JP2018171649A - Resistance spot-welding method and welding condition determination method for resistance spot welding - Google Patents

Resistance spot-welding method and welding condition determination method for resistance spot welding Download PDF

Info

Publication number
JP2018171649A
JP2018171649A JP2018057391A JP2018057391A JP2018171649A JP 2018171649 A JP2018171649 A JP 2018171649A JP 2018057391 A JP2018057391 A JP 2018057391A JP 2018057391 A JP2018057391 A JP 2018057391A JP 2018171649 A JP2018171649 A JP 2018171649A
Authority
JP
Japan
Prior art keywords
diameter
zinc
welding
energization
resistance spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018057391A
Other languages
Japanese (ja)
Other versions
JP6572986B2 (en
Inventor
泰明 沖田
Yasuaki Okita
泰明 沖田
直雄 川邉
Naoo Kawabe
直雄 川邉
松田 広志
Hiroshi Matsuda
広志 松田
池田 倫正
Tomomasa Ikeda
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018171649A publication Critical patent/JP2018171649A/en
Application granted granted Critical
Publication of JP6572986B2 publication Critical patent/JP6572986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a resistance spot-welding method capable of forming a weld zone having superior delayed fracture resistance properties even when a high-strength galvanized steel plate is joined with a small-diameter nugget formed.SOLUTION: A resistance spot-welding method is characterized in that at least one steel plate is a high-strength galvanized steel plate of 980-1,770 MPa in tensile strength which has a galvanizing layer on a surface on a weld face side, and also comprises a preliminary energization process and a main energization process energizing with a current value higher than that of the preliminary energization process after the preliminary energization process. The preliminary energization process is performed under welding conditions that a weld zone 22 has a diameter of 2√t [mm] or smaller and a region 23 where galvanizing of 3√t [mm] or larger in diameter is discharged is formed, a plate thickness of a steel plate which is less in plate thickness between two adjacent steel plates to be joined together being t [mm] at a stage where the preliminary energization process is completed. The main energization process is performed under a welding condition that a nugget of 3√t [mm] or larger is formed.SELECTED DRAWING: Figure 2

Description

本発明は、高強度亜鉛系めっき鋼板の抵抗スポット溶接方法、および抵抗スポット溶接における溶接部の耐遅れ破壊特性に優れた溶接条件を判定するための抵抗スポット溶接の溶接条件判定方法に関する。   The present invention relates to a resistance spot welding method for high-strength zinc-based plated steel sheets, and a resistance spot welding welding condition determination method for determining welding conditions excellent in delayed fracture resistance of a welded portion in resistance spot welding.

自動車の燃費を向上させるための自動車車体の軽量化と衝突安全性の向上とを両立するために、使用する鋼板を高強度化してその板厚を低減する努力が続けられている。しかしながら、自動車用鋼板の引張強さ980MPa級以上への高強度化に伴い、溶接部の耐遅れ破壊特性の低下に対する懸念が生じてきた。   In order to achieve both a reduction in the weight of an automobile body and an improvement in collision safety in order to improve the fuel efficiency of the automobile, efforts have been made to increase the strength of the steel sheet used and reduce its thickness. However, with the increase in tensile strength of automobile steel plates to 980 MPa class or higher, there has been concern about the deterioration of delayed fracture resistance of welds.

詳述すると、自動車の生産工程で主に用いられている溶接方法は抵抗スポット溶接であるが、この抵抗スポット溶接の溶接部は、溶融した部分が急冷されることによりマルテンサイト変態を起こしやすく硬い組織となる。また、該溶接部には冷却過程の熱収縮により引張残留応力が発生する。さらに、鋼板表面のめっき層、油や水分などから溶接中に溶接金属内に水素が取り込まれたり、使用環境(例えば酸性環境下)から溶接部へ水素が進入する場合がある。したがって、抵抗スポット溶接の溶接部は、耐遅れ破壊特性の観点からは非常に不利な状態となる場合がある。従来は、鋼板の強度(引張強さ)がそれほど高くなかったために、溶接部への応力集中が比較的小さく、遅れ破壊が問題とされることはなかったが、鋼板の引張強さが980MPa級程度以上の高強度鋼板においては、炭素等の焼入れ性元素を多く含むため、ナゲット(抵抗スポット溶接によって溶融、凝固した部分)およびその近傍が非常に硬くなって、耐遅れ破壊が発生しやすい状態となる。また、該高強度鋼板においては、プレス成形が難しくなることから、重ね合わせたときに鋼板間に隙間が生じやすい。この隙間を一対の対向する電極で強制的に潰して溶接する抵抗スポット溶接では、溶接部にこの鋼板の隙間起因の引張応力が追加され、さらに遅れ破壊が発生しやすい状態となることが考えられる。   In detail, the welding method mainly used in the automobile production process is resistance spot welding. However, the welded portion of this resistance spot welding is hard to cause martensitic transformation by rapidly cooling the melted portion. Become an organization. In addition, tensile residual stress is generated in the weld due to thermal contraction during the cooling process. Furthermore, hydrogen may be taken into the weld metal during welding from a plating layer, oil, moisture, or the like on the surface of the steel sheet, or hydrogen may enter the weld from the use environment (for example, in an acidic environment). Accordingly, the resistance spot welded portion may be in a very disadvantageous state from the viewpoint of delayed fracture resistance. Conventionally, since the strength (tensile strength) of the steel plate was not so high, the stress concentration on the welded portion was relatively small and delayed fracture was not a problem, but the tensile strength of the steel plate was 980 MPa class. High-strength steel sheets of higher grades contain a lot of hardenable elements such as carbon, so the nugget (the part melted and solidified by resistance spot welding) and its vicinity become very hard and prone to delayed fracture resistance. It becomes. Moreover, in the high-strength steel plate, since press forming becomes difficult, a gap is easily generated between the steel plates when they are overlapped. In resistance spot welding in which this gap is forcibly crushed by a pair of opposed electrodes and welded, tensile stress due to the gap in this steel sheet is added to the welded part, and it is considered that delayed fracture is likely to occur. .

このような高強度鋼板の抵抗スポット溶接の溶接部の遅れ破壊の問題を解決する方法として、次のような技術がある。例えば、ナゲットを形成する第1通電の後に無通電とし、さらに第2通電を行う2段通電によって、鋼板圧接部からナゲット端部までの間を軟化させる方法(特許文献1)や、溶接通電直後に加圧力を上昇させると共に電流を減少させる等して、溶接部の靭性を改善し、引張り残留応力を低減する方法(特許文献2)が開示されている。   As a method for solving the problem of delayed fracture of the welded portion of resistance spot welding of such a high-strength steel sheet, there are the following techniques. For example, a method of softening the space between the steel plate press-contact portion and the nugget end by two-stage energization that performs non-energization after the first energization for forming the nugget and further performs the second energization, or immediately after welding energization A method of improving the toughness of the weld and reducing the tensile residual stress by increasing the applied pressure and decreasing the current (Patent Document 2) is disclosed.

国際公開第2014/171495号International Publication No. 2014/171495 特開2015−93282号公報Japanese Patent Laying-Open No. 2015-93282

特許文献1および特許文献2の方法は、その実施例からわかるように、ナゲット径が4.5√t[mm](t:鋼板の板厚)や、5√t[mm]以上と大きな場合を対象としている。また、酸浸漬試験による外部からの水素進入、すなわち、使用環境からの水素進入に対しての耐遅れ破壊性の改善を主に行うものである。   In the methods of Patent Document 1 and Patent Document 2, as can be seen from the examples, the nugget diameter is as large as 4.5√t [mm] (t: plate thickness of the steel plate) or 5√t [mm] or more. Is targeted. Moreover, it mainly improves the delayed fracture resistance against the hydrogen entry from the outside by the acid immersion test, that is, the hydrogen entry from the use environment.

しかしながら、引張強さ980MPa級以上の鋼板を用いた実際の車体組み立てにおいては、接合する部材間の隙間を抵抗スポット溶接機の電極加圧力で潰しきることが困難となるような場合も考えられる。その場合、特許文献1および特許文献2の方法では、通電開始時に鋼板間の接触状態が不十分となり、必要な径のナゲットを得ようとすると、スパッタが発生して適切な溶接条件とすることができない場合がある。また、自動車部品の性能を保証する上では、鋼板間の溶接部以外の接触部への分流など何らかの外乱によってナゲット径が予定より小さくなった場合においても、溶接部の耐遅れ破壊特性が良好であることも重要である。したがって、特許文献1および特許文献2に記載のナゲット径に比べて、より小さい4√t[mm]未満のナゲット径の場合においても、耐遅れ破壊特性が良好であることが求められる場合がある。特にナゲット径が小さい場合は、ナゲット端部にかかる応力が、ナゲット径が大きな場合に比較して大きくなることから、耐遅れ破壊性の観点からはより不利な状態となる。   However, in an actual vehicle body assembly using a steel sheet having a tensile strength of 980 MPa or more, there may be a case where it is difficult to crush the gap between the members to be joined with the electrode pressure of the resistance spot welder. In that case, in the methods of Patent Document 1 and Patent Document 2, when the energization is started, the contact state between the steel plates becomes insufficient, and when trying to obtain a nugget of a necessary diameter, spatter is generated and appropriate welding conditions are set. May not be possible. In addition, in order to guarantee the performance of automobile parts, even when the nugget diameter becomes smaller than expected due to some disturbance such as a shunt to the contact part other than the weld part between the steel plates, the delayed fracture resistance of the weld part is good. It is also important to be. Therefore, even when the nugget diameter is smaller than 4√t [mm], which is smaller than the nugget diameters described in Patent Document 1 and Patent Document 2, the delayed fracture resistance may be required to be good. . In particular, when the nugget diameter is small, the stress applied to the end of the nugget is larger than that when the nugget diameter is large, which is more disadvantageous from the viewpoint of delayed fracture resistance.

そして、表面に亜鉛系めっき層を有する亜鉛系めっき鋼板を抵抗スポット溶接する場合においては、鋼板の製造プロセス中に鋼板中に取り込まれた拡散性水素が亜鉛系めっきの存在により残留し、遅れ破壊の原因となる拡散性水素が鋼板中に残りやすい。すなわち、亜鉛系めっき鋼板を抵抗スポット溶接する場合においては、亜鉛系めっき層、該亜鉛系めっき層表面に付着した油や水分を源とする拡散性水素が溶接中に溶接金属内に混入しやすく、遅れ破壊が生じやすくなる。このため、これら亜鉛系めっき層等に由来する水素に対しての耐遅れ破壊性の改善を行う抵抗スポット溶接方法とすることが重要である。   In the case of resistance spot welding of a zinc-based plated steel sheet having a zinc-based plating layer on its surface, diffusible hydrogen incorporated into the steel sheet during the steel plate manufacturing process remains due to the presence of the zinc-based plating, causing delayed fracture The diffusible hydrogen that causes water is likely to remain in the steel sheet. That is, when resistance-welding a zinc-based plated steel sheet, diffusible hydrogen derived from a zinc-based plated layer, oil or moisture attached to the surface of the zinc-based plated layer is likely to be mixed into the weld metal during welding. , Delayed destruction is likely to occur. For this reason, it is important to use a resistance spot welding method for improving delayed fracture resistance against hydrogen derived from these zinc-based plating layers and the like.

また、このような高強度の亜鉛系めっき鋼板を接合する抵抗スポット溶接の溶接部の耐遅れ破壊特性に優れた溶接条件の適否の判定方法は確立されていない。該判定方法を確立することができれば、その判定方法の結果に基づいて、高強度亜鉛系めっき鋼板に径の小さいナゲットが形成される場合であっても、耐遅れ破壊特性に優れた溶接部を形成できる抵抗スポット溶接を容易に適切に行うことができる。したがって、このような高強度亜鉛系めっき鋼板の抵抗スポット溶接の溶接部の耐遅れ破壊特性に優れた溶接条件の判定方法も望まれる。   Moreover, the determination method of the suitability of the welding conditions excellent in the delayed fracture-proof characteristic of the weld part of the resistance spot welding which joins such a high intensity | strength zinc-plated steel plate is not established. If the determination method can be established, based on the result of the determination method, even if a nugget with a small diameter is formed on a high-strength galvanized steel sheet, a weld with excellent delayed fracture resistance is formed. Resistance spot welding that can be formed can be performed easily and appropriately. Therefore, a method for determining welding conditions excellent in delayed fracture resistance of the welded part of resistance spot welding of such a high-strength zinc-based plated steel sheet is also desired.

本発明は上記課題に鑑みてなされたものであって、高強度の亜鉛系めっき鋼板に径の小さいナゲットが形成されて接合される場合であっても、耐遅れ破壊特性に優れた溶接部を形成することができる抵抗スポット溶接方法およびその溶接条件判定方法を提供することを目的とする。   The present invention has been made in view of the above problems, and even when a nugget having a small diameter is formed and joined to a high-strength zinc-based plated steel sheet, a welded portion excellent in delayed fracture resistance is provided. It is an object of the present invention to provide a resistance spot welding method and a welding condition determination method that can be formed.

本発明者らは、上記目的を達成すべく鋭意検討を繰り返し、以下の知見を得た。
高強度亜鉛系めっき鋼板に径の小さいナゲットが形成されて接合される抵抗スポット溶接の溶接部(以下、抵抗スポット溶接部と称する場合もある)に、溶接後比較的短時間で生じる遅れ破壊を抑制するためには、溶接中に溶接金属内に混入する水素を低減することが重要である。具体的には、予通電工程と予通電工程後に予通電工程よりも高い電流値で通電する本通電工程との2段階の通電で鋼板を溶接し、且つ、適切な予通電工程を施すことにより、予通電工程が終了した段階で溶融部の径を特定値以下とすると共に特定の亜鉛系めっきが吐き出された領域を形成することで、溶接中に溶接金属内に取り込まれる水素が低減され、溶接部の耐遅れ破壊特性を向上することができることを知見した。
The present inventors have repeated intensive studies to achieve the above object, and obtained the following knowledge.
Delayed fracture that occurs in a relatively short time after welding in a resistance spot welded joint (hereinafter also referred to as a resistance spot welded part) where a small-diameter nugget is formed on a high-strength galvanized steel sheet In order to suppress it, it is important to reduce hydrogen mixed in the weld metal during welding. Specifically, by welding the steel plate with two stages of energization, a pre-energization process and a main energization process that energizes at a higher current value than the pre-energization process after the pre-energization process, and applying an appropriate pre-energization process In addition, when the pre-energization process is completed, the diameter of the melted portion is set to a specific value or less and a region in which specific zinc-based plating is discharged is reduced, thereby reducing the hydrogen taken into the weld metal during welding, It was found that the delayed fracture resistance of the weld can be improved.

また、このような耐遅れ破壊特性を向上することができる抵抗スポット溶接の溶接条件の判定方法として、予通電工程が終了した段階で、溶融部の径を特定値以下とすると共に特定の亜鉛系めっきが吐き出された領域を形成できる溶接条件か否かを判定することが有効であることを知見した。   In addition, as a method for determining the welding conditions of resistance spot welding that can improve such delayed fracture resistance, at the stage where the pre-energization process is completed, the diameter of the melted portion is set to a specific value or less and a specific zinc-based material is used. It has been found that it is effective to determine whether or not the welding condition can form the region where the plating is discharged.

本発明は以上のような知見に基づいてなされたものであり、要旨は以下のとおりである。   The present invention has been made on the basis of the above findings, and the gist is as follows.

[1] 鋼板を2枚以上重ね合わせて一対の電極によって挟み加圧しながら通電してナゲットを形成すると共に前記鋼板を接合する抵抗スポット溶接方法であって、
少なくとも1枚の前記鋼板が、引張強さが980MPa以上1770MPa以下で且つ接合面側の表面に亜鉛系めっき層を有する高強度亜鉛系めっき鋼板であり、
予通電工程と、前記予通電工程後に前記予通電工程よりも高い電流値で通電する本通電工程とを有し、
前記予通電工程は、予通電工程が終了した段階で、接合される隣り合う2枚の前記鋼板のうち板厚の薄い方の鋼板の板厚をt[mm]として、溶融部の径が2√t[mm]以下になり且つ径が3√t[mm]以上の亜鉛系めっきが吐き出された領域が形成される溶接条件で行い、
前記本通電工程は、径が3√t[mm]以上のナゲットが形成される溶接条件で行なうことを特徴とする抵抗スポット溶接方法。
[1] A resistance spot welding method in which two or more steel plates are overlapped and sandwiched between a pair of electrodes and energized while being pressed to form a nugget and join the steel plates,
At least one of the steel sheets is a high-strength zinc-based plated steel sheet having a tensile strength of 980 MPa to 1770 MPa and a zinc-based plated layer on the surface on the joining surface side,
A pre-energization step and a main energization step of energizing at a higher current value than the pre-energization step after the pre-energization step,
In the pre-energization step, when the pre-energization step is finished, the thickness of the thinner steel plate of the two adjacent steel plates to be joined is t [mm], and the diameter of the molten part is 2 √ t [mm] or less and under welding conditions in which a region where zinc-based plating with a diameter of 3 √t [mm] or more is discharged is formed,
The current energizing step is performed under a welding condition in which a nugget having a diameter of 3√t [mm] or more is formed.

[2] 前記亜鉛系めっきが吐き出された領域の径を、接合される隣り合う2枚の前記鋼板を剥離したときに鋼板表面に観察される酸化亜鉛の白色のリング状領域の内径−1mmとすることを特徴とする[1]に記載の抵抗スポット溶接方法。   [2] The diameter of the area from which the zinc-based plating is discharged is set such that the inner diameter of the white ring-shaped area of zinc oxide observed on the steel sheet surface when the two adjacent steel sheets to be joined are peeled is −1 mm. The resistance spot welding method according to [1], wherein:

[3] 鋼板を2枚以上重ね合わせて一対の電極によって挟み加圧しながら通電してナゲットを形成すると共に前記鋼板を接合する抵抗スポット溶接を行なうに際し、少なくとも1枚の前記鋼板が引張強さが980MPa以上1770MPa以下で且つ少なくとも接合面側の表面に亜鉛系めっき層を有する高強度亜鉛系めっき鋼板であり、前記通電が、予通電工程と、前記予通電工程後に前記予通電工程よりも高い電流値で通電して、接合される隣り合う2枚の前記鋼板のうち板厚の薄い方の鋼板の板厚をt[mm]として、径が3√t[mm]以上のナゲットを形成する本通電工程とを有するものである抵抗スポット溶接の溶接部の耐遅れ破壊特性判定方法であって、
予通電工程が終了した段階で、溶融部の径が2√t[mm]以下であり且つ径が3√t[mm]以上の亜鉛系めっきが吐き出された領域が存在する場合に耐遅れ破壊特性が良好となると判定することを特徴とする抵抗スポット溶接の溶接条件判定方法。
[3] When two or more steel plates are overlapped and sandwiched between a pair of electrodes and energized while being energized to form a nugget and resistance spot welding is performed to join the steel plates, at least one of the steel plates has a tensile strength. It is a high-strength galvanized steel sheet having a zinc-based plating layer on the surface at least on the joining surface side at 980 MPa to 1770 MPa, and the energization has a higher current than the pre-energization step after the pre-energization step and the pre-energization step A book that forms a nugget with a diameter of 3√t [mm] or more, where t [mm] is the thickness of the steel plate with the smaller thickness among the two adjacent steel plates to be joined. A method for determining resistance to delayed fracture of a welded portion of resistance spot welding having an energization process,
When the pre-energization process is completed, if there is a region where the diameter of the melted portion is 2√t [mm] or less and zinc-based plating with a diameter of 3√t [mm] or more is discharged, delayed fracture resistance A welding condition determination method for resistance spot welding, wherein it is determined that the characteristics are good.

[4] 予通電工程が終了した段階で、接合される隣り合う2枚の前記鋼板を剥離する剥離試験を行なって、前記溶融部の径および前記亜鉛系めっきが吐き出された領域の径を求めることを特徴とする[3]に記載の抵抗スポット溶接の溶接条件判定方法。   [4] At the stage where the pre-energization process is completed, a peel test is performed to peel the two adjacent steel plates to be joined together, and the diameter of the molten portion and the diameter of the region where the zinc-based plating is discharged are obtained. [3] The welding spot judgment method for resistance spot welding according to [3].

[5] 前記剥離試験で求める前記亜鉛系めっきが吐き出された領域の径は、鋼板表面に観察される酸化亜鉛の白色のリング状領域の内径−1mmであることを特徴とする[4]に記載の抵抗スポット溶接の溶接条件判定方法。   [5] The diameter of the region from which the zinc-based plating discharged in the peel test is discharged is the inner diameter of the white ring-shaped region of zinc oxide observed on the steel plate surface—1 mm. The welding spot judgment method of resistance spot welding of description.

[6] [3]〜[5]のいずれかに記載の抵抗スポット溶接の溶接条件判定方法に基づいて予通電工程の溶接条件を決定することを特徴とする抵抗スポット溶接方法。   [6] A resistance spot welding method, wherein the welding conditions for the pre-energization step are determined based on the welding condition determination method for resistance spot welding according to any one of [3] to [5].

本発明によれば、高強度亜鉛系めっき鋼板の抵抗スポット溶接において、溶接プロセスを予通電工程と予通電工程よりも高い電流値で通電する本通電工程に分け、予通電工程が終了した段階で溶融部の径を特定値以下とすると共に特定の亜鉛系めっきが吐き出された領域を形成することにより、本通電工程で形成されたナゲット径が小さい場合であっても、耐遅れ破壊特性に優れた溶接部(抵抗スポット溶接部)を形成することができるという効果を奏する。本発明は、例えば、自動車用部品の製造や車体の組立などの工程で使用される、高強度亜鉛系めっき鋼板を小さいナゲット径を形成して接合する抵抗スポット溶接に好適である。   According to the present invention, in resistance spot welding of a high-strength galvanized steel sheet, the welding process is divided into a pre-energization step and a main energization step of energizing at a higher current value than the pre-energization step. Even if the nugget diameter formed in this energization process is small, it has excellent delayed fracture resistance by forming the area where the diameter of the molten part is below a specific value and the specific zinc plating is discharged. It is possible to form a welded portion (resistance spot welded portion). The present invention is suitable for resistance spot welding in which, for example, a high-strength galvanized steel sheet is formed with a small nugget diameter and used in processes such as manufacturing automobile parts and assembling a vehicle body.

図1は、抵抗スポット溶接方法の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a resistance spot welding method. 図2(a)は、本発明における予通電工程が終了した段階での溶融部および亜鉛系めっきが吐き出された領域を模式的に示す断面図であり、図2(b)は、上記図2(a)に示した領域の鋼板を剥離したときの平面図である。FIG. 2A is a cross-sectional view schematically showing a molten portion and a region where zinc-based plating is discharged at the stage where the pre-energization process in the present invention is completed, and FIG. It is a top view when the steel plate of the area | region shown to (a) was peeled. 図3は、本発明の実施例において行なった抵抗スポット溶接の試験片を示す側面図である。FIG. 3 is a side view showing a test piece for resistance spot welding performed in an example of the present invention.

本発明の抵抗スポット溶接方法は、鋼板を2枚以上重ね合わせて一対の電極によって挟み加圧しながら通電してナゲットを形成すると共に鋼板を接合する抵抗スポット溶接方法であって、少なくとも1枚の鋼板が、引張強さが980MPa以上1770MPa以下で且つ接合面側の表面に亜鉛系めっき層を有する高強度亜鉛系めっき鋼板であり、予通電工程と、予通電工程後に予通電工程よりも高い電流値で通電する本通電工程とを有し、予通電工程は、予通電工程が終了した段階で、接合される隣り合う2枚の鋼板のうち板厚の薄い方の鋼板の板厚をt[mm]として、溶融部の径が2√t[mm]以下になり且つ径が3√t[mm]以上の亜鉛系めっきが吐き出された領域が形成される溶接条件で行い、本通電工程は、径が3√t[mm]以上のナゲットが形成される溶接条件で行なうものである。   The resistance spot welding method of the present invention is a resistance spot welding method in which two or more steel plates are overlapped and sandwiched between a pair of electrodes and energized while being pressed to form a nugget and to join the steel plates. Is a high-strength galvanized steel sheet having a tensile strength of 980 MPa to 1770 MPa and a zinc-based plating layer on the surface on the joining surface side, and a higher current value than the pre-energization step after the pre-energization step and the pre-energization step The pre-energization step is a stage where the pre-energization step is completed, and the thickness of the steel plate having the smaller thickness among the two adjacent steel plates to be joined is t [mm. ] Under the welding conditions in which the region where the diameter of the molten part is 2√t [mm] or less and the zinc-based plating with the diameter of 3√t [mm] or more is discharged is formed, Diameter 3√t [mm Those carried out in the welding conditions over nugget is formed.

本発明は、2枚以上の鋼板を抵抗スポット溶接によって接合するものである。図1は、抵抗スポット溶接方法の一例を模式的に示す断面図であり、2枚の鋼板の抵抗スポット溶接を行う例を示している。また、図2は、予通電工程が終了した段階での溶融部および亜鉛系めっきが吐き出された領域を模式的に示す断面図(図2(a))であり、該溶融部および亜鉛系めっきが吐き出された領域の鋼板を剥離したときの平面図(図2(b))である。以下に図1および図2を参照して、本発明の抵抗スポット溶接方法を説明する。   In the present invention, two or more steel plates are joined by resistance spot welding. FIG. 1 is a cross-sectional view schematically showing an example of a resistance spot welding method, and shows an example of performing resistance spot welding of two steel plates. FIG. 2 is a cross-sectional view (FIG. 2 (a)) schematically showing the molten portion and the area where zinc-based plating is discharged at the stage where the pre-energization process is completed. FIG. 2 is a plan view (FIG. 2B) when the steel sheet in the region where the water is discharged is peeled off. The resistance spot welding method of the present invention will be described below with reference to FIGS.

まず、2枚以上の鋼板を重ね合わせる。図1に示すように、2枚の鋼板を用いる場合においては、下側に配置される下鋼板1と上側に配置される上鋼板2とを重ね合わせる。   First, two or more steel plates are overlapped. As shown in FIG. 1, when using two steel plates, the lower steel plate 1 arranged on the lower side and the upper steel plate 2 arranged on the upper side are overlapped.

本発明において抵抗スポット溶接する鋼板は、少なくとも1枚が、引張強さが980MPa以上1770MPa以下で且つ少なくとも接合面側の表面に亜鉛系めっき層を有する高強度亜鉛系めっき鋼板である。鋼板の引張強さが980MPa未満の場合には遅れ破壊の問題が生じないことから、本発明の適用対象外である。また、鋼板の引張強さが1770MPa超えの場合は、強度が高すぎるため、本発明による耐遅れ破壊特性の改善効果が得られ難い。また、鋼板が有する亜鉛系めっきとしては、溶融亜鉛めっき(GI)、合金化溶融亜鉛めっき(GA)、電気純亜鉛めっき、電気亜鉛合金めっき(Zn−Ni)等が挙げられる。なお、亜鉛系めっき層は、下鋼板1や上鋼板2の少なくとも接合面(下鋼板1と上鋼板2の合わせ面)側の面に設けられていればよいが、下鋼板1、上鋼板2の両面に設けられていてもよい。重ね合わせる鋼板は、全て、引張強さが980MPa以上1770MPa以下で且つ少なくとも接合面側の表面に亜鉛系めっき層を有する高強度亜鉛系めっき鋼板であってもよい。   In the present invention, at least one steel plate to be resistance spot welded is a high-strength zinc-based plated steel plate having a tensile strength of 980 MPa to 1770 MPa and a zinc-based plating layer on at least the surface on the joining surface side. Since the problem of delayed fracture does not occur when the tensile strength of the steel sheet is less than 980 MPa, it is out of the scope of application of the present invention. Further, when the tensile strength of the steel sheet exceeds 1770 MPa, the strength is too high, so that it is difficult to obtain the effect of improving delayed fracture resistance according to the present invention. In addition, examples of the zinc-based plating that the steel sheet has include hot dip galvanizing (GI), alloyed hot dip galvanizing (GA), electric pure galvanizing, and electrolytic zinc alloy plating (Zn—Ni). The zinc-based plating layer may be provided at least on the surface of the lower steel plate 1 or the upper steel plate 2 on the side of the joining surface (the mating surface of the lower steel plate 1 and the upper steel plate 2). It may be provided on both sides. The steel sheets to be superposed may all be high-strength zinc-based plated steel sheets having a tensile strength of 980 MPa to 1770 MPa and having a zinc-based plated layer on at least the bonding surface side surface.

本発明において抵抗スポット溶接する鋼板の板厚は特に限定されないが、例えば1.0mm以上2.3mm以下の範囲内であることが好ましい。板厚がこの範囲内である鋼板は、自動車用部材として好適に使用することができる。   In the present invention, the thickness of the steel plate to be resistance spot welded is not particularly limited, but is preferably in the range of, for example, 1.0 mm or more and 2.3 mm or less. A steel plate having a thickness within this range can be suitably used as an automobile member.

抵抗スポット溶接する2枚以上の鋼板は、同じでも異なっていてもよく、同種および同形状の鋼板であってもよいし、異種や異形状の鋼板であってもよい。   The two or more steel plates to be resistance spot welded may be the same or different, may be the same type and the same shape, or may be different types or different shapes.

次いで、一対の溶接電極、すなわち下側に配置される電極4および上側に配置される電極5で、重ね合わせた鋼板(下鋼板1と上鋼板2)を挟み、加圧しながら通電する。電極4と電極5によって加圧し、且つその加圧力を制御する構成は特に限定されず、エアシリンダやサーボモータ等の従来から知られている機器が使用でき、形状(定置式、ロボットガン)も特に限定されない。また、直流、交流のいずれにも本発明を適用でき、電源の種類(単相交流、交流インバータ、直流インバータ)など特に限定されるものではない。なお、交流の場合は、「電流」は「実効電流」を意味する。また、電極4や電極5の先端の形式も特に限定されず、例えば、JIS C 9304:1999に記載されるDR形(ドームラジアス形)、R形(ラジアス形)、D形(ドーム形)等が挙げられる。また、電極4や電極5の先端径は、例えば4mm〜16mmであり、また、電極4や電極5の先端の曲率半径は6.5mm〜200mmである。なお、電極が常に水冷されている状態で抵抗スポット溶接を行う。   Next, a pair of welding electrodes, that is, the electrode 4 disposed on the lower side and the electrode 5 disposed on the upper side, sandwich the stacked steel plates (the lower steel plate 1 and the upper steel plate 2), and energize while applying pressure. The structure in which the pressure is applied by the electrodes 4 and 5 and the pressing force is controlled is not particularly limited, and conventionally known devices such as an air cylinder and a servo motor can be used, and the shape (stationary type, robot gun) is also available. There is no particular limitation. Further, the present invention can be applied to both direct current and alternating current, and the type of power source (single-phase alternating current, alternating current inverter, direct current inverter) and the like are not particularly limited. In the case of alternating current, “current” means “effective current”. Further, the type of the tip of the electrode 4 or the electrode 5 is not particularly limited. For example, DR type (dome radius type), R type (radius type), D type (dome type) described in JIS C 9304: 1999, and the like. Is mentioned. The tip diameters of the electrode 4 and the electrode 5 are, for example, 4 mm to 16 mm, and the curvature radius of the tip of the electrode 4 or the electrode 5 is 6.5 mm to 200 mm. In addition, resistance spot welding is performed in a state where the electrode is always water-cooled.

このように重ね合わせた鋼板を一対の溶接電極で挟んだ状態で加圧しながら通電して、抵抗発熱によりナゲットを形成すると共に重ね合わせた鋼板を接合することで、溶接継手が得られる。本発明においては、この通電を、予通電工程および予通電工程後に予通電工程よりも高い電流値で通電する本通電工程とする。   A welded joint is obtained by energizing the steel plates stacked in this manner while being sandwiched between a pair of welding electrodes to form a nugget by resistance heating and joining the stacked steel plates. In the present invention, this energization is a pre-energization step and a main energization step of energizing at a higher current value than the pre-energization step after the pre-energization step.

そして、予通電工程は、予通電工程が終了した段階で、溶融部の径(外径)が2√t[mm]以下になり且つ亜鉛系めっきが吐き出された領域の径(外径)が3√t[mm]以上になるように形成される溶接条件で行う。t[mm]は、接合される隣り合う2枚の鋼板のうち板厚の薄い方の鋼板の板厚である。   In the pre-energization process, the diameter (outer diameter) of the region where the diameter (outer diameter) of the melted portion is 2√t [mm] or less and zinc-based plating is discharged is the stage when the pre-energization process is completed. It is performed under the welding conditions formed so as to be 3√t [mm] or more. t [mm] is the thickness of the steel plate having the smaller thickness among the two adjacent steel plates to be joined.

ここで、予通電工程が終了した段階での溶融部および亜鉛系めっきが吐き出された領域について、図2を用いて説明する。図2(a)には、亜鉛系めっき層が下鋼板1および上鋼板2の両面に設けられたものを示す。鋼板の表面に亜鉛系めっき層21を有する鋼板(下鋼板1と上鋼板2)を、隙間がある状態で重ね合わせて一対の電極(図示無し)で挟み、加圧しながら通電する予通電工程を行うことにより、図2(a)に示すように、電極間の下鋼板1と上鋼板2を加熱する。亜鉛系めっきの融点は鋼板よりも低いため、はじめに電極直下の鋼板間付近の亜鉛系めっき層21が溶融し、加圧により電極直下の鋼板間付近からその外側に吐き出される(排出される)。この電極直下の鋼板間付近の亜鉛系めっき層21が吐き出されることにより亜鉛系めっき層21が減少した又は無くなった領域が、亜鉛系めっきが吐き出された領域23である。予通電工程において亜鉛系めっきが吐き出された領域23が形成されることにより、予通電工程の段階において、溶接部(溶接金属(すなわちナゲット3)および熱影響部)となる領域から亜鉛系めっきが排出されることになる。本発明においては、予通電工程が終了した段階で、この領域(上記した溶接部となる領域)の鋼板には、溶融せずに溶融部22が形成されてなくても、又は溶融して溶融部22が形成されていても構わない。溶融して溶融部22が形成された場合には、その溶融部22の径が特定の大きさになるようにする。また、予通電工程が終了した段階で、亜鉛系めっきが吐き出された領域23が特定の大きさになるようにする。具体的には、溶融部22の径が2√t[mm]以下(0[mm]を含む)で、且つ、亜鉛系めっきが吐き出された領域23の径が3√t[mm]以上となるように、予通電工程を行なう。   Here, the fusion | melting part in the stage which the pre-energization process was complete | finished, and the area | region where zinc-type plating was discharged are demonstrated using FIG. FIG. 2A shows a case where zinc-based plating layers are provided on both surfaces of the lower steel plate 1 and the upper steel plate 2. A pre-energization step in which a steel plate (lower steel plate 1 and upper steel plate 2) having a zinc-based plating layer 21 on the surface of the steel plate is overlapped with a gap and sandwiched between a pair of electrodes (not shown) and energized while being pressed. By performing, the lower steel plate 1 and the upper steel plate 2 between the electrodes are heated as shown in FIG. Since the melting point of the zinc-based plating is lower than that of the steel plate, the zinc-based plating layer 21 in the vicinity of between the steel plates immediately below the electrodes is first melted and discharged (exhausted) from the vicinity of the steel plates immediately below the electrodes by pressurization. A region where the zinc-based plating layer 21 is reduced or eliminated due to the discharge of the zinc-based plating layer 21 in the vicinity of the steel plate immediately below the electrode is a region 23 where the zinc-based plating is discharged. By forming the region 23 from which zinc-based plating is discharged in the pre-energization process, zinc-based plating is applied from the region that becomes the welded portion (welded metal (ie, nugget 3) and heat-affected zone) in the pre-energization step. Will be discharged. In the present invention, at the stage where the pre-energization process is completed, the steel sheet in this region (the region to be the welded portion described above) is not melted and the melted portion 22 is not formed or is melted and melted. The portion 22 may be formed. When the molten part 22 is formed by melting, the diameter of the molten part 22 is set to a specific size. Further, at the stage where the pre-energization process is completed, the region 23 where the zinc-based plating is discharged is set to a specific size. Specifically, the diameter of the melted portion 22 is 2√t [mm] or less (including 0 [mm]), and the diameter of the region 23 from which the zinc-based plating is discharged is 3√t [mm] or more. A pre-energization process is performed so that it may become.

このように、本発明においては、本通電工程の前に行なう予通電工程において、電極直下の鋼板間付近の特定の亜鉛系めっきを溶融部22付近の外側に吐き出すことによって特定の溶融部22および特定亜鉛系めっきが吐き出された領域23が形成されるようにしている。これにより、水素源となり得る亜鉛系めっきおよび亜鉛系めっきに付着している油分や水分が溶融部22に混入することが抑制される。また、予通電工程時には接合される溶接部付近の領域は、電極の加圧による圧縮応力が加わった状態での通電により高温に加熱されるため、その領域の鋼板中にトラップされていた拡散性水素が急速に拡散放出され、本通電工程時に形成されるナゲットとなる溶融部22に混入する水素量を減少させることができる。また、予通電工程時に投入された熱により熱影響部が拡大して溶接部周辺が広く軟化し、その結果、本通電工程終了後のナゲット端部にかかる開口方向の引張り応力も低減させることができる。このような予通電工程の後に本通電工程でナゲットを形成するため、耐遅れ破壊特性の低下が問題となる高強度亜鉛系めっき鋼板を抵抗スポット溶接したときのナゲット径が、3√t[mm]以上4√t[mm]未満程度の小さいナゲット径となった場合であっても、溶接継手の溶接後比較的早い段階(24時間以内)に生じる遅れ破壊が抑制されて耐遅れ破壊特性が良好な溶接部が形成される。   As described above, in the present invention, in the pre-energization step performed before the main energization step, the specific molten portion 22 and the specific zinc-based plating in the vicinity of the space between the steel plates immediately below the electrodes are discharged to the outside near the molten portion 22. A region 23 where the specific zinc-based plating is discharged is formed. Thereby, it is suppressed that the oil component and water | moisture content adhering to zinc type plating which can become a hydrogen source, and zinc type plating mix in the fusion | melting part 22. FIG. In the pre-energization process, the region near the welded portion to be joined is heated to a high temperature by energization in a state where compressive stress is applied due to the pressurization of the electrode, so the diffusibility trapped in the steel plate in that region Hydrogen is rapidly diffused and released, and the amount of hydrogen mixed in the melted portion 22 that becomes a nugget formed during the main energization process can be reduced. In addition, the heat-affected zone expands due to the heat input during the pre-energization process, and the periphery of the weld zone is softened widely.As a result, the tensile stress in the opening direction applied to the nugget end after the completion of the current energization process can be reduced. it can. Since the nugget is formed in the main energization process after such a pre-energization process, the nugget diameter when resistance spot welding of the high-strength galvanized steel sheet in which the deterioration of the delayed fracture resistance is a problem is 3√t [mm ] Even when the nugget diameter is as small as less than 4√t [mm], delayed fracture occurring at a relatively early stage (within 24 hours) after welding of the welded joint is suppressed, and delayed fracture resistance is improved. A good weld is formed.

亜鉛系めっきが吐き出された領域23は、完全に亜鉛めっきが吐き出され亜鉛系めっきが存在しないことが好ましい。しかし、亜鉛系めっき表面に付着する水素源の一部が亜鉛系めっきと一緒に排出されるだけでも本通電工程時のナゲット内に混入する水素量の低減に効果はあるため、完全に排出されていなくてもよい。例えば、亜鉛系めっき層の厚さが溶接前の1/2以下に減少した領域を亜鉛系めっきが吐き出された領域23として、その領域の径が3√t[mm]以上あればよい。予通電工程が終了した段階で形成される亜鉛系めっきが吐き出された領域23の径は、好ましくは本通電工程で形成するナゲット径以上である。   In the region 23 where zinc-based plating is discharged, it is preferable that zinc plating is completely discharged and zinc-based plating does not exist. However, even if a part of the hydrogen source adhering to the zinc-based plating surface is discharged together with the zinc-based plating, it is effective in reducing the amount of hydrogen mixed in the nugget during the main energization process, so it is completely discharged. It does not have to be. For example, a region where the thickness of the zinc-based plating layer is reduced to ½ or less of that before welding may be defined as a region 23 where zinc-based plating is discharged, and the diameter of the region may be 3√t [mm] or more. The diameter of the region 23 from which zinc-based plating formed at the stage where the pre-energization process is completed is preferably equal to or larger than the nugget diameter formed in the main energization process.

予通電工程が終了した段階での溶融部22の径は、接合される隣り合う2枚の鋼板の接合面における溶融部22の最大径である。また、亜鉛系めっきが吐き出された領域23の径は、接合される隣り合う2枚の鋼板の接合面における亜鉛系めっきが吐き出された領域23の最小径である。   The diameter of the melted portion 22 at the stage where the pre-energization process is completed is the maximum diameter of the melted portion 22 at the joint surface between two adjacent steel plates to be joined. Moreover, the diameter of the area | region 23 where zinc-type plating was discharged is the minimum diameter of the area | region 23 where zinc-type plating was discharged in the joining surface of two adjacent steel plates joined.

溶融部22の径および亜鉛系めっきが吐き出された領域23の径は、例えば、予通電工程が終了した段階で溶接を止めたサンプルを作成し、このサンプルに対して接合される隣り合う2枚の鋼板(下鋼板1および上鋼板2)を剥離する剥離試験を行なって、その剥離面の観察により求めることができる。例えば、溶融部22および吐き出された領域23付近から外側に吐き出された溶融した亜鉛系めっきは、亜鉛系めっきが吐き出された領域223の外側にリング状にたまる。溶融した亜鉛系めっきが、亜鉛系めっきが吐き出された領域23の外側にリング状にたまった領域を、図2の領域25で示す。さらにその外側には、気化した亜鉛が酸化して酸化亜鉛となり付着しており、剥離試験を行なうと、図2(b)に示すように、鋼板表面に白色のリング状領域24として観察される。したがって、溶融した亜鉛系めっきがリング状にたまった領域25の内径が、亜鉛系めっきが吐き出された領域23の径(外径)となる。ここで、この亜鉛系めっきが吐き出された領域23の径(外径)は判別しにくい場合もあるが、領域25の幅はめっき厚や、形状にもよるが、0.5mm弱程度である。白色のリング状領域24の内径から1mm引いた径を、亜鉛系めっきが吐き出された領域23の径(外径)とし、この酸化亜鉛の内径観察により、容易に亜鉛系めっきが吐き出された領域23の径を求めてもよい。すなわち、予通電工程の条件を、溶融部22の径が2√t[mm]以下となり且つ酸化亜鉛の白色のリング状領域24の内径−1mmが3√t[mm]以上となる溶接条件とするようにしてもよい。その他、下鋼板1および上鋼板2を剥離せずに断面観察を行なうことにより、溶融部22および亜鉛系めっきが吐き出された領域23の径を求めることもできる。   The diameter of the melted portion 22 and the diameter of the region 23 where the zinc-based plating is discharged are, for example, a sample in which welding is stopped at the stage where the pre-energization process is completed, and two adjacent sheets joined to this sample. A peel test for peeling the steel plates (the lower steel plate 1 and the upper steel plate 2) can be performed and the peeled surface can be observed. For example, the molten zinc-based plating discharged to the outside from the vicinity of the melted portion 22 and the discharged region 23 accumulates in a ring shape outside the region 223 where the zinc-based plating is discharged. A region where the molten zinc-based plating is accumulated in a ring shape outside the region 23 where the zinc-based plating is discharged is indicated by a region 25 in FIG. Further, vaporized zinc is oxidized and adhered as zinc oxide on the outer side. When a peel test is performed, a white ring-shaped region 24 is observed on the steel plate surface as shown in FIG. . Accordingly, the inner diameter of the region 25 where the molten zinc-based plating is accumulated in a ring shape becomes the diameter (outer diameter) of the region 23 where the zinc-based plating is discharged. Here, although the diameter (outer diameter) of the region 23 from which the zinc-based plating is discharged may be difficult to discriminate, the width of the region 25 is about 0.5 mm or less depending on the plating thickness and shape. . The diameter obtained by subtracting 1 mm from the inner diameter of the white ring-shaped region 24 is the diameter (outer diameter) of the region 23 where zinc-based plating is discharged, and the region where zinc-based plating is easily discharged by observing the inner diameter of this zinc oxide. The diameter of 23 may be obtained. That is, the conditions of the pre-energization process are welding conditions in which the diameter of the melted portion 22 is 2√t [mm] or less and the inner diameter of the white ring-shaped region 24 of zinc oxide −1 mm is 3√t [mm] or more. You may make it do. In addition, by observing the cross section without peeling off the lower steel plate 1 and the upper steel plate 2, the diameter of the melted portion 22 and the region 23 where the zinc-based plating is discharged can be obtained.

なお、図2においては、隙間を有するように鋼板(下鋼板1および上鋼板2)を重ね合わせて抵抗スポット溶接した形態を示したが、鋼板を隙間を有さないように重ね合わせてもよい。ただし、隙間を有するように鋼板を重ね合わせて抵抗スポット溶接する場合のほうが、隙間を潰すために付与する加圧力が大きくなり、その結果残留応力が大きくなるので遅れ破壊が生じやすくなる。したがって、本願発明の効果が顕著である。   In addition, in FIG. 2, although the form which overlapped the steel plate (the lower steel plate 1 and the upper steel plate 2) so that it might have a clearance, and carried out resistance spot welding was shown, you may overlap so that a steel plate may not have a clearance gap. . However, in the case of resistance spot welding with the steel plates overlapped so as to have a gap, the applied pressure applied to crush the gap increases, and as a result, the residual stress increases, so that delayed fracture is likely to occur. Therefore, the effect of the present invention is remarkable.

本通電工程では、予通電工程よりも高い電流値で通電する。そして、本通電工程では、径が3√t[mm]以上のナゲット3が形成される溶接条件で行なう。上記予通電工程と同様に、t[mm]は、接合される隣り合う2枚の鋼板のうち板厚の薄い方の鋼板の板厚である。ここで3√t[mm]以上のナゲット径としたのは、3√t[mm]未満では溶接継手の引張せん断強さや、十字引張強さ等の機械的特性が低く、耐遅れ破壊特性を向上させても機械的特性が得られないためである。また、ナゲット径を4√t[mm]以上としてもよいが、ナゲット径が大きな場合は、本発明で問題としている耐遅れ破壊特性自体が問題とならない場合が多い。   In the main energization process, energization is performed at a higher current value than in the pre-energization process. And in this energization process, it carries out on the welding conditions in which the nugget 3 whose diameter is 3√t [mm] or more is formed. Similar to the pre-energization step, t [mm] is the thickness of the steel plate having the smaller thickness among the two adjacent steel plates to be joined. Here, the nugget diameter of 3√t [mm] or more is set to be less than 3√t [mm], and the mechanical properties such as tensile shear strength and cross tensile strength of the welded joint are low, and delayed fracture resistance is exhibited. This is because the mechanical properties cannot be obtained even if the improvement is made. Further, the nugget diameter may be 4√t [mm] or more, but when the nugget diameter is large, the delayed fracture resistance per se, which is a problem in the present invention, often does not become a problem.

本発明においては、予通電工程で、溶融部22の径を特定値以下とし且つ特定の亜鉛系めっきが吐き出された領域23を形成し、その後に、予通電工程よりも高い電流値で3√t[mm]以上のナゲット3が形成される溶接条件で本通電工程を行なっている。このため、形成されるナゲット3内に混入される水素量が少なく、また、ナゲット3端部にかかる開口方向の引張り応力が低減された、溶接部の耐遅れ破壊特性に優れた抵抗スポット溶接が可能となる。「ナゲット」とは、重ね抵抗溶接において溶接部に生じる溶融凝固した部分であり、ここでのナゲット径は、隣り合う鋼板の接合面における最大径とする。   In the present invention, in the pre-energization process, the region 23 in which the diameter of the melted portion 22 is set to a specific value or less and specific zinc-based plating is discharged is formed, and thereafter, 3√ at a higher current value than in the pre-energization process. The main energization process is performed under welding conditions in which a nugget 3 of t [mm] or more is formed. For this reason, the resistance spot welding excellent in the delayed fracture resistance of the welded portion in which the amount of hydrogen mixed in the nugget 3 to be formed is small and the tensile stress in the opening direction applied to the end of the nugget 3 is reduced. It becomes possible. The “nugget” is a melt-solidified portion generated in a welded portion in lap resistance welding, and the nugget diameter here is the maximum diameter at the joint surface of adjacent steel plates.

図2においては2枚の鋼板を重ね合わせて溶接した例を示したが、3枚以上の鋼板を溶接する場合についても、同様に本発明を適用可能である。3枚以上の鋼板を溶接する場合は、引張強さ980MPa以上1770MPa以下の高強度亜鉛系めっき鋼板の亜鉛系めっき層の存在する接合面について、予通電工程の段階で形成された溶融部22および亜鉛系めっきが吐き出された領域23の径や、本通電工程で形成されるナゲット径が上記範囲になるようにすればよい。   Although FIG. 2 shows an example in which two steel plates are overlapped and welded, the present invention can be similarly applied to a case where three or more steel plates are welded. When welding three or more steel plates, the fusion zone 22 formed at the stage of the pre-energization process on the joint surface where the zinc-based plating layer of the high-strength zinc-based plated steel plate having a tensile strength of 980 MPa to 1770 MPa is present and What is necessary is just to make it the diameter of the area | region 23 where zinc-type plating was discharged | emitted, and the nugget diameter formed by this energization process become the said range.

このような特定の予通電工程および本通電工程を有する本発明の抵抗スポット溶接方法は、例えば、以下の予通電工程、冷却工程、本通電工程、および保持工程をこの順に行なう。   The resistance spot welding method of the present invention having such a specific pre-energization step and a main energization step performs, for example, the following pre-energization step, cooling step, main energization step, and holding step in this order.

(予通電工程)
予通電工程は、下記(1)式および(2)式を満たす通電条件、好ましくは下記(1)式および(3)式を満たす通電条件とする。
2<Ip≦1.3F (1)
Tp≧7tt (2)
Tp≧10tt (3)
ただし、上記(1)〜(3)式中において、Ip:予通電工程における電流値[kA]、F:電極加圧力[kN]、Tp:予通電工程における通電時間[サイクル(50Hz)]、tt:隣り合う2枚の鋼板の総板厚[mm]であり、ここで加圧力Fは低すぎると高強度鋼板の抵抗スポット溶接を安定して行うことが困難となるため、2.5kN以上であり、総板厚ttは1.5mm以上である。
(Pre-energization process)
The pre-energization step is an energization condition that satisfies the following formulas (1) and (2), preferably an energization condition that satisfies the following formulas (1) and (3).
2 <Ip ≦ 1.3F (1)
Tp ≧ 7tt (2)
Tp ≧ 10tt (3)
However, in the above formulas (1) to (3), Ip: current value [kA] in the pre-energization process, F: electrode pressure [kN], Tp: energization time in the pre-energization process [cycle (50 Hz)], tt: The total thickness [mm] of two adjacent steel plates. If the applied pressure F is too low, it is difficult to stably perform resistance spot welding of a high strength steel plate. The total plate thickness tt is 1.5 mm or more.

なお、本明細書において、上記各式は数値のみの関係を規定したものである。   In the present specification, each of the above formulas defines a relationship of only numerical values.

予通電工程の電流値(溶接電流)Ipが2kA以下の場合は、溶接電流が低すぎるために亜鉛系めっき層を排出した領域23が3√t[mm]以上となるには非常に長い通電時間が必要となる。一方、電極加圧力Fが高いほど鋼板間の接触径が大きくなり、大きな電流をかけても過大な溶融部22を形成させないことが可能となるため、高い電流を適用することが可能となるが、電流値Ipが1.3F[kA]を超える場合は、予通電工程中に大きな溶融部22が急速に成長し、溶融部22付近から亜鉛系めっきを十分に排出する前に溶融金属内に亜鉛系めっきと水素源となる付着物である水や油等を取り込んでしまう場合がある。よって、予通電工程の電流値Ipは、上記(1)式を満たすことが好ましい。
また、予通電工程の通電時間Tpが7tt[サイクル(cyc)]未満の時間の場合は、通電の時間が短く、亜鉛系めっきが吐き出された領域23の大きさが不十分である。また鋼板中の水素を加圧力と熱により放出させる効果が小さい。よって、予通電工程の通電時間Tpは、上記(2)式を満たすことが好ましい。より好ましくは、上記(3)式のとおり、予通電工程の通電時間Tpが10tt[サイクル]以上である。ここでは特に、予通電工程の通電時間Tpの上限は設けないが、生産性の観点より、20tt[サイクル]以下とすることが好ましい。
なお、予通電工程の通電パターンは、溶融部22の径が2√t[mm]以下になり且つ径が3√t[mm]以上の亜鉛系めっきが吐き出された領域23が形成されれば、上記の1段通電だけではなく、2段、あるいは3段以上の多段通電条件でも構わない。本発明では、1サイクル=20msとする。
When the current value (welding current) Ip in the pre-energization process is 2 kA or less, the welding current is too low, so that the region 23 in which the zinc-based plating layer is discharged becomes 3√t [mm] or more, which is a very long energization time. Necessary. On the other hand, the higher the electrode pressing force F, the larger the contact diameter between the steel plates, and it becomes possible to prevent the excessive melted portion 22 from being formed even when a large current is applied, so that a high current can be applied. When the current value Ip exceeds 1.3 F [kA], the large melted portion 22 grows rapidly during the pre-energization process, and the zinc-based plating is sufficiently discharged from the vicinity of the melted portion 22 into the molten metal. In some cases, zinc-based plating and deposits that become hydrogen sources, such as water and oil, are taken in. Therefore, the current value Ip in the pre-energization process preferably satisfies the above formula (1).
In addition, when the energization time Tp in the pre-energization process is less than 7 tt [cycle (cyc)], the energization time is short, and the size of the region 23 from which the zinc-based plating is discharged is insufficient. In addition, the effect of releasing hydrogen in the steel sheet by applying pressure and heat is small. Therefore, it is preferable that the energization time Tp in the pre-energization process satisfies the above formula (2). More preferably, the energization time Tp of the pre-energization step is 10 tt [cycles] or longer as expressed by the above formula (3). Here, in particular, the upper limit of the energization time Tp in the pre-energization process is not provided, but it is preferably 20 tt [cycle] or less from the viewpoint of productivity.
In the energization pattern of the pre-energization process, if the region 23 where the diameter of the melted portion 22 is 2√t [mm] or less and zinc-based plating with a diameter of 3√t [mm] or more is discharged is formed. In addition to the above-described one-stage energization, multistage energization conditions of two stages or three or more stages may be used. In the present invention, 1 cycle = 20 ms.

(冷却工程)
冷却工程は、予通電工程後、電極でワークを加圧したまま電流を停止した状態(無通電)で保持することで冷却する工程であり、本発明においては必要に応じて行えばよい。
(Cooling process)
The cooling step is a step of cooling by holding the work in a state where the work is pressurized with an electrode (non-energized) after the pre-energization step, and may be performed as necessary in the present invention.

(本通電工程)
本通電工程は、冷却工程後、予通電工程の電流値より大きい電流値であって目標とするナゲット径を得るのに必要な通電時間および溶接電流で溶接する。
目標とするナゲット3の径は、望ましくは4√t[mm]以上である。上述のように、本発明はこの本通電工程で形成するナゲット径が、何らかの影響で3√t[mm]以上4√t[mm]未満となっても、抵抗スポット溶接部の遅れ破壊が発生しにくくなるものである。
(Main energization process)
In this energization process, after the cooling process, welding is performed with an energization time and a welding current which are larger than the current value of the pre-energization process and are necessary to obtain a target nugget diameter.
The diameter of the target nugget 3 is desirably 4√t [mm] or more. As described above, according to the present invention, even if the nugget diameter formed in this main energization process is 3√t [mm] or more and less than 4√t [mm] due to some influence, delayed fracture of the resistance spot weld occurs. It becomes difficult to do.

(保持工程)
保持工程は、本通電工程後、電極でワークを加圧したまま電流を停止した状態(無通電)で保持することで溶接部を冷却、凝固させる工程である。保持時間は、好ましくは1サイクル以上である。ここでは特に保持時間の上限は設けないが、生産性の観点より、10サイクル以下とすることが好ましい。
(Holding process)
The holding step is a step of cooling and solidifying the welded portion by holding the workpiece in a state where current is stopped (non-energized) while pressing the workpiece with the electrode after the main energizing step. The holding time is preferably 1 cycle or more. Here, the upper limit of the holding time is not particularly set, but it is preferably 10 cycles or less from the viewpoint of productivity.

なお、予通電工程、冷却工程、本通電工程および保持工程に亘って、電極の加圧力は一定とする。   Note that the pressure applied to the electrodes is constant throughout the pre-energization process, the cooling process, the main energization process, and the holding process.

このように、本発明においては、上記特定の予通電工程および本通電工程とすることにより、溶接継手の溶接後比較的早い段階(24時間以内)に生じる遅れ破壊を抑制することができる。   As described above, in the present invention, delayed fracture occurring at a relatively early stage (within 24 hours) after welding of the welded joint can be suppressed by using the specific pre-energization step and the main energization step.

また、上記知見に基づく本発明の抵抗スポット溶接における溶接部の耐遅れ破壊特性に優れた溶接条件の判定方法について、以下に説明する。なお、上記本発明の抵抗スポット溶接方法と重複する説明は一部省略する。   In addition, a method for determining welding conditions excellent in delayed fracture resistance of a welded part in resistance spot welding according to the present invention based on the above knowledge will be described below. A part of the description overlapping with the resistance spot welding method of the present invention is partially omitted.

本発明の抵抗スポット溶接の溶接条件判定方法は、鋼板を2枚以上重ね合わせて一対の電極によって挟み加圧しながら通電してナゲットを形成すると共に鋼板を接合する抵抗スポット溶接を行なうに際し、少なくとも1枚の鋼板が引張強さが980MPa以上1770MPa以下で且つ少なくとも接合面側の表面に亜鉛系めっき層を有する高強度亜鉛系めっき鋼板であり、通電が、予通電工程と、予通電工程後に予通電工程よりも高い電流値で通電して、接合される隣り合う2枚の鋼板のうち板厚の薄い方の鋼板の板厚をt[mm]として、径が3√t[mm]以上のナゲットを形成する本通電工程とを有する抵抗スポット溶接方法により良好な耐遅れ破壊特性に優れた溶接部が得られる抵抗スポット溶接の溶接条件を判定する方法である。
該判定方法においては、予通電工程が終了した段階で、径が3√t[mm]以上の亜鉛系めっきが吐き出された領域が存在し、且つその時に溶融部が形成されていないか溶融部が形成された場合はその溶融部の径が2√t[mm]以下である場合に、耐遅れ破壊特性を良好と判定する。一方、予通電工程が終了した段階で、亜鉛系めっきが吐き出された領域の径が3√t[mm]未満であること、および溶融部が形成された場合に溶融部の径が2√t[mm]超えであることの少なくとも一方を満たす場合に、その溶接条件では耐遅れ破壊特性が不良となると判定する。溶融部の径および亜鉛系めっきが吐き出された領域の径は、予通電工程が終了した段階で、溶接部の断面観察を行うことによって求めることが好ましいが、例えば接合される隣り合う2枚の鋼板を剥離する剥離試験を行なうことで求めることもできる。剥離試験により観察される酸化亜鉛の白色のリング状領域の内径−1mmで求められる値を、亜鉛系めっきが吐き出された領域の径とすることが好ましい。
The method of determining the welding conditions for resistance spot welding according to the present invention includes at least 1 when performing resistance spot welding in which two or more steel plates are overlapped and energized while being pressed between a pair of electrodes to form a nugget and join the steel plates. The steel sheet is a high-strength galvanized steel sheet having a tensile strength of 980 MPa to 1770 MPa and having a zinc-based plating layer on at least the surface of the joint surface. A nugget with a diameter of 3√t [mm] or more, where t [mm] is the thickness of the thinner steel plate of two adjacent steel plates to be joined. This is a method for determining the resistance conditions of resistance spot welding in which a welded portion having excellent delayed fracture resistance is obtained by a resistance spot welding method having a main energization step of forming a metal.
In the determination method, at the stage where the pre-energization process is completed, there is a region where zinc-based plating having a diameter of 3√t [mm] or more is discharged, and at that time, a molten part is not formed or a molten part When the diameter of the melted portion is 2√t [mm] or less, the delayed fracture resistance is determined to be good. On the other hand, at the stage where the pre-energization process is completed, the diameter of the area where zinc-based plating is discharged is less than 3√t [mm], and when the melted part is formed, the diameter of the melted part is 2√t. When satisfying at least one of exceeding [mm], it is determined that the delayed fracture resistance is poor under the welding conditions. The diameter of the melted part and the diameter of the area where the zinc-based plating is discharged are preferably obtained by observing a cross section of the welded part at the stage where the pre-energization process is completed. It can also obtain | require by performing the peeling test which peels a steel plate. It is preferable to use the value calculated | required by the internal diameter -1mm of the white ring-shaped area | region of the zinc oxide observed by a peeling test as the diameter of the area | region where zinc-type plating was discharged.

また、本発明の抵抗スポット溶接の溶接条件判定方法に基づいて予通電工程の溶接条件を決定する抵抗スポット溶接方法とすることができる。この本発明の抵抗スポット溶接の溶接部の耐遅れ破壊特性に優れた溶接条件の判定方法に基づいて予通電工程の溶接条件を決定する抵抗スポット溶接方法においては、まず、ある溶接条件で予通電工程を行ない、該予通電工程が終了した段階で剥離試験等によって溶融部22の径および亜鉛系めっきが吐き出された領域23の径を求めて、これらがそれぞれ2√t[mm]以下および3√t[mm]以上を満たすか否かを判定し、これを満たしていれば良好と判定する。そして、良好と判定された場合は、この良好と判定された溶接条件を、抵抗スポット溶接の予通電工程の溶接条件と決定する。そして、次回以降の抵抗スポット溶接において、決定された該溶接条件での予通電工程および本通電工程を行なう。一方、良好と判定されなかった場合は、この良好と判定されなかった溶接条件を、判定結果(溶融部の径、亜鉛系めっきが吐き出された領域の径)に基づいて変更する。変更した溶接条件が良好と判定されるまで、この判定および変更を繰り返す。そして、良好と判定された溶接条件を、抵抗スポット溶接の予通電工程の溶接条件と決定する。以上によって、高強度亜鉛系めっき鋼板を抵抗スポット溶接したときに、仮に径が小さいナゲット3が形成された場合であっても、耐遅れ破壊特性に優れた溶接部を形成することができる抵抗スポット溶接方法の溶接条件を予通電工程までの試験によって容易に決定することができ、容易に耐遅れ破壊特性に優れた溶接部を形成することができる。   Moreover, it can be set as the resistance spot welding method which determines the welding conditions of a pre-energization process based on the welding condition determination method of resistance spot welding of this invention. In the resistance spot welding method for determining the welding conditions in the pre-energization process based on the welding condition determination method excellent in delayed fracture resistance of the welded portion of the resistance spot welding of the present invention, first, pre-energization is performed under certain welding conditions. When the pre-energization process is completed, the diameter of the molten portion 22 and the diameter of the region 23 where the zinc-based plating is discharged are obtained by a peeling test or the like, and these are 2√t [mm] or less and 3 respectively. It is determined whether or not √t [mm] or more is satisfied. And when it determines with it being favorable, the welding conditions determined to be favorable are determined as the welding conditions of the pre-energization process of resistance spot welding. In the subsequent resistance spot welding, the pre-energization process and the main energization process under the determined welding conditions are performed. On the other hand, when it is not determined to be good, the welding conditions that are not determined to be good are changed based on the determination result (the diameter of the molten portion, the diameter of the region where zinc-based plating is discharged). This determination and change are repeated until it is determined that the changed welding conditions are good. And the welding conditions determined to be good are determined as the welding conditions in the pre-energization process of resistance spot welding. As described above, when a high-strength galvanized steel sheet is resistance spot welded, even if a nugget 3 having a small diameter is formed, a resistance spot that can form a welded portion having excellent delayed fracture resistance. The welding conditions of the welding method can be easily determined by a test up to the pre-energization process, and a welded portion having excellent delayed fracture resistance can be easily formed.

以下に、本発明の更なる理解のために実施例を用いて説明するが、実施例はなんら本発明を限定するものではない。   Hereinafter, the present invention will be described by way of examples for further understanding of the present invention. However, the examples do not limit the present invention.

(本発明例および比較例)
図1に示すように、下鋼板1と上鋼板2を重ね合わせて、抵抗スポット溶接を行い、その耐遅れ破壊特性を評価した。
(Invention Example and Comparative Example)
As shown in FIG. 1, the lower steel plate 1 and the upper steel plate 2 were overlapped, resistance spot welding was performed, and the delayed fracture resistance was evaluated.

用いた鋼板は980MPa級合金化溶融亜鉛めっき鋼板(GA980)、1180MPa級溶融亜鉛めっき鋼板(GI1180)、1180MPa級合金化溶融亜鉛めっき鋼板(GA1180)、Zn−Niめっきホットスタンプ材(HS)である。表1に各鋼板の引張強さおよび板厚を記載する。引張強さはJIS5号引張試験片にて、JIS Z 2241:2011の規定に準拠して引張試験を実施して求めた引張強さである。Zn−Niめっきホットスタンプ材は大気炉にて鋼材を900℃まで3分間で昇温した後、金型冷却して得られたものであり、引張強さは1470MPa級である。溶接機はインバータ直流抵抗スポット溶接機とした。また、電極4と電極5は、いずれも先端の直径(先端径)6mm、曲率半径40mmのDR形クロム銅製電極とした。   The steel plates used are 980 MPa class galvannealed steel sheet (GA980), 1180 MPa class galvanized steel sheet (GI1180), 1180 MPa class galvannealed steel sheet (GA1180), and Zn-Ni plating hot stamp material (HS). . Table 1 shows the tensile strength and thickness of each steel plate. The tensile strength is a tensile strength obtained by conducting a tensile test on a JIS No. 5 tensile test piece in accordance with the provisions of JIS Z 2241: 2011. The Zn-Ni plating hot stamp material is obtained by heating a steel material to 900 ° C. for 3 minutes in an atmospheric furnace and then cooling the mold, and has a tensile strength of 1470 MPa class. The welding machine was an inverter DC resistance spot welding machine. The electrodes 4 and 5 were both DR type chromium copper electrodes having a tip diameter (tip diameter) of 6 mm and a curvature radius of 40 mm.

抵抗スポット溶接は、図3に示すように、上記鋼板(長辺125mm、短辺40mm)の試験片(下鋼板31、上鋼板32)の間に、板厚1.8mmで40mm四方のスペーサ33を両側に挟み込んで隙間34が鋼板間に存在するようにした状態でスペーサ33部分を仮溶接したものを試験体とした。該試験体の中央部を、上記および表1に記載する溶接条件で溶接した。図3は、[実施例](本発明例および比較例)において行なった抵抗スポット溶接の試験片を示す側面図である。   As shown in FIG. 3, resistance spot welding is performed by using a spacer 33 having a thickness of 1.8 mm and a 40 mm square between the test pieces (lower steel plate 31 and upper steel plate 32) of the steel plate (long side 125 mm, short side 40 mm). Was temporarily welded with the spacer 33 in a state in which the gap 34 was present between the steel plates. The central part of the specimen was welded under the welding conditions described above and in Table 1. FIG. 3 is a side view showing a test piece of resistance spot welding performed in [Example] (invention example and comparative example).

表1の通り、予通電工程、冷却工程、本通電工程および保持工程をこの順に行なって溶接継手を製造すると共に、これらとは別に表1に記載する予通電工程が終了した段階で溶接を止めたサンプルを作製した。そして、得られたサンプルに対して、以下の通り剥離試験を行った。
(剥離試験)
この予通電工程が終了した段階で溶接を止めたサンプルからスペーサが設けられたスペーサ部を切り離した後、鏨にて2枚の鋼板の接合面で剥離した。剥離された下鋼板31の接合面を観察して、溶融部22の径を測定し、その径が2√t[mm]以下であった場合を記号「○」、2√t[mm]超えであった場合を記号「×」として評価した。また、この剥離された下鋼板31の接合面を観察して、溶融部22周辺に形成された酸化亜鉛の白色のリングの内径を測定して、それから1mmを引いた値を亜鉛系めっきが吐き出された領域23の径とし、その径が3√t[mm]以上の場合を記号「○」、3√t[mm]未満の場合を記号「×」として評価した。得られた評価結果を表1に示す。各記号の横に示した括弧内には、測定した値を併記する。なお、下鋼板31と上鋼板32にそれぞれ形成された溶融部22の径および亜鉛系めっきが吐き出された領域23の径は、下鋼板31と上鋼板32とで同じであった。
As shown in Table 1, a pre-energization process, a cooling process, a main energization process, and a holding process are performed in this order to produce a welded joint, and welding is stopped when the pre-energization process described in Table 1 is completed separately. A sample was prepared. And the peeling test was done as follows with respect to the obtained sample.
(Peel test)
The spacer part provided with the spacer was cut off from the sample which was stopped from welding at the stage where the pre-energization process was completed, and then peeled off at the joining surface of the two steel plates with a scissors. The bonded surface of the peeled lower steel plate 31 is observed, the diameter of the melted portion 22 is measured, and the case where the diameter is 2√t [mm] or less exceeds the symbol “◯” and 2√t [mm] Was evaluated as a symbol “x”. In addition, by observing the bonded surface of the peeled lower steel plate 31, the inner diameter of the white ring of zinc oxide formed around the melted portion 22 is measured, and the zinc plating exhales the value obtained by subtracting 1 mm from the inner diameter. When the diameter was 3√t [mm] or more, the case where the diameter was less than 3√t [mm] was evaluated as the symbol “X”. The obtained evaluation results are shown in Table 1. The measured value is written in parentheses next to each symbol. In addition, the diameter of the fusion | melting part 22 formed in the lower steel plate 31 and the upper steel plate 32, respectively, and the diameter of the area | region 23 where the zinc-type plating was discharged were the same with the lower steel plate 31 and the upper steel plate 32. FIG.

また、表1の通り予通電工程、冷却工程、本通電工程および保持工程をこの順に行なった。本通電の溶接条件は、本通電にて得られるナゲット径が3√t〜4√t[mm]となるように調整した。得られた溶接継手に対して、以下の通り耐遅れ破壊特性試験を行った。
(耐遅れ破壊特性試験)
得られた溶接継手を、室温で大気中に静置し、溶接終了後24時間経過したところで、スペーサが設けられたスペーサ部を切り離し、溶接部中央で板厚方向に切断した。該断面を研磨後にピクリン酸飽和水溶液でエッチングしてナゲット形状を現出させることで、ナゲットの断面を光学顕微鏡にて観察した。そのナゲット内まで延びる割れが観察されなかったものを「割れなし」、ナゲット内に延びる割れが観察されたものを「割れ有」として、耐遅れ破壊特性を評価した。また、切断面において、下鋼板31と上鋼板32の接合面を観察し、ナゲット3の径を測定した。評価結果およびナゲット径の測定値を表1に示す。
Further, as shown in Table 1, the pre-energization process, the cooling process, the main energization process, and the holding process were performed in this order. The welding conditions for main energization were adjusted so that the nugget diameter obtained by main energization would be 3√t to 4√t [mm]. The obtained welded joint was subjected to a delayed fracture resistance test as follows.
(Delayed fracture resistance test)
The obtained welded joint was left in the atmosphere at room temperature, and when 24 hours had elapsed after the end of welding, the spacer portion provided with the spacer was cut off and cut in the thickness direction at the center of the weld. The cross section of the nugget was observed with an optical microscope by polishing the cross section with a saturated aqueous solution of picric acid to reveal a nugget shape. Delayed fracture resistance was evaluated by assuming that no cracks extending into the nugget were observed as “no cracking” and cracks extending into the nugget as “cracked”. Further, on the cut surface, the joint surface between the lower steel plate 31 and the upper steel plate 32 was observed, and the diameter of the nugget 3 was measured. The evaluation results and the measured values of the nugget diameter are shown in Table 1.

表1から明らかなように、予通電工程が終了した段階で亜鉛系めっきが吐き出された領域の径が3√t[mm]以上であり、かつ、予通電工程が終了した段階での溶融部の径が2√t[mm]以下である本発明例においては、得られた溶接継手のナゲット径は3√t[mm]以上であり、ナゲット断面に遅れ破壊が発生しなかった(ナゲット内に到達する割れが発生しなかった)。
一方、予通電工程を行なわなかった比較例や、予通電工程が終了した段階で亜鉛系めっきが吐き出された領域の径が3√t[mm]以上且つ溶融部の径が2√t[mm]以下を満たさない比較例では、ナゲット内に到達する割れが発生した。
As is clear from Table 1, the diameter of the region where the zinc-based plating was discharged at the stage where the pre-energization process was completed is 3√t [mm] or more, and the molten part at the stage where the pre-energization process was completed In the example of the present invention having a diameter of 2√t [mm] or less, the nugget diameter of the obtained welded joint is 3√t [mm] or more, and no delayed fracture occurred in the nugget cross section (in the nugget) No cracks to reach).
On the other hand, the comparative example in which the pre-energization process was not performed and the diameter of the region where the zinc-based plating was discharged at the stage where the pre-energization process was completed were 3√t [mm] or more and the diameter of the melted part was 2√t [mm] In the comparative example not satisfying the following, a crack reaching the nugget occurred.

Figure 2018171649
Figure 2018171649

1、31 下鋼板
2、32 上鋼板
3 ナゲット
4、5 電極
21 亜鉛系めっき層
22 溶融部
23 亜鉛系めっきが吐き出された領域
24 白色のリング状領域
25 領域
33 スペーサ
34 隙間
DESCRIPTION OF SYMBOLS 1, 31 Lower steel plate 2, 32 Upper steel plate 3 Nugget 4, 5 Electrode 21 Zinc-based plating layer 22 Molten part 23 Area where zinc-based plating is discharged 24 White ring-shaped area 25 Area 33 Spacer 34 Gap

Claims (6)

鋼板を2枚以上重ね合わせて一対の電極によって挟み加圧しながら通電してナゲットを形成すると共に前記鋼板を接合する抵抗スポット溶接方法であって、
少なくとも1枚の前記鋼板が、引張強さが980MPa以上1770MPa以下で且つ接合面側の表面に亜鉛系めっき層を有する高強度亜鉛系めっき鋼板であり、
予通電工程と、前記予通電工程後に前記予通電工程よりも高い電流値で通電する本通電工程とを有し、
前記予通電工程は、予通電工程が終了した段階で、接合される隣り合う2枚の前記鋼板のうち板厚の薄い方の鋼板の板厚をt[mm]として、溶融部の径が2√t[mm]以下になり且つ径が3√t[mm]以上の亜鉛系めっきが吐き出された領域が形成される溶接条件で行い、
前記本通電工程は、径が3√t[mm]以上のナゲットが形成される溶接条件で行なうことを特徴とする抵抗スポット溶接方法。
It is a resistance spot welding method in which two or more steel plates are stacked and energized while being pressed between a pair of electrodes to form a nugget and join the steel plates,
At least one of the steel sheets is a high-strength zinc-based plated steel sheet having a tensile strength of 980 MPa to 1770 MPa and a zinc-based plated layer on the surface on the joining surface side,
A pre-energization step and a main energization step of energizing at a higher current value than the pre-energization step after the pre-energization step,
In the pre-energization step, when the pre-energization step is finished, the thickness of the thinner steel plate of the two adjacent steel plates to be joined is t [mm], and the diameter of the molten part is 2 √ t [mm] or less and under welding conditions in which a region where zinc-based plating with a diameter of 3 √t [mm] or more is discharged is formed,
The current energizing step is performed under a welding condition in which a nugget having a diameter of 3√t [mm] or more is formed.
前記亜鉛系めっきが吐き出された領域の径を、接合される隣り合う2枚の前記鋼板を剥離したときに鋼板表面に観察される酸化亜鉛の白色のリング状領域の内径−1mmとすることを特徴とする請求項1に記載の抵抗スポット溶接方法。   The diameter of the area from which the zinc-based plating is discharged is set to be the inner diameter of the white ring-shaped area of zinc oxide observed on the steel sheet surface when the two adjacent steel sheets to be joined are peeled to −1 mm. The resistance spot welding method according to claim 1, wherein: 鋼板を2枚以上重ね合わせて一対の電極によって挟み加圧しながら通電してナゲットを形成すると共に前記鋼板を接合する抵抗スポット溶接を行なうに際し、少なくとも1枚の前記鋼板が引張強さが980MPa以上1770MPa以下で且つ少なくとも接合面側の表面に亜鉛系めっき層を有する高強度亜鉛系めっき鋼板であり、前記通電が、予通電工程と、前記予通電工程後に前記予通電工程よりも高い電流値で通電して、接合される隣り合う2枚の前記鋼板のうち板厚の薄い方の鋼板の板厚をt[mm]として、径が3√t[mm]以上のナゲットを形成する本通電工程とを有するものである抵抗スポット溶接の溶接部の耐遅れ破壊特性判定方法であって、
予通電工程が終了した段階で、溶融部の径が2√t[mm]以下であり且つ径が3√t[mm]以上の亜鉛系めっきが吐き出された領域が存在する場合に耐遅れ破壊特性が良好となると判定することを特徴とする抵抗スポット溶接の溶接条件判定方法。
At least one of the steel plates has a tensile strength of 980 MPa or more and 1770 MPa when two or more steel plates are stacked and sandwiched between a pair of electrodes to form a nugget by energizing and to perform resistance spot welding for joining the steel plates. A high-strength galvanized steel sheet having a zinc-based plating layer on the surface at least on the joining surface side, wherein the energization is conducted at a higher current value than the pre-energization step after the pre-energization step and the pre-energization step. A main energization step of forming a nugget having a diameter of 3√t [mm] or more, where t [mm] is the thickness of the steel plate having the smaller thickness among the two adjacent steel plates to be joined; A method for determining delayed fracture resistance of a welded portion of resistance spot welding that has
When the pre-energization process is completed, if there is a region where the diameter of the melted portion is 2√t [mm] or less and zinc-based plating with a diameter of 3√t [mm] or more is discharged, delayed fracture resistance A welding condition determination method for resistance spot welding, wherein it is determined that the characteristics are good.
予通電工程が終了した段階で、接合される隣り合う2枚の前記鋼板を剥離する剥離試験を行なって、前記溶融部の径および前記亜鉛系めっきが吐き出された領域の径を求めることを特徴とする請求項3に記載の抵抗スポット溶接の溶接条件判定方法。   At the stage where the pre-energization process is completed, a peeling test is performed to peel the two adjacent steel plates to be joined, and the diameter of the molten part and the diameter of the region where the zinc-based plating is discharged are obtained. A welding condition determination method for resistance spot welding according to claim 3. 前記剥離試験で求める前記亜鉛系めっきが吐き出された領域の径は、鋼板表面に観察される酸化亜鉛の白色のリング状領域の内径−1mmであることを特徴とする請求項4に記載の抵抗スポット溶接の溶接条件判定方法。   5. The resistance according to claim 4, wherein the diameter of the region from which the zinc-based plating is discharged obtained in the peeling test is an inner diameter of a white ring-shaped region of zinc oxide observed on the steel plate surface—1 mm. A welding condition determination method for spot welding. 請求項3〜5のいずれか一項に記載の抵抗スポット溶接の溶接部の溶接条件判定方法に基づいて予通電工程の溶接条件を決定することを特徴とする抵抗スポット溶接方法。   A resistance spot welding method, wherein welding conditions for a pre-energization step are determined based on the welding condition determination method for a welded portion of resistance spot welding according to any one of claims 3 to 5.
JP2018057391A 2017-03-31 2018-03-26 Resistance spot welding method and resistance spot welding determination method Active JP6572986B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071266 2017-03-31
JP2017071266 2017-03-31

Publications (2)

Publication Number Publication Date
JP2018171649A true JP2018171649A (en) 2018-11-08
JP6572986B2 JP6572986B2 (en) 2019-09-11

Family

ID=64108072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018057391A Active JP6572986B2 (en) 2017-03-31 2018-03-26 Resistance spot welding method and resistance spot welding determination method

Country Status (1)

Country Link
JP (1) JP6572986B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217332A1 (en) * 2019-04-24 2020-10-29 Jfeスチール株式会社 Resistance spot welding method, and method for manufacturing resistance spot welded joint
JP2021079410A (en) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 Resistance spot welding method
JP2021079416A (en) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 Resistance spot welding method
JP7368716B2 (en) 2019-11-07 2023-10-25 日本製鉄株式会社 Manufacturing method of resistance spot welding joints
JP7376458B2 (en) 2020-11-27 2023-11-08 トヨタ自動車株式会社 Resistance spot welding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200269A (en) * 2001-12-28 2003-07-15 Jfe Steel Kk Method of spot welding of high tensile zinc electroplated steel plate
JP2004188495A (en) * 2002-11-27 2004-07-08 Daihen Corp Resistance welding control method
JP2010247215A (en) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd Resistance welding method of high tensile steel sheet
WO2015005134A1 (en) * 2013-07-11 2015-01-15 新日鐵住金株式会社 Resistive spot welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200269A (en) * 2001-12-28 2003-07-15 Jfe Steel Kk Method of spot welding of high tensile zinc electroplated steel plate
JP2004188495A (en) * 2002-11-27 2004-07-08 Daihen Corp Resistance welding control method
JP2010247215A (en) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd Resistance welding method of high tensile steel sheet
WO2015005134A1 (en) * 2013-07-11 2015-01-15 新日鐵住金株式会社 Resistive spot welding method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217332A1 (en) * 2019-04-24 2020-10-29 Jfeスチール株式会社 Resistance spot welding method, and method for manufacturing resistance spot welded joint
JP6828831B1 (en) * 2019-04-24 2021-02-10 Jfeスチール株式会社 Resistance spot welding method, resistance spot welding joint manufacturing method
KR20210141644A (en) * 2019-04-24 2021-11-23 제이에프이 스틸 가부시키가이샤 Resistance spot welding method, manufacturing method of resistance spot welding seam
KR102589429B1 (en) 2019-04-24 2023-10-13 제이에프이 스틸 가부시키가이샤 Resistance spot welding method, manufacturing method of resistance spot welding seam
JP7368716B2 (en) 2019-11-07 2023-10-25 日本製鉄株式会社 Manufacturing method of resistance spot welding joints
JP2021079410A (en) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 Resistance spot welding method
JP2021079416A (en) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 Resistance spot welding method
JP7201570B2 (en) 2019-11-20 2023-01-10 トヨタ自動車株式会社 Resistance spot welding method
JP7201569B2 (en) 2019-11-20 2023-01-10 トヨタ自動車株式会社 Resistance spot welding method
JP7376458B2 (en) 2020-11-27 2023-11-08 トヨタ自動車株式会社 Resistance spot welding method

Also Published As

Publication number Publication date
JP6572986B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP6572986B2 (en) Resistance spot welding method and resistance spot welding determination method
TWI601588B (en) Resistance point welding method
US10682723B2 (en) Resistance spot welding steel and aluminum workpieces with electrode having insert
JP6194765B2 (en) Spot welding method for high strength steel sheet
JP6278154B2 (en) Resistance spot welding method and manufacturing method of welded member
WO2018123350A1 (en) Resistance spot welding method
CN110202245B (en) Mechanical property improvement of aluminum-steel welding seam by limiting deformation of steel plate
US11524351B2 (en) Multistage joining process with thermal sprayed layers
JP6769467B2 (en) Resistance spot welding method and manufacturing method of resistance spot welding member
JP6168246B1 (en) Resistance spot welding method and manufacturing method of welded member
US11065711B2 (en) High aspect ratio weld face design for dissimilar metal welding
JP2011167742A (en) Spot welding method for alloyed aluminum plated steel sheet or press component having aluminum alloy layer
WO2018159764A1 (en) Resistance spot welding method
JP6315161B1 (en) Resistance spot welding method
US11548091B2 (en) Pretreatment of weld flanges to mitigate liquid metal embrittlement cracking in resistance welding of galvanized steels
JP2019177408A (en) Welded structure and method for manufacturing the same
JP6671846B2 (en) Tailored blank hot press members
JP7296985B2 (en) Resistance spot welding method and method for manufacturing resistance spot welded joints
KR102589429B1 (en) Resistance spot welding method, manufacturing method of resistance spot welding seam
JP2020011253A (en) Resistance spot welding method
KR20150075705A (en) Method for resistance spot welding of galvanized steel sheet
JP6372639B1 (en) Resistance spot welding method
JP6811063B2 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
CN113199147A (en) Laser deep melting spot welding process for aluminum/steel dissimilar metal
JP2017060995A (en) Resistance spot weld joint, resistance spot welding method, and manufacturing method for resistance spot weld joint

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6572986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250