JP2007229752A - Overlap laser welding method - Google Patents

Overlap laser welding method Download PDF

Info

Publication number
JP2007229752A
JP2007229752A JP2006053136A JP2006053136A JP2007229752A JP 2007229752 A JP2007229752 A JP 2007229752A JP 2006053136 A JP2006053136 A JP 2006053136A JP 2006053136 A JP2006053136 A JP 2006053136A JP 2007229752 A JP2007229752 A JP 2007229752A
Authority
JP
Japan
Prior art keywords
plate
overlapped
welding
welded
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006053136A
Other languages
Japanese (ja)
Other versions
JP4854327B2 (en
Inventor
Kenji Saida
健二 才田
Yasunobu Miyazaki
康信 宮崎
Hiroshige Inoue
裕滋 井上
Yoshihiro Fujikawa
吉弘 藤川
Shiro Nakano
史朗 中野
Makoto Iwase
誠 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2006053136A priority Critical patent/JP4854327B2/en
Publication of JP2007229752A publication Critical patent/JP2007229752A/en
Application granted granted Critical
Publication of JP4854327B2 publication Critical patent/JP4854327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent solidification cracking in overlap laser welding. <P>SOLUTION: In the laser welding method where a plurality of steel materials in which at least one is made of high tensile strength steel are overlapped, as laser light is emitted to the vicinities of the edge parts of the overlapped sheet materials from the overlapped direction in such a manner that melting is caused to the back face of the sheet material on the lower side to be overlapped, the laser light is moved along the edge parts, so as to form a weld zone in which the content of carbon in the weld metal satisfies 0.05≤C≤0.08%; thus the overlapped sheet materials are welded each other, the width of the overlapped parts in the sheet materials is controlled to ≤8 mm, and also, the weld zone is formed at a position far by ≥3.5 mm from the edges of the sheet materials. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、複数の板材を重ね合わせ、この重ね合わせた板材の端部近傍に重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて、重ね合わせた板材を互いに溶接する重ねレーザ溶接方法に関する。   The present invention superimposes a plurality of plate materials, irradiates laser light in the vicinity of the end portion of the overlapped plate material from the superimposition direction, moves the laser light along the end portion, The present invention relates to a lap laser welding method for welding to each other.

自動車の車体パネルとして、高張力鋼よりなる薄板材から形成され、フランジ部2および折り曲げ部3を有する断面が図1aに示すようにハット形状の構造部材1を、互いに対向させてそのフランジ部2を重ね合わせ、その重ね合わせ部をスポット溶接などで接合したフレーム部材や、図1b、cに示すように前記フランジ部2と板材4あるいはフランジ部間に板材4を介在させてそれらを重ね合わせ、それらを同様に接合したフレーム部材、さらには、図1dに示すように複数枚の構造部材1を同一方向に重ね合わせたフレーム部材が使用されている。
上記重ね合わせ部の接合に、レーザ溶接を採用した場合には、連続溶接により接合強度が高く、ビード幅が狭いために、従来用いられていたスポット溶接やアーク溶接に比べて接合部の設計自由度が大きく、フランジ部の幅を狭くし、構造部材を小型化、軽量化することが可能となるなどの利点がある。
As a body panel of an automobile, a cross section having a flange portion 2 and a bent portion 3 formed of a thin plate material made of high-strength steel, as shown in FIG. A frame member in which the overlapped portion is joined by spot welding or the like, and the flange portion 2 and the plate member 4 or the plate member 4 interposed between the flange portions as shown in FIGS. A frame member in which they are similarly joined, and a frame member in which a plurality of structural members 1 are stacked in the same direction as shown in FIG. 1d are used.
When laser welding is used to join the above-mentioned overlapping parts, the joint strength is high by continuous welding and the bead width is narrow. Therefore, the design of the joints is free compared to spot welding and arc welding used in the past. There are advantages such that the degree is large, the width of the flange portion is narrowed, and the structural member can be reduced in size and weight.

従来、板材の重ね溶接継ぎ手のレーザ溶接では、重ね合せ部の板材間の間隔にばらつきがあると溶接品質が低下することから、板材間の間隔の適正化に主眼がおかれていた。
例えば、レーザ照射側から重ね合せ部にローラを押し付け、ローラをレーザ光とともに移動させ、一方の板材を他方の板材に押し付けて両者の間隔を調整しながら溶接を行うことや、互いに重ね合わせた板材のフランジ部相互を、1対のローラで両側から挟みこみ同様に溶接することが、特許文献1に示されている。
Conventionally, in laser welding of lap weld joints of plate materials, if the gap between the plate materials in the overlapped portion varies, the welding quality deteriorates, and therefore, the focus has been on optimizing the gap between the plate materials.
For example, pressing the roller from the laser irradiation side to the overlapping part, moving the roller together with the laser beam, pressing one plate against the other plate and adjusting the distance between them, or welding the plates together Patent Document 1 discloses that the flange portions are sandwiched from both sides by a pair of rollers and welded in the same manner.

しかしながら、高張力鋼よりなる構造部材において、フランジ部の幅を短くして部材を軽量化し、重ね合わせ部端部近傍を、下側の板材裏面まで溶融するように溶接してより接合強度を高めようとすると、本発明者らの研究では、さらに、溶接凝固割れが問題になることがわかった。   However, in structural members made of high-strength steel, the width of the flange portion is shortened to reduce the weight of the member, and the vicinity of the end of the overlapped portion is welded so as to melt to the back side of the lower plate material to further increase the joint strength. If it tried to do so, it turned out that the weld solidification crack becomes a problem in the research of the present inventors.

すなわち、図2aに示すように、断面がハット形状の構造部材の両側フランジ部を相互に重ね合わせたフレーム部材のフランジ部に、重ね合せ方向、すなわちフランジに交差する方向からレーザ光を照射して、下側の板材裏面まで溶融するように溶接するとともに、フランジの長手方向端部から溶接を開始する場合には、図2bに示すように、溶接始端部側が外側に広がるように変形し、割れが発生する。
また、図3のように、溶接開始点5をフランジの長手方向端部としないで、該端部から所定距離隔てた点を溶接開始点とした場合でも、溶接後に溶接部6の中央部分が膨出し、割れ7が発生する場合がある。なお、図において、8はレーザ溶接ヘッドである。
That is, as shown in FIG. 2a, the laser beam is irradiated from the overlapping direction, that is, the direction intersecting the flange, to the flange portion of the frame member in which the both side flange portions of the structural member having a hat-shaped cross section are overlapped with each other. When starting welding from the longitudinal end of the flange while welding so as to melt up to the lower plate material back, as shown in FIG. Will occur.
Further, as shown in FIG. 3, even when the welding start point 5 is not the longitudinal end portion of the flange and the point separated from the end portion by a predetermined distance is the welding start point, the central portion of the welded portion 6 is not welded after welding. Swelling and cracks 7 may occur. In the figure, 8 is a laser welding head.

これは、重ね合わせた下側の板材の裏面まで溶融するようにレーザ光を照射して溶接する場合、レーザ光の照射により形成された溶融部が凝固するまで、溶融部より端部側のフランジ部位は、フランジ本体から切り離された状態になる。このとき、該部位の幅が小さいと、溶接部からの熱伝導により熱膨張して該部位が変形し、凝固途中の溶接ビードを引っ張り、凝固時に割れが発生するためと考えられる。   This is because when welding is performed by irradiating a laser beam so as to melt to the back surface of the stacked lower plate material, the flange on the end side from the melted portion is solidified until the melted portion formed by the laser beam irradiation is solidified. The part is separated from the flange body. At this time, if the width of the part is small, it is considered that the part expands due to heat conduction from the welded portion, the part is deformed, the weld bead in the middle of solidification is pulled, and a crack occurs during solidification.

従来、レーザ溶接における溶接部の割れや変形を防止する技術として、特許文献2や特許文献3が知られている。
特許文献2には、高炭素鋼よりなる部材とステンレス鋼などよりなる部材の重ね継ぎ手をレーザ溶接する際、溶融凝固時に発生する収縮応力などにより収縮割れが発生すること、および、その割れを、継ぎ手部の位置を工夫して引張応力が溶融部に多くかからないようにして防止することが記載されている。
Conventionally, Patent Literature 2 and Patent Literature 3 are known as techniques for preventing cracking and deformation of a welded portion in laser welding.
In Patent Document 2, when laser welding a lap joint of a member made of high carbon steel and a member made of stainless steel or the like, shrinkage cracking occurs due to shrinkage stress generated at the time of melt solidification, and the cracking, It describes that the position of the joint portion is devised to prevent the tensile stress from being applied to the melted portion.

また、特許文献3には、一方の板材に対し、幅の狭いもう一方の板材を突き合わせて、突合せ部をレーザ溶接する場合、幅の狭い方の板材が熱による変形を受けて突き合せ部の間隔が広がるため、あらかじめ両方の板材の突合せ部を仮付けして、板材の変形を防止することが記載されている。
しかし、これらの文献では、上記のような凝固割れや、それに対する解決手段については何ら触れられていない。
Further, in Patent Document 3, when one plate member is abutted with the other narrow plate member and the butt portion is laser-welded, the narrower plate member is deformed by heat and the butt portion is deformed. Since the interval is widened, it is described that the butt portions of both plate materials are temporarily attached to prevent deformation of the plate materials.
However, these documents do not mention at all the above solidification cracks and solutions for the same.

以上のように、高張力鋼よりなる薄板材のレーザ溶接において、部材の軽量化のためにフランジ部の幅を短くし、さらに、重ね合わせ部端部近傍を、下側の板材裏面まで溶融するように溶接してより接合強度を高めるように溶接する場合、溶接凝固割れが生じることは従来知られていなかった。
特開平8−90264号公報 特開平11−245065号公報 特開昭59−215288号公報
As described above, in laser welding of a thin plate made of high-strength steel, the width of the flange portion is shortened in order to reduce the weight of the member, and the vicinity of the end of the overlapped portion is melted to the lower surface of the lower plate material. In the past, it has not been known that weld solidification cracking occurs when welding is performed so as to increase the joint strength.
JP-A-8-90264 Japanese Patent Laid-Open No. 11-245065 JP 59-215288 A

そこで、本発明は、上記のごとき状況に鑑み、少なくとも1枚の板材は高張力鋼よりなる複数の板材を重ね合わせ、この重ね合わせた板材の端部近傍に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて、重ね合わせた板材を互いに溶接する際、上記のような凝固割れのないレーザ溶接方法を提供することを課題とする。   Therefore, in the present invention, in view of the situation as described above, at least one plate material is formed by superimposing a plurality of plate materials made of high-strength steel, and in the vicinity of the end portion of the superimposed plate material, Laser welding without solidification cracks as described above when laser beams are moved along the end portion while irradiating laser beams from the overlapping direction so as to melt to the back surface and the stacked plate materials are welded together. It is an object to provide a method.

上記の課題を解決するために、本発明は次のようにしたことを特徴とする。
請求項1の重ねレーザ溶接方法の発明は、板材のうち少なくとも1枚は高張力鋼よりなる板材を複数重ね合わせ、この重ね合わせた板材の端部近傍に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて、溶接金属が0.05≦C≦0.08%、またはC<0.05%、P+S≧0.03%である溶接部を形成し、重ね合わせた板材を互いに溶接するレーザ溶接方法であって、前記板材の重ね合せ部分の幅を8mm以内とし、かつ、前記板材の端から3.5mm以上離れた位置に溶接部を形成することを特徴とする。なお、以下でも、元素の含有量の%は質量%とする。
In order to solve the above problems, the present invention is characterized as follows.
The invention of the overlap laser welding method according to claim 1 is characterized in that at least one of the plate members is made by superimposing a plurality of plate members made of high-strength steel, and the back surface of the lower plate member is overlapped in the vicinity of the end of the overlapped plate member. The laser beam is moved along the end portion while irradiating the laser beam from the overlapping direction so as to melt up to 0.05% C ≦ 0.08%, or C <0.05%. , P + S ≧ 0.03%, a laser welding method in which the overlapped plate members are welded to each other, the width of the overlapped portion of the plate members being within 8 mm, and from the end of the plate member A welded portion is formed at a position separated by 3.5 mm or more. In the following, the element content% is mass%.

請求項2の重ねレーザ溶接方法の発明は、板材のうち少なくとも1枚は高張力鋼よりなる板材を複数重ね合わせ、この重ね合わせた板材の端部近傍に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて、溶接金属が0.05≦C≦0.08%、またはC<0.05%、P+S≧0.03%である溶接部を形成し、重ね合わせた板材を互いに溶接するレーザ溶接方法であって、一方の板材が他方の板材より5mm以上突出するように重ね合わされており、板材の重ね合せ部分の幅を8mm以内とし、かつ、前記他方の板材の端から1.5mm以上離れた位置に溶接部を形成することを特徴とする。   The invention of the laser beam welding method according to claim 2 is characterized in that at least one of the plate materials is made by superimposing a plurality of plate materials made of high-strength steel, and the back surface of the laminated lower plate material is arranged in the vicinity of the end of the superposed plate material. The laser beam is moved along the end portion while irradiating the laser beam from the overlapping direction so as to melt up to 0.05% C ≦ 0.08%, or C <0.05%. , P + S ≧ 0.03%, a laser welding method in which the overlapped plate members are welded to each other, wherein one plate member is overlapped so as to protrude 5 mm or more from the other plate member, The width of the overlapped portion is within 8 mm, and a welded portion is formed at a position 1.5 mm or more away from the end of the other plate material.

請求項3の重ねレーザ溶接方法の発明は、該請求項に記載されているように、前記重ね合わせた板材の溶接方向端部より離れた位置で溶接を開始することを特徴とする。
請求項4の重ねレーザ溶接方法の発明は、該請求項に記載されているように、前記重ね合わせられた板材の溶接方向端部より溶接を開始し、前記他方の板材の端から2.5mm以上離れた位置に溶接部を形成することを特徴とする。
The invention of the lap laser welding method according to claim 3 is characterized in that, as described in the claim, welding is started at a position away from an end portion in the welding direction of the overlapped plate members.
According to the invention of the lap laser welding method of claim 4, as described in the claim, welding is started from an end portion in the welding direction of the overlapped plate member, and 2.5 mm from the end of the other plate member. A welded portion is formed at a position apart from the above.

請求項5の重ねレーザ溶接方法の発明は、該請求項に記載されているように、前記複数の板材のうち、少なくとも1枚の板材は、少なくとも片側に折り曲げ部およびそれに続くフランジ部を有する構造部材であり、板材の重ね合せ部が、前記構造部材のフランジと他の板材を相互に重ね合わせたものであることを特徴とする。
請求項6の重ねレーザ溶接方法の発明は、該請求項に記載されているように、前記少なくとも1枚の板材が、両側に折り曲げ部およびフランジ部を有する断面がハット形状の構造部材であることを特徴とする。
The invention of the lap laser welding method according to claim 5 is a structure in which at least one of the plurality of plate members has a bent portion and a flange portion subsequent thereto on at least one side of the plurality of plate materials. It is a member, The overlapping part of a board | plate material is what overlapped the flange and other board | plate material of the said structural member mutually, It is characterized by the above-mentioned.
The invention of the lap laser welding method according to claim 6 is that the at least one plate member is a hat-shaped structural member having a bent portion and a flange portion on both sides as described in the claim. It is characterized by.

請求項1、2の発明によれば、少なくとも1枚の板材は高張力鋼よりなる構造部材を重ねレーザ溶接する場合であって、溶接部の溶接金属が凝固割れの発生しやすい成分組成となるような場合に、構造部材の重ね合わせた下側の板材裏面まで充分に溶け込みを行っても、溶接部に凝固割れを発生させずにレーザ溶接することができるので、重ね合せ部の幅が狭くても強度の高い溶接部を形成することができ、構造部材を小型化、軽量化することが可能となる。   According to the first and second aspects of the invention, at least one plate material is a case where a structural member made of high-strength steel is overlapped and laser-welded, and the weld metal of the welded portion has a component composition in which solidification cracking is likely to occur. In such a case, laser welding can be performed without causing solidification cracks in the welded portion even if the lower surface of the laminated plate is sufficiently melted, so that the width of the overlapped portion is narrow. However, a high-strength weld can be formed, and the structural member can be reduced in size and weight.

請求項3、4の発明によれば、請求項1、2の発明のレーザ溶接方法を重ね継ぎ手の形状に応じた形態でより効果的に実施することができる。
請求項5、6の発明によれば、フランジを有する構造部材をさらに小型化、軽量化することが可能となる。
According to the third and fourth aspects of the invention, the laser welding method of the first and second aspects of the invention can be more effectively implemented in a form corresponding to the shape of the lap joint.
According to the fifth and sixth aspects of the invention, the structural member having the flange can be further reduced in size and weight.

以下、本発明の一実施の形態を、さらに図4〜8を用いて詳細に説明する。
高張力鋼よりなり、図4で示される断面形状がハット型の構造部材のような端部にフランジを有する板状部材を、同様のフランジや板材と重ね、両者の間をレーザ溶接してフレーム部材を製造する際、例えば8mm以内というようなよりフランジ幅(板材が重なっている幅)Aの狭い構造部材を用いて、フレーム部材全体をより軽量化しようとすると、溶接部からフランジ端部までの距離Bは1.5mm以上の範囲のうちのより短い距離にならざるを得ず、このような条件では、図3に示されるように、フランジ長手方向端部から離れた位置で溶接を開始したとしても、前記したように、溶接部からの熱伝導により変形した部位が凝固途中の溶接ビードを引っ張り、凝固割れが発生する場合があった。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.
A plate-like member made of high-strength steel and having a flange at the end, such as a hat-shaped structural member shown in FIG. 4, is overlapped with a similar flange or plate member, and laser-welded between the two to form a frame When manufacturing a member, using a structural member with a narrower flange width (width over which plate materials overlap) A, such as within 8 mm, to reduce the weight of the entire frame member, from the welded portion to the flange end The distance B must be shorter than the range of 1.5 mm or more, and under such conditions, welding is started at a position away from the flange longitudinal end as shown in FIG. Even if it did, as mentioned above, the site | part deform | transformed by the heat conduction from a welding part pulled the weld bead in the middle of solidification, and the solidification crack might generate | occur | produce.

なお、構造部材を軽量化するには、フランジ幅を8mm以内とするのがより効果的であり、そのようなフランジ幅において、溶接部の溶接ビード中心からフランジ端部までの距離を1.5mm以上とするのは、1.5mm未満では、フランジ端部側が、フランジ端まで溶融してそのまま溶け落ち易くなるためである。   In order to reduce the weight of the structural member, it is more effective to make the flange width within 8 mm. In such a flange width, the distance from the weld bead center of the welded portion to the flange end is 1.5 mm. The reason for the above is that if the length is less than 1.5 mm, the flange end side melts to the flange end and is easily melted down.

そこで、本発明らは、凝固割れの発生原因を調べ、溶接部のフランジ端部からの位置や溶接金属成分と上記凝固割れの発生との関連について検討した。
図5は、薄板の重ねレーザ溶接における凝固過程の温度と溶接部周辺で発生する歪の関係を示す。図は、炭素量が0.06%、珪素量が0.5%、マンガン量が1.5%よりなる板厚1.2mmの引張強さ590MPaの鋼を用い、レーザ加工点出力2kW、溶接速度2m/minの条件で重ねレーザ溶接して得た試料を用いて得られたものである。
図5により、液相温度直下から溶接部には引張方向の力が働き、液相温度から温度が充分に低下すると、逆に溶接部には圧縮の力が働く。レーザ光照射位置後方の、凝固過程にある(2)の領域において、引っ張り方向の大きな歪が発生し、これが凝固割れにつながるものといえる。
Therefore, the present inventors investigated the cause of the occurrence of solidification cracks, and examined the relationship between the position from the flange end of the welded part and the weld metal component and the occurrence of the solidification cracks.
FIG. 5 shows the relationship between the temperature of the solidification process in the laminating laser welding of thin plates and the strain generated around the weld. The figure shows a steel plate with a tensile strength of 590 MPa with a plate thickness of 1.2 mm consisting of 0.06% carbon, 0.5% silicon, and 1.5% manganese. It was obtained by using a sample obtained by laser welding at a speed of 2 m / min.
According to FIG. 5, a tensile force acts on the welded portion immediately below the liquidus temperature, and a compressive force acts on the welded portion when the temperature is sufficiently lowered from the liquidus temperature. In the region (2) in the solidification process behind the laser light irradiation position, a large strain in the tensile direction is generated, which can be said to lead to solidification cracking.

そして、そのような歪の発生と凝固割れの関係は、図6に示されるような、一般的に知られている凝固温度脆性範囲(BTR)と収縮変位(P)の関係から説明できる。
すなわち、溶接部の温度と凝固収縮にともなう部材の変位量との間には、図中斜線で示す凝固割れ感受性の高い脆化域(D)があり、温度の降下にともない凝固収縮変位(P)の値が大きくなり、それが脆化域を通過すると凝固割れが発生すると考えられている。また液相温度直下では、最低延性値(Dmin)が小さく脆化域は広いが、液相率が高いので、たとえ柱状晶間に凝固割れが発生しても、液相により充填され凝固割れは発生しない。
The relationship between the occurrence of strain and solidification cracking can be explained from the relationship between the generally known solidification temperature brittleness range (BTR) and shrinkage displacement (P) as shown in FIG.
That is, there is an embrittlement region (D) having a high solidification cracking sensitivity indicated by hatching in the figure between the temperature of the weld and the displacement amount of the member accompanying solidification shrinkage, and the solidification shrinkage displacement (P) as the temperature decreases. ) Increases, and it is believed that solidification cracking occurs when it passes through the embrittled region. Also, just below the liquidus temperature, the minimum ductility value (Dmin) is small and the embrittlement region is wide, but the liquidus ratio is high, so even if solidification cracks occur between columnar crystals, they are filled by the liquid phase and solidification cracks are Does not occur.

一般的に、凝固割れに影響を与える因子の一つとして、液相−固相間の凝固温度幅があげられる。Feに対する2元系において、少量の添加でも凝固温度幅を広げる元素としては、C、P、Sが知られている(例えば、松田著「溶接冶金学」1972年日刊工業新聞社発行、第158頁参照)。
また、C、P、Sは平衡分配係数が小さく、溶質が溶融金属中に排出され柱状晶間に残留するため、見かけの固相温度より最終凝固位置の温度は図6中の太字破線のように低下し、BTRを広げやすく凝固割れを起こしやすい元素であると考えられる。
さらに、その成分範囲で凝固過程の粒界強度が低くなるような、成分的に特に割れに敏感な成分範囲があると考えられ、その成分範囲は、概略C量とP+S量の範囲で決まると考えられる。
In general, one of the factors affecting solidification cracking is the solidification temperature range between the liquid phase and the solid phase. In the binary system for Fe, C, P, and S are known as elements that widen the solidification temperature range even when a small amount is added (for example, Matsuda, “Welding Metallurgy”, published by Nikkan Kogyo Shimbun, 1972, No. 158 Page).
Further, C, P, and S have a small equilibrium partition coefficient, and the solute is discharged into the molten metal and remains between the columnar crystals. Therefore, the temperature at the final solidification position from the apparent solid phase temperature is as shown by the bold broken line in FIG. It is considered that it is an element that tends to expand to a BTR and easily cause solidification cracking.
Furthermore, it is considered that there is a component range that is particularly sensitive to cracking, such that the grain boundary strength of the solidification process is low in that component range, and the component range is determined by the range of the approximate C amount and P + S amount. Conceivable.

そこで、凝固割れの発生するC量とP+S量の範囲について調べた。
実験は、種々のC量とP+S量を有する引張強度が270MPaから1470MPaの範囲の鋼板を用い、それらを同一種同士または異種を組み合わせて、図4で示されるようにハット型の構造部材と板状部材とをフランジ幅Aが8mmとなるように重ね合わせた。
そして、溶接ビード中心と板材の端部までの距離B:3.0mm、フランジ部長手方向端部から溶接開始点までの距離C:5mm、レーザ加工点出力3.5kW、溶接速度2m/minの条件でレーザ溶接を行った。
溶接後の割れの発生の有無を、溶接金属のC含有量とP+S量で整理した結果を図7で示す。図7中の(1)、(3)が凝固割れの発生しない領域、(2)が凝固割れの発生する領域である。
Therefore, the range of the amount of C and P + S in which solidification cracking occurred was examined.
In the experiment, steel sheets having various C amounts and P + S amounts and tensile strengths in the range of 270 MPa to 1470 MPa were used, and the same type or different types were combined to form a hat-shaped structural member and plate as shown in FIG. The shaped members were overlapped so that the flange width A was 8 mm.
The distance B from the weld bead center to the end of the plate material is 3.0 mm, the distance C from the longitudinal end of the flange portion to the welding start point is 5 mm, the laser processing point output is 3.5 kW, and the welding speed is 2 m / min. Laser welding was performed under the conditions.
FIG. 7 shows the result of arranging the occurrence of cracks after welding according to the C content and P + S amount of the weld metal. In FIG. 7, (1) and (3) are regions where solidification cracks do not occur, and (2) is a region where solidification cracks occur.

この結果より、引張強度が270MPaから1470MPaの範囲の鋼板、特に、少なくとも1枚の板材は440MPa以上の高張力鋼板よりなる複数の板材を重ね合わせ、この重ね合わせた板材の端部近傍に重ね合わせ方向から、重ね合わせた下側の板材の裏面まで溶融するようにレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて重ね合わせた板材を互いに溶接する際、溶接部の溶接ビード中心からフランジ端部までの距離を1.5mm以上のより短い距離とした場合、溶接部の溶接金属の炭素含有量が、0.05≦C≦0.08%であるとP+S量にかかわらず凝固割れを起こすことがわかった。また、C<0.05%の場合は、P+S≧0.03%の範囲で凝固割れを起こすことがわかった。   From this result, a steel plate having a tensile strength in the range of 270 MPa to 1470 MPa, in particular, at least one plate member is overlapped with a plurality of plate members made of high-tensile steel plate of 440 MPa or more, and is overlapped in the vicinity of the end of the overlapped plate member. When welding the overlapped plate materials by moving the laser light along the end portion while irradiating laser light so as to melt from the direction to the back surface of the overlapped lower plate material, welding of the welded portion When the distance from the bead center to the flange end is shorter than 1.5 mm, the carbon content of the weld metal in the weld zone is 0.05 ≦ C ≦ 0.08% regardless of the P + S amount. It was found that solidification cracking occurred. Further, it was found that when C <0.05%, solidification cracking occurred in the range of P + S ≧ 0.03%.

そこで、そのようなCやP+Sの含有範囲においても凝固割れを起こさないような施工上の条件についてさらに検討した。
上記のように割れの原因となる凝固収縮変位量Pを小さくするための手段として、重ね合わせた板材の溶接方向端部より離れた位置から溶接を開始するとともに、溶接部と板材の重ね合せ部(フランジ部)端部との距離を大きくすれば、その部分は両端が拘束されたうえでさらに強度が大きくなるため、前記変位量が小さくなることが考えられる。
Therefore, further examination was made on the construction conditions that do not cause solidification cracking even in such a range of C and P + S.
As a means for reducing the solidification shrinkage displacement amount P that causes cracks as described above, welding is started from a position away from the end portion in the welding direction of the overlapped plate materials, and the welded portion and the overlapped portion of the plate material (Flange portion) If the distance from the end portion is increased, the strength of the portion is further increased after both ends are constrained, so that the amount of displacement can be reduced.

そこで、重ね合せ部の端部が揃っている場合と揃っていない場合に分けて、凝固割れを生じない条件について検討した。
その結果、図4のように揃っている場合には、フランジ幅Aが8mm以内であっても、重ね合わせた板材の溶接方向端部より離れた位置から溶接を開始し、揃っている端部から3.5mm以上離れた位置、すなわち距離Bが3.5mm以上になるように溶接部を形成すれば、図3に示されるような途中で膨出する凝固割れを起こさないで溶接が可能であることがわかった。
Therefore, the conditions under which solidification cracks do not occur were examined depending on whether the ends of the overlapped portion were aligned or not.
As a result, when they are aligned as shown in FIG. 4, even if the flange width A is within 8 mm, welding is started from a position away from the end portion in the welding direction of the stacked plate members, and the aligned end portions If the weld is formed so that the distance B is 3.5 mm or more from the position, that is, the distance B is 3.5 mm or more, welding can be performed without causing solidification cracks that bulge in the middle as shown in FIG. I found out.

なお、上記において、フランジ幅を8mm以内とし、端部から3.5mm以上離れた位置に溶接部を形成する場合、図4のように溶接することは、折り曲げ部とレーザ溶接ヘッドとの干渉により困難な場合が生じるが、図1b、dの場合では、折り曲げ部とは反対の側からレーザを照射することにより、端部から充分離れた位置に溶接部を形成することができる。   In addition, in the above, when the flange width is within 8 mm and the welded portion is formed at a position 3.5 mm or more away from the end, welding as shown in FIG. 4 is due to interference between the bent portion and the laser welding head. Although difficult cases arise, in the case of FIGS. 1b and 1d, the welded portion can be formed at a position sufficiently away from the end portion by irradiating the laser from the side opposite to the bent portion.

また、図8aに示されるように、一方の板材4が他方の板材1から突出するように重ね合わされており、重ね合せ部の端部が揃っていない場合には、一方の板材4が他方の板材1から突出する距離Dを5mm以上とすることにより、重ね合わせた板材の溶接方向端部より離れた位置から溶接を開始すれば、板材1の端部から溶接部までの距離Bを1.5mm以上としても同様に凝固割れを発生することなく溶接できることがわかった。
さらに、前記距離Dを5mm以上とした上で、上記他方の板材1の端部から溶接部までの距離Bを2.5mm以上とすると、図8bに示されるように、重ね合わせた板材の溶接方向端部より溶接を開始しても凝固割れを発生することなく溶接することができることもわかった。
Also, as shown in FIG. 8a, one plate member 4 is overlaid so as to protrude from the other plate member 1, and when the end portions of the overlapped portions are not aligned, By setting the distance D protruding from the plate material 1 to 5 mm or more, if welding is started from a position away from the end portion in the welding direction of the stacked plate materials, the distance B from the end portion of the plate material 1 to the welded portion is set to 1. It was found that welding can be performed without causing solidification cracks even when the thickness is 5 mm or more.
Further, when the distance D is set to 5 mm or more and the distance B from the end portion of the other plate material 1 to the welded portion is set to 2.5 mm or more, as shown in FIG. It was also found that welding can be performed without generating solidification cracks even if welding is started from the direction end.

以上の場合において、重ね合わせた板材の溶接方向端部より離れた位置から溶接を開始する場合、端部から溶接開始点までの距離Cは、溶接部の溶接ビード中心からフランジ幅方向端部までの距離Bと同じかそれ以上の距離とするのが好適である。
また、重ね合わせた板材の溶接方向端部より溶接を開始することができない場合でも、端部が図2のように開かないよう、端部をクランプ冶具で拘束すれば、上記条件を採用することにより図3に示されるように途中で膨出することなく溶接することができる。
In the above case, when welding is started from a position away from the end in the welding direction of the stacked plate members, the distance C from the end to the welding start point is from the center of the weld bead of the weld to the end in the flange width direction. It is preferable that the distance is equal to or longer than the distance B.
In addition, even when welding cannot be started from the end portion of the overlapped plate materials in the welding direction, the above condition should be adopted if the end portion is constrained by a clamp jig so that the end portion does not open as shown in FIG. As shown in FIG. 3, welding can be performed without swelling in the middle.

上記のように、溶接対象となる高張力鋼板の成分組成の組み合わせによって、溶接部の溶接金属が、0.05≦C≦0.08%の範囲、またはC<0.05%で、かつP+S≧0.03%の範囲になるような場合であっても、上記のような条件でレーザ溶接を行えば、凝固割れを発生することなく溶接を実施することができる。   As described above, the weld metal of the welded portion is in the range of 0.05 ≦ C ≦ 0.08%, or C <0.05%, and P + S depending on the combination of the component compositions of the high-tensile steel plate to be welded. Even in the case of ≧ 0.03%, if laser welding is performed under the above conditions, welding can be performed without causing solidification cracks.

本発明が対象とする板材の材質としては、複数の板材のすべてが高張力鋼である場合と、板材の少なくても1枚が高張力鋼である場合のいずれでもよく、板材の組み合わせによって、溶接金属が0.05≦C≦0.08%、またはC<0.05%でP+S≧0.03%となるような鋼の組み合わせを対象とする。ここで、高張力鋼の範囲は、引張強度で440MPa以上である。
なお、P+S量が高くなると凝固割れが起こりやすくなるため、本発明が対象とする溶接金属中のP+Sの上限は0.05%が望ましい。
The material of the plate material targeted by the present invention may be either a case where all of the plurality of plate materials are high-tensile steel or a case where at least one of the plate materials is high-tensile steel, depending on the combination of the plate materials, A steel combination in which the weld metal is 0.05 ≦ C ≦ 0.08% or C <0.05% and P + S ≧ 0.03% is targeted. Here, the range of high-tensile steel is 440 MPa or more in terms of tensile strength.
In addition, since the solidification cracking easily occurs when the amount of P + S becomes high, the upper limit of P + S in the weld metal targeted by the present invention is desirably 0.05%.

レーザ溶接では、溶接金属の成分は、フィラー等の溶加材を別途添加しない場合、重ね合わせた各板材の母材成分値及びその板厚から計算される平均成分であるから(なお、3枚以上の板材を重ね合わせた場合には、隣り合った2枚の全ての組合せにおける、母材成分値及びその板厚から計算される平均成分で表現される場合もある。)、対象とする構造部材の材質から計算される溶接金属中のCの値が0.05≦C≦0.08%の範囲となる場合や、CとP+Sの値が、C<0.05%で、かつP+S≧0.03%の範囲となる場合に、本発明を適用することにより凝固割れを起こさずにレーザ溶接することができる。   In laser welding, the weld metal component is an average component calculated from the base material component value of each overlapped plate and the plate thickness unless a filler material such as a filler is added separately (three sheets) When the above plate materials are overlapped, they may be expressed by the average component calculated from the base material component value and the plate thickness in all the combinations of two adjacent sheets.) When the value of C in the weld metal calculated from the material of the member is in the range of 0.05 ≦ C ≦ 0.08%, the values of C and P + S are C <0.05%, and P + S ≧ When it is in the range of 0.03%, laser welding can be performed without causing solidification cracks by applying the present invention.

以下、本発明の実施例を説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、特許請求の範囲に記載される事項によってのみ規定されており、上記以外の実施の形態も実施可能である。本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Examples of the present invention will be described below, but the conditions adopted in the examples are one example of conditions for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. It is not something. This invention is prescribed | regulated only by the matter described in a claim, Embodiment other than the above can also be implemented. As long as the object of the present invention is achieved without departing from the present invention, various conditions can be adopted.

供試材として、厚さが1.2mmで引張強度が590MPa以上の高張力鋼(SPFC590)よりなる断面ハット形状の構造部材を、同じく高張力鋼よりなる平板状の板材に、一部は端部が揃うように、また他の一部は下側の平板が突出するように重ね合わせた。それぞれ重ね合せ部の幅は8mmであった。また、下側の板材の突出量Dは3mmと6mmとした。高張力鋼は、C量およびP+S量が異なる試料を用いた。そして、重ね合せ部を次の条件でレーザ溶接した。   As a test material, a cross-sectional hat-shaped structural member made of high-strength steel (SPFC590) having a thickness of 1.2 mm and a tensile strength of 590 MPa or more is converted into a flat plate material made of high-tensile steel, partly at the end. The other parts were overlapped so that the flat plate on the lower side protruded and the other part aligned. The width of each overlapped part was 8 mm. Further, the protruding amount D of the lower plate material was 3 mm and 6 mm. As high-tensile steel, samples having different amounts of C and P + S were used. The overlapped portion was laser welded under the following conditions.

レーザ溶接は、YAGレーザを用い、加工点出力を3.5kW、溶接速度を2.0m/minとした。また、レーザビームは、鋼板上に集光し、集光スポットは直径0.6mmとした。フランジ幅方向端部からレーザ照射位置までの距離Bを2.5〜4mmとし、フランジ長手方向端部から5.0mmはなれた点を開始位置とした。下側の板材の突出量Dを6mmとしたものについては、フランジ長手方向端部を開始位置とする溶接も行った。
得られた結果を表1に示す。表1より、本発明の条件を満たす場合は、割れを生じることなく溶接できることがわかる。

Figure 2007229752
In laser welding, a YAG laser was used, the processing point output was 3.5 kW, and the welding speed was 2.0 m / min. The laser beam was focused on the steel plate and the focused spot was 0.6 mm in diameter. The distance B from the flange width direction end to the laser irradiation position was set to 2.5 to 4 mm, and the point separated by 5.0 mm from the flange longitudinal direction end was set as the start position. With respect to the lower plate member having a protruding amount D of 6 mm, welding with the flange longitudinal end as a starting position was also performed.
The obtained results are shown in Table 1. It can be seen from Table 1 that welding can be performed without causing cracks when the conditions of the present invention are satisfied.
Figure 2007229752

重ね継ぎ手を有する部材の例を示す図である。It is a figure which shows the example of the member which has a lap joint. 凝固割れの1例を示す図である。It is a figure which shows one example of a solidification crack. 凝固割れの他の例を示す図である。It is a figure which shows the other example of a solidification crack. フランジ幅と溶接部位置とを説明する図である。It is a figure explaining a flange width and a welding part position. 溶接後の凝固過程の温度と歪の関係を示す図である。It is a figure which shows the relationship between the temperature of the solidification process after welding, and distortion. 凝固脆性範囲と収縮変位の関係を示す図である。It is a figure which shows the relationship between a solidification brittle range and shrinkage displacement. 凝固割れの発生と成分の関係を示す図である。It is a figure which shows the relationship between generation | occurrence | production of a solidification crack, and a component. 他の例におけるフランジ幅と溶接部位置とを説明する図である。It is a figure explaining the flange width and welding part position in another example.

符号の説明Explanation of symbols

1 断面ハット形状の構造部材
2 構造部材のフランジ部
3 構造部材の折り曲げ部
4 板材
5 溶接開始点
6 溶接部(溶接ビード)
7 凝固割れ部
8 レーザ溶接ヘッド
A フランジ幅
B 溶接部からフランジ端部までの距離
C フランジ長手方向端部から溶接開始点までの距離
D 一方の板材が他方の板材から突出する距離
DESCRIPTION OF SYMBOLS 1 Structural member of hat-shaped cross section 2 Flange part of structural member 3 Bending part of structural member 4 Plate material 5 Welding start point 6 Welded part (weld bead)
7 Solidification crack 8 Laser welding head A Flange width B Distance from weld to flange end C Distance from flange longitudinal end to welding start point D Distance from which one plate protrudes from the other plate

Claims (6)

板材のうち少なくとも1枚は高張力鋼よりなる板材を複数重ね合わせ、この重ね合わせた板材の端部近傍に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて、溶接金属が0.05≦C≦0.08質量%、またはC<0.05質量%、P+S≧0.03質量%である溶接部を形成し、重ね合わせた板材を互いに溶接するレーザ溶接方法であって、前記板材の重ね合せ部分の幅を8mm以内とし、かつ、前記板材の端から3.5mm以上離れた位置に溶接部を形成することを特徴とする重ねレーザ溶接方法。   At least one of the plate materials is made by superimposing a plurality of plate materials made of high-strength steel, and a laser beam is applied from the superposition direction so as to melt up to the back surface of the lower plate material that has been piled up in the vicinity of the end of the laminated plate material. While irradiating, the laser beam is moved along the end portion, and the weld metal is 0.05 ≦ C ≦ 0.08 mass%, or C <0.05 mass%, P + S ≧ 0.03% mass. A laser welding method in which a welded portion is formed and the stacked plate materials are welded to each other, wherein the width of the overlapped portion of the plate materials is within 8 mm and is welded to a position at least 3.5 mm away from the edge of the plate material A lap laser welding method characterized by forming a portion. 板材のうち少なくとも1枚は高張力鋼よりなる板材を複数重ね合わせ、この重ね合わせた板材の端部近傍に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて、溶接金属が0.05≦C≦0.08質量%、またはC<0.05質量%、P+S≧0.03質量%である溶接部を形成し、重ね合わせた板材を互いに溶接するレーザ溶接方法であって、一方の板材が他方の板材より5mm以上突出するように重ね合わされており、板材の重ね合せ部分の幅を8mm以内とし、かつ、前記他方の板材の端から1.5mm以上離れた位置に溶接部を形成することを特徴とする重ねレーザ溶接方法。   At least one of the plate materials is made by superimposing a plurality of plate materials made of high-strength steel, and a laser beam is applied from the superposition direction so as to melt up to the back surface of the lower plate material that has been piled up in the vicinity of the end of the laminated plate material. While irradiating, the laser beam is moved along the end portion, and the weld metal is 0.05 ≦ C ≦ 0.08 mass%, or C <0.05 mass%, P + S ≧ 0.03% mass. A laser welding method in which welded portions are formed and the stacked plate materials are welded to each other, wherein one plate material is overlaid so that it protrudes 5 mm or more from the other plate material, and the width of the overlap portion of the plate materials is within 8 mm And a welded portion is formed at a position 1.5 mm or more away from the end of the other plate member. 前記重ね合わせた板材の溶接方向端部より離れた位置で溶接を開始することを特徴とする請求項1または2に記載の重ねレーザ溶接方法。   3. The lap laser welding method according to claim 1, wherein welding is started at a position away from an end portion in the welding direction of the overlapped plate members. 前記重ね合わせられた板材の溶接方向端部より溶接を開始し、前記他方の板材の端から2.5mm以上離れた位置に溶接部を形成することを特徴とする請求項2に記載の重ねレーザ溶接方法。   The overlap laser according to claim 2, wherein welding is started from an end portion in the welding direction of the overlapped plate members, and a weld portion is formed at a position 2.5 mm or more away from the end of the other plate member. Welding method. 前記複数の板材のうち、少なくとも1枚の板材は、少なくとも片側に折り曲げ部およびそれに続くフランジ部を有する構造部材であり、板材の重ね合せ部が、前記構造部材のフランジと他の板材を相互に重ね合わせたものであることを特徴とする請求項1〜4のいずれか1項に記載の重ねレーザ溶接方法。   Among the plurality of plate members, at least one plate member is a structural member having at least one bent portion and a flange portion subsequent thereto, and the overlapping portion of the plate members mutually connects the flange of the structural member and another plate member. The overlapping laser welding method according to any one of claims 1 to 4, wherein the overlapping laser welding method is performed. 前記少なくとも1枚の板材が、両側に折り曲げ部およびフランジ部を有する断面がハット形状の構造部材であることを特徴とする請求項5に記載の重ねレーザ溶接方法。   6. The lap laser welding method according to claim 5, wherein the at least one plate member is a structural member having a hat-shaped cross section having a bent portion and a flange portion on both sides.
JP2006053136A 2006-02-28 2006-02-28 Lap laser welding method Expired - Fee Related JP4854327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053136A JP4854327B2 (en) 2006-02-28 2006-02-28 Lap laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053136A JP4854327B2 (en) 2006-02-28 2006-02-28 Lap laser welding method

Publications (2)

Publication Number Publication Date
JP2007229752A true JP2007229752A (en) 2007-09-13
JP4854327B2 JP4854327B2 (en) 2012-01-18

Family

ID=38550869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053136A Expired - Fee Related JP4854327B2 (en) 2006-02-28 2006-02-28 Lap laser welding method

Country Status (1)

Country Link
JP (1) JP4854327B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195917A (en) * 2008-02-19 2009-09-03 Nippon Steel Corp Laser beam lap welding method of structural member
JP2009255134A (en) * 2008-04-17 2009-11-05 Nippon Steel Corp Lap laser welding method for thin steel sheet
JP2010116300A (en) * 2008-11-13 2010-05-27 Chofu Seisakusho Co Ltd Method for manufacturing reformer for fuel cell
JP2010279991A (en) * 2009-06-08 2010-12-16 Nippon Steel Corp Method of lap-welding steel sheet by laser beam
WO2012050097A1 (en) * 2010-10-12 2012-04-19 新日本製鐵株式会社 Laser welding method
WO2018003341A1 (en) * 2016-06-29 2018-01-04 株式会社神戸製鋼所 Laser welded joint and method for manufacturing laser welded joint

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170568A (en) * 1992-12-08 1994-06-21 Mazda Motor Corp Beam welding method for vehicle frame member
JPH09164425A (en) * 1995-12-18 1997-06-24 Sumitomo Metal Ind Ltd Manufacture of welded tube of low carbon martensite-based stainless steel
JPH1094890A (en) * 1996-09-24 1998-04-14 Nippon Steel Corp Laser beam welding method of steel plate excellent in toughness of weld joint
JP2002079388A (en) * 2000-09-06 2002-03-19 Nippon Steel Corp Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
JP2002079387A (en) * 2000-09-06 2002-03-19 Nippon Steel Corp Method for welding lap joint with laser beam
JP2002180181A (en) * 2000-12-15 2002-06-26 Kawasaki Steel Corp Method for producing extra-low carbon based high tensile steel welded joint and welded steel structure
JP2006007237A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Work clamping device for laser beam welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170568A (en) * 1992-12-08 1994-06-21 Mazda Motor Corp Beam welding method for vehicle frame member
JPH09164425A (en) * 1995-12-18 1997-06-24 Sumitomo Metal Ind Ltd Manufacture of welded tube of low carbon martensite-based stainless steel
JPH1094890A (en) * 1996-09-24 1998-04-14 Nippon Steel Corp Laser beam welding method of steel plate excellent in toughness of weld joint
JP2002079388A (en) * 2000-09-06 2002-03-19 Nippon Steel Corp Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
JP2002079387A (en) * 2000-09-06 2002-03-19 Nippon Steel Corp Method for welding lap joint with laser beam
JP2002180181A (en) * 2000-12-15 2002-06-26 Kawasaki Steel Corp Method for producing extra-low carbon based high tensile steel welded joint and welded steel structure
JP2006007237A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Work clamping device for laser beam welding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195917A (en) * 2008-02-19 2009-09-03 Nippon Steel Corp Laser beam lap welding method of structural member
JP2009255134A (en) * 2008-04-17 2009-11-05 Nippon Steel Corp Lap laser welding method for thin steel sheet
JP2010116300A (en) * 2008-11-13 2010-05-27 Chofu Seisakusho Co Ltd Method for manufacturing reformer for fuel cell
JP2010279991A (en) * 2009-06-08 2010-12-16 Nippon Steel Corp Method of lap-welding steel sheet by laser beam
WO2012050097A1 (en) * 2010-10-12 2012-04-19 新日本製鐵株式会社 Laser welding method
JP5130499B2 (en) * 2010-10-12 2013-01-30 新日鐵住金株式会社 Laser welding method
CN103153523A (en) * 2010-10-12 2013-06-12 新日铁住金株式会社 Laser welding method
TWI451928B (en) * 2010-10-12 2014-09-11 Nippon Steel & Sumitomo Metal Corp Laser welding method
KR101463702B1 (en) 2010-10-12 2014-11-20 신닛테츠스미킨 카부시키카이샤 Laser welding method
CN103153523B (en) * 2010-10-12 2015-07-01 新日铁住金株式会社 Laser welding method
US9649725B2 (en) 2010-10-12 2017-05-16 Nippon Steel & Sumitomo Metal Corporation Laser welding method
WO2018003341A1 (en) * 2016-06-29 2018-01-04 株式会社神戸製鋼所 Laser welded joint and method for manufacturing laser welded joint

Also Published As

Publication number Publication date
JP4854327B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4841970B2 (en) Lap laser welding method
JP4854327B2 (en) Lap laser welding method
CN109641321B (en) Method for manufacturing laser welded joint and laser welded joint
JP5042648B2 (en) Laser welding method for structure made of steel plate
JP2017113781A (en) Lap laser spot welding joint and manufacturing method of the welding joint
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
JP2004298964A (en) EDGE JOINT OF Sn- OR Pb-BASED GALVANIZED STEEL SHEET AND ITS LASER WELDING METHOD
JP2010279991A (en) Method of lap-welding steel sheet by laser beam
JP5000578B2 (en) Laser welding method for thin steel sheets
JP2007000888A (en) Laser welding method
WO2018003341A1 (en) Laser welded joint and method for manufacturing laser welded joint
JP4987453B2 (en) Lap laser welding joint of steel plates and lap laser welding method
JP2014210283A (en) Laser welding method and welded joint
CN113573838B (en) Overlap laser welded joint, method for producing same, and structural member for automobile body
JP2018108602A (en) Overlap laser spot weld joint and manufacturing method for the weld joint
JP6816557B2 (en) How to form a welded joint
JP2009056492A (en) Dissimilar material connecting body and manufacturing method of the same
KR102407608B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint and skeletal parts for automobiles
JP7325021B2 (en) Joining structure and joining method
JP5861443B2 (en) Laser welding method and laser welded joint
JP2023087674A (en) Laser lap welding joint, method for manufacturing laser lap welding joint, and structure member for automobile body
JP2004306083A (en) Butt-welded metal plate
JP4754426B2 (en) LASER LASER WELDING METHOD AND DEVICE
JP2006334641A (en) Method for laser-beam-welding edge joint of steel sheets
JP2009000697A (en) Laser beam welding method and laser welded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4854327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees