しては、通電開始から3つの時間帯tF1,tF2,tF3に区分し、最初の時間帯tF1では、加圧力F1で加圧し、次の時間帯tF2では、F1よりも低い加圧力F2で加圧し、さらに次の時間帯tF3では、F2と同じかまたはF2よりも低い加圧力F3で加圧する一方、通電する電流値に関しては、時間帯tF1,tF2,tF3とは独立して、通電開始から3つの時間帯tC1,tC2,tC3に区分し、最初の時間帯tC1では、電流値C1で通電して溶融部の形成を開始し、次の時間帯tC2では、C1よりも高い電流値C2で通電して溶融部をさらに成長させ、さらに次の時間帯tC3では、C2よりも高い電流値C3で通電することで溶融部をさらに成長させていくことを特徴とするインダイレクトスポット溶接方法。 Pressing the welding electrode against the metal plate from one side while pressing the welding electrode against a member on which at least two metal plates are overlapped, and feeding the terminal on the other side of the metal plate at a position separated from the welding electrode In the indirect spot welding method in which welding is performed by energizing between the welding electrode and the power supply terminal, the electrode pressing force is applied to three time zones t F1 , t F2 and t F3 from the start of energization. In the first time zone t F1 , pressurization is performed with the pressurizing force F 1 , in the next time zone t F2 , pressurization is performed with the pressurizing force F 2 lower than F 1 , and in the next time zone t F3 , F is applied. while pressurizing the same or F 2 low pressure F 3 than 2, with respect to the current value to be supplied, the time period t F1, t F2, t F3 independently of the three time periods t from start of energization C1, divided into t C2, t C3, the first time period t C1, by energizing a current value C 1 soluble Start the formation parts, in the next time period t C2, high further grow the fused portion by energizing at high current value C 2 than C 1, further in the next time period t C3, than C 2 current indirect spot welding method characterized in that will further grow the fused portion by energizing a value C 3. 請求項3において、時間帯tThe time zone t according to claim 3 F1F1 ,t, T F2F2 ,t, T F3F3 における通電時間がそれぞれ、tEnergizing time at t F1F1 :0.02〜0.30s、t: 0.02 to 0.30 s, t F2F2 :0.02〜0.30s、t: 0.02 to 0.30 s, t F3F3 :0.10〜0.60sであり、各時間帯t: 0.10 to 0.60 s, each time zone t F1F1 ,t, T F2F2 ,t, T F3F3 における加圧力がそれぞれ、FThe applied pressure at F is F 11 :300〜2000N、F: 300-2000N, F 22 :100〜1500N、F: 100-1500N, F 3Three :100〜1500Nであり、また時間帯t: 100-1500N, and time zone t C1C1 ,t, T C2C2 ,t, T C3C3 における通電時間がそれぞれ、tEnergizing time at t C1C1 :0.02〜0.30s、t: 0.02 to 0.30 s, t C2C2 :0.02〜0.30s、t: 0.02 to 0.30 s, t C3C3 :0.10〜0.60sであり、各時間帯t: 0.10 to 0.60 s, each time zone t C1C1 ,t, T C2C2 ,t, T C3C3 における電流値がそれぞれ、CCurrent values at C are respectively C 11 :2.0〜10.0 kA、C: 2.0 to 10.0 kA, C 22 :2.5〜11.0 kA、C: 2.5-11.0 kA, C 3Three :3.0〜12.0 kAであることを特徴とするインダイレクトスポット溶接方法。: 3.0 to 12.0 kA, an indirect spot welding method. 請求項1〜4のいずれかにおいて、前記溶接電極として、先端が曲面形状になる電極を使用することを特徴とするインダイレクトスポット溶接方法。 In any one of claims 1 to 4, as the welding electrode, indirect spot welding method characterized by using an electrode tip is curved.
JP2010066709A 2010-03-23 2010-03-23 Indirect spot welding method Expired - Fee Related JP5625423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066709A JP5625423B2 (en) 2010-03-23 2010-03-23 Indirect spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066709A JP5625423B2 (en) 2010-03-23 2010-03-23 Indirect spot welding method

Publications (2)

Publication Number Publication Date
JP2011194459A JP2011194459A (en) 2011-10-06
JP5625423B2 true JP5625423B2 (en) 2014-11-19

Family

ID=44873315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066709A Expired - Fee Related JP5625423B2 (en) 2010-03-23 2010-03-23 Indirect spot welding method

Country Status (1)

Country Link
JP (1) JP5625423B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078960B2 (en) * 2012-03-16 2017-02-15 Jfeスチール株式会社 Indirect spot welding method
MX371257B (en) 2013-06-26 2020-01-23 Jfe Steel Corp Indirect spot welding method.
MX2016002833A (en) 2013-09-04 2016-06-17 Jfe Steel Corp Indirect spot welding device.
JP6112035B2 (en) * 2014-02-17 2017-04-12 Jfeスチール株式会社 Indirect spot welding equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121884A (en) * 1981-01-19 1982-07-29 Toshiba Corp Method and device for resistance welding
JPH07132382A (en) * 1993-11-09 1995-05-23 Dengensha Mfg Co Ltd Method and device for controlling spot welding
JPH1058157A (en) * 1996-06-13 1998-03-03 Kawasaki Heavy Ind Ltd Method and device for spot welding
JP3862640B2 (en) * 2002-09-06 2006-12-27 株式会社神戸製鋼所 Resistance spot welding method for aluminum-based materials
JP4836173B2 (en) * 2004-12-24 2011-12-14 ダイハツ工業株式会社 Series spot welding equipment or indirect spot welding equipment
JP5401047B2 (en) * 2008-03-31 2014-01-29 Jfeスチール株式会社 Series spot or indirect spot welding of high-tensile steel plate
JP2009248166A (en) * 2008-04-09 2009-10-29 Chuo Seisakusho Ltd Multi-spot welding equipment

Also Published As

Publication number Publication date
JP2011194459A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5415896B2 (en) Indirect spot welding method
JP5691395B2 (en) Indirect spot welding method
JP5625597B2 (en) Indirect spot welding method
JP6032285B2 (en) Indirect spot welding method
JP2007268604A (en) Resistance spot welding method
JP5625423B2 (en) Indirect spot welding method
JP5057557B2 (en) Series spot welding method and welding apparatus
JP2009241112A (en) Resistance spot welding method
US20200108468A1 (en) Hybrid ultrasonic and resistance spot welding system
JPWO2015037652A1 (en) Resistance spot welding method and welded structure
JP6078960B2 (en) Indirect spot welding method
JP3862640B2 (en) Resistance spot welding method for aluminum-based materials
JP6702135B2 (en) Method of joining dissimilar metal plates
JP6516247B2 (en) One side spot welding method
JP4753411B2 (en) Energization control method for spot resistance welding
JP5756076B2 (en) Indirect spot welding method
JP2012187616A (en) Resistance welding apparatus and resistance welding method
KR20120135966A (en) A spot welding electrode
JP5748411B2 (en) Manufacturing method of joint product by one-side spot welding
KR101871077B1 (en) Resistance spot welding method and welded structure
KR20140016268A (en) Method of producing a welded article of dispersion strengthened platinum based alloy with two steps welding
JP2020082168A (en) Spot-welding method and method for setting welding condition for spot-welding
JP2019150833A (en) Resistance-welding method
JP7112819B2 (en) Spot welding method and spot welding device
JP5787302B2 (en) Resistance welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees