JP3862640B2 - Resistance spot welding method for aluminum-based materials - Google Patents

Resistance spot welding method for aluminum-based materials Download PDF

Info

Publication number
JP3862640B2
JP3862640B2 JP2002261658A JP2002261658A JP3862640B2 JP 3862640 B2 JP3862640 B2 JP 3862640B2 JP 2002261658 A JP2002261658 A JP 2002261658A JP 2002261658 A JP2002261658 A JP 2002261658A JP 3862640 B2 JP3862640 B2 JP 3862640B2
Authority
JP
Japan
Prior art keywords
welding
energization
main
msec
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002261658A
Other languages
Japanese (ja)
Other versions
JP2004098107A (en
Inventor
哲 岩瀬
美速 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002261658A priority Critical patent/JP3862640B2/en
Publication of JP2004098107A publication Critical patent/JP2004098107A/en
Application granted granted Critical
Publication of JP3862640B2 publication Critical patent/JP3862640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム又はアルミニウム合金からなる被溶接材を抵抗溶接するアルミニウム系材の抵抗スポット溶接方法に関する。
【0002】
【従来の技術】
抵抗スポット溶接は、鋼等の金属材の接合に広く使用されている方法である。抵抗スポット溶接においては、溶接装置に上下に対向して備えられた銅合金製等の電極で被溶接材を挟持し、この電極で被溶接材の被溶接箇所を加圧しながら瞬間的に大電流を流すことによって、被溶接材と電極との接触抵抗及び被溶接材自体の抵抗による局所的な加熱溶融を利用して被溶接材を溶融接合する。
【0003】
このような抵抗スポット溶接は、その原理から電気抵抗が小さく熱伝導率が高い銅、アルミニウム、マグネシウム及びこれらの合金等からなる金属材に適用することが難しい。特に、アルミニウム及びアルミニウム合金(以下、アルミニウム及びアルミニウム合金を総称してアルミニウム系材という)に抵抗スポット溶接を適用する場合においては、鋼の場合の約3倍の溶接電流値と約1.5倍の加圧力とが要求されるのが一般的である(例えば、非特許文献1参照。)。このため、アルミニウム系材の抵抗スポット溶接においては、短時間に大電流を通電することができる大容量の溶接装置が必要である。よって、鋼とアルミニウム系材とが混在した構造物等を製造する場合においては、鋼用の溶接設備に加えて、アルミニウム系材専用の溶接設備を導入する必要があり、このイニシャルコスト及びランニングコストが製造コストを高騰させる原因となる。よって、アルミニウム系材の抵抗スポット溶接においては、鋼と同様の設備によりアルミニウム系材を溶接するこができるような低電流化技術が求められている。
【0004】
そこで、例えば、アルミニウム合金材の被溶接部間にアルミニウム粉末と金属酸化物粉末との混合粉末をインサート材として介在させ、この混合粉末が通電時にテルミット反応する発熱を併用することによって、溶接電流を低電流化する技術が開示されている(例えば、特許文献1参照。)。しかしながら、このようなインサート材を介在させた抵抗スポット溶接は、大量の接合を行うには効率が悪く不向きである。
【0005】
一方、電極の先端表面の複数箇所に電極母材とは電気伝導率の異なる材料を露出させることによって、通電時に電流密度が高くなる部分を分散させ、溶接電流を低電流化する技術も提案されている(例えば、特許文献2参照)。
【0006】
【非特許文献1】
中村孝,小林徳夫,森本一著,「溶接全書(第8巻)抵抗溶接」,初版,産報出版株式会社,平成8年6月25日,p.75
【特許文献1】
特開平7−16756号公報(第1−2頁,第2図)
【特許文献2】
特開平7−178568号公報(第1−2頁,第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、このように電極材を複合材料へ変更する方法は、電極の製造コストを増大させるばかりではなく、電極寿命の短縮によるランニングコスト増大の要因ともなる。このように、アルミニウム系材の抵抗スポット溶接においては、インサート材による被溶接箇所での反応制御及び電極開発等が実施されているにもかかわらず、鋼並の量産性を備えたスポット溶接性を得ることはできていない。
【0008】
本発明はかかる問題点に鑑みてなされたものであって、低電流化及び鋼並の量産性を備えたスポット溶接性を得ることができる良好な溶融部(ナゲット)を形成することができるアルミニウム系材の抵抗スポット溶接方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係るアルミニウム系材の抵抗スポット溶接方法は、アルミニウム又はアルミニウム合金からなる被溶接材を1対の電極で抵抗スポット溶接する方法において、前記電極間に300乃至900Nの第1加圧力を印加した後、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態で40乃至140m秒間だけ溶接本通電を行い、前記溶接本通電終了時点より20m秒間前の時点から前記溶接本通電終了時点より20m秒後の時点までの期間に1100乃至8000Nの第2加圧力の印加を開始すると共に、前記溶接本通電終了後、前記溶接本通電の電流値の20乃至70%の後熱電流を40m秒間以上通電することを特徴とする。
【0010】
本発明の他のアルミニウム系材の抵抗スポット溶接方法は、アルミニウム又はアルミニウム合金からなる被溶接材を1対の電極で抵抗スポット溶接する方法において、前記電極間に300乃至900Nの第1加圧力を印加した後、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態で40乃至140m秒間だけ溶接本通電を行い、前記溶接本通電終了時点より20m秒間前の時点から前記溶接本通電終了時点より20m秒後の時点までの期間に1100乃至8000Nの第2加圧力の印加を開始すると共に、前記溶接本通電終了後、前記溶接本通電における電流値から40m秒間以上かけて前記溶接本通電における電流値の70%以下まで単調減少する後熱電流を印加することを特徴とする。
【0011】
【発明の実施の形態】
以下、添付の図面を参照して本発明の実施形態について具体的に説明する。図1は、本発明の第1の実施形態に係るアルミニウム系材の抵抗スポット溶接方法におけるタイミングチャートである。本実施形態においては、図1に示すように、アルミニウム又はアルミニウム合金等の被溶接材を1対の電極で挟持し、この電極間に300乃至900Nの第1加圧力として溶接加圧力P1を印加した後、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態で、40乃至140m秒間の本通電時間T1だけ溶接電流値I1である電流を流すことにより溶接本通電を行い、この溶接本通電終了時点より20m秒間前の時点から溶接本通電終了時点より20m秒後の時点までの期間に、第2加圧力として1100乃至8000Nの鍛造加圧力P2の印加を開始すると共に、溶接本通電終了後、この溶接本通電の電流値I1の20乃至70%の後熱電流I2を40m秒間以上T2の間、通電することにより後熱電流通電を実施する。
【0012】
本実施形態においては、上述のように、溶接加圧力P1を印加しながら溶接電流値I1で本通電時間T1の本通電を実施した後、鍛造加圧力P2を印加しながら後熱電流値I2で後熱電流通電時間T2の後熱電流通電を、遅れ時間Tdの範囲内で制御しながら付加することによって、溶接加圧力を極めて低く抑え、電極と被溶接材との接触面積及び被溶接材間の接触面積を低減することができる。このため、溶接電流値が低い場合においても、高い電流密度でアルミニウム系材を溶接することができる。
【0013】
次に、本発明の第2の実施形態に係るアルミニウム系材の抵抗スポット溶接方法について説明する。図2は、第2の実施形態のアルミニウム系材の抵抗スポット溶接方法におけるタイミングチャートである。本実施形態においては、第1の実施形態と同様に、アルミニウム又はアルミニウム合金等の被溶接材を1対の電極で挟持し、この電極間に300乃至900Nの第1加圧力として溶接加圧力P1を印加した後、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態で、40乃至140m秒間の本通電時間T1だけ溶接電流値I1である電流を流すことにより溶接本通電を行い、この溶接本通電終了時点より20m秒間前の時点から溶接本通電終了時点より20m秒後の時点までの期間に、第2加圧力として1100乃至8000Nの鍛造加圧力P2の印加を開始すると共に、溶接本通電終了後、この溶接本通電の電流値I1を40m秒間以上の時間T2をかけて前記溶接本通電における電流値I1の70%以下まで単調減少するようなダウンスロープ電流I2を通電することにより後熱電流通電を実施する。
【0014】
本実施形態においては、第1の実施形態と同様に、溶接加圧力P1を印加しながら溶接電流値I1で本通電時間T1の本通電を実施した後、鍛造加圧力P2を印加しながら、後熱電流通電時間T2に亘る後熱電流値I2のダウスロープによる後熱電流通電を、遅れ時間Tdの範囲内で制御しながら付加することによって、溶接加圧力を極めて低く抑え、電極と被溶接材との接触面積及び被溶接材間の接触面積を低減することができる。このため、溶接電流値が低い場合においても、高い電流密度でアルミニウム系材を溶接することができる。
【0015】
図3(a)乃至(e)は、第3乃至第7の実施形態に係るアルミニウム系材の抵抗スポット溶接方法におけるタイミングチャートである。図3(a)は第3の実施形態のタイミングチャートであり、図3(b)は第4の実施形態のタイミングチャートであり、図3(c)は第5の実施形態のタイミングチャートであり、図3(d)は第6の実施形態のタイミングチャートであり、図3(e)は第7の実施形態のタイミングチャートである。これらの実施形態においては、後熱電流値I2を印加する方法を変更している。
【0016】
第3の実施形態においては、図3(a)に示すように、第1の実施形態と同様に、アルミニウム又はアルミニウム合金等の被溶接材を1対の電極で挟持し、この電極間に300乃至900Nの第1加圧力として溶接加圧力P1を印加した後、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態で、40乃至140m秒間の本通電時間T1だけ溶接電流値I1である電流を流すことにより溶接本通電を行い、この溶接本通電終了時点より20m秒間前の時点から溶接本通電終了時点より20m秒後の時点までの期間に、第2加圧力として1100乃至8000Nの鍛造加圧力P2の印加を開始すると共に、溶接本通電終了後、この溶接本通電の電流値I1の20乃至70%の後熱電流I2を40m秒間以上T2の間通電した後、ゼロまで単調減少するようなダウンスロープ電流を通電することにより後熱電流通電を実施する。
【0017】
第4の実施形態においては、図3(b)に示すように、第3の実施形態と同様に、アルミニウム又はアルミニウム合金等の被溶接材を1対の電極で挟持し、この電極間に300乃至900Nの第1加圧力として溶接加圧力P1を印加した後、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態で、40乃至140m秒間の本通電時間T1だけ溶接電流値I1である電流を流すことにより溶接本通電を行い、この溶接本通電終了時点より20m秒間前の時点から溶接本通電終了時点より20m秒後の時点までの期間に、第2加圧力として1100乃至8000Nの鍛造加圧力P2の印加を開始すると共に、溶接本通電終了後、この溶接本通電の電流値I1の20乃至70%の後熱電流I2を40m秒間以上T2の間通電した後、更に単調減少するようなダウンスロープ電流を通電することにより、後熱電流通電を実施する。
【0018】
第5の実施形態においては、図3(c)に示すように、第4の実施形態と同様にして溶接本通電を終了した後、この溶接本通電の電流値I1の70%に電流値を急減させてから40m秒間以上T2の間に単調減少して溶接本通電の電流値I1の20%に到り、その後、ゼロまで単調減少するようなダウンスロープ電流I2を通電することにより、後熱電流通電を実施する。
【0019】
第6の実施形態においては、図3(d)に示すように、第5の実施形態と同様にして溶接本通電を終了した後、この溶接本通電の電流値I1の70%以下の電流値Xに40m秒間以上T2をかけて単調減少して到った後、更に単調減少するようなダウンスロープ電流I2を通電することにより、後熱電流通電を実施する。
【0020】
第7の実施形態においては、図3(e)に示すように、第6の実施形態と同様にして溶接本通電を終了した後、この溶接本通電の電流値I1の70%以下の電流値Xに40m秒間以上T2をかけて単調減少して到った後にゼロに急減するようなダウンスロープ電流I2を通電することにより、後熱電流通電を実施する。
【0021】
本発明においては、上述した第1乃至第7の実施形態のように、溶接加圧力を極めて低くすることによって、電極と被溶接材との接触面積及び被溶接材間の接触面積を低減することができる。このため、溶接電流値が低い場合においても、高い電流密度でアルミニウム系材を溶接することができる。アルミニウム系材の抵抗スポット溶接においては、本通電時に被溶接材が熱膨張する。よって、良好な溶接結果を得るためには、被溶接材の熱膨張に追随して溶接加圧力を調整し、この熱膨張量を溶接欠陥が発生しない範囲内、即ち、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態に抑制すことが必須である。本発明においては、アルミニウム系材の抵抗スポット溶接における重要パラメータである電流値、加圧力及び通電時間を最適化し、本通電時における被溶接材の熱膨張量を限定すると共に、後熱電流の通電及び鍛造加圧を行うことによって、アルミニウム系材の抵抗スポット溶接を低電流化し、且つ、溶接品質を鋼における抵抗スポット溶接と同等レベルにまで向上させることができる。
【0022】
以下に、上述したアルミニウム系材の抵抗スポット溶接方法における諸元の限定理由を説明する。
【0023】
「第1加圧力:300乃至900N」
アルミニウム系材の抵抗スポット溶接においては、本通電時における被溶接材の熱膨張量を溶接欠陥が発生しない範囲内に抑制しなければならないが、第1加圧力としての溶接加圧力P1が300N未満の場合には、被溶接部の膨張を抑えきれないため、この被溶接部が爆飛してしまう。一方、溶接加圧力P1が900Nを超えるような場合においては、被溶接材に過剰な応力が印加されるため、被溶接材同士の接触面積が増大してしまう。このため、溶融部が充分に成長せず、品質が低下する。従って、溶接加圧力P1は、300乃至900Nとする。
【0024】
「溶接本通電時間:40乃至140m秒間」
本通電時間T1が40m秒間未満の場合には、ナゲット径が飽和するに到らずシェア破断する。また、本通電時間T1が140m秒間以上の場合には、接合強度が劣化してしまう。従って、本通電時間T1は、40乃至140m秒間とする。
【0025】
「第1加圧力の印加から第2加圧力の印加への移行と溶接本通電から後熱電流通電への移行との時間差:−20乃至+20m秒間」
本発明においては、溶接電流値I1による本通電を終了する20m秒前と、溶接本通電を終了して後熱電流I2を通電し始めて20m秒後との間の時間に、第1加圧力である溶接加圧力P1の印加から第2加圧力である鍛造加圧力P2の印加へと移行して加圧力を変更する。この溶接本通電から後熱電流の通電への移行時間と、溶接加圧力から鍛造加圧力への移行時間との時間差Tdが、溶接本通電を終了する20m秒前より以前である場合、即ち、Tdが−20m秒より以前である場合には、被溶接部における割れ及びブローホール(気孔)等の発生並びに表面溶融等を抑制することができない。また、溶接本通電から後熱電流の通電への移行時間と、溶接加圧力から鍛造加圧力への移行時間との時間差Tdが、溶接本通電を終了し後熱電流を通電し始めて20m秒後より以降である場合、即ち、Tdが+20m秒より以降である場合においても、被溶接部における割れ及びブローホール等の発生並びに表面溶融等を抑制することができない。従って、溶接加圧力の印加から鍛造加圧力の印加への移行と溶接本通電から後熱電流通電への移行との時間差Tdは、−20乃至+20m秒間とする。
【0026】
「第2加圧力:1100乃至8000N」
第2加圧力としての鍛造加圧力P2が1100N未満の場合には、被溶接部における割れ及びブローホール等の発生並びに表面溶融等を抑制することができない。一方、鍛造加圧力P2が8000N以上の場合においては、被溶接材への圧痕が著しく増大するため、被溶接材が圧縮され肉厚が減少してしまう。よって、接合後の強度が低下する。従って、鍛造加圧力P2は、1100乃至8000Nとする。
【0027】
「後熱電流値:溶接電流値の20乃至70%」、且つ、
「後熱電流通電時間:40m秒間以上」、又は、
「後熱電流通電:40m秒間以上かけて溶接本通電における電流値の70%以下まで単調減少するダウンスロープの後熱電流を印加」
後熱電流通電時間T2が40m秒間未満の場合には、被溶接部における割れ及びブローホール等の発生並びに表面溶融等を抑制することができない。また、被溶接部を徐冷させることにより溶接後の欠陥発生を抑制するために通電する後熱電流は、溶接電流値の20%未満では電流量が少なすぎて発熱量が足りない。このため、後熱による徐冷効果を得ることができず、急冷却状態となるため、溶接欠陥が発生してしまう。また、後熱電流はが溶接電流値の70%より大きい場合には、電流値が高すぎて発熱量が大きくなりすぎる。このため、後熱による徐冷効果を得ることができず、溶接欠陥を抑制することができない。従って、後熱電流通電時間T2は40m秒間以上とし、且つ、後熱電流値は溶接電流値の20乃至60%か、又は溶接電流値の20乃至70%の後熱電流通電と同じ徐冷効果を有する40m秒間以上かけて溶接本通電における電流値の70%以下まで単調減少するダウンスロープダウンスロープの後熱電流を印加することとする。
【0028】
「溶接本通電における被溶接材の熱膨張量:0.5mm以下」
溶接本通電における被溶接材の熱膨張量が0.5mmを超える場合とは、即ち、溶接部の膨張を抑えきれない場合であり、被溶接部は爆飛する。従って、溶接本通電における被溶接材の熱膨張量は0.5mm以下とする。
【0029】
【実施例】
以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。下記表1乃至7に、板厚が1.0mmである2枚のアルミニウム合金板(JIS−A5182−0)を重ね合わせて抵抗スポット溶接した各種条件を示す。また、下記表8乃至14に、これらの溶接条件で接合した試験片における熱膨張量、引張剪断接着強度(Tensile Shear Strength:TSS)を測定した結果、TSS試験により破断した試験片における被溶接部の破断径及び破断形態を、各試験片における総合評価結果と共に示す。
【0030】
【表1】

Figure 0003862640
【0031】
【表2】
Figure 0003862640
【0032】
【表3】
Figure 0003862640
【0033】
【表4】
Figure 0003862640
【0034】
【表5】
Figure 0003862640
【0035】
【表6】
Figure 0003862640
【0036】
【表7】
Figure 0003862640
【0037】
【表8】
Figure 0003862640
【0038】
【表9】
Figure 0003862640
【0039】
【表10】
Figure 0003862640
【0040】
【表11】
Figure 0003862640
【0041】
【表12】
Figure 0003862640
【0042】
【表13】
Figure 0003862640
【0043】
【表14】
Figure 0003862640
【0044】
上記表1は溶接本通電における被溶接材の電極軸方向での熱膨張量の条件を変更した実施例及び比較例の実施条件であり、上記表8はその結果である。上記表2は溶接加圧力P1の条件を変更した実施例及び比較例の実施条件であり、上記表9はその結果である。上記表3は鍛造加圧力P2の条件を変更した実施例及び比較例の実施条件であり、上記表10はその結果である。上記表4は後熱電流値I2の条件を変更した実施例及び比較例の実施条件であり、上記表11はその結果である。上記表5は本通電時間T1の条件を変更した実施例及び比較例の実施条件であり、上記表12はその結果である。上記表6は後熱通電時間T2の条件を変更した実施例及び比較例の実施条件であり、上記表13はその結果である。そして、上記表7は後熱通電の条件をダウンスロープとした実施例及び比較例の実施条件であり、上記表14はその結果である。
【0045】
上記表1乃至14より明らかなように、比較例による試験片においては、破断径が小さく、接合が不十分であった。このため、引張剪断試験による破断形態がアルミニウム合金板の被溶接界面における剥離破断となり、接合強度が小さかった。一方、全ての条件が本発明により限定された範囲にある実施例においては、全ての実施例において、充分な接合強度を備えることができる大きさの溶融部が形成されており、接合部の強度が大きく、アルミニウム合金板の母材で破断した。
【0046】
図4は、経過時間を横軸に取り、加圧力、電流値及び熱膨張量を縦軸に取り、実施例31の被溶接材の熱膨張量を示したグラフである。なお、実施例31の溶接条件は、溶接電流値I1が14kA、後熱電流値I2が8kA、本通電時間T1が45m秒、後熱電流通電時間T2が80m秒、溶接加圧力P1が500N、鍛造加圧力P2が1450Nである。このグラフから明らかなように、本実施例においては、加圧応答性が極めて高い加圧機構を備えた溶接機を用いることによって、溶接本通電時における被溶接材の熱膨張量を0.5mm未満に抑制することができた。よって、被溶接材への溶接加圧力を極めて低く押さえることができたため、電極と被溶接材との接触面積及び被溶接材間の接触面積を著しく低減することができ、低い溶接電流値においても高い電流密度での抵抗スポット溶接が可能となった。
【0047】
【発明の効果】
以上詳述したように、本発明によれば、溶接電流値、後熱電流値、溶接加圧力、鍛造加圧力、及び通電時間を最適化し、特に、溶接加圧力を極めて低く抑えることによって、電極と被溶接材との接触面積及び被溶接材間の接触面積を著しく低減することができるため、低い溶接電流値においても高い電流密度での抵抗スポット溶接が可能となる。よって、電気抵抗が小さく熱伝導率が高いために抵抗スポット溶接法を適用することが困難であったアルミニウム系材において、充分な接合強度を備えた溶接部を低電流で形成することができる。従って、鋼等のような低電流で抵抗スポット溶接をすることができる他の金属材のための溶接設備を併用することができるため、イニシャルコスト及びランニングコストを大きく抑制することができる。
【図面の簡単な説明】
【図1】第1の実施形態を示すタイミングチャートである。
【図2】第2の実施形態を示すタイミングチャートである。
【図3】第3乃至第7の実施形態を示すタイミングチャートである。
【図4】本発明の実施例における被溶接材の熱膨張量測定結果を示すグラフである。
【符号の説明】
P1;溶接加圧力
P2;鍛造加圧力
I1;溶接電流値
I2;後熱電流値
T1;本通電時間
T2;後熱電流通電時間
Td;遅れ時間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resistance spot welding method for an aluminum-based material in which a material to be welded made of aluminum or an aluminum alloy is resistance-welded.
[0002]
[Prior art]
Resistance spot welding is a widely used method for joining metal materials such as steel. In resistance spot welding, a material to be welded is sandwiched between electrodes made of a copper alloy or the like that are vertically opposed to the welding apparatus, and a large current is instantaneously applied while pressing the welding location of the material to be welded with this electrode. The material to be welded is melt-bonded by utilizing local heating and melting due to the contact resistance between the material to be welded and the electrode and the resistance of the material to be welded itself.
[0003]
Such resistance spot welding is difficult to apply to metal materials made of copper, aluminum, magnesium, alloys thereof, and the like having low electrical resistance and high thermal conductivity because of its principle. In particular, when resistance spot welding is applied to aluminum and aluminum alloys (hereinafter, aluminum and aluminum alloys are collectively referred to as aluminum-based materials), the welding current value is about three times that of steel and about 1.5 times that of steel. Is generally required (see, for example, Non-Patent Document 1). For this reason, in resistance spot welding of an aluminum-based material, a large-capacity welding apparatus capable of supplying a large current in a short time is required. Therefore, when manufacturing structures and the like in which steel and aluminum-based materials are mixed, it is necessary to introduce welding equipment dedicated to aluminum-based materials in addition to steel-based welding facilities. This increases the manufacturing cost. Therefore, in resistance spot welding of an aluminum-based material, there is a demand for a technique for reducing the current so that the aluminum-based material can be welded with the same equipment as steel.
[0004]
Therefore, for example, a mixed powder of aluminum powder and metal oxide powder is interposed as an insert material between the welded parts of an aluminum alloy material, and this mixed powder is used in combination with heat generated by a thermite reaction when energized. A technique for reducing current is disclosed (for example, refer to Patent Document 1). However, resistance spot welding in which such an insert material is interposed is inefficient and unsuitable for performing a large amount of joining.
[0005]
On the other hand, a technique has also been proposed in which a material having a different electrical conductivity from that of the electrode base material is exposed at a plurality of locations on the tip surface of the electrode to disperse the portion where the current density becomes high during energization, thereby reducing the welding current. (For example, refer to Patent Document 2).
[0006]
[Non-Patent Document 1]
Takashi Nakamura, Norio Kobayashi, Kazu Morimoto, “Welding Complete Book (Volume 8) Resistance Welding”, First Edition, Sangyo Publishing Co., Ltd., June 25, 1996, p. 75
[Patent Document 1]
Japanese Patent Laid-Open No. 7-16756 (page 1-2, FIG. 2)
[Patent Document 2]
Japanese Patent Laid-Open No. 7-178568 (page 1-2, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, such a method of changing the electrode material to the composite material not only increases the manufacturing cost of the electrode, but also increases the running cost due to the shortening of the electrode life. Thus, in resistance spot welding of aluminum-based materials, spot weldability with mass-productivity comparable to steel is achieved despite the fact that reaction control and electrode development, etc., are performed at welded locations with insert materials. I can't get it.
[0008]
The present invention has been made in view of such a problem, and can form a good melted portion (nugget) capable of obtaining spot weldability with low current and mass productivity comparable to steel. It aims at providing the resistance spot welding method of a system material.
[0009]
[Means for Solving the Problems]
A resistance spot welding method for an aluminum-based material according to the present invention is a method of resistance spot welding a material to be welded made of aluminum or an aluminum alloy with a pair of electrodes, and a first pressure of 300 to 900 N is applied between the electrodes. After that, welding main energization is performed for 40 to 140 msec in a state where the thermal expansion amount of the welded material in the axial direction of the electrode is controlled to 0.5 mm or less, and a time point 20 msec before the end of the welding main energization Application of the second pressurizing force of 1100 to 8000 N is started in a period from the end of the main welding energization to a time 20 msec later, and after the end of the main welding energization, the current value of the main welding energization is 20 to 70. % Post-heat current for 40 msec or more.
[0010]
Another resistance spot welding method for an aluminum-based material according to the present invention is a method of resistance spot welding a material to be welded made of aluminum or an aluminum alloy with a pair of electrodes, wherein a first pressure of 300 to 900 N is applied between the electrodes. After the application, welding main energization is performed for 40 to 140 msec in a state where the thermal expansion amount of the welded material in the axial direction of the electrode is controlled to 0.5 mm or less, and 20 msec before the end of the welding main energization. The application of the second pressurizing force of 1100 to 8000 N is started in the period from the time point to the time point 20 msec after the end point of the main welding energization, and after the end of the main welding energization, the current value in the main welding energization is 40 msec. A post-heat current that monotonously decreases to 70% or less of the current value in the main welding energization is applied as described above.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a timing chart in the resistance spot welding method for an aluminum-based material according to the first embodiment of the present invention. In this embodiment, as shown in FIG. 1, a welding material such as aluminum or an aluminum alloy is sandwiched between a pair of electrodes, and a welding pressure P1 is applied as a first pressure of 300 to 900 N between the electrodes. Then, welding is performed by passing a current having a welding current value I1 for a main energization time T1 of 40 to 140 msec in a state where the thermal expansion amount of the workpiece in the axial direction of the electrode is controlled to 0.5 mm or less. The main energization is performed, and a forging pressure P2 of 1100 to 8000 N is applied as the second pressure during a period from the time 20 msec before the end of the main welding energization to the time 20 msec after the end of the main welding energization. At the same time, after the welding main energization is completed, the post-heating current I2 is energized for 20 to 70% of the current value I1 of the welding main energization for T2 for 40 msec or longer. To implement.
[0012]
In the present embodiment, as described above, the main energization for the main energization time T1 is performed at the welding current value I1 while applying the welding pressure P1, and then the post-heat current value I2 is applied while applying the forging pressure P2. By adding post-heat current energization while controlling the post-heat current energization time T2 within the range of the delay time Td, the welding pressure is kept extremely low, the contact area between the electrode and the welded material, and the distance between the welded materials It is possible to reduce the contact area. For this reason, even when the welding current value is low, the aluminum-based material can be welded at a high current density.
[0013]
Next, a resistance spot welding method for an aluminum-based material according to the second embodiment of the present invention will be described. FIG. 2 is a timing chart in the resistance spot welding method for an aluminum-based material according to the second embodiment. In the present embodiment, similarly to the first embodiment, a welding material such as aluminum or an aluminum alloy is sandwiched between a pair of electrodes, and a welding pressure P1 is set as a first pressure of 300 to 900 N between the electrodes. Then, a current having a welding current value I1 is allowed to flow for a main energization time T1 of 40 to 140 msec in a state where the thermal expansion amount of the welded material in the axial direction of the electrode is controlled to 0.5 mm or less. In the period from the time point 20 msec before the end of welding main energization to the time point 20 msec after the end of welding main energization, a forging pressure P2 of 1100 to 8000 N is applied as the second pressure. After starting the main welding energization, the current value I1 of the main welding energization is set to 70% or less of the current value I1 in the main welding energization over a time T2 of 40 msec or longer. In carrying out the post-heating current energization by energizing a down slope current I2 as monotonically decreasing.
[0014]
In the present embodiment, as in the first embodiment, the main energization for the main energization time T1 is performed at the welding current value I1 while applying the welding pressure P1, and then the forging pressure P2 is applied to the rear. By applying post-heat current energization with a post-heat current value I2 over the heat current energization time T2 while controlling within the range of the delay time Td, the welding pressure is kept extremely low, and the electrode and the material to be welded The contact area between and the contact area between the workpieces can be reduced. For this reason, even when the welding current value is low, the aluminum-based material can be welded at a high current density.
[0015]
FIGS. 3A to 3E are timing charts in the resistance spot welding method for aluminum-based materials according to the third to seventh embodiments. FIG. 3A is a timing chart of the third embodiment, FIG. 3B is a timing chart of the fourth embodiment, and FIG. 3C is a timing chart of the fifth embodiment. FIG. 3D is a timing chart of the sixth embodiment, and FIG. 3E is a timing chart of the seventh embodiment. In these embodiments, the method of applying the post-heat current value I2 is changed.
[0016]
In the third embodiment, as shown in FIG. 3A, similarly to the first embodiment, a material to be welded such as aluminum or an aluminum alloy is sandwiched between a pair of electrodes and 300 to 300 is interposed between the electrodes. After applying the welding pressure P1 as the first pressure of 900 to 900 N, the main energization time of 40 to 140 msec with the thermal expansion amount of the welded material in the axial direction of the electrode controlled to 0.5 mm or less Welding main energization is performed by flowing a current having a welding current value I1 for T1. The second period is from a time point 20 msec before the end of welding main energization to a time point 20 msec after the end of welding main energization. The application of a forging pressure P2 of 1100 to 8000 N is started as the pressure, and after the welding main energization is completed, the post-heating current I2 of 20 to 70% of the current value I1 of the welding main energization is set to T2 for 40 msec or more. After during energization, to implement the post-heating current energization by energizing a down slope current such that monotonically decreases to zero.
[0017]
In the fourth embodiment, as shown in FIG. 3B, similarly to the third embodiment, a material to be welded such as aluminum or an aluminum alloy is sandwiched between a pair of electrodes, and 300 to 300 is interposed between the electrodes. After applying the welding pressure P1 as the first pressure of 900 to 900 N, the main energization time of 40 to 140 msec with the thermal expansion amount of the welded material in the axial direction of the electrode controlled to 0.5 mm or less Welding main energization is performed by flowing a current having a welding current value I1 for T1. The second period is from a time point 20 msec before the end of welding main energization to a time point 20 msec after the end of welding main energization. The application of a forging pressure P2 of 1100 to 8000 N is started as the pressure, and after the welding main energization is completed, the post-heating current I2 of 20 to 70% of the current value I1 of the welding main energization is set to T2 for 40 msec or more. After between energized by energizing a down slope current such as to reduce further monotonously, performing the post-heating current application.
[0018]
In the fifth embodiment, as shown in FIG. 3C, after the welding main energization is completed as in the fourth embodiment, the current value is set to 70% of the current value I1 of the welding main energization. By applying a downslope current I2 that decreases monotonically during T2 for more than 40 milliseconds and reaches 20% of the current value I1 of the main welding energization, and then decreases monotonically to zero. Conduct current flow.
[0019]
In the sixth embodiment, as shown in FIG. 3D, after the welding main energization is completed in the same manner as in the fifth embodiment, the current value is 70% or less of the current value I1 of the welding main energization. After X has been monotonously decreased by applying T2 for 40 msec or more, post-heat current energization is performed by energizing a downslope current I2 that monotonously decreases.
[0020]
In the seventh embodiment, as shown in FIG. 3E, after the welding main energization is completed in the same manner as in the sixth embodiment, the current value of 70% or less of the current value I1 of the welding main energization is obtained. A post-heat current energization is performed by energizing a down-slope current I2 that suddenly decreases to zero after X has been monotonously decreased over T2 for 40 msec.
[0021]
In the present invention, as in the first to seventh embodiments described above, the contact area between the electrode and the material to be welded and the contact area between the materials to be welded are reduced by extremely reducing the welding pressure. Can do. For this reason, even when the welding current value is low, the aluminum-based material can be welded at a high current density. In resistance spot welding of aluminum-based materials, the material to be welded thermally expands during main energization. Therefore, in order to obtain a good welding result, the welding pressure is adjusted following the thermal expansion of the material to be welded, and this thermal expansion amount is within a range where no welding defect occurs, that is, in the axial direction of the electrode. It is essential to suppress the amount of thermal expansion of the workpiece to be controlled to 0.5 mm or less. In the present invention, the current value, the applied pressure, and the energization time, which are important parameters in resistance spot welding of an aluminum-based material, are optimized, the amount of thermal expansion of the material to be welded during main energization is limited, and the energization of the post-heat current By performing forging and pressurization, the resistance spot welding of the aluminum-based material can be reduced in current, and the welding quality can be improved to the same level as the resistance spot welding in steel.
[0022]
Below, the reason for limitation of the specification in the resistance spot welding method of the aluminum-type material mentioned above is demonstrated.
[0023]
“First pressure: 300 to 900 N”
In resistance spot welding of aluminum-based materials, the amount of thermal expansion of the material to be welded during main energization must be suppressed within a range in which no welding defect occurs, but the welding pressure P1 as the first pressure is less than 300 N In this case, since the expansion of the welded part cannot be suppressed, the welded part explodes. On the other hand, in the case where the welding pressure P1 exceeds 900 N, excessive stress is applied to the materials to be welded, so that the contact area between the materials to be welded increases. For this reason, a fusion | melting part does not fully grow but quality falls. Accordingly, the welding pressure P1 is set to 300 to 900N.
[0024]
“Main welding time: 40 to 140 msec”
When the main energization time T1 is less than 40 msec, the nugget diameter is not saturated and the shear fracture occurs. Further, when the main energization time T1 is 140 msec or longer, the bonding strength is deteriorated. Accordingly, the main energization time T1 is 40 to 140 msec.
[0025]
“Time difference between the transition from the application of the first pressure to the application of the second pressure and the transition from the main welding energization to the post-heat current energization: −20 to +20 msec”
In the present invention, the first pressurizing force is applied at a time between 20 milliseconds before the end of the main energization with the welding current value I1 and 20 milliseconds after the end of the main welding energization and the start of the energization of the post-heat current I2. It shifts from application of a certain welding pressure P1 to application of a forging pressure P2, which is a second pressure, and changes the pressure. When the time difference Td between the transition time from the welding main energization to the energization of the post-heat current and the transition time from the welding pressurization to the forging pressurization is before 20 ms before the end of the main welding energization, that is, When Td is before -20 milliseconds, the occurrence of cracks and blow holes (pores) in the welded portion, surface melting, and the like cannot be suppressed. In addition, the time difference Td between the transition time from the main welding energization to the post-thermal current energization and the transition time from the welding pressurization to the forging pressurization is 20 ms after the main welding energization is started and the thermal current is energized. Even when it is after, that is, when Td is after +20 milliseconds, the occurrence of cracks and blowholes in the welded part, surface melting, and the like cannot be suppressed. Therefore, the time difference Td between the transition from the application of the welding pressure to the application of the forging pressure and the transition from the main welding energization to the post-heat current energization is set to -20 to +20 msec.
[0026]
“Second pressure: 1100 to 8000 N”
When the forging pressure P2 as the second pressure is less than 1100 N, generation of cracks and blowholes in the welded part, surface melting, and the like cannot be suppressed. On the other hand, when the forging pressure P2 is 8000 N or more, the indentation on the welded material is remarkably increased, so that the welded material is compressed and the wall thickness is reduced. Therefore, the strength after bonding is reduced. Accordingly, the forging pressure P2 is set to 1100 to 8000N.
[0027]
“Post-heat current value: 20 to 70% of the welding current value”, and
“After-heat current energization time: 40 msec or more”, or
“Post-heat current energization: Apply post-heat current of downslope that monotonously decreases to 70% or less of the current value in main welding energization over 40 msec.”
When the post-heat current application time T2 is less than 40 msec, the occurrence of cracks and blowholes in the welded part, surface melting, and the like cannot be suppressed. Further, the post-heat current that is energized in order to suppress the generation of defects after welding by gradually cooling the welded portion is too small and less than 20% of the welding current value. For this reason, the slow cooling effect by post-heating cannot be obtained, and since it will be in a rapid cooling state, a welding defect will occur. On the other hand, when the post-heat current is larger than 70% of the welding current value, the current value is too high and the heat generation amount is too large. For this reason, the slow cooling effect by after-heating cannot be acquired and a welding defect cannot be suppressed. Accordingly, the post-heat current application time T2 is set to 40 msec or more, and the post-heat current value is 20 to 60% of the welding current value or the same slow cooling effect as the post-heat current supply of 20 to 70% of the welding current value. A down-slope down-slope post-heat current that monotonously decreases to 70% or less of the current value in main welding energization over 40 msec.
[0028]
“The amount of thermal expansion of the welded material in the main welding energization: 0.5 mm or less”
The case where the amount of thermal expansion of the material to be welded in the main welding energization exceeds 0.5 mm, that is, the case where the expansion of the welded part cannot be suppressed, and the part to be welded explodes. Therefore, the thermal expansion amount of the material to be welded in the main welding energization is 0.5 mm or less.
[0029]
【Example】
Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. Tables 1 to 7 below show various conditions in which two aluminum alloy plates (JIS-A 5182-0) having a plate thickness of 1.0 mm are superimposed and resistance spot welded. In Tables 8 to 14 below, as a result of measuring the amount of thermal expansion and tensile shear strength (TSS) in the test pieces joined under these welding conditions, the welded parts in the test pieces fractured by the TSS test Are shown together with the overall evaluation results for each test piece.
[0030]
[Table 1]
Figure 0003862640
[0031]
[Table 2]
Figure 0003862640
[0032]
[Table 3]
Figure 0003862640
[0033]
[Table 4]
Figure 0003862640
[0034]
[Table 5]
Figure 0003862640
[0035]
[Table 6]
Figure 0003862640
[0036]
[Table 7]
Figure 0003862640
[0037]
[Table 8]
Figure 0003862640
[0038]
[Table 9]
Figure 0003862640
[0039]
[Table 10]
Figure 0003862640
[0040]
[Table 11]
Figure 0003862640
[0041]
[Table 12]
Figure 0003862640
[0042]
[Table 13]
Figure 0003862640
[0043]
[Table 14]
Figure 0003862640
[0044]
The above Table 1 shows the working conditions of Examples and Comparative Examples in which the conditions of the amount of thermal expansion in the electrode axis direction of the material to be welded in the main welding energization are changed, and Table 8 above shows the results. The above Table 2 shows the working conditions of Examples and Comparative Examples in which the conditions of the welding pressure P1 are changed, and Table 9 above shows the results. Table 3 above shows the working conditions of Examples and Comparative Examples in which the conditions of the forging pressure P2 are changed, and Table 10 above shows the results. The above Table 4 shows the execution conditions of Examples and Comparative Examples in which the condition of the post-heat current value I2 is changed, and the above Table 11 shows the results. Table 5 above shows the implementation conditions of the examples and comparative examples in which the conditions of the main energization time T1 are changed, and Table 12 above shows the results. Table 6 above shows the implementation conditions of Examples and Comparative Examples in which the conditions of the post-heat energization time T2 are changed, and Table 13 above shows the results. And the said table | surface 7 is the implementation condition of the Example and comparative example which made the conditions of back heat conduction the down slope, and the said Table 14 is the result.
[0045]
As apparent from Tables 1 to 14, the test piece according to the comparative example had a small fracture diameter and insufficient bonding. For this reason, the fracture | rupture form by the tensile shear test became the peeling fracture | rupture in the to-be-welded interface of an aluminum alloy plate, and joining strength was small. On the other hand, in the examples in which all the conditions are within the range limited by the present invention, in all the examples, a melted part having a size capable of providing sufficient bonding strength is formed, and the strength of the bonded part is formed. It was large and fractured at the base material of the aluminum alloy plate.
[0046]
FIG. 4 is a graph showing the thermal expansion amount of the welded material of Example 31 with the elapsed time on the horizontal axis and the applied pressure, current value, and thermal expansion amount on the vertical axis. The welding conditions of Example 31 are as follows: welding current value I1 is 14 kA, post-heat current value I2 is 8 kA, main energization time T1 is 45 msec, post-heat current energization time T2 is 80 msec, welding pressure P1 is 500 N, The forging pressure P2 is 1450N. As is apparent from this graph, in this example, by using a welding machine equipped with a pressurizing mechanism with extremely high pressurization response, the amount of thermal expansion of the welded material during welding main energization is 0.5 mm. It was possible to suppress to less than. Therefore, since the welding pressure on the material to be welded can be suppressed extremely low, the contact area between the electrode and the material to be welded and the contact area between the materials to be welded can be significantly reduced, even at a low welding current value. Resistance spot welding at high current density is possible.
[0047]
【The invention's effect】
As described above in detail, according to the present invention, the welding current value, the post-heating current value, the welding pressure, the forging pressure, and the energization time are optimized, and in particular, by keeping the welding pressure very low, Since the contact area between the workpiece and the material to be welded and the contact area between the material to be welded can be significantly reduced, resistance spot welding at a high current density is possible even at a low welding current value. Therefore, in an aluminum-based material that has been difficult to apply the resistance spot welding method because of its low electrical resistance and high thermal conductivity, a weld with sufficient joint strength can be formed at a low current. Therefore, since the welding equipment for other metal materials that can perform resistance spot welding at a low current such as steel can be used in combination, the initial cost and the running cost can be greatly suppressed.
[Brief description of the drawings]
FIG. 1 is a timing chart showing a first embodiment.
FIG. 2 is a timing chart showing a second embodiment.
FIG. 3 is a timing chart showing third to seventh embodiments.
FIG. 4 is a graph showing the results of measuring the amount of thermal expansion of the work piece in the embodiment of the present invention.
[Explanation of symbols]
P1; welding pressure P2; forging pressure I1; welding current value I2; post-heat current value T1; main energization time T2; post-heat current energization time Td;

Claims (2)

アルミニウム又はアルミニウム合金からなる被溶接材を1対の電極で抵抗スポット溶接する方法において、前記電極間に300乃至900Nの第1加圧力を印加した後、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態で40乃至140m秒間だけ溶接本通電を行い、前記溶接本通電終了時点より20m秒間前の時点から前記溶接本通電終了時点より20m秒後の時点までの期間に1100乃至8000Nの第2加圧力の印加を開始すると共に、前記溶接本通電終了後、前記溶接本通電の電流値の20乃至70%の後熱電流を40m秒間以上通電することを特徴とするアルミニウム系材の抵抗スポット溶接方法。In a method of resistance spot welding a welding material made of aluminum or an aluminum alloy with a pair of electrodes, after applying a first pressurizing force of 300 to 900 N between the electrodes, the welding material in the axial direction of the electrodes The main welding energization is performed for 40 to 140 msec with the thermal expansion amount controlled to 0.5 mm or less, from the time 20 msec before the main welding end to the time 20 msec after the main welding end. And starting the application of the second pressurizing force of 1100 to 8000 N during the period of time, and after passing the welding main energization, energizing a post-heat current of 20 to 70% of the current value of the welding main energization for 40 msec or longer. A resistance spot welding method for aluminum-based materials. アルミニウム又はアルミニウム合金からなる被溶接材を1対の電極で抵抗スポット溶接する方法において、前記電極間に300乃至900Nの第1加圧力を印加した後、前記電極の軸方向における前記被溶接材の熱膨張量を0.5mm以下に制御した状態で40乃至140m秒間だけ溶接本通電を行い、前記溶接本通電終了時点より20m秒間前の時点から前記溶接本通電終了時点より20m秒後の時点までの期間に1100乃至8000Nの第2加圧力の印加を開始すると共に、前記溶接本通電終了後、前記溶接本通電における電流値から40m秒間以上かけて前記溶接本通電における電流値の70%以下まで単調減少する後熱電流を印加することを特徴とするアルミニウム系材の抵抗スポット溶接方法。In a method of resistance spot welding a welding material made of aluminum or an aluminum alloy with a pair of electrodes, after applying a first pressurizing force of 300 to 900 N between the electrodes, the welding material in the axial direction of the electrodes The main welding energization is performed for 40 to 140 msec with the thermal expansion amount controlled to 0.5 mm or less, from the time 20 msec before the main welding end to the time 20 msec after the main welding end. The application of the second pressurizing force of 1100 to 8000 N is started during the period of time, and after the welding main energization is completed, the current value in the welding main energization takes 40 msec or more to 70% or less of the current value in the main welding energization. A resistance spot welding method for an aluminum-based material, wherein a heat current is applied after monotonously decreasing.
JP2002261658A 2002-09-06 2002-09-06 Resistance spot welding method for aluminum-based materials Expired - Lifetime JP3862640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261658A JP3862640B2 (en) 2002-09-06 2002-09-06 Resistance spot welding method for aluminum-based materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261658A JP3862640B2 (en) 2002-09-06 2002-09-06 Resistance spot welding method for aluminum-based materials

Publications (2)

Publication Number Publication Date
JP2004098107A JP2004098107A (en) 2004-04-02
JP3862640B2 true JP3862640B2 (en) 2006-12-27

Family

ID=32261970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261658A Expired - Lifetime JP3862640B2 (en) 2002-09-06 2002-09-06 Resistance spot welding method for aluminum-based materials

Country Status (1)

Country Link
JP (1) JP3862640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200128153A (en) 2018-04-20 2020-11-11 가부시키가이샤 고베 세이코쇼 Resistance spot welding joint of aluminum material and resistance spot welding method of aluminum material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502873B2 (en) * 2004-04-28 2010-07-14 株式会社神戸製鋼所 Resistance spot welding method for aluminum and iron materials
JP5625423B2 (en) * 2010-03-23 2014-11-19 Jfeスチール株式会社 Indirect spot welding method
JP6030888B2 (en) * 2012-08-23 2016-11-24 矢崎総業株式会社 Wire welding method and wire welding apparatus
PL3265595T3 (en) 2015-10-30 2019-07-31 Novelis, Inc. High strength 7xxx aluminum alloys and methods of making the same
US20170232547A1 (en) * 2016-02-15 2017-08-17 Novelis Inc. Method for improving quality of aluminum resistance spot welding
CN105643077B (en) * 2016-04-12 2018-11-20 南京英尼格玛工业自动化技术有限公司 A kind of spot-welding technology method of Al alloy parts
JP7026532B2 (en) * 2018-02-28 2022-02-28 ダイハツ工業株式会社 Spot welding method
JP7076703B2 (en) * 2018-04-20 2022-05-30 株式会社神戸製鋼所 Resistance spot welding method for aluminum material
JP2022127159A (en) * 2021-02-19 2022-08-31 株式会社神戸製鋼所 Method for spot welding aluminum members and method for bonding aluminum members
WO2024006657A1 (en) * 2022-06-30 2024-01-04 Novelis Inc. Systems and methods for improving resistance spot welding with cast aluminum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200128153A (en) 2018-04-20 2020-11-11 가부시키가이샤 고베 세이코쇼 Resistance spot welding joint of aluminum material and resistance spot welding method of aluminum material

Also Published As

Publication number Publication date
JP2004098107A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP5599553B2 (en) Resistance spot welding method
JP3862640B2 (en) Resistance spot welding method for aluminum-based materials
JP2007268604A (en) Resistance spot welding method
JP5261984B2 (en) Resistance spot welding method
US20180361498A1 (en) Welding methods including formation of an intermediate joint using a solid state welding process
US20200108468A1 (en) Hybrid ultrasonic and resistance spot welding system
JP2005334971A (en) Resistance spot welding method for aluminum material and steel material, and weld joint
JPH0481288A (en) Method for joining steel material with aluminum material
JP6900692B2 (en) Joining method using rivets and equipment used for its implementation
JP5609966B2 (en) Resistance spot welding method
JP4139375B2 (en) Resistance welding electrode and resistance welding method
JP6702135B2 (en) Method of joining dissimilar metal plates
JP2019136748A (en) Resistance spot welding method
JP3941001B2 (en) Bonding method of dissimilar metal materials
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JP5906618B2 (en) Resistance spot welding method
Zhang et al. Temperature field and microstructure characterization of AA6061/H70 dissimilar thermo-compensated resistance spot welds having different joint configurations
JP2014166646A (en) Solid-phase welding method for metal workpiece
Zuhailawati et al. Spot resistance welding of a titanium/nickel joint with filler metal
JP2004050280A (en) Projection welding method
JP2005125397A (en) Spot welding machine
JP2898227B2 (en) Resistance spot welding method for aluminum material
CN114473164B (en) Method for resistance spot welding dissimilar metal workpiece stacked assembly and dissimilar metal stacked assembly for resistance spot welding
JP2019150833A (en) Resistance-welding method
JPH067957A (en) Resistance spot-welding method for aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Ref document number: 3862640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

EXPY Cancellation because of completion of term