JP2010279991A - Method of lap-welding steel sheet by laser beam - Google Patents

Method of lap-welding steel sheet by laser beam Download PDF

Info

Publication number
JP2010279991A
JP2010279991A JP2009137323A JP2009137323A JP2010279991A JP 2010279991 A JP2010279991 A JP 2010279991A JP 2009137323 A JP2009137323 A JP 2009137323A JP 2009137323 A JP2009137323 A JP 2009137323A JP 2010279991 A JP2010279991 A JP 2010279991A
Authority
JP
Japan
Prior art keywords
thin steel
welding
laser
steel plate
steel plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009137323A
Other languages
Japanese (ja)
Inventor
Kenji Saida
健二 才田
Yasunobu Miyazaki
康信 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009137323A priority Critical patent/JP2010279991A/en
Publication of JP2010279991A publication Critical patent/JP2010279991A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of lap-welding a steel sheet by a laser beam, by which the solidification crack is not caused even when the restriction is not provided on the structure of a flange and the position of a weld zone. <P>SOLUTION: In a method of welding a plurality of steel sheets 1A, 1B each other by superimposing them and emitting a laser beam L, at least one of the steel sheets 1A, 1B is a high-tensile steel sheet and, by forming a weld zone 2 in which the composition of ingredients of a weld metal is 0.05≤C≤0.08 mass%, or C<0.05 mass% and P+S≥0.03 mass%, the superimposed steel sheets 1A, 1B are welded each other. When taking the width of the superimposed part 5 of the steel sheets 1A, 1B as ≤8 mm, using the laser beam L the condensed beam diameter of which is ≤0.5 mm and expressing the laser output by p(w), a welding speed by v(mm/s), the total sheet thickness in a superimposed part to be welded by t(mm) and the condensed beam diameter by d(mm), a relationship which is expressed by next formula: äp/v/t<SP>1/2</SP>×d<SP>2</SP><12.5} is satisfied. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、薄鋼板のレーザ重ね溶接方法に関し、特に、板厚が0.5〜3.2mmの薄鋼板を複数重ね合わせ、この重ね合わせ方向からレーザ光を照射しつつ、重ね合わせた薄鋼板の端部に沿ってレーザ光を移動させて、これら薄鋼板を互いに溶接する薄鋼板のレーザ重ね溶接方法に関する。なお、本発明は、主に、自動車や家庭用電化製品の構造物をレーザ溶接する場合に好適な方法である。   The present invention relates to a method for laser lap welding of thin steel plates, and in particular, a plurality of thin steel plates having a thickness of 0.5 to 3.2 mm are stacked, and the stacked thin steel plates are irradiated while irradiating laser light from the overlapping direction. The present invention relates to a laser lap welding method for thin steel sheets in which laser light is moved along the edge of the steel sheets and these thin steel sheets are welded together. In addition, this invention is a method suitable mainly when laser welding the structure of a motor vehicle or household appliances.

近年、自動車の燃費の改善や安全性の向上といった要求に対応するため、引張強さが440MPa級以上の高強度の薄鋼板が自動車車体に多く使用されるようになっており、レーザ溶接を用いてこれらの鋼板を溶接することが求められている。さらに、高強度薄鋼板を重ね合わせて溶接する方法において、安定した接合部強度が得られるレーザ溶接方法が求められている。   In recent years, high strength steel sheets with a tensile strength of 440 MPa or higher are often used for automobile bodies in order to meet the demands of improving the fuel efficiency and safety of automobiles, using laser welding. Therefore, it is required to weld these steel plates. Furthermore, there is a need for a laser welding method capable of obtaining stable joint strength in a method of superposing and welding high strength thin steel sheets.

レーザ溶接は、レーザ光を熱源とするため、アーク溶接に比べて入熱量の制御が確実かつ容易である。このため、溶接速度やレーザビームの照射出力、さらにはシールドガス流量などの溶接条件を適切に設定することによって熱変形を小さくできるというメリットがある。また、レーザ溶接は、片側から溶接できることから自動車の車体など複雑な部材の組付溶接に好適である。このようなレーザ溶接は、自動車製造業や電気機器製造業等、多用な分野において、薄鋼板を成形加工した部材を溶接する際に多用されている。また、これに関連して、溶接継手強度に優れた重ね継手を形成する、レーザ重ね溶接方法が多数提案されている。   Since laser welding uses laser light as a heat source, control of the heat input is more reliable and easier than arc welding. For this reason, there is an advantage that thermal deformation can be reduced by appropriately setting welding conditions such as welding speed, laser beam irradiation output, and shielding gas flow rate. Laser welding is suitable for assembly welding of complicated members such as a car body because it can be welded from one side. Such laser welding is frequently used when welding a member obtained by forming a thin steel plate in various fields such as the automobile manufacturing industry and the electrical equipment manufacturing industry. In connection with this, many laser lap welding methods have been proposed that form lap joints with excellent weld joint strength.

従来から自動車の車体パネルに用いられている、薄鋼板から形成され、重ね継ぎ手を有する部材の典型的な一例について、図2(a)、(b)、(c)、(d)に示す模式図を例に説明する。図示例のように、折り曲げ部23およびフランジ部24を有し、断面略ハット形状の構造部材である薄鋼板21(21A)を互いに対向させ、そのフランジ部24を重ね合わせ、その重ね合せ部をスポット溶接などで接合したフレーム部材の他、図2(b)、(c)に示すようにフランジ部24と薄鋼板21Bあるいはフランジ部24の間に薄鋼板21Bを介在させてそれらを重ね合わせ、それらを同様に接合したフレーム部材や、さらには、図2(d)に示すように複数枚の構造部材である薄鋼板21Aを同一方向に重ね合わせたフレーム部材が使用されている。特に、近年、地球環境問題のための自動車の燃費向上のために、これらの部材に高張力鋼板を多用して車体の軽量化が図られるようになっている。   A typical example of a member formed from a thin steel plate and having a lap joint, which has been conventionally used for a vehicle body panel, is shown in FIGS. 2 (a), (b), (c), and (d). An example will be described with reference to the drawings. Like the example of illustration, it has the bending part 23 and the flange part 24, makes the cross-sectional substantially hat-shaped structural member the thin steel plates 21 (21A) mutually oppose, the flange part 24 is overlap | superposed, and the overlap part is formed. In addition to the frame members joined by spot welding or the like, as shown in FIGS. 2B and 2C, the thin steel plate 21B is interposed between the flange portion 24 and the thin steel plate 21B or the flange portion 24, and they are overlapped. The frame member which joined them similarly, and also the frame member which piled up the thin steel plate 21A which is a plurality of structural members in the same direction as shown in FIG.2 (d) are used. In particular, in recent years, in order to improve the fuel efficiency of automobiles due to global environmental problems, high-strength steel plates are frequently used for these members to reduce the weight of the vehicle body.

上述のような高強度鋼板の重ね合せ部の接合にレーザ溶接を採用した場合には、連続溶接によって高い接合強度が得られ、また、ビード幅が狭いことから、従来用いられていたスポット溶接やアーク溶接に比べて接合部の設計自由度が大きいため、フランジ部の幅を狭くすることで、構造部材を小型、軽量化することが可能となるなどの利点がある。
しかしながら、高張力鋼板よりなる構造部材において、例えば、フランジ部の幅を狭くして部材を軽量化し、重ね合せ部の端部近傍をレーザ溶接により下側の鋼板裏面まで溶融するように溶接する場合、凝固割れ等の問題が生じることが、特許文献1、2によって明らかとなっている。
When laser welding is used to join the overlapped portions of the high-strength steel plates as described above, high welding strength can be obtained by continuous welding, and since the bead width is narrow, conventionally used spot welding and Since the degree of freedom of design of the joint is greater than that of arc welding, there is an advantage that the structural member can be reduced in size and weight by narrowing the width of the flange.
However, in a structural member made of high-tensile steel plate, for example, when the width of the flange portion is narrowed to reduce the weight of the member, the vicinity of the end of the overlapped portion is welded so as to be melted to the lower steel plate back surface by laser welding. It is clear from Patent Documents 1 and 2 that problems such as solidification cracking occur.

すなわち、図7(a)に示すように、断面略ハット形状の構造部材100の両側に備えられるフランジ部104を相互に重ね合わせてなるフレーム部材110のフランジ部104に、重ね合せ方向、すなわちフランジ部104に交差する方向からレーザ光を照射して、下側の鋼板裏面まで溶融するように溶接する。この際、フランジ部104の長手方向端部から溶接を開始する場合には(図7(a)、(b)中の矢印を参照)、図7(b)に示すように、溶接始端部側が外側に広がるように変形し、割れが発生するという問題がある。   That is, as shown in FIG. 7A, the flange portion 104 of the frame member 110 formed by superimposing the flange portions 104 provided on both sides of the structural member 100 having a substantially hat-shaped cross section is overlapped with the flange direction 104, that is, the flange. Laser light is irradiated from the direction intersecting the portion 104 and welding is performed so as to melt to the lower surface of the steel sheet. At this time, when welding is started from the longitudinal end portion of the flange portion 104 (see arrows in FIGS. 7A and 7B), as shown in FIG. There is a problem that deformation occurs to spread outward and cracks occur.

また、図8に示すように、溶接開始点105をフランジ部102の長手方向の端部とはせず、該端部から所定距離隔てた点を溶接開始点とした場合でも、溶接後に溶接部106の中央部分が膨出し、割れ等が発生する場合がある。なお、図8中において、符号108はレーザ溶接ヘッドである。これは、重ね合わせた下側の鋼板の裏面まで溶融するようにレーザ光を照射して溶接する場合、レーザ光の照射によって形成された溶融部が凝固するまで、溶融部よりも端部側の部位が、フランジ部102本体から切り離された状態になるため、この部位の幅が小さいと、溶接部106からの熱伝導による熱膨張で当該部位が変形し、凝固途中の溶接ビードを引っ張るため、凝固時に割れが発生するものと考えられる。   Further, as shown in FIG. 8, even when the welding start point 105 is not set as the end portion in the longitudinal direction of the flange portion 102 and the point separated from the end portion by a predetermined distance is set as the welding start point, The central portion of 106 may bulge and cracks may occur. In FIG. 8, reference numeral 108 denotes a laser welding head. This is because when welding is performed by irradiating a laser beam so as to melt up to the back surface of the lower steel sheet, the melted part formed by laser light irradiation is solidified until the melted part is solidified. Since the part is in a state separated from the flange part 102 main body, if the width of this part is small, the part is deformed by thermal expansion due to heat conduction from the welded part 106, and the weld bead in the middle of solidification is pulled. It is considered that cracking occurs during solidification.

このような、従来のフランジ部材の重ね合せ部の端部近傍をレーザ溶接した際に生じる凝固割れの問題に対し、特許文献1、2では、以下のような方法により、凝固割れを防止することが提案されている。
まず、特許文献1においては、凝固割れの発生は溶接金属のC、P、S成分に依存し、図9に示すように、C<0.05質量%、かつ、P+S<0.03質量%になるように、または、0.08質量%<C<0.7質量%、かつ、P+S<0.05質量%になるように溶接部を形成することにより、凝固割れを防止できることが記載されている。
With respect to the problem of solidification cracking that occurs when laser welding is performed on the vicinity of the end of the overlapping portion of the conventional flange member, in Patent Documents 1 and 2, solidification cracking is prevented by the following method. Has been proposed.
First, in Patent Document 1, the occurrence of solidification cracks depends on the C, P, and S components of the weld metal, and as shown in FIG. 9, C <0.05% by mass and P + S <0.03% by mass. It is described that solidification cracking can be prevented by forming a welded portion so that 0.08% by mass <C <0.7% by mass and P + S <0.05% by mass. ing.

また、特許文献2では、特許文献1で示された凝固割れが生じない成分範囲以外の場合、図10に示すように、まず、溶接金属鋼板111、114の重ね合せ部の幅を8mm以内とし、かつ、一方の鋼板(溶接金属鋼板)114の端部からの距離Bが3.5mm以上の位置に溶接部112を形成することで凝固割れを防止できることが記載されている。または、図10に示すように、一方の鋼板114の他方の鋼板111からの突出量Dが5mm以上となるように重ね合わせ、鋼板同士の重ね合せ部の幅を8mm以内とし、かつ、他方の鋼板111の端からの距離Bが1.5mm以上の位置に溶接部112を形成することにより、凝固割れを防止できることが記載されている。   Moreover, in patent document 2, when it is except the component range which does not produce the solidification crack shown by patent document 1, as shown in FIG. 10, first, the width | variety of the overlap part of the weld metal steel plates 111 and 114 shall be less than 8 mm. In addition, it is described that solidification cracking can be prevented by forming the welded portion 112 at a position where the distance B from the end of one steel plate (welded metal steel plate) 114 is 3.5 mm or more. Alternatively, as shown in FIG. 10, one steel plate 114 is overlapped so that the protrusion amount D from the other steel plate 111 is 5 mm or more, the width of the overlapping portion between the steel plates is within 8 mm, and the other It is described that solidification cracking can be prevented by forming the weld 112 at a position where the distance B from the end of the steel plate 111 is 1.5 mm or more.

特開2007−229740号公報JP 2007-229740 A 特開2007−229752号公報JP 2007-229752 A

しかしながら、特許文献1、2に記載の発明では、溶接金属の成分であるC(炭素)の含有量が0.05≦C≦0.08質量%の場合に、凝固割れを回避するためには、フランジの重ね合せ部の構造や溶接部の形成位置に制約が生じるという問題があった。
ところが、高張力薄鋼板のレーザ溶接において、部材の軽量化のためにフランジ部の幅を短くし、さらに、重ね合せ部の端部近傍を下側の鋼板裏面まで溶融するように溶接する場合で、溶接金属の成分Cが0.05≦C≦0.08質量%、または、C<0.05質量%、かつ、P+S≧0.03質量%の場合に、溶接凝固割れを回避するための方法として、フランジの重ね合せ部の構造や溶接部の形成位置に制約を設けない溶接方法については、従来は提案されていなかった。
However, in the inventions described in Patent Documents 1 and 2, in order to avoid solidification cracking when the content of C (carbon), which is a component of the weld metal, is 0.05 ≦ C ≦ 0.08 mass%. There has been a problem that the structure of the overlapping portion of the flange and the formation position of the welded portion are restricted.
However, in laser welding of high-strength thin steel sheets, the width of the flange portion is shortened to reduce the weight of the member, and further, welding is performed so that the vicinity of the end of the overlapped portion is melted to the lower steel plate back surface. In order to avoid weld solidification cracking when the component C of the weld metal is 0.05 ≦ C ≦ 0.08 mass%, or C <0.05 mass% and P + S ≧ 0.03 mass%. As a method, a welding method that does not limit the structure of the overlapping portion of the flange and the formation position of the weld has not been proposed conventionally.

本発明は上記問題に鑑みてなされたものであり、フランジの重ね合せ部の構造や、溶接部の形成位置に制約を設けること無く、凝固割れ等が発生するのを抑制可能な、薄鋼板のレーザ重ね溶接方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is possible to suppress the occurrence of solidification cracks and the like without restricting the structure of the overlapping portion of the flange and the formation position of the welded portion. An object is to provide a laser lap welding method.

本発明者等が上記問題を解決するために鋭意研究したところ、少なくとも1枚の薄鋼板を高張力鋼板から構成し、また、溶接部の溶接金属の成分Cが、0.05≦C≦0.08質量%、あるいは、C<0.05質量%、且つ、P+S≧0.03質量%の場合でも、各種溶接条件を適性化することにより、フランジの重ね合せ部の構造や、溶接部の形成位置に多くの制約を設けること無く、凝固割れ等が生じるのを抑制できることを見出し、本発明を完成した。
即ち、本発明の要旨は以下のとおりである。
As a result of extensive studies by the present inventors to solve the above problems, at least one thin steel plate is composed of a high-tensile steel plate, and the weld metal component C in the weld zone is 0.05 ≦ C ≦ 0. .08 mass%, or even when C <0.05 mass% and P + S ≧ 0.03 mass%, by optimizing various welding conditions, the structure of the overlapping part of the flange, The inventors have found that solidification cracking and the like can be suppressed without providing many restrictions on the formation position, and have completed the present invention.
That is, the gist of the present invention is as follows.

[1] 板厚0.5〜3.2mmの薄鋼板を複数重ね合わせ、この重ね合わせた下側の薄鋼板の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、重ね合わせた薄鋼板の端部に沿って前記レーザ光を移動させて溶接部を形成することにより、重ね合わせた薄鋼板を互いに溶接する、薄鋼板のレーザ重ね溶接方法であって、前記複数の薄鋼板のうちの少なくとも1枚が高張力鋼よりなる板材であり、溶接金属の成分組成が0.05≦C≦0.08質量%、あるいは、C<0.05質量%、且つ、P+S≧0.03質量%である前記溶接部を形成することにより、重ね合わせた前記薄鋼板を互いに溶接し、前記薄鋼板の重ね合せ部の幅を8mm以内とし、且つ、集光径が0.5mm以下のレーザ光を用い、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合わされた被溶接部の合計板厚をt(mm)、集光径をd(mm)とした際、下記(1)式で表される関係を満たすことを特徴とする、薄鋼板のレーザ重ね溶接方法。
p/v/t1/2×d<12.5 ・・・・・・・・・・ (1)
[2] 前記複数の薄鋼板のうちの少なくとも1枚の薄鋼板は、溶接方向に平行ないし溶接方向に沿った鋼板端部のうちの少なくとも片側に、折り曲げ部および該折り曲げ部に続くフランジ部を有する構造部材であり、前複数の記薄鋼板の重ね合せ部が、前記フランジ部と他の前記薄鋼板を重ね合わせたものであることを特徴とする、上記[2]に記載の薄鋼板のレーザ重ね溶接方法。
[3] 前記複数の薄鋼板のうちの少なくとも1枚の薄鋼板が、溶接方向に平行ないし溶接方向に沿った鋼板端部の両側に前記折り曲げ部および前記フランジ部を有する、断面略ハット形状の構造部材であることを特徴とする、上記[2]に記載の薄鋼板のレーザ重ね溶接方法。
[4] 前記フランジ部の幅が8mm以内であることを特徴とする、上記[2]または[3]に記載の薄鋼板のレーザ重ね溶接方法。
[1] A plurality of thin steel plates having a thickness of 0.5 to 3.2 mm are superposed, and superposed while irradiating laser light from the superposition direction so as to melt to the back surface of the superposed thin steel plate. A laser lap welding method for thin steel sheets, in which the overlapped thin steel sheets are welded together by moving the laser beam along an edge of the thin steel sheets to form a welded portion. At least one of them is a plate made of high-strength steel, and the component composition of the weld metal is 0.05 ≦ C ≦ 0.08 mass%, or C <0.05 mass%, and P + S ≧ 0.03. By forming the welded portion in mass%, the superposed thin steel plates are welded to each other, the width of the superposed portion of the thin steel plates is within 8 mm, and the condensing diameter is 0.5 mm or less. Using light, the laser output is p (w), When the welding speed is v (mm / sec), the total plate thickness of the overlapped parts to be welded is t (mm), and the focused diameter is d (mm), the relationship expressed by the following formula (1) is satisfied. A method for laser lap welding of thin steel sheets.
p / v / t 1/2 × d 2 <12.5 (1)
[2] At least one thin steel plate of the plurality of thin steel plates includes a bent portion and a flange portion following the bent portion on at least one side of the steel plate end portions parallel to or along the welding direction. The thin steel plate according to [2] above, wherein the overlapping portion of the plurality of thin steel plates is a superposition of the flange portion and the other thin steel plate. Laser lap welding method.
[3] At least one thin steel plate of the plurality of thin steel plates has a substantially hat-shaped cross section having the bent portion and the flange portion on both sides of a steel plate end portion parallel to the welding direction or along the welding direction. The method of laser lap welding of thin steel sheets according to [2] above, wherein the method is a structural member.
[4] The method of laser lap welding of thin steel sheets according to [2] or [3] above, wherein the flange portion has a width of 8 mm or less.

本発明の請求項1に記載の薄鋼板のレーザ重ね溶接方法によれば、複数の薄鋼板のうちの少なくとも1枚を高張力鋼板とし、また、薄鋼板の重ね合せ部の幅を8mm以内とし、且つ、集光径が0.5mm以下のレーザ光を用い、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合わされた被溶接部の合計板厚をt(mm)、集光径をd(mm)とした際、次式{p/v/t1/2×d<12.5}で表される関係を満たす条件で溶接する方法なので、溶接金属の成分組成が0.05≦C≦0.08質量%、あるいは、C<0.05質量%、且つ、P+S≧0.03質量%である溶接部を形成し、重ね合わせた下側の薄鋼板裏面まで充分に溶け込みを行った場合でも、溶接部に凝固割れが発生することなく、重ね合わせた薄鋼板を互いにレーザ溶接することができる。従って、重ね合せ部の幅が狭くても強度の高い溶接部を形成することができ、構造部材を小型化、軽量化することが可能となる。
また、本発明の請求項2、3に記載の薄鋼板のレーザ重ね溶接方法によれば、少なくとも1枚の薄鋼板がフランジ部を有する構造部材である溶接方法なので、自動車のパネル部品の製造等に適用することが可能となる。
また、本発明の請求項4に記載の薄鋼板のレーザ重ね溶接方法によれば、フランジ部の幅を適性化して溶接を行う方法なので、構造部材をさらに小型化、軽量化することが可能となる。
According to the method of laser lap welding of thin steel plates according to claim 1 of the present invention, at least one of the plurality of thin steel plates is a high-tensile steel plate, and the width of the overlapping portion of the thin steel plates is within 8 mm. In addition, using a laser beam with a condensing diameter of 0.5 mm or less, the laser output is p (w), the welding speed is v (mm / sec), and the total thickness of the overlapped parts to be welded is t (mm). When the condensing diameter is d (mm), the welding metal component is a method of welding under conditions satisfying the relationship represented by the following formula {p / v / t 1/2 × d 2 <12.5}. The bottom surface of the lower thin steel plate formed by superimposing the welded portion having a composition of 0.05 ≦ C ≦ 0.08 mass% or C <0.05 mass% and P + S ≧ 0.03 mass%. Even if it is fully melted, the laminated thin steel does not cause solidification cracks in the weld. Can be laser welded together. Accordingly, a welded portion having high strength can be formed even if the width of the overlapping portion is narrow, and the structural member can be reduced in size and weight.
In addition, according to the laser lap welding method for thin steel plates according to claims 2 and 3 of the present invention, since at least one thin steel plate is a welding method that is a structural member having a flange portion, manufacture of automobile panel parts, etc. It becomes possible to apply to.
Further, according to the laser lap welding method for thin steel sheets according to claim 4 of the present invention, since the welding is performed by optimizing the width of the flange portion, the structural member can be further reduced in size and weight. Become.

本発明に係る薄鋼板のレーザ重ね溶接方法の一例を模式的に説明する図であり、フランジ部の幅と溶接部の位置との関係を示す概略斜視図である。It is a figure which illustrates typically an example of the laser lap welding method of the thin steel plate which concerns on this invention, and is a schematic perspective view which shows the relationship between the width | variety of a flange part, and the position of a welding part. 本発明に係る薄鋼板のレーザ重ね溶接方法の一例を模式的に説明する図であり、重ね継ぎ手を有する構造部材をなす薄鋼板の各例を示す概略斜視図である。It is a figure which illustrates typically an example of the laser lap welding method of the thin steel plate which concerns on this invention, and is a schematic perspective view which shows each example of the thin steel plate which makes the structural member which has a lap joint. 本発明に係る薄鋼板のレーザ重ね溶接方法の一例を模式的に説明する図であり、溶接部の溶接後の凝固過程の温度と歪との関係を示すグラフである。It is a figure which illustrates typically an example of the laser lap welding method of the thin steel plate which concerns on this invention, and is a graph which shows the relationship between the temperature of the solidification process after welding of a welding part, and distortion. 本発明に係る薄鋼板のレーザ重ね溶接方法の一例を模式的に説明する図であり、凝固脆性範囲と収縮変位の関係を示す図である。It is a figure which illustrates typically an example of the laser lap welding method of the thin steel plate which concerns on this invention, and is a figure which shows the relationship between a solidification brittle range and shrinkage displacement. 本発明に係る薄鋼板のレーザ重ね溶接方法の一例を模式的に説明する図であり、溶接部をなす溶接金属中の各元素の濃度と凝固温度幅との関係を示すグラフである。It is a figure which illustrates typically an example of the laser lap welding method of the thin steel plate which concerns on this invention, and is a graph which shows the relationship between the density | concentration of each element in the weld metal which makes a welding part, and a solidification temperature range. 本発明に係る薄鋼板のレーザ重ね溶接方法の一例を模式的に説明する図であり、溶接部における凝固割れの発生とレーザ溶接条件との関係を示すグラフである。It is a figure which illustrates typically an example of the laser lap welding method of the thin steel plate which concerns on this invention, and is a graph which shows the relationship between generation | occurrence | production of the solidification crack in a welding part, and laser welding conditions. 従来の薄鋼板のレーザ重ね溶接方法を模式的に説明する図であり、溶接部に生じる凝固割れの一例を示す概略斜視図である。It is a figure which illustrates typically the laser lap welding method of the conventional thin steel plate, and is a schematic perspective view which shows an example of the solidification crack which arises in a welding part. 従来の薄鋼板のレーザ重ね溶接方法を模式的に説明する図であり、溶接部に生じる凝固割れの他の例を示す概略斜視図である。It is a figure which illustrates typically the laser lap welding method of the conventional thin steel plate, and is a schematic perspective view which shows the other example of the solidification crack which arises in a welding part. 従来の薄鋼板のレーザ重ね溶接方法を模式的に説明する図であり、溶接部における凝固割れの発生と成分との関係を示すグラフである。It is a figure which illustrates typically the laser lap welding method of the conventional thin steel plate, and is a graph which shows the relationship between generation | occurrence | production of the solidification crack in a welding part, and a component. 従来の薄鋼板のレーザ重ね溶接方法を模式的に説明する図であり、フランジ部の幅と溶接部の位置との関係を示す概略斜視図である。It is a figure which illustrates typically the laser lap welding method of the conventional thin steel plate, and is a schematic perspective view which shows the relationship between the width | variety of a flange part, and the position of a welding part.

以下、本発明の薄鋼板のレーザ重ね溶接方法の実施形態について、図1〜図6を適宜参照しながら説明する(図7〜図10等も参照)。なお、本実施形態は、本発明の薄鋼板のレーザ重ね溶接方法の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。   Hereinafter, an embodiment of a laser lap welding method for a thin steel plate of the present invention will be described with reference to FIGS. 1 to 6 as appropriate (see also FIGS. 7 to 10 and the like). In addition, since this embodiment demonstrates in detail in order to make the meaning of the laser lap welding method of the thin steel plate of this invention better understood, unless otherwise specified, this invention is not limited.

本発明の薄鋼板のレーザ重ね溶接方法は、板厚0.5〜3.2mmの薄鋼板1(1A、1B)を複数重ね合わせ、この重ね合わせた下側の薄鋼板1の裏面1cまで溶融するように重ね合わせ方向からレーザ光Lを照射しつつ、重ね合わせた薄鋼板1の端部1aに沿ってレーザ光Lを移動させて溶接部2を形成することにより、重ね合わせた薄鋼板1を互いに溶接する方法であり、複数の薄鋼板1のうちの少なくとも1枚を高張力鋼板とし、溶接金属の成分組成が0.05≦C≦0.08質量%、あるいは、C<0.05質量%、且つ、P+S≧0.03質量%である溶接部12を形成することにより、重ね合わせた薄鋼板1A、1Bを互いに溶接し、薄鋼板1A、1Bの重ね合せ部5の幅Aを8mm以内とし、且つ、集光径が0.5mm以下のレーザ光Lを用い、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合せ部(重ね合わされた被溶接部)5の合計板厚をt(mm)、集光径をd(mm)とした際、下記(1)式で表される関係を満たす条件で溶接する方法である。
p/v/t1/2×d<12.5 ・・・・・ (1)
In the laser lap welding method for thin steel sheets of the present invention, a plurality of thin steel sheets 1 (1A, 1B) having a thickness of 0.5 to 3.2 mm are superposed and melted to the back surface 1c of the superposed steel sheet 1 on the lower side. The superposed thin steel sheet 1 is formed by moving the laser light L along the end portion 1a of the superposed thin steel sheet 1 to form the welded portion 2 while irradiating the laser light L from the superimposing direction. Are welded to each other, at least one of the plurality of thin steel plates 1 is a high-tensile steel plate, and the component composition of the weld metal is 0.05 ≦ C ≦ 0.08 mass%, or C <0.05. By forming the welded portion 12 with mass% and P + S ≧ 0.03 mass%, the superposed thin steel plates 1A and 1B are welded together, and the width A of the overlapping portion 5 of the thin steel plates 1A and 1B is set. 8mm or less and condensing diameter is 0.5mm or less Using the laser beam L, the laser output is p (w), the welding speed is v (mm / sec), the total thickness of the overlapped portion (the overlapped welded portion) 5 is t (mm), and the focused diameter is When d (mm), the welding is performed under conditions that satisfy the relationship represented by the following formula (1).
p / v / t 1/2 × d 2 <12.5 (1)

(薄鋼板の材質)
本発明では、レーザ重ね溶接する鋼板の材質としては、複数の鋼板の全てが高張力鋼板である場合と、薄鋼板の少なくても1枚が高張力鋼板であり、他の薄鋼板は高張力鋼板に比べて引張強さが低い鋼などである場合があり、本発明はその何れをも対象(被接合物)とする。
高張力鋼板の強度レベルの範囲としては、引張強さが440MPa以上のものとする。これは、引張強さが440MPa級未満の薄鋼板同士の重ねレーザ溶接では、本発明が課題とする凝固割れの問題がないからである。また、鋼板強度レベルの上限は、溶接金属の成分が本発明の範囲を満たすことができる限り、特に限定する必要はないが、一般的な薄鋼板の成分を考慮して溶接金属の成分範囲を本発明の範囲とするためには、引張強さが980MPa級までとするのが好ましい。
また、異なる組合せの薄鋼板としては、例えば、引張強さが590MPa級の薄鋼板と270MPa級の薄鋼板の組合せ等が例示できる。
(Material of thin steel plate)
In the present invention, as the material of the steel plate to be laser lap welded, all of the plurality of steel plates are high-tensile steel plates, and at least one of the thin steel plates is a high-tensile steel plate, and the other thin steel plates are high-tensile. In some cases, the steel has a tensile strength lower than that of the steel plate, and the present invention targets any of them.
As a range of the strength level of the high-tensile steel plate, the tensile strength is 440 MPa or more. This is because there is no problem of solidification cracking, which is a problem of the present invention, in the lap laser welding between thin steel sheets having a tensile strength of less than 440 MPa. Further, the upper limit of the steel plate strength level is not particularly limited as long as the weld metal component can satisfy the range of the present invention, but the component range of the weld metal is considered in consideration of the components of a general thin steel plate. In order to be within the scope of the present invention, it is preferable that the tensile strength is up to 980 MPa class.
Examples of the different combinations of thin steel plates include a combination of a thin steel plate having a tensile strength of 590 MPa and a thin steel plate having a 270 MPa class.

レーザ溶接では、溶接金属の成分は、フィラー等の溶加材を別途添加しない場合、重ね合わせた各薄鋼板の母材成分値及びその板厚から計算される平均成分であり、計算されるC、P、Sの値が、上記本発明の規定を満たすように構造部材の材質を選定する。また、溶加材を加える場合には、その添加量を考慮してC、P、Sの値を計算する必要がある。   In laser welding, the component of the weld metal is an average component calculated from the base material component value and the thickness of each superposed thin steel plate, unless a filler material such as a filler is added separately. The material of the structural member is selected so that the values of P, S satisfy the above-mentioned definition of the present invention. Moreover, when adding a filler material, it is necessary to calculate the value of C, P, and S in consideration of the addition amount.

(薄鋼板の板厚)
本発明の溶接方法で対象とする薄鋼板の板厚は、0.5〜3.2mmとする。この、薄鋼板の板厚の下限0.5mmは、本発明が対象とする自動車、家庭用電化製品の構造物に使用される鋼板の板厚は、0.5mm以上が殆どであることに基づいて規定した。また、薄鋼板の板厚の上限3.2mmは、通常用いられるレーザ溶接機の溶接能力に基づいて規定した。
(Thin steel plate thickness)
The sheet thickness of the thin steel plate targeted by the welding method of the present invention is set to 0.5 to 3.2 mm. The lower limit of 0.5 mm of the thickness of the thin steel plate is based on the fact that the thickness of the steel plate used in the structure of automobiles and household appliances targeted by the present invention is 0.5 mm or more. Stipulated. Moreover, the upper limit of 3.2 mm of the thickness of the thin steel plate was defined based on the welding ability of a commonly used laser welding machine.

(フランジ部)
本発明の溶接方法においては、図1等に示す例のように、複数の薄鋼板1のうちの少なくとも1枚の薄鋼板1Aが、溶接方向に平行ないし溶接方向に沿った端部1aのうちの少なくとも片側に、折り曲げ部3および該折り曲げ部3に続くフランジ部4を有する構造部材であり、複数の薄鋼板1A、1Bの重ね合せ部5が、構造部材である薄鋼板1Aのフランジ部4と薄鋼板1Bを重ね合わせたものとすることができる。また、図示例においては、薄鋼板1Aが、溶接方向に平行ないし溶接方向に沿った端部1aの両側に折り曲げ部3およびフランジ部4を有する、断面略ハット形状の構造部材として構成されている。
(Flange part)
In the welding method of the present invention, as in the example shown in FIG. 1 and the like, at least one thin steel plate 1A among the plurality of thin steel plates 1 is parallel to the welding direction or is the end portion 1a along the welding direction. Is a structural member having a bent portion 3 and a flange portion 4 following the bent portion 3 on at least one side, and the overlapping portion 5 of the plurality of thin steel plates 1A and 1B is a flange portion 4 of the thin steel plate 1A which is a structural member. And the thin steel plate 1B. Further, in the illustrated example, the thin steel plate 1A is configured as a structural member having a substantially hat-shaped cross section having the bent portions 3 and the flange portions 4 on both sides of the end portion 1a parallel to the welding direction or along the welding direction. .

従来、高張力鋼板からなり、図1に示す断面形状が略ハット型の構造部材のような、端部にフランジを有する板状部材を、同様のフランジ部材や鋼板と重ね、両者の間をレーザ溶接してフレーム部材を製造する際、特許文献2で開示されているように、例えば、8mm以内というような、よりフランジ部の幅(鋼板の重ね合せ部の幅)の狭い構造部材を用いてフレーム部材全体をより軽量化しようとすると、溶接部からフランジ端部までの距離Bは、1.5mm以上の範囲のうちのより短い距離にならざるを得ない。このような条件では、図8に示すように、フランジ部102の長手方向端部から離れた位置で溶接を開始したとしても、上述したように、溶接部106からの熱伝導によって変形した部位が、凝固途中の溶接ビードを引っ張り、凝固割れが発生する場合があった。   Conventionally, a plate-like member made of a high-strength steel plate and having a flange at the end, such as a structural member having a substantially hat-shaped cross section shown in FIG. When manufacturing a frame member by welding, as disclosed in Patent Document 2, for example, using a structural member having a narrower flange width (width of the overlapping portion of steel plates) such as within 8 mm. In order to reduce the weight of the entire frame member, the distance B from the welded portion to the flange end portion must be a shorter distance within a range of 1.5 mm or more. Under such conditions, as shown in FIG. 8, even if welding is started at a position away from the longitudinal end of the flange portion 102, the portion deformed by heat conduction from the welded portion 106 is not detected as described above. In some cases, the weld bead during solidification was pulled to cause solidification cracking.

本発明では、上述したように、複数の薄鋼板1A、1Bのうちの少なくとも1枚を高張力鋼板とし、また、集光径が0.5mm以下のレーザ光を用い、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合わされた被溶接部の合計板厚をt(mm)、集光径をd(mm)とした際、次式{p/v/t1/2×d<12.5}で表される関係を満たす条件でレーザ重ね溶接を行うことにより、薄鋼板1の重ね合せ部5の幅Aが8mm以内という狭い寸法であっても、溶接部に凝固割れが生じるのが抑制できる。従って、重ね合せ部の幅が狭くても強度の高い溶接部を形成することができ、構造部材を小型化、軽量化することが可能となる。 In the present invention, as described above, at least one of the plurality of thin steel plates 1A and 1B is a high-tensile steel plate, and a laser beam having a condensing diameter of 0.5 mm or less is used, and the laser output is p (w ), When the welding speed is v (mm / sec), the total thickness of the overlapped parts to be welded is t (mm), and the focused diameter is d (mm), the following formula {p / v / t 1 / By performing laser lap welding under conditions satisfying the relationship represented by 2 × d 2 <12.5}, even if the width A of the overlapping portion 5 of the thin steel plate 1 is a narrow dimension of 8 mm or less, the welded portion It is possible to suppress the occurrence of solidification cracks. Accordingly, a welded portion having high strength can be formed even if the width of the overlapping portion is narrow, and the structural member can be reduced in size and weight.

なお、構造部材を軽量化するためには、フランジ部4の幅、即ち、重ね合せ部5の幅Aを8mm以内とするのがより効果的であり好ましい。なお、フランジ部4の幅Aを3mm未満とすると、フランジ部4が溶け落ちて溶接できなくなることがあるため、フランジ部4の幅Aの下限は3mm以上とするのが好ましい。さらに、そのようなフランジ部4の幅Aにおいて、溶接ビード(溶接部2)から端部1aまでの距離Bを1.5mm以上とするのが好ましい。これは、1.5mm未満では、フランジ部4が、溶接部2から端部1aまで溶融してそのまま溶け落ち易くなるためである。また、溶接部2からフランジ部4の長手方向端部1dまでの距離Cについても、上記同様に理由により、1.5mm以上とすることが好ましい。
そこで、本発明者らは、凝固割れの発生原因を調べ、まず、溶接金属成分と凝固割れとの関連について検討した。
In order to reduce the weight of the structural member, it is more effective and preferable that the width of the flange portion 4, that is, the width A of the overlapping portion 5 is within 8 mm. If the width A of the flange portion 4 is less than 3 mm, the flange portion 4 may melt and be unable to be welded. Therefore, the lower limit of the width A of the flange portion 4 is preferably 3 mm or more. Furthermore, in such a width A of the flange portion 4, it is preferable that the distance B from the weld bead (welded portion 2) to the end portion 1a is 1.5 mm or more. This is because if the length is less than 1.5 mm, the flange portion 4 is easily melted from the welded portion 2 to the end portion 1a. Further, the distance C from the welded portion 2 to the longitudinal end 1d of the flange portion 4 is preferably 1.5 mm or more for the same reason as described above.
Therefore, the present inventors investigated the cause of solidification cracking, and first examined the relationship between the weld metal component and solidification cracking.

図3は、薄鋼板のレーザ重ね溶接における凝固過程の温度と溶接部周辺で発生する歪との関係を示すグラフである。図3のグラフは、質量%で、C量が0.06%、Si量が0.5%、Mn量が1.5%を含有する、板厚が1.2mmで引張強さ590MPaの高張力鋼板を重ね合わせ、集光径dが0.6mmのレーザ光を用い、レーザ加工点出力pが2000W、溶接速度vが33mm/secの条件で、レーザ重ね溶接を行った試料を用いて得られたものである。   FIG. 3 is a graph showing the relationship between the temperature of the solidification process in laser lap welding of thin steel sheets and the strain generated around the weld. The graph of FIG. 3 shows mass%, C content of 0.06%, Si content of 0.5%, Mn content of 1.5%, plate thickness of 1.2 mm and tensile strength of 590 MPa. Obtained by using a sample that has been subjected to laser lap welding under the conditions of superposing tension steel plates, using a laser beam with a focused diameter d of 0.6 mm, a laser processing point output p of 2000 W, and a welding speed v of 33 mm / sec. It is what was done.

図3に示すように、溶接部には、液相温度直下から引張方向の力が働き、逆に、液相温度から温度が充分に低下すると、溶接部には圧縮の力が働くことが分かる。図3のグラフ中では、レーザ光照射位置後方の、凝固過程にある(2)の領域において、引張方向の大きな歪が発生しており、これが凝固割れに繋がるものということができる。
そして、このような歪の発生と凝固割れの関係は、図4に示すような、一般的に知られている凝固温度脆性範囲(BTR)と収縮変位(P)の関係から説明できる。
即ち、溶接部の温度と凝固収縮に伴う部材の変位量との間には、図4のグラフ中に斜線で示すように、凝固割れ感受性の高い脆化域(D)があり、温度の降下に伴って凝固収縮変位(P)の値が大きくなり、それが脆化域を通過すると凝固割れが発生すると考えられる。また、液相温度直下では、最低延性値(Dmin)が小さく脆化域は広いものの、液相率が高いので、例え柱状晶間に凝固割れが発生しても、液相により充填されるので、凝固割れは発生しない。
As shown in FIG. 3, it is understood that a tensile force is applied to the welded portion immediately below the liquidus temperature, and conversely, if the temperature is sufficiently lowered from the liquidus temperature, a compressive force is applied to the welded portion. . In the graph of FIG. 3, a large strain in the tensile direction is generated in the region (2) in the solidification process behind the laser light irradiation position, which can be said to lead to solidification cracking.
The relationship between the occurrence of strain and solidification cracking can be explained from the relationship between the generally known solidification temperature brittleness range (BTR) and shrinkage displacement (P) as shown in FIG.
That is, there is an embrittlement region (D) that is highly susceptible to solidification cracking, as indicated by the hatched line in the graph of FIG. 4, between the temperature of the weld and the amount of displacement of the member accompanying solidification shrinkage. Along with this, the value of solidification shrinkage displacement (P) increases, and it is considered that solidification cracking occurs when it passes through the embrittlement region. Also, just below the liquidus temperature, the minimum ductility value (Dmin) is small and the embrittlement region is wide, but the liquidus ratio is high, so even if solidification cracks occur between columnar crystals, they are filled with the liquid phase. , Solidification cracking does not occur.

一般的に、凝固割れに影響を与える因子の一つとして、液相−固相間の凝固温度幅が挙げられる。ここで、Feに対する2元系において、少量の添加でも凝固温度幅を広げる元素としては、例えば、図5で示すようなC、P、Sが知られている。
また、C、P、Sは平衡分配係数が小さく、溶質が溶融金属中に排出され柱状晶間に残留するため、見かけの固相温度より最終凝固位置の温度は、図4中に示す太字破線のように低下し、BTRを広げやすく凝固割れを起こしやすい元素であると考えられる。さらに、溶接金属においては、その成分範囲で凝固過程の粒界強度が低くなるような、特に割れに敏感な成分範囲があると考えられ、その成分範囲は、C、P、S量の各範囲で決まると考えられる。このため、特許文献1、2では、図9に示すような、溶接金属の成分がC<0.05%、かつ、0.03%≦P+S、または、0.05≦C≦0.08%の範囲では、凝固割れが発生するということが示されている。
In general, one of the factors affecting solidification cracking is the solidification temperature range between the liquid phase and the solid phase. Here, in the binary system for Fe, for example, C, P, and S as shown in FIG. 5 are known as elements that widen the solidification temperature range even when a small amount is added.
Further, C, P, and S have a small equilibrium partition coefficient, and the solute is discharged into the molten metal and remains between the columnar crystals. Therefore, the temperature at the final solidification position from the apparent solid phase temperature is indicated by a bold broken line shown in FIG. It is thought that it is an element which is easy to cause the solidification cracking easily. Further, in the weld metal, it is considered that there is a particularly sensitive component range in which the grain boundary strength in the solidification process is low in the component range, and the component ranges are C, P, and S amount ranges. It is thought that it is decided by. For this reason, in Patent Documents 1 and 2, as shown in FIG. 9, the component of the weld metal is C <0.05% and 0.03% ≦ P + S or 0.05 ≦ C ≦ 0.08%. In this range, it is shown that solidification cracking occurs.

そこで、本発明者等は、溶接変形による引張応力を低下させ、変位量Pを小さくすることにより、凝固割れが生じないレーザ溶接条件が存在すると考え、さらに詳細に調査を行った。ここで、変位量(溶接変形)を小さくするレーザ溶接条件としては、入熱量(加工点出力p/溶接速度v)を小さくすればよい。また、レーザ集光径dが小さいほど、入熱量(加工点出力p/溶接速度v)が小さい溶接が可能である。また、重ね合わされた被溶接部の合計板厚tについては、厚いほうが、同一の入熱量に対して溶接変形は小さくなる。   Therefore, the present inventors considered that there is a laser welding condition in which solidification cracking does not occur by reducing the tensile stress due to welding deformation and reducing the displacement amount P, and conducted a more detailed investigation. Here, as a laser welding condition for reducing the amount of displacement (welding deformation), the amount of heat input (processing point output p / welding speed v) may be reduced. Further, welding with a smaller amount of heat input (processing point output p / welding speed v) is possible as the laser focused diameter d is smaller. In addition, with respect to the total thickness t of the overlapped parts to be welded, the larger the thickness, the smaller the welding deformation for the same heat input.

実験は、板厚0.5〜3.2mmで、引張強さ270MPa級から引張強さ980MPa級の鋼板を、溶接金属の成分が、C量が0.05≦C≦0.08%の範囲、または、C<0.05質量%、且つ、P+S≧0.03質量%の範囲になるように調整して用いた。また、レーザ溶接条件としては、レーザ光の集光径dを0.3〜0.9mm、加工点出力pを1500〜4500w、溶接速度vを17〜100mm/secの範囲で、種々変更して行った。   In the experiment, a steel plate having a thickness of 0.5 to 3.2 mm and a tensile strength of 270 MPa to 980 MPa is used, and the weld metal component has a C content in a range of 0.05 ≦ C ≦ 0.08%. Or adjusted so that C <0.05 mass% and P + S ≧ 0.03 mass%. The laser welding conditions are variously changed in the range of the laser beam condensing diameter d of 0.3 to 0.9 mm, the processing point output p of 1500 to 4500 w, and the welding speed v of 17 to 100 mm / sec. went.

上記実験の結果を、割れの発生の有無で整理のうえ、図6で示す。図6中における横軸は、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合わされた被溶接部の合計板厚をt(mm)、集光径をd(mm)とした場合に、次式{p/v/t1/2×d}で表される溶接条件である。この結果より、本発明で規定するように、複数の薄鋼板1(1A、1B)のうち、少なくとも1枚が高張力鋼板からなり、これら複数の薄鋼板1A、1Bを重ね合わせ、この重ね合わせた下側の薄鋼板1Bの裏面1cまで溶融するように重ね合わせ方向からレーザ光Lを照射しつつ、重ね合わせた薄鋼板1の溶接方向端部11から離れた位置から溶接を開始し、重ね合わせた薄鋼板1の端部1aに沿ってレーザ光Lを移動させて溶接部2を形成することにより、重ね合わせた薄鋼板1を互いに溶接する際、溶接金属の成分が0.05≦C≦0.08質量%、あるいは、C<0.05質量%、且つ、P+S≧0.03質量%であっても、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合せ部(重ね合わされた被溶接部)5の合計板厚をt(mm)、集光径をd(mm)とした場合、下記(1)式で示される溶接条件であれば、凝固割れを起こさないことが明らかとなった。
p/v/t1/2×d<12.5 ・・・・・・・・・・ (1)
The result of the above experiment is shown in FIG. The horizontal axis in FIG. 6 indicates the laser output as p (w), the welding speed as v (mm / sec), the total thickness of the overlapped parts to be welded as t (mm), and the focused diameter as d (mm). In this case, the welding condition is represented by the following expression {p / v / t 1/2 × d 2 }. As a result, as defined in the present invention, at least one of the plurality of thin steel plates 1 (1A, 1B) is made of a high-strength steel plate, and the plurality of thin steel plates 1A, 1B are superposed and this superposition is performed. While irradiating the laser beam L from the overlapping direction so as to melt to the back surface 1c of the lower thin steel sheet 1B, welding is started from a position away from the end 11 in the welding direction of the stacked thin steel sheets 1. By moving the laser beam L along the end portion 1a of the combined thin steel plates 1 to form the welded portion 2, when welding the stacked thin steel plates 1 to each other, the component of the weld metal is 0.05 ≦ C. ≦ 0.08 mass%, or C <0.05 mass% and P + S ≧ 0.03 mass%, laser output is p (w), welding speed is v (mm / sec), overlap Total of matching parts (superimposed welded parts) 5 The thickness t (mm), if the condensing diameter is d (mm), if the welding conditions represented by the following formula (1), it became clear that not cause solidification cracking.
p / v / t 1/2 × d 2 <12.5 (1)

上述のように、レーザ溶接部の凝固割れの発生有無がレーザ溶接条件によって大きく異なる理由の詳細は、必ずしも明らかではないが、本発明者等は、以下に説明するような理由によるものと考える。   As described above, the details of the reason why the presence or absence of solidification cracks in the laser welded portion greatly differs depending on the laser welding conditions are not necessarily clear, but the present inventors consider that the reason is as follows.

本発明のように、溶接変形による引張応力を小さくするために入熱を制限したレーザ溶接条件とした場合、図4中の一点鎖線で示すように変位量が低下した結果、C、P、Sが多くBTRが広い場合でも凝固割れが生じなかったものと考えられる。ここで、溶接変形を小さくするためには、レーザ加工点出力pは小さく、溶接速度vは大きく、集光径dは小さいほうが良い。また、板厚が厚いと溶接変形は生じ難くなる。これらを考慮し、上記実験結果を解析することで凝固割れの発生有無を整理することができ、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合わされた被溶接部の合計板厚をt(mm)、集光径をd(mm)とした場合、次式{p/v/t1/2×d<12.5}{(1)式}を満足するレーザ溶接条件とすることで、凝固割れを起こさないことが明らかとなった。 When the laser welding conditions are such that the heat input is limited in order to reduce the tensile stress due to welding deformation as in the present invention, the amount of displacement decreases as shown by the one-dot chain line in FIG. It is considered that solidification cracking did not occur even when the BTR was large and the BTR was wide. Here, in order to reduce the welding deformation, it is preferable that the laser processing point output p is small, the welding speed v is large, and the focused diameter d is small. Further, when the plate thickness is thick, welding deformation is difficult to occur. Considering these, the presence or absence of solidification cracks can be arranged by analyzing the above experimental results, the laser output is p (w), the welding speed is v (mm / sec), and the overlapped welded parts A laser satisfying the following formula {p / v / t 1/2 × d 2 <12.5} {formula (1)} where t is the total thickness and d is the condensing diameter. It became clear that solidification cracking was not caused by using welding conditions.

なお、本発明では、レーザ発振器として、例えば、YAGレーザ、ファイバーレーザ、DISKレーザなどを用いることができる。   In the present invention, for example, a YAG laser, a fiber laser, a DISK laser, or the like can be used as the laser oscillator.

以上説明したように、本発明に係る薄鋼板1のレーザ重ね溶接方法によれば、複数の薄鋼板1A、1Bのうちの少なくとも1枚を高張力鋼板とし、また、薄鋼板1A、1Bの重ね合せ部5(フランジ部4)の幅Aを8mm以内とし、且つ、集光径が0.5mm以下のレーザ光Lを用い、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合せ部5の合計板厚をt(mm)、集光径をd(mm)とした際、次式{p/v/t1/2×d<12.5}で表される関係を満たす条件で溶接する方法なので、溶接金属の成分組成が0.05≦C≦0.08質量%、あるいは、C<0.05質量%、且つ、P+S≧0.03質量%である溶接部2を形成し、重ね合わせた下側の薄鋼板1Bの裏面1cまで充分に溶け込みを行った場合でも、溶接部2に凝固割れが発生することなく、重ね合わせた薄鋼板1A、1Bを互いにレーザ溶接することができる。従って、重ね合せ部5の幅Wが狭くても強度の高い溶接部2を形成することができ、構造部材を小型化、軽量化することが可能となる。 As described above, according to the laser lap welding method of the thin steel plate 1 according to the present invention, at least one of the plurality of thin steel plates 1A, 1B is a high-tensile steel plate, and the thin steel plates 1A, 1B are overlapped. The width A of the mating portion 5 (flange portion 4) is set to within 8 mm, and the laser beam L with a focused diameter of 0.5 mm or less is used, the laser output is p (w), and the welding speed is v (mm / sec). When the total plate thickness of the overlapped portion 5 is t (mm) and the light collection diameter is d (mm), it is represented by the following formula {p / v / t 1/2 × d 2 <12.5}. Since welding is performed under conditions that satisfy the relationship, the weld metal component composition is 0.05 ≦ C ≦ 0.08 mass%, or C <0.05 mass%, and P + S ≧ 0.03 mass%. Even when the part 2 is formed and fully melted up to the back surface 1c of the laminated thin steel sheet 1B, Without solidification cracking occurs in the welded portion 2, superimposed steel sheet 1A, can be laser welded together 1B. Therefore, even if the width W of the overlapping portion 5 is narrow, the welded portion 2 having high strength can be formed, and the structural member can be reduced in size and weight.

また、本発明の薄鋼板のレーザ重ね溶接方法によれば、少なくとも1枚の薄鋼板1Aを、フランジ部4を有する構造部材とすることで、自動車のパネル部品の製造等に適用することが可能となる。
また、本発明によれば、フランジ部4の幅Aを適性化して溶接を行う方法とすることで、構造部材をさらに小型化、軽量化することが可能となる。
In addition, according to the laser lap welding method for thin steel sheets of the present invention, at least one thin steel sheet 1A can be applied to the manufacture of automobile panel parts and the like by using a structural member having a flange portion 4. It becomes.
Further, according to the present invention, the structural member can be further reduced in size and weight by making the width A of the flange portion 4 suitable for welding.

なお、本実施形態の薄鋼板1(1A、1B)のレーザ重ね溶接方法の説明においては、図1(図2(b)も参照)に示すような構造部材を製造する際に適用する例を説明しているが、本発明はこれに限定されるものでは無い。例えば、図2(a)に示すような、折り曲げ部23及びフランジ部24を有し、断面略ハット形状の構造部材である薄鋼板21(21A)を互いに対向させ、そのフランジ部24を重ね合わせ、その重ね合せ部をスポット溶接などで接合したフレーム部材の他、図2(c)に示すような、2つのフランジ部24の間に薄鋼板21Bを介在させてそれらを重ね合わせ、上記同様に接合したフレーム部材の製造に適用することも可能である。またさらに、図2(d)に示すように、複数枚の構造部材である薄鋼板21Aを同一方向に重ね合わせたフレーム部材の製造に適用することも可能である。本発明の薄鋼板のレーザ重ね溶接方法を、上述したような構造部材の製造工程に適用することにより、例えば、自動車部材の小型化や軽量化が可能となり、ひいては、車体の軽量化による自動車の燃費向上等、非常に優れた効果が得られる。   In addition, in description of the laser lap welding method of the thin steel plate 1 (1A, 1B) of this embodiment, the example applied when manufacturing a structural member as shown in FIG. 1 (refer also FIG.2 (b)). Although described, the present invention is not limited to this. For example, as shown in FIG. 2 (a), a thin steel plate 21 (21A) that is a structural member having a bent portion 23 and a flange portion 24 and having a substantially hat-shaped cross section is opposed to each other, and the flange portion 24 is overlapped. In addition to the frame member in which the overlapped portion is joined by spot welding or the like, a thin steel plate 21B is interposed between the two flange portions 24 as shown in FIG. It is also possible to apply to manufacture of the joined frame member. Furthermore, as shown in FIG. 2 (d), it is also possible to apply to the manufacture of a frame member in which thin steel plates 21A, which are a plurality of structural members, are overlapped in the same direction. By applying the method of laser lap welding of thin steel sheets of the present invention to the manufacturing process of structural members as described above, for example, it becomes possible to reduce the size and weight of an automobile member, and thus, to reduce the weight of the vehicle body. Excellent effects such as improved fuel efficiency can be obtained.

以下、本発明に係る薄鋼板のレーザ重ね溶接方法の実施例を挙げ、本発明をより具体的に説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、特許請求の範囲に記載される事項によってのみ規定されており、上記以外の実施の形態も実施可能である。本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Hereinafter, examples of the laser lap welding method for thin steel sheets according to the present invention will be given and the present invention will be described more specifically, but the conditions adopted in the examples are for confirming the feasibility and effects of the present invention. The present invention is not limited to this one condition example. This invention is prescribed | regulated only by the matter described in a claim, Embodiment other than the above can also be implemented. As long as the object of the present invention is achieved without departing from the present invention, various conditions can be adopted.

本実施例においては、供試材として、厚さが1.2mmで引張強さが270〜980MPa級の薄鋼板よりなる断面ハット形状の構造部材を、平板上の薄鋼板に端部が揃うように重ねあわせた。この際、薄鋼板のそれぞれの重ね合せ部の幅を8mmとした。また、これらの鋼板は、溶接金属中のC(炭素)の量が0.05≦C≦0.08%、または、C<0.05質量%、且つ、P+S≧0.03質量%となる試料を用いた。   In the present example, as a test material, a structural member having a cross-sectional hat shape made of a thin steel plate having a thickness of 1.2 mm and a tensile strength of 270 to 980 MPa is aligned with the thin steel plate on the flat plate. Overlaid on. At this time, the width of each overlapping portion of the thin steel plates was 8 mm. In these steel plates, the amount of C (carbon) in the weld metal is 0.05 ≦ C ≦ 0.08%, or C <0.05 mass%, and P + S ≧ 0.03% mass. A sample was used.

そして、薄鋼板の重ね合せ部を、以下に説明する条件でレーザ重ね溶接した。
まず、レーザとしてはYAGレーザを用い、レーザ光の集光径dを0.3〜0.9mm、レーザの加工点出力pを1500〜4500w、溶接速度vを17〜100mm/secの範囲として、下記表1に示す範囲で種々変更させて行った。また、この際、シールドガスとして、Arガスを供給しながら溶接処理を行った。
また、レーザの照射位置は、フランジ部の端部から2.5〜4.0mmの範囲とした。
そして、上記条件で複数の薄鋼板をレーザ重ね溶接した際の、溶接部における凝固割れの発生の有無について、「○(発生無し)」、「×(発生有り)」で下記表1に示した。
Then, the overlapped portion of the thin steel plates was laser lap welded under the conditions described below.
First, a YAG laser is used as the laser, the laser beam condensing diameter d is 0.3 to 0.9 mm, the laser processing point output p is 1500 to 4500 w, and the welding speed v is 17 to 100 mm / sec. Various changes were made within the range shown in Table 1 below. At this time, the welding process was performed while supplying Ar gas as the shielding gas.
The laser irradiation position was in the range of 2.5 to 4.0 mm from the end of the flange portion.
The presence or absence of solidification cracks in the welded portion when laser lap welding of a plurality of thin steel sheets under the above conditions is shown in Table 1 below as “◯ (no occurrence)” and “× (occurrence)”. .

下記表1に、本発明例及び比較例の各々の溶接条件の一覧を示すとともに、フランジ部の長手方向の端部から溶接して得られた溶接部における凝固割れの発生の有無の一覧を示す。   Table 1 below shows a list of welding conditions for each of the inventive examples and the comparative examples, and also shows a list of occurrence of solidification cracks in the welds obtained by welding from the longitudinal ends of the flanges. .

Figure 2010279991
Figure 2010279991

表1に示す結果のように、本発明で規定する薄鋼板を用い、本発明の規定を満たす溶接条件でレーザ重ね溶接を行った本発明例(本発明例1〜6)では、凝固割れが生じることなく、複数の薄鋼板を良好に重ねレーザ溶接することが可能であることがわかる。
これに対し、各溶接条件の何れかが本発明の規定範囲外となっている比較例(比較例1〜4)では、全ての例において溶接部に凝固割れが生じた。
As in the results shown in Table 1, in the present invention examples (invention examples 1 to 6) in which laser lap welding was performed under the welding conditions satisfying the provisions of the present invention using the thin steel sheets defined in the present invention, solidification cracks were observed. It can be seen that a plurality of thin steel plates can be satisfactorily stacked and laser-welded without occurring.
On the other hand, in the comparative examples (comparative examples 1 to 4) in which any one of the welding conditions is outside the specified range of the present invention, solidification cracks occurred in the welded parts in all examples.

以上説明した実施例の結果から、本発明の薄鋼板のレーザ重ね溶接方法を適用することにより、フランジ部の構造や溶接部の位置に制約を設けなくても、溶接部に凝固割れを生じることなく、複数の薄鋼板を良好に溶接できることが明らかである。   From the results of the examples described above, by applying the laser lap welding method for thin steel sheets of the present invention, solidification cracks are generated in the welded part without any restrictions on the structure of the flange part and the position of the welded part. It is clear that a plurality of thin steel plates can be well welded.

1、1A、1B…薄鋼板、1a…端部(フランジ部)、1c…裏面、1d…長手方向端部(フランジ部)2…溶接部、3…折り曲げ部、4…フランジ部、5…重ね合せ部、A…幅(重ね合せ部の幅、フランジ部の幅)L…レーザ光、p…レーザ出力、t…フランジ部(重ね合せ部:被溶接部)の合計板厚、v…溶接速度、d…集光径 DESCRIPTION OF SYMBOLS 1, 1A, 1B ... Thin steel plate, 1a ... End part (flange part), 1c ... Back surface, 1d ... End part in longitudinal direction (flange part) 2 ... Welded part, 3 ... Bending part, 4 ... Flange part, 5 ... Overlap Alignment part, A ... Width (width of overlapping part, width of flange part) L ... Laser beam, p ... Laser output, t ... Total plate thickness of flange part (overlapping part: welded part), v ... Welding speed , D ... Condensing diameter

Claims (4)

板厚0.5〜3.2mmの薄鋼板を複数重ね合わせ、この重ね合わせた下側の薄鋼板の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、重ね合わせた薄鋼板の端部に沿って前記レーザ光を移動させて溶接部を形成することにより、重ね合わせた薄鋼板を互いに溶接する、薄鋼板のレーザ重ね溶接方法であって、
前記複数の薄鋼板のうちの少なくとも1枚が高張力鋼板であり、溶接金属の成分組成が0.05≦C≦0.08質量%、あるいは、C<0.05質量%、且つ、P+S≧0.03質量%である前記溶接部を形成することにより、重ね合わせた前記薄鋼板を互いに溶接し、
前記薄鋼板の重ね合せ部の幅を8mm以内とし、且つ、集光径が0.5mm以下のレーザ光を用い、レーザ出力をp(w)、溶接速度をv(mm/sec)、重ね合わされた被溶接部の合計板厚をt(mm)、集光径をd(mm)とした際、下記(1)式で表される関係を満たすことを特徴とする、薄鋼板のレーザ重ね溶接方法。
p/v/t1/2×d<12.5 ・・・・・・・・・・ (1)
A plurality of thin steel plates having a thickness of 0.5 to 3.2 mm are superposed, and laser light is irradiated from the superposition direction so as to melt to the back surface of the superposed lower thin steel plate. A laser lap welding method for thin steel sheets, in which the overlapped thin steel sheets are welded together by moving the laser beam along an end portion to form a welded portion,
At least one of the plurality of thin steel plates is a high-tensile steel plate, and the component composition of the weld metal is 0.05 ≦ C ≦ 0.08 mass%, or C <0.05 mass%, and P + S ≧ By forming the welded portion that is 0.03% by mass, the stacked thin steel plates are welded together,
The width of the overlapped portion of the thin steel plates is 8 mm or less, and a laser beam with a focused diameter of 0.5 mm or less is used, the laser output is p (w), the welding speed is v (mm / sec), and the overlap is performed. Laser lap welding of thin steel plates, characterized by satisfying the relationship represented by the following formula (1) when the total thickness of the welded parts is t (mm) and the focused diameter is d (mm) Method.
p / v / t 1/2 × d 2 <12.5 (1)
前記複数の薄鋼板のうちの少なくとも1枚の薄鋼板は、溶接方向に平行ないし溶接方向に沿った鋼板端部のうちの少なくとも片側に、折り曲げ部および該折り曲げ部に続くフランジ部を有する構造部材であり、前記複数の薄鋼板の重ね合せ部が、前記フランジ部と他の前記薄鋼板を重ね合わせたものであることを特徴とする、請求項1に記載の薄鋼板のレーザ重ね溶接方法。   At least one thin steel plate of the plurality of thin steel plates is a structural member having a bent portion and a flange portion following the bent portion on at least one side of the end portions of the steel plate parallel to the welding direction or along the welding direction. 2. The method of laser lap welding of thin steel sheets according to claim 1, wherein the overlapping portions of the plurality of thin steel plates are obtained by superimposing the flange portions and the other thin steel plates. 前記複数の薄鋼板のうちの少なくとも1枚の薄鋼板が、溶接方向に平行ないし溶接方向に沿った鋼板端部の両側に前記折り曲げ部および前記フランジ部を有する、断面略ハット形状の構造部材であることを特徴とする、請求項2に記載の薄鋼板のレーザ重ね溶接方法。   At least one thin steel plate of the plurality of thin steel plates is a structural member having a substantially hat-shaped cross section having the bent portion and the flange portion on both sides of a steel plate end portion parallel to the welding direction or along the welding direction. The laser lap welding method for a thin steel sheet according to claim 2, wherein the laser lap welding method is provided. 前記フランジ部の横幅が8mm以内であることを特徴とする、請求項2または3に記載の薄鋼板のレーザ重ね溶接方法。   The laser lap welding method for thin steel sheets according to claim 2 or 3, wherein a lateral width of the flange portion is within 8 mm.
JP2009137323A 2009-06-08 2009-06-08 Method of lap-welding steel sheet by laser beam Pending JP2010279991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137323A JP2010279991A (en) 2009-06-08 2009-06-08 Method of lap-welding steel sheet by laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137323A JP2010279991A (en) 2009-06-08 2009-06-08 Method of lap-welding steel sheet by laser beam

Publications (1)

Publication Number Publication Date
JP2010279991A true JP2010279991A (en) 2010-12-16

Family

ID=43537226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137323A Pending JP2010279991A (en) 2009-06-08 2009-06-08 Method of lap-welding steel sheet by laser beam

Country Status (1)

Country Link
JP (1) JP2010279991A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128938A (en) * 2011-12-20 2013-07-04 Nippon Steel & Sumitomo Metal Corp Laser welding method and laser welded joint
JP2014210283A (en) * 2013-04-19 2014-11-13 新日鐵住金株式会社 Laser welding method and welded joint
CN106181039A (en) * 2016-08-04 2016-12-07 哈尔滨工业大学 A kind of double laser beam welding method reducing T connector HOT CRACK FOR WELDING P
JP2021076120A (en) * 2019-11-04 2021-05-20 株式会社デンソー Manufacturing method of fluid control valve
JP2021137822A (en) * 2020-03-02 2021-09-16 株式会社豊田中央研究所 Spot welding method
US11969813B2 (en) 2020-03-02 2024-04-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Spot welding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079388A (en) * 2000-09-06 2002-03-19 Nippon Steel Corp Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
JP2007229752A (en) * 2006-02-28 2007-09-13 Nippon Steel Corp Overlap laser welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079388A (en) * 2000-09-06 2002-03-19 Nippon Steel Corp Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
JP2007229752A (en) * 2006-02-28 2007-09-13 Nippon Steel Corp Overlap laser welding method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128938A (en) * 2011-12-20 2013-07-04 Nippon Steel & Sumitomo Metal Corp Laser welding method and laser welded joint
JP2014210283A (en) * 2013-04-19 2014-11-13 新日鐵住金株式会社 Laser welding method and welded joint
CN106181039A (en) * 2016-08-04 2016-12-07 哈尔滨工业大学 A kind of double laser beam welding method reducing T connector HOT CRACK FOR WELDING P
JP2021076120A (en) * 2019-11-04 2021-05-20 株式会社デンソー Manufacturing method of fluid control valve
JP7294069B2 (en) 2019-11-04 2023-06-20 株式会社デンソー Manufacturing method of fluid control valve
JP2021137822A (en) * 2020-03-02 2021-09-16 株式会社豊田中央研究所 Spot welding method
JP7269191B2 (en) 2020-03-02 2023-05-08 株式会社豊田中央研究所 spot welding method
US11969813B2 (en) 2020-03-02 2024-04-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Spot welding method

Similar Documents

Publication Publication Date Title
JP6662396B2 (en) Manufacturing method of laser welded joint
JP5999253B2 (en) Manufacturing method of arc spot welded joint
JP6443319B2 (en) Lap laser spot welded joint and method of manufacturing the welded joint
JP6103166B1 (en) Fillet welding method and fillet welded joint
JP2008178905A (en) Laser welding method for structure composed of steel plate
KR20180114122A (en) Overlap laser welded joint, method of manufacturing the welded joint, and skeleton part for automobile
JP4841970B2 (en) Lap laser welding method
JP2010279991A (en) Method of lap-welding steel sheet by laser beam
JP2005262259A (en) Method for manufacturing resistance spot welded joint
JP4854327B2 (en) Lap laser welding method
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
JP5000578B2 (en) Laser welding method for thin steel sheets
JP6236852B2 (en) Laser welding method and welded joint
JP2018034188A (en) Weld joint and manufacturing method thereof
JP4987453B2 (en) Lap laser welding joint of steel plates and lap laser welding method
WO2018003341A1 (en) Laser welded joint and method for manufacturing laser welded joint
JP6859105B2 (en) Laminated laser spot welded joint and manufacturing method of the welded joint
JP6583657B1 (en) Lap laser welded joint, manufacturing method thereof, and structural member for automobile body
JP5861443B2 (en) Laser welding method and laser welded joint
WO2019225528A1 (en) Laser welded lap joint, method for producing laser-welded lap joint, and structural component for motor vehicle
JP2023087674A (en) Laser lap welding joint, method for manufacturing laser lap welding joint, and structure member for automobile body
JP2007229739A (en) Laser brazing method of high-strength steel sheet
JP2023147358A (en) Method for manufacturing lap fillet-welded joint, method for setting lap width of lap fillet-welded joint, and lap fillet-welded joint
JP5073526B2 (en) Laser welding method for structural members
JP2017060994A (en) Resistance spot weld joint, resistance spot welding method, and manufacturing method for resistance spot weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604