JP7368716B2 - Manufacturing method of resistance spot welding joints - Google Patents

Manufacturing method of resistance spot welding joints Download PDF

Info

Publication number
JP7368716B2
JP7368716B2 JP2019202259A JP2019202259A JP7368716B2 JP 7368716 B2 JP7368716 B2 JP 7368716B2 JP 2019202259 A JP2019202259 A JP 2019202259A JP 2019202259 A JP2019202259 A JP 2019202259A JP 7368716 B2 JP7368716 B2 JP 7368716B2
Authority
JP
Japan
Prior art keywords
steel plate
resistance spot
manufacturing
steel plates
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019202259A
Other languages
Japanese (ja)
Other versions
JP2021074737A (en
Inventor
誠司 古迫
真二 児玉
直明 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019202259A priority Critical patent/JP7368716B2/en
Publication of JP2021074737A publication Critical patent/JP2021074737A/en
Application granted granted Critical
Publication of JP7368716B2 publication Critical patent/JP7368716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、抵抗スポット溶接継手に関する。本発明は、特に、継手強度に優れるとともに、耐遅れ破壊特性に優れた抵抗スポット溶接継手の製造方法に関する。 The present invention relates to resistance spot weld joints. The present invention particularly relates to a method for manufacturing a resistance spot welded joint that has excellent joint strength and delayed fracture resistance.

自動車の分野では、環境保全のため、車体の軽量化による燃費の向上とともに、衝突安全性の向上が求められている。そのため、高強度鋼板を使用して薄肉化するとともに、車体構造を最適化して、車体の軽量化と衝突安全性の向上を図るために、これまで種々の取組みがなされている。
自動車等の部品の製造や車体の組立における溶接では、抵抗スポット溶接(以下、「スポット溶接」ということもある)が主に使用されている。スポット溶接により形成された溶接継手の品質指標としては、引張強さがある。溶接継手の引張強さには、せん断方向に引張荷重を負荷して測定する引張せん断強さ(TSS)と、剥離方向に引張荷重を負荷して測定する十字引張強さ(CTS)がある。
In the field of automobiles, in order to preserve the environment, there is a need to improve fuel efficiency by reducing the weight of vehicle bodies, as well as improving collision safety. Therefore, various efforts have been made to reduce the weight of the car body and improve collision safety by using high-strength steel plates to make the car body thinner and optimizing the car body structure.
BACKGROUND ART Resistance spot welding (hereinafter sometimes referred to as "spot welding") is mainly used for welding in the manufacture of parts for automobiles and the assembly of vehicle bodies. Tensile strength is a quality indicator of welded joints formed by spot welding. The tensile strength of welded joints includes tensile shear strength (TSS), which is measured by applying a tensile load in the shear direction, and cross tensile strength (CTS), which is measured by applying a tensile load in the peeling direction.

ここで、高強度鋼板をスポット溶接した場合においては、遅れ破壊(水素脆化)の問題がある。
高強度鋼板は、その強度を達成するために、C以外にもSi、Mn等の焼き入れ性の高い元素を多く含有しており、高強度鋼板にスポット溶接して形成された溶接継手の溶接部は、溶接の加熱冷却過程を経て焼きが入り、マルテンサイト組織となり、硬くなっている。また、溶接部では、局部的に生じる変態膨張と収縮により、溶接継手の引張残留応力が大きくなっている。特に鋼板強度が上昇するほどプレス成形後のスプリングバックが生じやすく、これは溶接フランジ部の隙間を増大させる。こうした隙間は、鋼板同士をスポット溶接する際、引張残留応力をさらに増大させる要因となる。
このため、高強度鋼板にスポット溶接して形成された溶接継手の溶接部は、硬度が高く、引張残留応力が大きくなっているので、水素侵入が起これば、遅れ破壊を引き起こしやすい部位である。このような遅れ破壊が発生すると、前述の溶接継手の品質指標である引張強さにおいて、十分な強さが得られず、また、その部分(割れ)に水分が浸入すると、腐食が発生して強度がさらに低下するという問題が生じる。これらの問題が、高強度鋼板の適用による車体の軽量化(薄肉化)を阻害する一因である。
このような状況のもと、スポット溶接の通電が終了して一定時間が経過した後にテンパー通電を行ったり、高周波で加熱したりして、溶接部を焼戻して、溶接部の硬さを低下させる技術が知られている。しかし、この技術では、溶接工程が長時間となり、生産性が低下することや、焼戻しにより溶接部が軟化し、溶接金属(ナゲット)内での剥離破断が起こりやすいこと等があった。
Here, when high-strength steel plates are spot welded, there is a problem of delayed fracture (hydrogen embrittlement).
In order to achieve this strength, high-strength steel plates contain many elements with high hardenability such as Si and Mn in addition to C, and welding of welded joints formed by spot welding to high-strength steel plates. The part is hardened through the heating and cooling process of welding, becoming a martensitic structure and becoming hard. Furthermore, in the welded joint, tensile residual stress in the welded joint increases due to locally occurring transformation expansion and contraction. In particular, as the strength of the steel sheet increases, springback is more likely to occur after press forming, which increases the gap at the weld flange. Such gaps become a factor that further increases tensile residual stress when spot welding steel plates together.
For this reason, the welded parts of welded joints formed by spot welding to high-strength steel plates have high hardness and large tensile residual stress, so if hydrogen intrusion occurs, they are likely to cause delayed fracture. . When such delayed fracture occurs, sufficient tensile strength, which is a quality indicator for welded joints mentioned above, cannot be obtained, and if moisture infiltrates into that part (cracks), corrosion may occur. The problem arises that the strength is further reduced. These problems are one of the reasons why it is difficult to reduce the weight (thinner wall thickness) of vehicle bodies by using high-strength steel plates.
Under these circumstances, after a certain period of time has elapsed after the spot welding has been energized, tempering is applied or heated with high frequency to temper the weld and reduce the hardness of the weld. The technology is known. However, with this technique, the welding process takes a long time, which reduces productivity, and the welded part softens due to tempering, which tends to cause peeling and fracture within the weld metal (nugget).

このような状況のもと、耐遅れ破壊の発生を抑制するための種々の提案がされている。
例えば、特許文献1は、高強度の亜鉛系めっき鋼板が小径ナゲットの形成により接合される場合であっても耐遅れ破壊特性に優れた溶接部を形成することができる抵抗スポット溶接方法を開示している。
Under these circumstances, various proposals have been made to suppress the occurrence of delayed fracture.
For example, Patent Document 1 discloses a resistance spot welding method that can form a welded part with excellent delayed fracture resistance even when high-strength galvanized steel plates are joined by forming small-diameter nuggets. ing.

特開2018-171649号公報Japanese Patent Application Publication No. 2018-171649

しかしながら、特許文献1の技術では、使用する鋼板の厚さや溶接条件によっては優れた継手強度と耐遅れ破壊特性を両立することは困難であった。 However, with the technique of Patent Document 1, it is difficult to achieve both excellent joint strength and delayed fracture resistance depending on the thickness of the steel plate used and the welding conditions.

本発明は、上述の実情に鑑みてなされたものであり、継手強度に優れるとともに、耐遅れ破壊特性に優れた抵抗スポット溶接継手の製造方法を提供することを課題とする。 The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for manufacturing a resistance spot welded joint that has excellent joint strength and delayed fracture resistance.

本発明の具体的方法は以下のとおりである。 The specific method of the present invention is as follows.

[1]本発明の第一の態様は、引張強度が780MPa以上である鋼板を少なくとも一枚含む複数枚の鋼板を重ね合わせて抵抗スポット溶接により接合し、抵抗スポット溶接継手を製造する方法であって、先端径が8mm以上12mm以下である一対のDR電極を用いて前記鋼板の表面に加圧した状態で通電を行う予備通電工程と、前記予備通電工程の後に、前記一対のDR電極を用いて前記鋼板の表面に加圧した状態で通電を行う本通電工程と、前記本通電工程の後に前記一対のDR電極での加圧を保持する保持工程と、を備え、前記複数枚の鋼板のそれぞれの板厚は0.8mm~3.2mmであり、前記予備通電工程における加圧力をP1(kN)、電流をI1(kA)、通電時間をt1(s)とし、前記本通電工程における加圧力をP2(kN)、電流をI2(kA)としたとき、下記(1)式から(5)式を満足する。
2≦I1/h<4 ・・・(1)式
1.5≦P1/h<2.5 ・・・(2)式
0.1≦t1/h≦1.5 ・・・(3)式
4≦I2/h ・・・(4)式
2.5≦P2/h ・・・(5)式
ただし、hは、前記複数枚の鋼板の合計板厚(mm)の1/2の値である。
[2]上記[1]に記載の抵抗スポット溶接継手の製造方法では、前記保持工程における保持時間Ht(s)が0.4×h以下であってもよい。
[3]上記[1]又は[2]に記載の抵抗スポット溶接継手の製造方法では、前記複数枚の鋼板の少なくとも一枚が亜鉛めっき鋼板であってもよい。
[4]上記[3]に記載の抵抗スポット溶接継手の製造方法では、前記保持工程における保持時間Ht(s)が0.08×h以上であってもよい。
[1] A first aspect of the present invention is a method for manufacturing a resistance spot welded joint by overlapping and joining a plurality of steel plates, including at least one steel plate having a tensile strength of 780 MPa or more, by resistance spot welding. a preliminary energization step of applying current while pressurizing the surface of the steel plate using a pair of DR electrodes having a tip diameter of 8 mm or more and 12 mm or less; and after the preliminary energization step, using the pair of DR electrodes. a main energization step of applying current to the surface of the steel plates under pressure, and a holding step of maintaining the pressure applied by the pair of DR electrodes after the main energization step; The thickness of each plate is 0.8 mm to 3.2 mm, and the pressure in the preliminary energization process is P1 (kN), the current is I1 (kA), and the energization time is t1 (s). When the pressure is P2 (kN) and the current is I2 (kA), the following equations (1) to (5) are satisfied.
2≦I1/h<4 ... (1) formula 1.5≦P1/h<2.5 ... (2) formula 0.1≦t1/h≦1.5 ... (3) formula 4≦I2/h ...Equation (4) 2.5≦P2/h ...Equation (5) However, h is the value of 1/2 of the total thickness (mm) of the plurality of steel plates. be.
[2] In the method for manufacturing a resistance spot welded joint according to [1] above, the holding time Ht(s) in the holding step may be 0.4×h 2 or less.
[3] In the method for manufacturing a resistance spot welded joint according to [1] or [2] above, at least one of the plurality of steel plates may be a galvanized steel plate.
[4] In the method for manufacturing a resistance spot welded joint according to [3] above, the holding time Ht(s) in the holding step may be 0.08×h 2 or more.

本発明に係る抵抗スポット溶接継手の製造方法によれば、継手強度に優れるとともに、耐遅れ破壊特性に優れた抵抗スポット溶接継手を製造することができる。 According to the method for manufacturing a resistance spot welded joint according to the present invention, it is possible to manufacture a resistance spot welded joint that has excellent joint strength and delayed fracture resistance.

本実施形態に係る抵抗スポット溶接継手の製造方法で用いる電極と鋼板の概略図である。It is a schematic diagram of an electrode and a steel plate used in the manufacturing method of the resistance spot welding joint concerning this embodiment. 同実施形態で用いる電極の概略図である。It is a schematic diagram of the electrode used in the same embodiment.

本発明者等は、上述した課題を解決するための方策について鋭意検討した結果、
(A)ナゲット径が同一の溶接継手であっても、高い加圧力で通電して得られた溶接継手の方が、低い加圧力で通電して得られた溶接継手に比べ、鋼板間や鋼板表面に付着した水素源としての水と油に起因してスポット溶接部に水素が侵入しやすくなる傾向にあること、
(B)スポット溶接部に水素が侵入した場合、引張応力が集中するナゲット端部において引張応力と水素量が臨界値に達した際に遅れ破壊が発生すること、
(C)遅れ破壊は、板間隙間が増大するほど(プレス精度が悪化するほど)、かつナゲット径が小さい時に生じやすいこと、
(D)従って、電流、加圧力、及び通電時間を適正範囲とした予備通電を行うことにより鋼板同士の接触面積を徐々に増やしつつ、水素源となる水と油を広い範囲(面積)で蒸発させ、その後、本通電を行うことにより、優れた継手強度と耐遅れ破壊特性を両立できること、
を新たに見出した。
尚、(A)に関し、加圧力が高い場合に溶接部に侵入する水素量が増加傾向にある理由としては、加圧力が高い場合には鋼板同士の接触面積や電極と鋼板の接触面積が増加し電流密度が減少するため、同等のナゲット径を得るためには電流も高くする必要があり、初期の接触面積と電流が増加するためであると推察される。
As a result of intensive study on measures to solve the above-mentioned problems, the present inventors found that
(A) Even for welded joints with the same nugget diameter, welded joints obtained by energizing with a high pressure force are better than welded joints obtained by energizing with a low pressure force due to the gap between steel plates. Hydrogen tends to easily enter spot welds due to water and oil as hydrogen sources adhering to the surface;
(B) If hydrogen enters the spot weld, delayed fracture will occur when the tensile stress and amount of hydrogen reach critical values at the nugget end where tensile stress is concentrated;
(C) Delayed fracture is more likely to occur as the inter-plate gap increases (as press accuracy deteriorates) and as the nugget diameter becomes smaller;
(D) Therefore, by performing preliminary energization with appropriate current, pressure, and energization time, the contact area between the steel plates is gradually increased, and water and oil, which serve as hydrogen sources, are evaporated over a wide range (area). and then by energizing, it is possible to achieve both excellent joint strength and delayed fracture resistance.
I discovered something new.
Regarding (A), the reason why the amount of hydrogen entering the weld zone tends to increase when the pressurizing force is high is that when the pressurizing force is high, the contact area between the steel plates and the contact area between the electrode and the steel plate increase. However, since the current density decreases, it is necessary to increase the current in order to obtain the same nugget diameter, which is presumably because the initial contact area and current increase.

本発明は上述の知見に基づきなされたものである。以下、本発明の実施形態に係る抵抗スポット溶接継手の製造方法について、詳細に説明する。 The present invention has been made based on the above findings. Hereinafter, a method for manufacturing a resistance spot welded joint according to an embodiment of the present invention will be described in detail.

図1に示すように、本実施形態に係る抵抗スポット溶接継手の製造方法では、互いに重ね合わせた第一鋼板1と第二鋼板2を、第一電極10と第二電極20により挟み込んで加圧した状態で、予備通電工程、本通電工程、及び保持工程を行うことで、抵抗スポット溶接を実施する。 As shown in FIG. 1, in the method for manufacturing a resistance spot welded joint according to the present embodiment, a first steel plate 1 and a second steel plate 2, which are stacked on top of each other, are sandwiched between a first electrode 10 and a second electrode 20 and then pressurized. In this state, resistance spot welding is performed by performing a preliminary energization process, a main energization process, and a holding process.

(鋼板)
本実施形態においては、第一鋼板1と第二鋼板2の二枚を重ね合わせて抵抗スポット溶接を行うが、更に他の鋼板を重ね合わせて、三枚以上重ね合わせて抵抗スポット溶接を行ってもよい。
第一鋼板1と第二鋼板2は、少なくとも一方が引張強度780MPa以上であればよく、両方が引張強度780MPa以上であってもよい。鋼板が三枚以上の場合、少なくとも一枚の鋼板の引張強度が780MPa以上であればよい。
更には、第一鋼板1と第二鋼板2の少なくとも一方が、亜鉛めっき鋼板であってもよい。鋼板が三枚以上の場合、少なくとも一枚の鋼板が亜鉛めっき鋼板であってよい。亜鉛めっきの付着量は、片面あたり30~100g/mであればよい。
重ね合わせる鋼板のそれぞれの板厚は特に限定されるものではなく、例えば0.8mm~3.2mmであればよい。
尚、本明細書においては、重ね合わせる鋼板の合計板厚(mm)の1/2の値をhと呼称する。例えば、板厚1mmの鋼板を三枚重ね合わせる場合、hの値は1.5である。
(steel plate)
In this embodiment, two steel plates, the first steel plate 1 and the second steel plate 2, are overlapped and resistance spot welded, but other steel plates are also overlapped, and three or more steel plates are overlapped and resistance spot welded. Good too.
At least one of the first steel plate 1 and the second steel plate 2 may have a tensile strength of 780 MPa or more, and both may have a tensile strength of 780 MPa or more. When there are three or more steel plates, the tensile strength of at least one steel plate should be 780 MPa or more.
Furthermore, at least one of the first steel plate 1 and the second steel plate 2 may be a galvanized steel plate. When there are three or more steel plates, at least one steel plate may be a galvanized steel plate. The amount of zinc plating applied may be 30 to 100 g/m 2 per side.
The thickness of each of the overlapping steel plates is not particularly limited, and may be, for example, 0.8 mm to 3.2 mm.
In this specification, the value of 1/2 of the total thickness (mm) of the steel plates to be stacked is referred to as h. For example, when three steel plates with a thickness of 1 mm are stacked, the value of h is 1.5.

(電極)
図1に示すように、第一電極10はDR電極であり、先端部11と、先端部11に連続部12を介して連なる本体部13とを有する。
先端部11は、鋼板への加圧力に応じて鋼板との接触面積が変化する部位であり、図2に示すように先端R(電極先端の曲面の曲率半径)が一定値である部位を意味する。先端Rは30mm以上であればよく、例えば40mmである。先端Rの最大値は100mmであればよい。
連続部12は、先端部11よりも曲率半径が小さい部位である。連続部12の曲率半径は例えば6mm以上であればよい。
本体部13は略円柱状の部位であり、一端が連続部12に連接し、他端は図示しない電極上部の構造体に接続される。本体部13の直径Dは、12mm~20mmであればよい。
(electrode)
As shown in FIG. 1, the first electrode 10 is a DR electrode, and includes a tip 11 and a main body 13 that is connected to the tip 11 via a continuous portion 12.
The tip portion 11 is a portion where the contact area with the steel plate changes depending on the pressure applied to the steel plate, and means a portion where the tip R (radius of curvature of the curved surface of the electrode tip) is a constant value as shown in FIG. do. The tip R may be 30 mm or more, for example, 40 mm. The maximum value of the tip R may be 100 mm.
The continuous portion 12 is a portion having a smaller radius of curvature than the tip portion 11. The radius of curvature of the continuous portion 12 may be, for example, 6 mm or more.
The main body part 13 is a substantially cylindrical part, and one end is connected to the continuous part 12, and the other end is connected to a structure (not shown) above the electrode. The diameter D of the main body portion 13 may be 12 mm to 20 mm.

第一電極10は、先端径dが8mm以上であることにより、後述する予備通電工程において鋼板表面の水素源である油や水を十分な面積で除去することができるため、遅れ破壊を防止することができる。
従って、第一電極10の先端径dは8mm以上であり、好ましくは9mm以上である。
一方、第一電極10の先端径dが12mm超である場合、接触面積が大きくなることに起因して所望の電流密度を得ることが困難となる。従って、第一電極10の先端径dは12mm以下であり、好ましくは11mm以下である。
Since the first electrode 10 has a tip diameter d of 8 mm or more, it is possible to remove oil and water, which are hydrogen sources, from the surface of the steel plate over a sufficient area in the preliminary energization process described later, thereby preventing delayed fracture. be able to.
Therefore, the tip diameter d of the first electrode 10 is 8 mm or more, preferably 9 mm or more.
On the other hand, if the tip diameter d of the first electrode 10 is more than 12 mm, it becomes difficult to obtain a desired current density due to the increased contact area. Therefore, the tip diameter d of the first electrode 10 is 12 mm or less, preferably 11 mm or less.

第二電極20は、第一電極10と同様に、先端部21と、先端部21に連続部22を介して連なる本体部23とを有する。第二電極20の形状や寸法は第一電極10と同じであればよいため説明は省略する。 The second electrode 20 , like the first electrode 10 , includes a tip 21 and a main body 23 connected to the tip 21 via a continuous portion 22 . The shape and dimensions of the second electrode 20 need only be the same as those of the first electrode 10, so a description thereof will be omitted.

本実施形態に係る抵抗スポット溶接継手の製造方法では、上記の第一電極10と第二電極20とを用いて、予備通電工程と、本通電工程と、保持工程とを行う。 In the method for manufacturing a resistance spot welded joint according to the present embodiment, a preliminary energization process, a main energization process, and a holding process are performed using the first electrode 10 and the second electrode 20 described above.

(予備通電工程)
予備通電工程では、一対の電極1で第一鋼板1、第二鋼板2を加圧した状態で通電を行う。
ここで、予備通電工程における加圧力をP1(kN)、電流をI1(kA)、通電時間をt1(s)としたとき、下記(1)式から(3)式を満足する。
2≦I1/h<4(kA/mm) ・・・(1)式
1.5≦P1/h<2.5(kN/mm) ・・・(2)式
0.1≦t1/h≦1.5 (s/mm)・・・(3)式
(Preliminary energization process)
In the preliminary energization process, electricity is applied while the first steel plate 1 and the second steel plate 2 are pressurized by the pair of electrodes 1.
Here, when the pressurizing force in the preliminary energization step is P1 (kN), the current is I1 (kA), and the energization time is t1 (s), the following equations (1) to (3) are satisfied.
2≦I1/h<4 (kA/mm) ... (1) formula 1.5≦P1/h<2.5 (kN/mm) ... (2) formula 0.1≦t1/h≦ 1.5 (s/mm)...Equation (3)

(1)式は、予備通電工程における、hに対する電流I1の範囲を規定するものである。I1/hが2未満である場合、(2)式と(3)式を満たしていても、入熱不足により鋼板表面の水素源である油や水を十分に除去することが困難となる。このため、本通電工程において水素が溶接部に侵入し、遅れ破壊が発生する場合がある。従って、I1/hは2以上である。
一方、I1/hが4以上である場合は予備通電工程を行わずに本通電工程を行うことと等しいため、鋼板表面の水素源である油や水を十分に除去できていない状態でスポット溶接が実施されることになる。従って、水素が溶接部に侵入し、遅れ破壊が発生する場合がある。従って、I1/hは4未満である。
Equation (1) defines the range of current I1 with respect to h in the preliminary energization process. When I1/h is less than 2, even if formulas (2) and (3) are satisfied, it becomes difficult to sufficiently remove oil and water, which are hydrogen sources, from the surface of the steel plate due to insufficient heat input. For this reason, hydrogen may enter the welded portion during the main energization process, causing delayed fracture. Therefore, I1/h is 2 or more.
On the other hand, if I1/h is 4 or more, it is equivalent to performing the main energization process without performing the preliminary energization process, so spot welding is performed without sufficient removal of oil and water, which are hydrogen sources, from the surface of the steel plate. will be implemented. Therefore, hydrogen may enter the welded portion and delayed fracture may occur. Therefore, I1/h is less than 4.

(2)式は、予備通電工程における、hに対する加圧力P1の範囲を規定するものである。P1/hが1.5未満である場合、加圧力が低いことにより鋼板(第一鋼板1、第二鋼板2)と電極(第一電極10、第二電極20)との接触面積及び鋼板同士の接触面積が小さくなる。従って、(1)式と(3)式を満たしていても、鋼板表面の水素源である油や水を除去できる範囲が狭くなる。このため、本通電工程において水素が溶接部に侵入し、遅れ破壊が発生する場合がある。従って、P1/hは1.5以上であり、より好ましくは1.7以上である。
一方、P1/hが2.5超である場合、加圧力が高いことにより鋼板と電極との接触面積及び鋼板同士の接触面積が大きくなる。このため、電流密度が小さくなり、(1)式と(2)式を満たしていても、鋼板表面の水素源である油や水を十分に除去することが困難となる。このため、本通電工程において水素が溶接部に侵入し、遅れ破壊が発生する場合がある。従って、P1/hは2.5以下であり、より好ましくは2.3以下である。
Equation (2) defines the range of the pressing force P1 with respect to h in the preliminary energization step. When P1/h is less than 1.5, the contact area between the steel plates (first steel plate 1, second steel plate 2) and electrodes (first electrode 10, second electrode 20) and the steel plates are reduced due to the low pressurizing force. contact area becomes smaller. Therefore, even if formulas (1) and (3) are satisfied, the range in which oil and water, which are hydrogen sources, on the surface of the steel sheet can be removed becomes narrow. For this reason, hydrogen may enter the welded portion during the main energization process, causing delayed fracture. Therefore, P1/h is 1.5 or more, more preferably 1.7 or more.
On the other hand, when P1/h is more than 2.5, the contact area between the steel plate and the electrode and the contact area between the steel plates becomes large due to the high pressing force. Therefore, the current density becomes small, and even if equations (1) and (2) are satisfied, it becomes difficult to sufficiently remove oil and water, which are hydrogen sources, from the surface of the steel sheet. For this reason, hydrogen may enter the welded portion during the main energization process, causing delayed fracture. Therefore, P1/h is 2.5 or less, more preferably 2.3 or less.

(3)式は、予備通電工程における、hに対する通電時間t1の範囲を規定するものである。t1/hが0.1未満である場合、(1)式と(2)式を満たしていても、通電時間が短いことにより鋼板表面の水素源である油や水を十分に除去することが困難となる。このため、本通電工程において水素が溶接部に侵入し、遅れ破壊が発生する場合がある。従って、t1/hは0.1以上であり、より好ましくは0.5以上である。
一方、t1/hが1.5超であっても、鋼板表面の水素源である油や水を除去する効果は飽和し、寧ろ生産性の低下が懸念される。従って、t1/hは1.5以下である。
予備通電と本通電との間は、クール時間を設けず、すぐに本通電をすることが、遅れ破壊抑制のために好ましい。
予備通電をアップスロープにしてもよい。この場合、予備通電の初期の電流は2≦I1/h≦3(kA/mm)とし、徐々に電流値を上げ、予備通電の終了時の電流値と初期の電流値との平均値が、2≦I1/h<4(kA/mm)となるようにする。
Equation (3) defines the range of energization time t1 with respect to h in the preliminary energization step. If t1/h is less than 0.1, even if formulas (1) and (2) are satisfied, the energization time is too short to sufficiently remove oil and water, which are hydrogen sources, from the surface of the steel plate. It becomes difficult. For this reason, hydrogen may enter the welded portion during the main energization process, causing delayed fracture. Therefore, t1/h is 0.1 or more, more preferably 0.5 or more.
On the other hand, even if t1/h exceeds 1.5, the effect of removing oil and water, which are hydrogen sources, from the surface of the steel sheet is saturated, and there is a concern that productivity may decrease. Therefore, t1/h is 1.5 or less.
It is preferable to immediately carry out main energization without providing a cool down period between preliminary energization and main energization in order to suppress delayed breakdown.
Preliminary energization may be upslope. In this case, the initial current of pre-energization is set to 2≦I1/h≦3 (kA/mm), the current value is gradually increased, and the average value of the current value at the end of pre-energization and the initial current value is 2≦I1/h<4 (kA/mm).

(本通電工程)
本通電工程では、上述の予備通電工程の後に、電極1を用いて前記鋼板の表面に加圧した状態で通電を行う。
ここで、本通電工程における加圧力をP2(kN)、電流をI2(kA)としたとき、下記(4)式と(5)式を満足する。
4≦I2/h ・・・(4)式
2.5≦P2/h ・・・(5)式
(Main energization process)
In the main energization step, after the above-described preliminary energization step, the surface of the steel plate is energized under pressure using the electrode 1.
Here, when the pressing force in the main energization step is P2 (kN) and the current is I2 (kA), the following equations (4) and (5) are satisfied.
4≦I2/h...Equation (4) 2.5≦P2/h...Equation (5)

(4)式は、本通電工程における、hに対する電流I2の範囲を規定するものであり、(5)式は、本通電工程における、hに対する加圧力P2の範囲を規定するものである。
本願では、上述のような予備通電により鋼板表面の水素源である油や水を十分に除去した状態で(4)式と(5)式を満たす電流及び加圧力で本通電を行うことで、耐遅れ破壊特性に優れたスポット溶接継手を得ることができる。
Equation (4) defines the range of current I2 with respect to h in the main energization step, and Equation (5) defines the range of pressing force P2 with respect to h in the main energization step.
In the present application, main energization is performed with a current and pressure that satisfy equations (4) and (5) after sufficiently removing oil and water, which are hydrogen sources on the surface of the steel plate, by the preliminary energization as described above. A spot welded joint with excellent delayed fracture resistance can be obtained.

尚、I2/hの上限値は規定する必要はないが、8以下であることが好ましい。I2/hが8超であると加圧力が適正範囲であっても散りが発生する確率が高まるからである。本通電の時間は、所望のナゲット径が得られるよう適宜設定すればよい。 Note that the upper limit value of I2/h does not need to be specified, but it is preferably 8 or less. This is because if I2/h exceeds 8, there is a high probability that expulsion will occur even if the pressurizing force is within an appropriate range. The time for main energization may be appropriately set so as to obtain a desired nugget diameter.

(保持工程)
保持工程では、上述の本通電工程の後に、所定の時間、電極による鋼の表面への加圧を保持する。保持を行うことにより溶融金属の凝固を進ませることができ、鋼板強度が高い場合や板間に隙間がある場合でも溶接部の強度を高めることができる。保持時間Htは0秒超であればよいが、0.04秒以上であることが好ましい。
保持時間Htの上限は、生産性の観点、および継手強度が低下する可能性を考慮し、0.4×hを上限とすることが好ましい。保持時間Htを0.4×hより長くすると、例えば十字引張継手の強度が低下するためである。この理由は、保持時間Htが所定範囲を超えると、電極の抜熱によって溶接部が急速冷却され溶接部が硬化するためである。硬化によって溶接部のじん性は低下し、継手も低下すると考えられる。さらに、溶接部の硬化は水素脆化の感受性を高める。遅れ破壊抑制の効果を一層確実とするためにも0.4×hを保持時間Htの上限とすることが好ましい。一方、保持時間Htが0.4×h以下であれば、電極解放後の冷却が比較的緩やかとなるため、オートテンパ―(自己焼戻し)が進行し、溶接部のじん性が改善されると共に、水素脆化の感受性を改善できる。従って、保持時間Htの上限は0.4×hである。
(holding process)
In the holding step, after the above-described main energization step, the pressure applied to the surface of the steel by the electrode is maintained for a predetermined period of time. By holding, the solidification of the molten metal can proceed, and the strength of the welded part can be increased even when the steel plate strength is high or there is a gap between the plates. The holding time Ht may be more than 0 seconds, but is preferably 0.04 seconds or more.
The upper limit of the holding time Ht is preferably set to 0.4×h 2 in consideration of the productivity and the possibility that the joint strength will decrease. This is because if the holding time Ht is made longer than 0.4×h 2 , the strength of the cross-tension joint, for example, decreases. The reason for this is that when the holding time Ht exceeds a predetermined range, the welded portion is rapidly cooled due to heat removal from the electrode, and the welded portion is hardened. It is thought that hardening reduces the toughness of the weld and the joint. Additionally, hardening of the weld increases susceptibility to hydrogen embrittlement. In order to further ensure the effect of suppressing delayed fracture, it is preferable to set the upper limit of the holding time Ht to 0.4×h 2 . On the other hand, if the holding time Ht is 0.4× h2 or less, the cooling after the electrode is released will be relatively slow, so auto-tempering will proceed and the toughness of the weld will be improved. At the same time, susceptibility to hydrogen embrittlement can be improved. Therefore, the upper limit of the retention time Ht is 0.4× h2 .

ここで、複数の鋼板の少なくとも一枚が亜鉛めっき層を有する場合においては、保持時間Htは0.08×h以上であることが好ましい。
複数の鋼板の少なくとも一枚が亜鉛めっき層を有する場合には、予備通電工程と本通電工程の条件によっては、溶接中に溶融した亜鉛が固体の鋼板と接触することに起因してLME割れ(Liquid Metal Embrittlement Crack)が発生する場合がある。LME割れは、溶接中に溶融した亜鉛が固体の鋼板と接触すること、またその部位に引張応力(ひずみ)が働くことで発生する。従って、保持時間Htを、0.08×h以上とすることで、溶融している亜鉛が保持時間中に凝固する(溶融亜鉛が減少する、または完全に無くなる)ため、保持が終了し電極が解放されるときに引張応力が発生しても、LME割れを抑制することができる。従って、複数の鋼板の少なくとも一枚が亜鉛めっき層を有する場合においては、保持時間Htの下限は0.08×hとすることが好ましい。
尚、複数の鋼板の少なくとも一枚が亜鉛めっき層を有する場合においては、予備通電工程により鋼板表層の亜鉛めっき層を除去したり、あるいは亜鉛めっき層の合金化を進めたりする効果があるため、予備通電工程と保持工程の適正化の組合せによってLME割れの抑制をより確実にできる。
Here, in the case where at least one of the plurality of steel plates has a galvanized layer, the holding time Ht is preferably 0.08×h 2 or more.
When at least one of the plurality of steel plates has a galvanized layer, depending on the conditions of the preliminary energization process and the main energization process, LME cracking may occur due to contact of molten zinc with the solid steel plate during welding. Liquid Metal Embrittlement Crack) may occur. LME cracking occurs when molten zinc comes into contact with a solid steel plate during welding and when tensile stress (strain) is applied to that area. Therefore, by setting the holding time Ht to 0.08 x h2 or more, the molten zinc will solidify during the holding time (the molten zinc will decrease or disappear completely), and the holding will end and the electrode Even if tensile stress is generated when is released, LME cracking can be suppressed. Therefore, when at least one of the plurality of steel plates has a galvanized layer, the lower limit of the holding time Ht is preferably 0.08×h 2 .
In addition, when at least one of the plurality of steel plates has a galvanized layer, the preliminary energization process has the effect of removing the galvanized layer on the surface of the steel plate or promoting alloying of the galvanized layer. LME cracking can be suppressed more reliably by combining the preliminary energization process and the optimization of the holding process.

上述のように、本実施形態に係る抵抗スポット溶接継手の製造方法によれば、電流、加圧力、及び通電時間を適正範囲とした予備通電を行うことにより水素源となる水と油を蒸発させ、その後、本通電を行うことにより、優れた継手強度と耐遅れ破壊特性を両立できる。 As described above, according to the method for manufacturing a resistance spot welded joint according to the present embodiment, water and oil, which serve as hydrogen sources, are evaporated by performing preliminary energization with the current, pressing force, and energization time set within appropriate ranges. Then, by carrying out main energization, it is possible to achieve both excellent joint strength and delayed fracture resistance.

(実施例)
以下、本発明の効果を実施例により具体的に説明する。
(Example)
Hereinafter, the effects of the present invention will be specifically explained using examples.

表1に示す鋼板a、bを準備し、各鋼板をW40mm×L100mmに切断し、鋼板の両端にW40mm×L30mm×t2.0mmのスペーサーを挟んでこの中央をスポット溶接した。この中央の溶接点を評価の対象とした。 Steel plates a and b shown in Table 1 were prepared, each steel plate was cut into a size of W40 mm x L100 mm, and a spacer of W40 mm x L30 mm x T2.0 mm was sandwiched between both ends of the steel plate, and the center was spot welded. This central welding point was targeted for evaluation.

Figure 0007368716000001
Figure 0007368716000001

電極としては、本体部の直径Dが16mm、先端部の曲率半径(先端R)が40mm、連続部の曲率半径が8mmであり、先端径dが6mm又は8mmである2種類のCr-Cu製のDR電極を用いた。
表2に、各実験例で用いた鋼板と電極、及び、溶接条件を示す。本発明の範囲外の数値には下線を付した。予備通電と本通電の間のクール時間はゼロとした。
The electrodes were made of two types of Cr-Cu, with a main body diameter D of 16 mm, a tip radius of curvature (tip R) of 40 mm, a continuous portion radius of curvature of 8 mm, and a tip diameter d of 6 mm or 8 mm. A DR electrode was used.
Table 2 shows the steel plates, electrodes, and welding conditions used in each experimental example. Values outside the scope of the present invention are underlined. The cooling time between preliminary energization and main energization was set to zero.

Figure 0007368716000002
Figure 0007368716000002

表3に、それぞれの実験例について、遅れ破壊及び継手強度の評価結果を示す。 Table 3 shows the evaluation results of delayed fracture and joint strength for each experimental example.

遅れ破壊の評価は、継手を板表面に垂直で板長手方向に、ナゲットの中心を通る断面で切断し、この切断片からナゲットを含む試験片を切り出し、切断面を研磨し、研磨された切断面を光学顕微鏡で観察して行った。この試験を5片の試験片に実施し、試験片5片とも割れが発生しない場合を「遅れ破壊無し」とした。 Delayed fracture evaluation is performed by cutting the joint perpendicular to the plate surface in the longitudinal direction of the plate with a cross section that passes through the center of the nugget, cutting out a test piece containing the nugget from this cut piece, polishing the cut surface, and cutting the polished cut. The surface was observed using an optical microscope. This test was conducted on five test pieces, and the case where no cracking occurred in any of the five test pieces was defined as "no delayed fracture."

継手強度は、引張せん断試験及(JIS Z3136)び十字引張試験(JIS Z3137)により測定した引張せん断強度(TSS)及び十字引張強度(CTS)により評価した。TSSが19kN以下、又は、CTSが6.2以下である場合を不合格と判断した。
尚、スポット溶接時に散りが発生した場合には「有り」と記載している。
The joint strength was evaluated by tensile shear strength (TSS) and cross tensile strength (CTS) measured by a tensile shear test (JIS Z3136) and a cross tensile test (JIS Z3137). A case where TSS was 19 kN or less or CTS was 6.2 or less was judged to be a failure.
Note that if expulsion occurs during spot welding, it is written as "Yes."

Figure 0007368716000003
Figure 0007368716000003

本発明例に係る実験例3,4,5,10,11,12では、適切な条件で予備通電工程及び本通電工程を実施したことにより、継手強度に優れるとともに、耐遅れ破壊特性に優れた抵抗スポット溶接継手を製造することができた。 In Experimental Examples 3, 4, 5, 10, 11, and 12 according to the present invention, the preliminary energization process and the main energization process were performed under appropriate conditions, resulting in excellent joint strength and delayed fracture resistance. We were able to manufacture resistance spot welded joints.

比較例である実験例1では、予備通電工程を行わずに本通電工程を行ったことに起因して、水素源となる水と油が残った状態で本通電工程を行ったことにより、遅れ破壊が発生した。
比較例である実験例2では、電極の先端径が小さかったことに起因して、電極と鋼板との接触面積が小さく、水素源となる水と油を十分に取り除くことができず、遅れ破壊が発生した。
比較例である実験例6では、予備通電工程におけるP1/h、すなわち板厚に対する加圧力が小さかったことに起因して、電極と鋼板との接触面積が小さく、水素源となる水と油を十分に取り除くことができず、遅れ破壊が発生した。
比較例である実験例7では、予備通電工程におけるI1/h、すなわち板厚に対する電流が大きかったことに起因して散りが発生した。
比較例である実験例8では、本通電工程におけるP2/h、すなわち板厚に対する加圧力が小さかったことに起因して、電極と鋼板との接触面積が小さくなり、電流密度が大きくなり散りが発生した。
比較例である実験例9では、本通電工程におけるI2/h、すなわち板厚に対する電流が小さかったことに起因して入熱が不十分であり、ナゲット形成が困難となり十分な継手強度を得られなかった。
In Experimental Example 1, which is a comparative example, the main energization process was performed without performing the preliminary energization process, and the main energization process was performed with water and oil remaining as hydrogen sources, resulting in a delay. Destruction occurred.
In Experimental Example 2, which is a comparative example, due to the small tip diameter of the electrode, the contact area between the electrode and the steel plate was small, and water and oil, which are hydrogen sources, could not be sufficiently removed, resulting in delayed fracture. There has occurred.
In Experimental Example 6, which is a comparative example, the contact area between the electrode and the steel plate was small due to the fact that P1/h in the preliminary energization process, that is, the pressing force with respect to the plate thickness was small, and water and oil, which serve as hydrogen sources, were small. It could not be removed sufficiently, resulting in delayed destruction.
In Experimental Example 7, which is a comparative example, expulsion occurred because I1/h in the preliminary energization step, that is, the current relative to the plate thickness was large.
In Experimental Example 8, which is a comparative example, due to the fact that P2/h in the main energization process, that is, the pressing force with respect to the plate thickness, was small, the contact area between the electrode and the steel plate became small, the current density increased, and scattering was reduced. Occurred.
In Experimental Example 9, which is a comparative example, heat input was insufficient due to I2/h in the main energization process, that is, the current relative to the plate thickness was small, making it difficult to form a nugget and making it impossible to obtain sufficient joint strength. There wasn't.

本発明によれば、継手強度に優れるとともに耐遅れ破壊特性に優れた抵抗スポット溶接継手を提供することができ、産業上の利用価値が高い。 According to the present invention, it is possible to provide a resistance spot welded joint that has excellent joint strength and delayed fracture resistance, and has high industrial utility value.

1 第一鋼板
2 第二鋼板
10 第一電極
11 先端部
12 連続部
13 本体部
20 第二電極
21 先端部
22 連続部
23 本体部
1 First steel plate 2 Second steel plate 10 First electrode 11 Tip portion 12 Continuous portion 13 Main body portion 20 Second electrode 21 Tip portion 22 Continuous portion 23 Main body portion

Claims (4)

引張強度が780MPa以上である鋼板を少なくとも一枚含む複数枚の鋼板を重ね合わせて抵抗スポット溶接により接合し、抵抗スポット溶接継手を製造する方法であって、 先端径が8mm以上12mm以下である一対のDR電極を用いて前記鋼板の表面に加圧した状態で通電を行う予備通電工程と、
前記予備通電工程の後に、前記一対のDR電極を用いて前記鋼板の表面に加圧した状態で通電を行う本通電工程と、
前記本通電工程の後に前記一対のDR電極での加圧を保持する保持工程と、
を備え、
前記複数枚の鋼板のそれぞれの板厚は0.8mm~3.2mmであり、
前記予備通電工程における加圧力をP1(kN)、電流をI1(kA)、通電時間をt1(s)とし、前記本通電工程における加圧力をP2(kN)、電流をI2(kA)としたとき、下記(1)式から(5)式を満足する抵抗スポット溶接継手の製造方法。
2≦I1/h<4 ・・・(1)式
1.5≦P1/h<2.5 ・・・(2)式
0.1≦t1/h≦1.5 ・・・(3)式
4≦I2/h ・・・(4)式
2.5≦P2/h ・・・(5)式
ただし、hは、前記複数枚の鋼板の合計板厚(mm)の1/2の値である。
A method for manufacturing a resistance spot welded joint by overlapping and joining a plurality of steel plates, including at least one steel plate having a tensile strength of 780 MPa or more, by resistance spot welding, the pair having a tip diameter of 8 mm or more and 12 mm or less. a preliminary energization step of energizing the surface of the steel plate under pressure using a DR electrode;
After the preliminary energization step, a main energization step of energizing the surface of the steel plate under pressure using the pair of DR electrodes;
a holding step of maintaining pressure at the pair of DR electrodes after the main energization step;
Equipped with
The thickness of each of the plurality of steel plates is 0.8 mm to 3.2 mm,
The pressurizing force in the preliminary energization step was P1 (kN), the current was I1 (kA), the energization time was t1 (s), and the pressurizing force in the main energization step was P2 (kN), and the current was I2 (kA). A method for manufacturing a resistance spot welded joint that satisfies the following equations (1) to (5).
2≦I1/h<4 ... (1) formula 1.5≦P1/h<2.5 ... (2) formula 0.1≦t1/h≦1.5 ... (3) formula 4≦I2/h ...Equation (4) 2.5≦P2/h ...Equation (5) However, h is the value of 1/2 of the total thickness (mm) of the plurality of steel plates. be.
前記保持工程における保持時間Ht(s)が0.4×h以下である請求項1に記載の抵抗スポット溶接継手の製造方法。 The method for manufacturing a resistance spot welded joint according to claim 1, wherein the holding time Ht(s) in the holding step is 0.4× h2 or less. 前記複数枚の鋼板の少なくとも一枚が亜鉛めっき鋼板である請求項1又は2に記載の抵抗スポット溶接継手の製造方法。 The method for manufacturing a resistance spot welded joint according to claim 1 or 2, wherein at least one of the plurality of steel plates is a galvanized steel plate. 前記保持工程における保持時間Ht(s)が0.08×h以上である請求項3に記載の抵抗スポット溶接継手の製造方法。 The method for manufacturing a resistance spot welded joint according to claim 3, wherein the holding time Ht(s) in the holding step is 0.08×h2 or more.
JP2019202259A 2019-11-07 2019-11-07 Manufacturing method of resistance spot welding joints Active JP7368716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019202259A JP7368716B2 (en) 2019-11-07 2019-11-07 Manufacturing method of resistance spot welding joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202259A JP7368716B2 (en) 2019-11-07 2019-11-07 Manufacturing method of resistance spot welding joints

Publications (2)

Publication Number Publication Date
JP2021074737A JP2021074737A (en) 2021-05-20
JP7368716B2 true JP7368716B2 (en) 2023-10-25

Family

ID=75899923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202259A Active JP7368716B2 (en) 2019-11-07 2019-11-07 Manufacturing method of resistance spot welding joints

Country Status (1)

Country Link
JP (1) JP7368716B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358500A (en) 2003-06-04 2004-12-24 Daihatsu Motor Co Ltd Spot welding method and spot welding device
JP2010172946A (en) 2009-01-30 2010-08-12 Jfe Steel Corp Resistance spot welding method of high-strength steel sheet
WO2014171495A1 (en) 2013-04-17 2014-10-23 新日鐵住金株式会社 Spot welding method
WO2017010071A1 (en) 2015-07-10 2017-01-19 Jfeスチール株式会社 Resistance spot welding method
WO2018123350A1 (en) 2016-12-26 2018-07-05 Jfeスチール株式会社 Resistance spot welding method
JP2018171649A (en) 2017-03-31 2018-11-08 Jfeスチール株式会社 Resistance spot-welding method and welding condition determination method for resistance spot welding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358500A (en) 2003-06-04 2004-12-24 Daihatsu Motor Co Ltd Spot welding method and spot welding device
JP2010172946A (en) 2009-01-30 2010-08-12 Jfe Steel Corp Resistance spot welding method of high-strength steel sheet
WO2014171495A1 (en) 2013-04-17 2014-10-23 新日鐵住金株式会社 Spot welding method
WO2017010071A1 (en) 2015-07-10 2017-01-19 Jfeスチール株式会社 Resistance spot welding method
WO2018123350A1 (en) 2016-12-26 2018-07-05 Jfeスチール株式会社 Resistance spot welding method
JP2018171649A (en) 2017-03-31 2018-11-08 Jfeスチール株式会社 Resistance spot-welding method and welding condition determination method for resistance spot welding

Also Published As

Publication number Publication date
JP2021074737A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6558443B2 (en) Resistance spot welding method
JP5713147B2 (en) Overlap welding member, automotive part, overlapping portion welding method, and overlap welding member manufacturing method
Sharma et al. Yb: YAG laser welding of TRIP780 steel with dual phase and mild steels for use in tailor welded blanks
JP6278154B2 (en) Resistance spot welding method and manufacturing method of welded member
JP6379819B2 (en) Lap welding member, lap resistance seam welding method of lap welding member, and lap welding member for automobile having lap welding part
JP6168246B1 (en) Resistance spot welding method and manufacturing method of welded member
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
JP7059572B2 (en) Welded joint manufacturing method and welded joint
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JP7368716B2 (en) Manufacturing method of resistance spot welding joints
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
JP6315161B1 (en) Resistance spot welding method
JPWO2020036198A1 (en) Resistance spot welding member and manufacturing method thereof
JP7184204B2 (en) Resistance spot welding method and method for manufacturing welded joints
JP2005103608A (en) Method of improving corrosion resistance, tensile strength and fatigue strength of joint obtained by applying spot welding to high strength plated steel sheet
JP2000167673A (en) Tailored blank, and its manufacture
JP7296985B2 (en) Resistance spot welding method and method for manufacturing resistance spot welded joints
JP7399360B1 (en) Projection welding joint manufacturing method, projection welding joint, and automobile parts
WO2022215103A1 (en) Resistance spot welded joint and method for manufacturing resistance spot welded joint
KR102374832B1 (en) Method for resistance spot welding for high-strength steel sheet
JP7247768B2 (en) Resistance welding method for high-strength steel plates
JP6811063B2 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
JP2023028884A (en) Friction welded joint, tailored blank material, molded article, and method for manufacturing friction welded joint
JP2005305461A (en) Manufacturing method of laser welding lap joint excellent in fatigue strength and laser welding lap joint formed thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R151 Written notification of patent or utility model registration

Ref document number: 7368716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151