JP2009000697A - Laser beam welding method and laser welded product - Google Patents

Laser beam welding method and laser welded product Download PDF

Info

Publication number
JP2009000697A
JP2009000697A JP2007161539A JP2007161539A JP2009000697A JP 2009000697 A JP2009000697 A JP 2009000697A JP 2007161539 A JP2007161539 A JP 2007161539A JP 2007161539 A JP2007161539 A JP 2007161539A JP 2009000697 A JP2009000697 A JP 2009000697A
Authority
JP
Japan
Prior art keywords
haz
laser
distance
weld metal
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007161539A
Other languages
Japanese (ja)
Inventor
Eisuke Nakayama
英介 中山
Hitomi Nishihata
ひとみ 西畑
Masanori Taiyama
正則 泰山
Mitsuo Miyahara
光雄 宮原
Masato Uchihara
正人 内原
Toshiaki Ogawa
俊朗 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Sumitomo Metal Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Toyota Motor Corp filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007161539A priority Critical patent/JP2009000697A/en
Publication of JP2009000697A publication Critical patent/JP2009000697A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam welding method capable of increasing the strength of a joint without considerably increasing the cost or without considerably degrading the productivity. <P>SOLUTION: In the laser beam welding method of steel plates for generating a HAZ (Heat Affected Zone)-softened part in a heat affected zone of the laser beam welding, the laser beam welding is performed so as to establish either or both the relationship A/t≤1.4 between the distance A from a boundary part between a weld metal and the heat affected zone to the HAZ most-softened part and the plate thickness t, or the relationship B/t≤2.0 between the distance B between the center of the width of the weld metal and the HAZ most-softened part and the plate thickness t on the superposed surface of the steel plates. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高張力鋼板のレーザ溶接方法ならびにレーザ溶接品に関する。   The present invention relates to a laser welding method and a laser welded product of a high-tensile steel plate.

近年、自動車車体の軽量化および衝突安全性向上を目的として、高張力鋼板の使用が増大している。その引張強さは、従来は590MPa程度までが主流であったが、近年は780MPa級や980MPa級の、いわゆる超高張力鋼板も適用されつつある。   In recent years, the use of high-tensile steel sheets has been increasing for the purpose of reducing the weight of automobile bodies and improving collision safety. Conventionally, the tensile strength has been mainly up to about 590 MPa, but in recent years, so-called ultra-high strength steel plates of 780 MPa class or 980 MPa class are being applied.

超高張力鋼板は、強化機構として変態強化および細粒強化を利用している場合が多い。前者は、フェライト母相中にマルテンサイト相などの硬質な組織を分散させることにより、高強度を実現するものである。一方、後者は、加工ひずみ付与、熱処理条件適正化などにより、組織を微細化して高強度を実現するものである。   Ultra high strength steel sheets often use transformation strengthening and fine grain strengthening as the strengthening mechanism. The former achieves high strength by dispersing a hard structure such as a martensite phase in a ferrite matrix. On the other hand, the latter achieves high strength by refining the structure by imparting processing strain, optimizing heat treatment conditions, and the like.

上記の鋼板は、溶接された場合に、熱影響部(Heat Affected Zone、以下において、「HAZ」ということがある。)において元の鋼板(以下において、「母材」ということがある。)よりも硬度の低下する領域(以下において、「HAZ軟化部」ということがある。)を生じることが知られている。これまで、このHAZ軟化部は、溶接継手の強度特性を低下させるものと考えられてきた。この問題を解決する従来技術としては、例えば特許文献1および2に開示されているように、溶接時に鋼板を冷却して、軟化量を軽減することに主眼を置いたものがほとんどである。
特開2005−103568 特開2005−199297
When the steel sheet is welded, it is from a heat-affected zone (Heat Affected Zone; hereinafter, sometimes referred to as “HAZ”) than the original steel sheet (hereinafter, sometimes referred to as “base metal”). Is also known to produce a region of reduced hardness (hereinafter sometimes referred to as “HAZ softened portion”). So far, this HAZ softened portion has been considered to reduce the strength characteristics of the welded joint. As conventional techniques for solving this problem, for example, as disclosed in Patent Documents 1 and 2, most of the techniques focus on reducing the amount of softening by cooling the steel sheet during welding.
JP-A-2005-103568 JP2005-199297

しかしながら、上記の従来技術では、液体窒素により溶接前に鋼板をあらかじめ冷却しておく方法や、溶接時に冷却板を密着させる方法を用いており、自動車実機製造過程での適用を想定すると、コストや生産性の面で問題がある。そこで本発明では、従来技術とは全く異なる考え方に基づき、大きなコスト上昇や、顕著な生産性の低下をきたさずに継手強度を向上しうるレーザ溶接方法を提供することを目的とする。   However, the above-described conventional technology uses a method of cooling the steel plate in advance with liquid nitrogen before welding or a method of closely contacting the cooling plate at the time of welding. There is a problem in terms of productivity. Accordingly, an object of the present invention is to provide a laser welding method capable of improving joint strength without causing a significant increase in cost and a significant reduction in productivity based on a completely different concept from the prior art.

変態強化や細粒強化を利用した高張力鋼板においては、何らかの冷却手段を講じたとしても、HAZ軟化の発生そのものを完全に抑制することは不可能である。そこで本発明者らは、HAZ軟化は本質的に不可避なものとして、その継手強度への影響を明確にすることが重要と考えた。そして、HAZ軟化部を生じる場合を対象に、レーザ溶接継手の強度特性と溶接部形状(HAZ軟化部の位置など)の相関について、実験と数値解析の両面から詳細な研究を行った。その結果、HAZ軟化部の位置を適正化することにより、継手強度を向上できる場合があるとの知見を得た。   In a high-strength steel sheet using transformation strengthening or fine grain strengthening, even if any cooling means is taken, it is impossible to completely suppress the occurrence of HAZ softening itself. Therefore, the present inventors considered that it is important to clarify the influence on the joint strength, considering that HAZ softening is essentially inevitable. Then, for the case where the HAZ softened part is generated, detailed research was conducted on the correlation between the strength characteristics of the laser welded joint and the welded part shape (such as the position of the HAZ softened part) from both the experiment and numerical analysis. As a result, it has been found that the joint strength may be improved by optimizing the position of the HAZ softened portion.

本発明は、上記知見に基づくものであり、その要旨は以下の通りである。
第一の本発明は、レーザ溶接の熱影響部にHAZ軟化部を生じる鋼板のレーザ溶接方法であって、鋼板の重ね合わせ面において、溶接金属と熱影響部との境界部からHAZ最軟化部までの距離Aと板厚tとの間に、
A/t≦1.4
なる関係、若しくは、溶接金属の幅中心とHAZ最軟化部との距離Bと板厚tとの間に、
B/t≦2.0
なる関係のいずれか、又は両者が成立するようにレーザ溶接を行うことを特徴とするレーザ溶接方法である。
The present invention is based on the above findings, and the gist thereof is as follows.
1st this invention is the laser welding method of the steel plate which produces a HAZ softening part in the heat affected zone of laser welding, Comprising: In the overlapping surface of a steel plate, it is a HAZ softest part from the boundary part of a weld metal and a heat affected zone. Between the distance A and the thickness t
A / t ≦ 1.4
Or between the distance B between the width center of the weld metal and the HAZ softened portion and the thickness t,
B / t ≦ 2.0
The laser welding method is characterized in that laser welding is performed so that either or both of these relationships are established.

上記第一の本発明のレーザ溶接方法において、さらに鋼板の重ね合わせ面において、溶接金属と熱影響部との境界部の板厚方向とのなす角度θ(度)が、
θ≦40、又は、 50≦θ
となるようにレーザ溶接を行うことが好ましい。
In the laser welding method according to the first aspect of the present invention, an angle θ (degrees) formed by the thickness direction of the boundary portion between the weld metal and the heat affected zone in the overlapping surface of the steel plates,
θ ≦ 40 or 50 ≦ θ
Laser welding is preferably performed so that

また、上記第一の本発明のレーザ溶接方法において、鋼板は引張強度が590MPa以上の高張力鋼板であることも好ましい。   In the laser welding method of the first aspect of the present invention, the steel plate is preferably a high-tensile steel plate having a tensile strength of 590 MPa or more.

第二の本発明は、レーザ溶接の熱影響部にHAZ軟化部を有する鋼板のレーザ溶接品であって、該レーザ溶接品の重ね合わせ面において、溶接金属と熱影響部との境界部からHAZ最軟化部までの距離Aと板厚tとの間に、
A/t≦1.4
なる関係、若しくは、溶接金属の幅中心とHAZ最軟化部との距離Bと板厚tとの間に、
B/t≦2.0
なる関係のいずれか、又は両者が成立することを特徴とするレーザ溶接品である。
A second aspect of the present invention is a laser welded product of a steel plate having a HAZ softened portion in a heat-affected zone of laser welding, wherein the HAZ is separated from the boundary between the weld metal and the heat-affected zone on the overlapping surface of the laser welded product. Between the distance A to the softest part and the thickness t,
A / t ≦ 1.4
Or between the distance B between the width center of the weld metal and the HAZ softened portion and the thickness t,
B / t ≦ 2.0
This is a laser welded product characterized in that either or both of these relationships are established.

上記第二の本発明にかかる溶接品において、鋼板の重ね合わせ面において溶接金属と熱影響部との境界部の板厚方向とのなす角度θ(度)が、
θ≦40、又は、50≦θ
であることが好ましい。
In the welded product according to the second aspect of the present invention, an angle θ (degree) formed by the thickness direction of the boundary portion between the weld metal and the heat affected zone on the overlapping surface of the steel plates is
θ ≦ 40 or 50 ≦ θ
It is preferable that

加えて、上記第二の本発明にかかる溶接品において、鋼板は引張強度が590MPa以上の高張力鋼板であることも好ましい。   In addition, in the welded product according to the second aspect of the present invention, the steel plate is preferably a high-tensile steel plate having a tensile strength of 590 MPa or more.

第三の本発明は、鋼板を重ね合わせてレーザ溶接されたレーザ溶接品の溶接部の接合強度評価方法であって、溶接部の重ね合わせ面において、溶接金属と熱影響部との境界部からHAZ最軟化部までの距離Aと、溶接金属の幅中心からHAZ最軟化部までの距離Bのいずれか一方あるいは両者を求め、距離Aと板厚tとの比(A/t)と、距離Bと板厚tとの比(B/t)とのいずれか一方、あるいは両者により溶接部の接合強度を評価することを特徴とするレーザ溶接品の溶接部の接合強度評価方法である。   The third aspect of the present invention is a method for evaluating the joint strength of a welded part of a laser welded product obtained by laser welding with overlapping steel sheets, from the boundary between the weld metal and the heat-affected zone on the overlapped surface of the welded part. One or both of the distance A to the HAZ softest part and the distance B from the center of the width of the weld metal to the HAZ softest part are obtained, and the ratio (A / t) between the distance A and the thickness t This is a method for evaluating the joint strength of a welded part of a laser welded product, characterized in that the joint strength of the welded part is evaluated by either or both of the ratio of B and the plate thickness t (B / t).

本発明によれば、HAZ軟化部の位置や溶接金属の形状を適正化することにより、鋼板レーザ溶接継手の強度を向上することができる。また、かかる溶接継手を自動車部品に適用すれば、自動車車体の軽量化や、衝突安全性の向上などをはかることができる。   According to the present invention, the strength of the steel plate laser welded joint can be improved by optimizing the position of the HAZ softened portion and the shape of the weld metal. In addition, if such a welded joint is applied to an automobile part, it is possible to reduce the weight of the automobile body and improve the collision safety.

本発明は、前述のように、溶接方法としてはレーザ溶接を、鋼板としては溶接時にHAZ軟化部を生じる鋼板を対象とする。溶接に使用されるレーザとしては、レーザ光を熱源として主として金属に集光した状態で照射し、金属を局部的に溶融・凝固させる事によって接合する方法に用いられるものであれば特に限定するものではないが、例えば、レーザ発振器として大出力化が進んでいるCOレーザやYAGレーザ等が挙げられる。また、溶接時にHAZ軟化部を生じる鋼板としては、例えば、590MPa級の高張力鋼板、780MPa級以上の超高張力鋼板(熱間プレス材を含む)、冷間加工ままの材料が挙げられる。 As described above, the present invention is directed to a steel plate that causes laser welding as a welding method and a HAZ softened portion during welding as a steel plate. The laser used for welding is not particularly limited as long as it is used for the method of joining by melting and solidifying the metal locally by irradiating the laser beam mainly on the metal as a heat source. However, for example, a CO 2 laser or a YAG laser whose output is increasing as a laser oscillator can be given. In addition, examples of the steel plate that generates the HAZ softened portion at the time of welding include a high-tensile steel plate of 590 MPa class, an ultra-high-tensile steel plate of 780 MPa class or higher (including hot pressed material), and a material that has been cold worked.

以下に、本発明の実施形態を、図面を参照しつつ説明する。図1は、HAZ軟化部を生じる場合のレーザ溶接部断面形状と硬さ分布との関係を表す典型例を示している。図1上段は、溶融中心から両側方向への硬さ分布、下段は溶融中心から両側方向への断面形状を概略的に表している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a typical example of the relationship between the cross-sectional shape of the laser weld and the hardness distribution when the HAZ softened portion is generated. The upper part of FIG. 1 schematically represents the hardness distribution from the melting center to both sides, and the lower part schematically represents the cross-sectional shape from the melting center to both sides.

溶接部100は、溶融中心7を中心としてその両側方向に、溶接金属1、HAZ2、母材3がこの順に位置する。また、HAZ2において硬度分布に着目すると、溶接金属1に近い側から、溶接金属1と同等に硬化する領域、硬さが急激に低下する領域、及びHAZ軟化部4が存在する。硬さ分布および断面形状は、溶融中心7を中心としてほぼ左右対称とみなしてよい。なお、後述の説明における便宜上、板−板界面における溶接金属1の幅を「接合幅」、板−板界面における溶融境界5から最軟化部6までの距離を「最軟化距離A」、溶接中心7から最軟化部6までの距離を「最軟化位置B」と称する。図よりわかるように、
B=(接合幅/2)+A
が成り立つ。
In the welded portion 100, the weld metal 1, HAZ 2, and base material 3 are positioned in this order in the both side directions centering on the melting center 7. Further, when attention is paid to the hardness distribution in the HAZ 2, there are a region that hardens to the same extent as the weld metal 1, a region where the hardness sharply decreases, and a HAZ softened portion 4 from the side close to the weld metal 1. The hardness distribution and the cross-sectional shape may be regarded as almost symmetrical about the melting center 7. For convenience in the following description, the width of the weld metal 1 at the plate-plate interface is the “joining width”, the distance from the melt boundary 5 to the most softened portion 6 at the plate-plate interface is the “most softening distance A”, and the welding center The distance from 7 to the softest part 6 is referred to as “the softest position B”. As you can see from the figure,
B = (junction width / 2) + A
Holds.

この溶接部100に、図2に示すように、はく離方向の負荷が作用する場合を考える(本図は片側引きはがし型の試験片20を示す)。フランジ部21は、溶接部を支点とした片持ちはりと同等であり、板には曲げ変形が生じる。したがって、溶接ビード22に近いほど発生応力は高くなる。このため、HAZ軟化部を生じない材料であれば、通常、最も高い応力を生じる溶接金属端部を起点として破壊する。   Consider a case where a load in the peeling direction acts on the welded portion 100 as shown in FIG. 2 (this drawing shows a one-side peel-off type test piece 20). The flange portion 21 is equivalent to a cantilever beam having a welded portion as a fulcrum, and bending deformation occurs in the plate. Therefore, the closer to the weld bead 22, the higher the generated stress. For this reason, if it is the material which does not produce a HAZ softening part, it will normally destroy from the weld metal edge part which produces the highest stress as a starting point.

しかしながら、本発明者らは、HAZ軟化部を生じる材料ではHAZ軟化部が破壊起点となり、意外にも継手強度が大きく向上する場合があることを見出した。この理由は、以下のように考えられる。   However, the present inventors have found that in a material that generates a HAZ softened portion, the HAZ softened portion becomes a fracture starting point, and the joint strength may be unexpectedly greatly improved. The reason is considered as follows.

HAZ軟化部が溶接金属に近づき、その発生応力が高くなると、やがて溶接金属端部よりも早期に降伏応力を超え、塑性ひずみが集中するようになる。したがって、溶接継手は、溶接金属端部およびHAZ軟化部の2箇所で折れ曲がる変形状態を呈する。このような変形状態を示す場合、溶接金属端部における応力、ひずみ集中は緩和される。その結果、破断に至るまでの溶接継手の変形能が向上し、ひいては最大荷重も向上する。また、最終的にはHAZ軟化部ではなく溶接金属で破断したとしても、2段に折れ曲がる変形状態となる限りは、継手強度向上において、HAZ軟化部破断する場合と同等の効果が得られる。   When the HAZ softened part approaches the weld metal and the generated stress increases, the yield stress is exceeded earlier than the weld metal end part, and the plastic strain is concentrated. Therefore, the welded joint exhibits a deformed state that bends at two locations of the weld metal end and the HAZ softened portion. When such a deformed state is shown, stress and strain concentrations at the weld metal end are alleviated. As a result, the deformability of the welded joint up to breakage is improved, and the maximum load is also improved. Moreover, even if it finally breaks not with the HAZ softened portion but with the weld metal, as long as the deformed state bends in two steps, the same effect as in the case where the HAZ softened portion breaks can be obtained in improving joint strength.

以上の現象は、前述のように、HAZ軟化部と溶接金属との距離がある値よりも小さくなった場合に生じる。種々の溶接条件、材料についての試験結果に基づき、本発明者らは、図3に示すように「最軟化距離Aと板厚tとの比(A/t)が1.4以下」であれば良いことを見出した。なお、図3の縦軸は、980MPa級超高張力鋼板の継手強度の最大値を1.0とした相対値である。   As described above, the above phenomenon occurs when the distance between the HAZ softened portion and the weld metal becomes smaller than a certain value. Based on the test results for various welding conditions and materials, the present inventors can determine that the ratio (A / t) of the maximum softening distance A to the sheet thickness t is 1.4 or less as shown in FIG. I found something good. In addition, the vertical axis | shaft of FIG. 3 is a relative value which set 1.0 as the maximum value of the joint strength of a 980 MPa class super high strength steel plate.

ここで、上記のように「1.4以下」と規定したのは、これ以上HAZ軟化部が遠ざかると、当該部に塑性ひずみが生じなくなり、継手強度向上の効果が得られないためである。好ましくは、「最軟化距離Aと板厚tとの比(A/t)が0.8以下」である。   Here, the reason why it is defined as “1.4 or less” as described above is that when the HAZ softened portion is further moved away, plastic strain does not occur in the portion, and the effect of improving the joint strength cannot be obtained. Preferably, “the ratio (A / t) between the maximum softening distance A and the sheet thickness t is 0.8 or less”.

溶接速度やデフォーカス(DF)量を調節することにより最軟化距離Aと板厚tとの比(A/t)を1.4以下とすることができる。   By adjusting the welding speed and the amount of defocus (DF), the ratio (A / t) between the maximum softening distance A and the plate thickness t can be made 1.4 or less.

比(A/t)は、入熱量の増大とともに大きくなる。したがって、比(A/t)を小さくするためには、溶接速度を高めることが有効である。例えば、
A/t≦1.4
とするためには、溶接速度は2m/分以上とするのがよい。より好ましい
A/t≦0.8
とするためには4m/分以上とすることが望ましい。
The ratio (A / t) increases as the heat input increases. Therefore, in order to reduce the ratio (A / t), it is effective to increase the welding speed. For example,
A / t ≦ 1.4
Therefore, the welding speed is preferably 2 m / min or more. More preferable A / t ≦ 0.8
In order to achieve this, it is desirable to set it to 4 m / min or more.

また、デフォーカス(DF)量が大きくなると、比(A/t)は増大する傾向にある。デフォーカス量が大きくなると、レーザ照射面積が大きくなり、入熱量が増大するためと推察される。比(A/t)に関しては、上述の溶接速度の影響の方が大きく、DF量の適正値を独立して規定することは困難であるが、本発明らがデータの範囲内から得た傾向に基づくと、デフォーカス(DF)量は、10mm程度以下とするのが好ましい。なお、後述するように、DF量を大きくすると接合幅が増大し、せん断強度を高めることができる。せん断段強度を高めるためにはDF量は7mm以上とするのが望ましい。   Further, as the defocus (DF) amount increases, the ratio (A / t) tends to increase. It is presumed that as the defocus amount increases, the laser irradiation area increases and the amount of heat input increases. Regarding the ratio (A / t), the influence of the above-described welding speed is larger, and it is difficult to independently define the appropriate value of the DF amount, but the tendency of the present invention obtained from the range of the data , The defocus (DF) amount is preferably about 10 mm or less. As will be described later, when the amount of DF is increased, the bonding width increases and the shear strength can be increased. In order to increase the shear strength, the DF amount is desirably 7 mm or more.

また、本発明者らは、図4に示すように、最軟化位置についても継手はく離強度と強い相関があることを見出し、はく離強度を確保できる条件として「最軟化位置Bと板厚tとの比(B/t)が2以下」と規定した。なお、このような相関が得られた理由は、最軟化距離Aの場合と同様である。ここで、図4の縦軸は、980MPa級超高張力鋼板の継手強度の最大値を1.0とした相対値である。   Further, as shown in FIG. 4, the present inventors have found that there is a strong correlation with the joint peel strength for the softest position as well, and as a condition for ensuring the peel strength, “the softest position B and the thickness t The ratio (B / t) is 2 or less. " The reason why such a correlation is obtained is the same as in the case of the softest distance A. Here, the vertical axis in FIG. 4 is a relative value where the maximum value of the joint strength of the 980 MPa class ultra-high strength steel sheet is 1.0.

溶接速度やデフォーカス(DF)量を調節することにより最軟化位置Bと板厚tとの比(B/t)を2.0以下とすることができる。   By adjusting the welding speed and defocus (DF) amount, the ratio (B / t) between the softest position B and the plate thickness t can be made 2.0 or less.

比(B/t)は、入熱量の増大とともに大きくなる。したがって、比(B/t)を小さくするためには、溶接速度を高めることが有効である。例えば、溶接速度は2m/分以上とするのがよい。より好ましくは4m/分以上である。   The ratio (B / t) increases with increasing heat input. Therefore, in order to reduce the ratio (B / t), it is effective to increase the welding speed. For example, the welding speed is preferably 2 m / min or more. More preferably, it is 4 m / min or more.

また、デフォーカス(DF)量が大きくなると、比(B/t)は増大する傾向にある。デフォーカス量が大きくなると、レーザ照射面積が大きくなり、入熱量が増大するためと推察される。デフォーカス(DF)量は、10mm程度以下とするのが好ましい。   Further, as the defocus (DF) amount increases, the ratio (B / t) tends to increase. It is presumed that as the defocus amount increases, the laser irradiation area increases and the amount of heat input increases. The amount of defocus (DF) is preferably about 10 mm or less.

さらに、本発明者らは、上記に示した諸量の値が等しくても、はく離強度は溶接金属形状によって差があること、具体的には、図5に示すように、溶融境界が溶接内部から外部へ向かって広がる角度θに依存する傾向のあることを見出した。しかしながら、実験結果のみからは、この角度依存性を定量的に明らかにすることは困難であったため、有限要素解析を実施して詳細な検討を行った。   Furthermore, the present inventors have found that even if the values shown above are equal, the peel strength differs depending on the weld metal shape. Specifically, as shown in FIG. It was found that there is a tendency to depend on the angle θ that spreads from the outside to the outside. However, from the experimental results alone, it was difficult to quantitatively clarify this angular dependence, so a finite element analysis was performed for detailed examination.

解析モデルの要素分割を図6に、境界条件を図7に示す。モデルは全て2次元平面ひずみ要素であり、接合幅を1mmに固定して、角度θを0〜56度の範囲で変化させた。溶金には左右及び上下対称条件を設定しており、上下対称の溶金形状を有する溶接部のU字型はく離継手に相当する。HAZ軟化部へひずみ集中することの影響を除外し、溶金形状の影響のみを抽出するために、要素集合を「溶接金属」と「HAZ」の2種類とし、ひずみが集中する溶金近傍の要素寸法は各モデルでほぼ等しくなるようにした。   FIG. 6 shows the element division of the analysis model, and FIG. 7 shows the boundary conditions. All the models were two-dimensional plane strain elements, the bonding width was fixed to 1 mm, and the angle θ was changed in the range of 0 to 56 degrees. The left and right and vertical symmetry conditions are set for the molten metal, which corresponds to a U-shaped peel joint of a weld having a vertically symmetrical molten metal shape. In order to exclude the influence of strain concentration on the HAZ softened part and extract only the influence of the molten metal shape, the element sets are two types, “welded metal” and “HAZ”. The element dimensions were made almost equal for each model.

なお、解析対象鋼種は980MPa級超高張力鋼板であり、解析に用いた応力−ひずみ関係は、例えば「自動車技術会論文集」第36巻第1号(2005年)第205ページ〜第210ページに示したように、本発明者らが開発した超小型試験片の引張試験技術によって、当該各部位の引張試験を直接実施して取得したものである。   Note that the steel type to be analyzed is a 980 MPa class ultra-high strength steel plate, and the stress-strain relationship used for the analysis is, for example, “Automotive Technology Society Proceedings” Vol. 36, No. 1 (2005), pages 205 to 210. As shown in the above, the tensile test technique for each of the parts was directly obtained by the ultra-small test piece tensile test technique developed by the present inventors.

本解析結果に基づき、継手強度を予測した。具体的には、前出の公知論文と同様の考え方に基づき、「HAZにおける相当塑性ひずみの最大値が破損ひずみに達したときに継手が破損する」として、破損時の継手強度を求めた。   Based on this analysis result, the joint strength was predicted. Specifically, based on the same idea as the above-mentioned known paper, the joint strength at the time of failure was determined as “the joint breaks when the maximum value of the equivalent plastic strain in HAZ reaches the failure strain”.

破損時の継手強度と角度θの関係を図8に示す。なお、縦軸は、最も強度の優れるθ=0度のときの値で無次元化している。図からわかるように、継手強度は角度θが45度のときに最低となることがわかる。したがって、溶融境界の形状が45度に近くならないようにするべきである。本発明では、角度θの望ましい範囲として、「θ=0度のときよりも継手強度が25%以上低下しない範囲」とした。これを具体的に図8から求めると、「40度以下、もしくは50度以上」となる。   FIG. 8 shows the relationship between the joint strength at the time of breakage and the angle θ. Note that the vertical axis is dimensionless with a value when θ = 0 degrees, which has the best strength. As can be seen, the joint strength is lowest when the angle θ is 45 degrees. Therefore, the shape of the melting boundary should not be close to 45 degrees. In the present invention, a desirable range of the angle θ is “a range in which the joint strength does not decrease by 25% or more than when θ = 0 degrees”. When this is specifically obtained from FIG. 8, it is “40 degrees or less, or 50 degrees or more”.

「θ=0度のときよりも継手強度が25%以上低下しない範囲」と規定した理由は、以下の通りである。前述のように、本発明では、種々の材料、溶接部形状についての継手試験結果に基づいて、最軟化距離Aおよび最軟化位置Bの上限値を規定した。本発明の範囲内である溶接部形状を有する継手の強度最低値と、本発明を逸脱する継手の強度最高値を比較すると、その比はほぼ75%であった。このことから、75%以下に強度が低下すると、HAZ軟化部へひずみ集中することの効果が失われると考え、75%を確保すべき強度とした。   The reason why the joint strength is defined as “a range in which the joint strength does not decrease by 25% or more than when θ = 0 °” is as follows. As described above, in the present invention, the upper limit values of the maximum softening distance A and the maximum softening position B are defined based on the joint test results for various materials and welded part shapes. When the minimum strength value of the joint having a welded shape within the scope of the present invention was compared with the maximum strength value of the joint deviating from the present invention, the ratio was approximately 75%. From this, it is considered that when the strength is reduced to 75% or less, the effect of strain concentration on the HAZ softened portion is lost, and 75% is set as the strength to be secured.

なお、角度θが45度に近づくと継手強度が低下する理由は、以下のように考えられる。図1に示したように、溶融境界近傍で溶接金属1とHAZ2の硬さはほぼ連続となる場合が多い。しかし、微視組織は両者で大きく異なることから、引張強度特性(降伏応力や延性など)にも差があると考えられる。したがって、この強度ミスマッチに起因して、溶融境界近傍にはひずみが集中しやすい。さらに、延性材料の塑性変形において一般的に知られるように、ひずみ集中は板厚方向に対して45度傾斜した最大せん断ひずみ方向へ生じやすい。したがって、同方向と溶融境界の角度が近い場合には、当該部へのひずみ集中が助長され、継手強度は低下する傾向を示すものと考えられる。   The reason why the joint strength decreases when the angle θ approaches 45 degrees is considered as follows. As shown in FIG. 1, the hardness of the weld metal 1 and the HAZ 2 is often almost continuous near the melting boundary. However, since the microstructures differ greatly from each other, it is considered that there is a difference in tensile strength characteristics (yield stress, ductility, etc.). Therefore, the strain tends to concentrate near the melting boundary due to this strength mismatch. Furthermore, as is generally known in plastic deformation of ductile materials, strain concentration tends to occur in the maximum shear strain direction inclined by 45 degrees with respect to the plate thickness direction. Therefore, when the angle between the same direction and the melting boundary is close, it is considered that the strain concentration on the part is promoted and the joint strength tends to decrease.

以上の理由から、溶接金属の形状は「θは40度以下、もしくは50度以上」と規定する。角度θに関しても、DF量、溶接速度などの影響を受けるが、各種因子が複合的に影響を及ぼすため、個々の適正範囲を独立して規定することは困難である。本発明のデータの範囲内から、概略的な傾向として、DF量の増大に伴い角度θも増大することを見出したので、本傾向に基づきDF量の目安として「10mm以下」を推奨する。ただし、勿論この値を超えても、溶接速度などの値によっては本発明で規定したθの範囲を満足できる場合があることは言うまでもない。   For the above reasons, the shape of the weld metal is defined as “θ is 40 degrees or less, or 50 degrees or more”. The angle θ is also affected by the amount of DF, the welding speed, etc., but since various factors have a combined effect, it is difficult to independently define each appropriate range. From the scope of the data of the present invention, it has been found that the angle θ increases as the DF amount increases as a general tendency. Therefore, “10 mm or less” is recommended as a measure of the DF amount based on this tendency. Of course, even if this value is exceeded, it goes without saying that the range of θ defined in the present invention may be satisfied depending on the value of the welding speed or the like.

なお、本発明では継手のはく離強度を向上できる溶接部形状を規定しているが、自動車実部材においては、はく離強度と同時にせん断強度も重要となる場合が考えられる。本発明者等は、せん断強度は軟化域の位置の影響をほとんど受けず、接合幅によってほぼ一意に決まることを明らかにしている。接合幅を増加させるには、DF量を大きくすることが有効であり、具体的には7mm以上とすることが望ましい。このDF量の下限値と、全項までに示した望ましいDF量の上限値および溶接速度の下限値を同時に満たすことが、はく離強度とせん断強度との両立の目安となる。   In the present invention, the shape of the welded portion that can improve the peel strength of the joint is defined. However, in the case of an actual automobile member, the shear strength may be important as well as the peel strength. The present inventors have clarified that the shear strength is almost unaffected by the position of the softened region and is almost uniquely determined by the joining width. In order to increase the bonding width, it is effective to increase the DF amount, and specifically, it is desirable to set it to 7 mm or more. Simultaneously satisfying the lower limit value of the DF amount, the upper limit value of the desirable DF amount and the lower limit value of the welding speed shown up to all terms is a guideline for achieving both peeling strength and shear strength.

次に本発明の第三の態様である、レーザ溶接品の溶接部の接合強度評価方法につき説明する。この評価法は、鋼板を重ね合わせてレーザ溶接されたレーザ溶接品の溶接部の接合強度評価方法であって、溶接部の重ね合わせ面において、溶接金属と熱影響部との境界部からHAZ最軟化部までの距離Aと、溶接金属の幅中心からHAZ最軟化部までの距離Bのいずれか一方あるいは両者を求め、距離Aと板厚tとの比(A/t)と、距離Bと板厚tとの比(B/t)とのいずれか一方、あるいは両者により溶接部の接合強度を評価することを特徴とするものである。   Next, a method for evaluating the joint strength of the welded portion of the laser welded product, which is the third aspect of the present invention, will be described. This evaluation method is a method for evaluating the joint strength of a welded part of a laser welded product obtained by superposing steel sheets and performing laser welding. In the overlapped surface of the welded part, the HAZ maximum is measured from the boundary between the weld metal and the heat affected part. One or both of the distance A to the softened part and the distance B from the center of the width of the weld metal to the HAZ softest part is obtained, and the ratio (A / t) between the distance A and the plate thickness t, The joining strength of the welded portion is evaluated by either or both of the ratio (B / t) to the plate thickness t.

評価に際して、距離A及び距離Bの長さを特定する必要があり、そのために、溶接品の溶融境界5、及び、HAZ最軟化部6(図1参照)の部位を例えば、以下のようにして特定すればよい。   In the evaluation, it is necessary to specify the lengths of the distance A and the distance B. For this purpose, the melting boundary 5 of the welded product and the part of the HAZ most softened portion 6 (see FIG. 1) are, for example, as follows. What is necessary is just to specify.

(溶融境界の特定方法)
溶接ビード進行方向に垂直な断面上をピクリン酸+界面活性剤試薬で腐食し、溶融境界を出現させることにより特定する。
(Identification method of melting boundary)
It is specified by corroding the cross section perpendicular to the welding bead traveling direction with picric acid + surfactant reagent to cause a melting boundary to appear.

(HAZ最軟化部の特定方法)
マイクロビッカース計を用いて、荷重1.96N、0.2mmまたは0.3mmピッチで圧痕を付与し、その硬さ分布から特定する。
(Identification method of HAZ softest part)
Using a micro Vickers meter, an indentation is applied with a load of 1.96 N, a pitch of 0.2 mm or 0.3 mm, and specified from the hardness distribution.

供試材としては、変態強化鋼である780MPa級DP鋼、及び980MPa級DP鋼を用いた。ここで、「DP」とはDual Phase(二相)の略であり、フェライト母相中に硬質なマルテンサイト相を分散させた材料である。板厚はともに1.2mmである。後述する試験結果の表中では、それぞれの材料を「780DP」、「980DP」と略記している。   As test materials, 780 MPa class DP steel and 980 MPa class DP steel, which are transformation strengthened steels, were used. Here, “DP” is an abbreviation for Dual Phase (two-phase), and is a material in which a hard martensite phase is dispersed in a ferrite matrix phase. Both plate thicknesses are 1.2 mm. In the table of test results to be described later, the respective materials are abbreviated as “780DP” and “980DP”.

同一鋼種同士を重ね合わせ、YAGレーザにより溶接した。レーザの加工点出力は4.5kWおよび5.0kWの2種類とし、さらにデフォーカス(DF)量および溶接速度を変化させることにより、種々の溶接部形状を得た。また、水冷治具(内部に冷却水を循環)を用いて溶接部近傍を冷却しながら溶接した場合(試験No.6〜8)についても評価した。   The same steel types were overlapped and welded with a YAG laser. The laser processing point output was two types of 4.5 kW and 5.0 kW, and various weld shapes were obtained by changing the defocus (DF) amount and the welding speed. Moreover, it evaluated also about the case (test No. 6-8) welded, cooling the vicinity of a welding part using a water-cooling jig (circulating cooling water inside).

継手形式は、図9に示すはく離継手90である。板幅は60mmであるが、溶接ビード長は55mmとして止端部を設けた。また、溶接部の荷重軸垂直方向への変位を防止し、鋼種毎の変形状態の差異を低減するために、同じ試験片を重ねて同時に負荷した。   The joint type is a peel joint 90 shown in FIG. The plate width was 60 mm, but the weld bead length was 55 mm and the toe portion was provided. Moreover, in order to prevent the displacement of a welding part to the load-axis perpendicular | vertical direction and to reduce the difference in the deformation state for every steel type, the same test piece was piled up and loaded simultaneously.

継手試験結果を表1に示す。表中には、溶接条件、溶接部形状(接合幅、最軟化距離、最軟化位置と、それぞれを板厚で除した値、角度θ)、継手強度、及び破断位置を示している。   The joint test results are shown in Table 1. In the table, welding conditions, welded part shapes (joining width, maximum softening distance, maximum softening position, values obtained by dividing each by the plate thickness, angle θ), joint strength, and fracture position are shown.

Figure 2009000697
Figure 2009000697

ここで、接合幅と角度は、溶接ビード進行方向に垂直な断面上をピクリン酸+界面活性剤試薬で腐食し、溶融境界を出現させて測定した。また、最軟化距離および最軟化位置は、マイクロビッカース計を用いて、荷重1.96N、0.2mmまたは0.3mmピッチで圧痕を付与し、その硬さ分布から求めた。さらに、破断位置について、「溶融境界」は溶接金属や溶融境界など、HAZ軟化部以外で破断したことを示す。   Here, the bonding width and angle were measured by corroding the cross section perpendicular to the welding bead traveling direction with picric acid + surfactant reagent and causing a melting boundary to appear. Moreover, the softest distance and the softest position were determined from the hardness distribution by applying an indentation with a load of 1.96 N, 0.2 mm or 0.3 mm using a micro Vickers meter. Furthermore, with respect to the fracture position, “melting boundary” indicates that the fracture occurred at a portion other than the HAZ softened portion such as a weld metal or a melting boundary.

最軟化距離および最軟化位置が本発明で規定した上限値を超える試験No.1およびNo.14よりも、その他の試験結果の継手強度は優れることがわかる。また、試験No.2〜7、10〜13および15では、最終的にHAZ軟化部破断とはなっていないものの、HAZ軟化部にひずみが集中することにより、継手強度向上の効果が得られている。   Test No. in which the softest distance and the softest position exceed the upper limit values defined in the present invention. 1 and no. It can be seen that the joint strength of other test results is superior to 14. In addition, Test No. In 2 to 7, 10 to 13, and 15, although the HAZ softened portion is not finally broken, the strain is concentrated on the HAZ softened portion, so that the effect of improving the joint strength is obtained.

さらに、試験No.2〜4では、同一溶接条件で冷却治具を使用した試験No.6〜8と同等の継手強度が得られており、本発明によれば、冷却せずとも高強度を実現できることがわかる。   Furthermore, test no. In Nos. 2 to 4, test nos. Using a cooling jig under the same welding conditions. A joint strength equivalent to 6 to 8 is obtained, and according to the present invention, it can be seen that high strength can be realized without cooling.

以上に示したように,本発明によれば、HAZ軟化部を生じる材料に対しても、その継手強度の低下を抑制してレーザ溶接することが可能となり、自動車車体軽量化、衝突安全性向上など、産業上における効果は極めて大きい。   As described above, according to the present invention, it is possible to perform laser welding on a material that generates a HAZ softened portion while suppressing a decrease in joint strength, thereby reducing the weight of an automobile body and improving collision safety. The industrial effects are extremely large.

HAZ軟化部を生じる場合のレーザ溶接部断面形状と硬さ分布との関係を表す典型例を示す図である。It is a figure which shows the typical example showing the relationship between the laser weld part cross-sectional shape in the case of producing a HAZ softening part, and hardness distribution. 片側引きはがし型の試験片を示す図である。It is a figure which shows the test piece of a one-side peeling type. はく離強度と、(最軟化距離)/(板厚)との関係を示す図である。It is a figure which shows the relationship between peeling strength and (maximum softening distance) / (plate thickness). はく離強度と、(最軟化位置)/(板厚)との関係を示す図である。It is a figure which shows the relationship between peeling strength and (most softened position) / (plate thickness). 溶融境界が溶接内部から外部へ向かって広がるようすを示す図である。It is a figure which shows a melting boundary spreading toward the exterior from the inside of welding. 解析モデルの要素分割を示す図である。It is a figure which shows the element division of an analysis model. 解析モデル寸法と境界条件を示す図である。It is a figure which shows an analysis model dimension and boundary conditions. はく離強度と、溶融境界と板厚方向とのなす角度θ、との関係を示す図である。It is a figure which shows the relationship between peeling strength and angle (theta) which a fusion boundary and a plate | board thickness direction make. 実施例にて使用したはく離継手を示す図である。It is a figure which shows the peeling joint used in the Example.

符号の説明Explanation of symbols

A 最軟化距離
B 最軟化位置
1 溶融金属
2 熱影響部(HAZ)
3 母材
4 HAZ軟化部
5 溶融境界
6 最軟化部
7 溶融中心
20 試験片
21 フランジ部
22 溶接ビード
90 はく離継手
100 溶接部
A Softest distance B Softest position 1 Molten metal 2 Heat affected zone (HAZ)
DESCRIPTION OF SYMBOLS 3 Base material 4 HAZ softening part 5 Melting boundary 6 Softest part 7 Melting center 20 Test piece 21 Flange part 22 Weld bead 90 Peeling joint 100 Welding part

Claims (7)

レーザ溶接の熱影響部にHAZ軟化部を生じる鋼板のレーザ溶接方法であって、鋼板の重ね合わせ面において、溶接金属と熱影響部との境界部からHAZ最軟化部までの距離Aと板厚tとの間に、
A/t≦1.4
なる関係、若しくは、溶接金属の幅中心とHAZ最軟化部との距離Bと板厚tとの間に、
B/t≦2.0
なる関係のいずれか、又は両者が成立するようにレーザ溶接を行うことを特徴とするレーザ溶接方法。
A method of laser welding a steel plate in which a HAZ softened portion is generated in a heat affected zone of laser welding, and a distance A and a thickness from a boundary portion between the weld metal and the heat affected zone to a HAZ softened portion on the overlapping surface of the steel plates between t and
A / t ≦ 1.4
Or between the distance B between the width center of the weld metal and the HAZ softened portion and the thickness t,
B / t ≦ 2.0
A laser welding method characterized by performing laser welding so that either or both of these relationships are established.
さらに、前記鋼板の重ね合わせ面において、溶接金属と熱影響部との境界部の板厚方向とのなす角度θ(度)が、
θ≦40、又は、50≦θ
となるようにレーザ溶接を行うことを特徴とする請求項1に記載のレーザ溶接方法。
Furthermore, in the overlapping surface of the steel plates, an angle θ (degree) formed by the thickness direction of the boundary portion between the weld metal and the heat affected zone is as follows:
θ ≦ 40 or 50 ≦ θ
The laser welding method according to claim 1, wherein laser welding is performed so that
前記鋼板は、引張強度が590MPa以上の高張力鋼板である請求項1又は2に記載のレーザ溶接方法。 The laser welding method according to claim 1, wherein the steel plate is a high-tensile steel plate having a tensile strength of 590 MPa or more. レーザ溶接の熱影響部にHAZ軟化部を有する鋼板のレーザ溶接品であって、該レーザ溶接品の重ね合わせ面において、溶接金属と熱影響部との境界部からHAZ最軟化部までの距離Aと板厚tとの間に、
A/t≦1.4
なる関係、若しくは、溶接金属の幅中心とHAZ最軟化部との距離Bと板厚tとの間に、
B/t≦2.0
なる関係のいずれか、又は両者が成立することを特徴とするレーザ溶接品。
A laser welded product of a steel plate having a HAZ softened part in a heat-affected zone of laser welding, and a distance A from the boundary between the weld metal and the heat-affected zone to the HAZ softest part on the overlapping surface of the laser welded product And the plate thickness t,
A / t ≦ 1.4
Or between the distance B between the width center of the weld metal and the HAZ softened portion and the thickness t,
B / t ≦ 2.0
A laser welded product characterized in that either or both of these relationships are established.
前記鋼板の重ね合わせ面において、前記溶接金属と熱影響部との境界部の板厚方向とのなす角度θ(度)が、
θ≦40、又は、50≦θ
である請求項4に記載のレーザ溶接品。
In the overlapping surface of the steel plates, the angle θ (degrees) formed by the thickness direction of the boundary portion between the weld metal and the heat affected zone is:
θ ≦ 40 or 50 ≦ θ
The laser welded product according to claim 4, wherein
前記鋼板は、引張強度が590MPa以上の高張力鋼板である請求項4又は5に記載のレーザ溶接品。 The laser welded product according to claim 4 or 5, wherein the steel plate is a high-tensile steel plate having a tensile strength of 590 MPa or more. 鋼板を重ね合わせてレーザ溶接されたレーザ溶接品の溶接部の接合強度評価方法であって、前記溶接部の重ね合わせ面において、溶接金属と熱影響部との境界部からHAZ最軟化部までの距離Aと、前記溶接金属の幅中心から前記HAZ最軟化部までの距離Bのいずれか一方あるいは両者を求め、前記距離Aと板厚tとの比(A/t)と、前記距離Bと板厚tとの比(B/t)とのいずれか一方、あるいは両者により溶接部の接合強度を評価することを特徴とするレーザ溶接品の溶接部の接合強度評価方法。 A method for evaluating the joint strength of a welded part of a laser welded product obtained by laser welding by superimposing steel sheets, from a boundary part between a weld metal and a heat-affected part to a HAZ most softened part on the superposed surface of the welded part. One or both of the distance A and the distance B from the center of the width of the weld metal to the HAZ most softened portion is obtained, the ratio (A / t) between the distance A and the plate thickness t, and the distance B A method for evaluating the joint strength of a welded part of a laser welded product, wherein the joint strength of the welded part is evaluated based on either or both of the ratio (B / t) to the plate thickness t.
JP2007161539A 2007-06-19 2007-06-19 Laser beam welding method and laser welded product Pending JP2009000697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161539A JP2009000697A (en) 2007-06-19 2007-06-19 Laser beam welding method and laser welded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161539A JP2009000697A (en) 2007-06-19 2007-06-19 Laser beam welding method and laser welded product

Publications (1)

Publication Number Publication Date
JP2009000697A true JP2009000697A (en) 2009-01-08

Family

ID=40317657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161539A Pending JP2009000697A (en) 2007-06-19 2007-06-19 Laser beam welding method and laser welded product

Country Status (1)

Country Link
JP (1) JP2009000697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543562B2 (en) 2012-08-10 2020-01-28 Nippon Steel Corporation Overlap-welded member, automobile part, method of welding overlapped portion, and method of manufacturing overlap-welded member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543562B2 (en) 2012-08-10 2020-01-28 Nippon Steel Corporation Overlap-welded member, automobile part, method of welding overlapped portion, and method of manufacturing overlap-welded member

Similar Documents

Publication Publication Date Title
RU2458769C2 (en) Flat welded workpiece of two steel sheets
KR101943173B1 (en) Lap-welding method, lap joint, production method for lap joint, and automotive part
JP4968201B2 (en) Laser welded structural member and manufacturing method thereof
JP6528853B2 (en) Cutting method by press die
US20100086803A1 (en) Hot-formed profile
JP2008178905A (en) Laser welding method for structure composed of steel plate
JP4841970B2 (en) Lap laser welding method
JP4854327B2 (en) Lap laser welding method
RU2746759C1 (en) Welded steel part used as vehicle part and method for manufacturing specified welded steel part
JP5369393B2 (en) Forming material welding method and laser welding apparatus using high-strength steel sheet, forming material, processing method and molded product obtained thereby
JP5527346B2 (en) Method of welding forming material using high-strength steel sheet, forming material and processing method and molded product obtained thereby
JP2010279991A (en) Method of lap-welding steel sheet by laser beam
JP2009000697A (en) Laser beam welding method and laser welded product
JP5000578B2 (en) Laser welding method for thin steel sheets
JP6794641B2 (en) Welded structure manufacturing method
KR102604218B1 (en) Joint structures, automobile parts and manufacturing methods of joint structures
JP5606741B2 (en) Tailored blank manufacturing method and steel plate for tailored blank
KR20210150563A (en) Spot weld joint, and method of manufacturing spot weld joint
JP2000167673A (en) Tailored blank, and its manufacture
WO2019198725A1 (en) Spot welding joint, automobile frame part provided with spot welding joint, and method for producing spot welding joint
JP4660421B2 (en) High fatigue strength fillet welded joint and method for forming the same
CN112118932B (en) Lap laser welded joint, method for manufacturing lap laser welded joint, and automobile frame member
JP6197126B1 (en) Laser-welded section and manufacturing method thereof
Jahn et al. Induction assisted laser welding of advanced high strength steels to increase the formability of welded automotive body structures
JP2006218498A (en) Method for laser beam butt welding of metallic sheet