JP6380672B2 - Welded joint and its manufacturing method - Google Patents

Welded joint and its manufacturing method Download PDF

Info

Publication number
JP6380672B2
JP6380672B2 JP2017521173A JP2017521173A JP6380672B2 JP 6380672 B2 JP6380672 B2 JP 6380672B2 JP 2017521173 A JP2017521173 A JP 2017521173A JP 2017521173 A JP2017521173 A JP 2017521173A JP 6380672 B2 JP6380672 B2 JP 6380672B2
Authority
JP
Japan
Prior art keywords
steel
steel material
weld
metal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017521173A
Other languages
Japanese (ja)
Other versions
JPWO2017130830A1 (en
Inventor
下川 弘海
弘海 下川
高一 伊藤
高一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2017130830A1 publication Critical patent/JPWO2017130830A1/en
Application granted granted Critical
Publication of JP6380672B2 publication Critical patent/JP6380672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/06Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for positioning the molten material, e.g. confining it to a desired area

Description

本発明は、溶接接合部に関わる。より具体的には、鉄骨構造の溶接接合部に関わる。   The present invention relates to a weld joint. More specifically, it relates to a welded joint of a steel structure.

鋼材どうしを溶接接合した溶接接合部において、溶接金属の引張強度が鋼材の引張強度規格下限値を上回るような溶接施工を行った継手(溶接接合部)とするのが一般的である(オーバーマッチ)。これは、溶接部の溶接金属の引張強度を溶接される鋼材より強くすることで、溶接部での早期破断を防止し、所定の設計強度を十分満足させるためである。このような発明として、下記特許文献1の発明が提案されている。   In welded joints where steel materials are welded together, it is common to use joints (welded joints) that have been welded so that the tensile strength of the weld metal exceeds the tensile strength standard lower limit of the steel material (overmatch) ). This is because the tensile strength of the weld metal of the welded portion is made stronger than the steel material to be welded, thereby preventing early breakage at the welded portion and sufficiently satisfying the predetermined design strength. As such an invention, the invention of the following Patent Document 1 has been proposed.

近年、高強度鋼材が開発され使用されるようになっている。高強度鋼材を使用し、該鋼材の引張強度に対してオーバーマッチとなるような溶接施工を行うには、溶接条件の管理が難しく、施工効率も著しく低下する。また、引張強度780MPa以上といった超高強度鋼材に対しては、安心して使える溶接材料が乏しく、その入手も困難なのが現状である。   In recent years, high strength steel materials have been developed and used. In order to use a high-strength steel material and perform a welding operation that is over-matched to the tensile strength of the steel material, it is difficult to manage the welding conditions, and the work efficiency is significantly reduced. In addition, for ultra-high-strength steel materials having a tensile strength of 780 MPa or more, there are currently few welding materials that can be used with peace of mind and it is difficult to obtain them.

高強度鋼材を使用した場合のこれらの問題に関し、隅肉溶接では、下記特許文献2、3の発明が提案されている。   Regarding these problems when using high-strength steel materials, the inventions of Patent Documents 2 and 3 below have been proposed for fillet welding.

特許第3752616号公報Japanese Patent No. 3756616 特開2013−139047号公報JP 2013-139047 A 特開2014−8515号公報JP 2014-8515 A

しかし、特許文献2、3に記載の発明では、形状的に補強盛溶接金属の止端部に応力集中が発生しやすいため引張応力が作用した場合に脆性的な破断が発生する可能性が高いという問題がある。   However, in the inventions described in Patent Documents 2 and 3, since stress concentration tends to occur at the toe portion of the reinforced weld metal in shape, there is a high possibility that brittle fracture will occur when tensile stress is applied. There is a problem.

なお、高強度鋼材の溶接部では、低入熱での溶接施工により溶け込み量が小さくなりやすい。また、特許文献2のような補強盛溶接金属がガスシールドアーク溶接にて1溶接ビードで形成される場合には前記止端部近傍の母材熱影響部の靱性低下が生じる等の問題も発生し、溶接部での早期脆性的破断が懸念される。   Note that, in a welded portion of high-strength steel, the amount of penetration tends to be small due to welding with low heat input. In addition, when the reinforced weld metal as in Patent Document 2 is formed with one weld bead by gas shield arc welding, problems such as a decrease in toughness of the base metal heat-affected zone in the vicinity of the toe portion also occur. However, there is a concern about early brittle fracture at the weld.

本発明は、溶接金属の引張強度が鋼材の引張強度より低い場合(アンダーマッチ)でも溶接接合部強度を確保し、脆性的な破断を防止できる溶接接合部を提供することを目的とする。   An object of the present invention is to provide a welded joint that can secure weld joint strength even when the tensile strength of the weld metal is lower than the tensile strength of steel (undermatch) and prevent brittle fracture.

本発明は、前記問題を解決するために、1)溶接部よりも鋼材での破断が先行するように溶接部強度(=余盛と鋼材板厚と裏面溶け込み深さ等の総厚さ×溶接金属強度)が鋼材強度(=板厚×鋼材応力)を上回るような余盛を設ける、2)鋼材破断がより確実に先行するように所定の幅の補強ビードを鋼材表面に設ける、3)補強ビード止端部での脆性的破断を防止するため前記補強ビード止端部のフランク角が所定の値である、等の工夫をしたものである。   In order to solve the above-mentioned problems, the present invention provides: 1) the strength of the welded portion (= total thickness of the surplus, steel plate thickness, back surface penetration depth, etc.) × weld so that the fracture of the steel material precedes the welded portion (2) Provide a reinforcement bead with a predetermined width on the surface of the steel material to ensure that the steel material breaks more reliably. 3) Reinforcement In order to prevent brittle fracture at the bead toe, the flank angle of the reinforcing bead toe is a predetermined value.

上記工夫により、1)溶接金属は鋼材より低引張強度であっても、十分な強度となる、2)補強ビード止端部の応力・ひずみ集中を低減できる、3)超高強度鋼材に対しても施工条件を緩和(オーバーマッチ溶接の場合の余熱を低減する、大入熱溶接を可能として溶接工程を簡略化する)し継手耐力を確保できる、等の効果が得られる。   With the above ideas, 1) weld metal has sufficient strength even if it has a lower tensile strength than steel, 2) stress / strain concentration at the toe of the reinforcing bead can be reduced, and 3) for ultra-high strength steel In addition, the construction conditions can be relaxed (reducing residual heat in the case of overmatch welding, enabling large heat input welding to simplify the welding process), and ensuring joint strength.

本発明者らは以上の知見に基づいて更に検討を重ねて本発明を完成した。本発明の要旨は以下のとおりである。   The present inventors have further studied based on the above findings and completed the present invention. The gist of the present invention is as follows.

[1]両鋼材とそれらの接合部に溶接金属を備え、かつ、少なくとも一方の面は前記両鋼材の表面に肉盛りした余盛を備える溶接接合部であって、前記鋼材の表面に肉盛りした余盛である各補強ビードの幅が鋼材表面端部の余盛厚さ以上であり、各補強ビード止端部のフランク角θが145°〜170°であり、前記溶接金属の引張強度が前記各鋼材の引張強度より小さく、下記式(1)の条件を満たす、溶接接合部。   [1] Both steel materials and their joints are provided with weld metal, and at least one surface is a weld joint having an overlay on the surfaces of both steel materials, and is built up on the surfaces of the steel materials. The width of each reinforcing bead, which is a surplus, is equal to or greater than the surplus thickness of the steel surface end, the flank angle θ of each reinforcing bead toe is 145 ° to 170 °, and the tensile strength of the weld metal is A welded joint that is smaller than the tensile strength of the steel and satisfies the condition of the following formula (1).

式(1)において、aは余盛の最大厚さ(mm)、tは鋼材の厚さ(mm)、σuwは溶接金属の引張強度(MPa)、αは安全率(単位なし)であって1.01〜1.20により定める値、Tslは鋼材の引張強度(MPa)である。dは0以上であって、両表面に余盛がある場合は他の余盛の最大厚さ(mm)である。In Equation (1), a is the maximum thickness (mm) of the surplus, t is the thickness (mm) of the steel material, σ uw is the tensile strength (MPa) of the weld metal, and α is the safety factor (no unit). The value defined by 1.01-1.20, T sl is the tensile strength (MPa) of the steel material. d is 0 or more, and when both surfaces have extras, it is the maximum thickness (mm) of other extras.

[2]αは安全率(単位なし)であって1.03〜1.20により定める値である、[1]に記載の溶接接合部。   [2] The weld joint according to [1], wherein α is a safety factor (no unit) and is a value determined by 1.03 to 1.20.

[3]前記余盛を備える面とは反対側の面において凹部を有する凹型裏当金を備え、前記式(1)におけるdが該凹型裏当金における充填深さ(mm)である、[1]または[2]に記載の溶接接合部。   [3] A concave backing metal having a concave portion on a surface opposite to the surface including the surplus is provided, and d in the formula (1) is a filling depth (mm) in the concave backing metal. The weld joint according to [1] or [2].

[4]前記余盛を備える面とは反対側の面において裏当金を備え、該裏当金が溶け込み部を有し、前記式(1)におけるdが該溶け込み部における溶け込み深さ(mm)である、[1]または[2]に記載の溶接接合部。   [4] A backing metal is provided on the surface opposite to the surface provided with the surplus, the backing metal has a penetration portion, and d in the formula (1) is a penetration depth (mm The weld joint according to [1] or [2].

[5]前記鋼材の少なくとも一方はベベル角度φが15°〜35°の開先を有する[1]〜[4]のいずれかに記載の溶接接合部。   [5] The weld joint according to any one of [1] to [4], wherein at least one of the steel materials has a groove having a bevel angle φ of 15 ° to 35 °.

[6][1]〜[5]のいずれかに記載の溶接接合部の製造方法であって、両鋼材のルートギャップに溶接金属を形成し、さらに少なくとも一方の面は前記両鋼材の表面に肉盛りした余盛を形成する、溶接接合部の製造方法。   [6] A method for manufacturing a welded joint according to any one of [1] to [5], wherein a weld metal is formed in a root gap of both steel materials, and at least one surface is formed on the surfaces of both steel materials. A method for manufacturing a welded joint, which forms an overfill.

[7]前記ルートギャップに裏当金又は凹型裏当金を備えて溶接を行う、[6]に記載の溶接接合部の製造方法。   [7] The method for manufacturing a welded joint according to [6], wherein the root gap is provided with a backing metal or a concave backing metal and welding is performed.

本発明により、高強度鋼材を使用したアンダーマッチ溶接接合部での溶接接合部強度を確保し、脆性的な破断が防止でき、溶接施工条件の緩和が可能な溶接接合部を提供できる。   According to the present invention, it is possible to provide a welded joint that secures weld joint strength at an undermatch weld joint using high-strength steel, can prevent brittle fracture, and can relax welding conditions.

図1は、本発明の一実施形態を説明する概略図である。FIG. 1 is a schematic diagram illustrating one embodiment of the present invention. 図2は、溶接接合部の寸法等を説明する概略図である。FIG. 2 is a schematic diagram for explaining the dimensions and the like of the weld joint. 図3は、溶接接合部の寸法等を説明する概略図である。FIG. 3 is a schematic diagram for explaining the dimensions and the like of the weld joint. 図4は、補強ビード止端部のフランク角と応力集中係数の関係を示す図面である。FIG. 4 is a drawing showing the relationship between the flank angle of the reinforcing bead toe and the stress concentration factor. 図5は、本発明の一実施形態を説明する概略図である。FIG. 5 is a schematic diagram illustrating one embodiment of the present invention. 図6は、本発明の一実施形態を説明する概略図である。FIG. 6 is a schematic diagram illustrating one embodiment of the present invention. 図7は、本発明の一実施形態を説明する概略図である。FIG. 7 is a schematic diagram illustrating one embodiment of the present invention. 図8は、2次元平面ひずみ要素モデルの一例である。FIG. 8 is an example of a two-dimensional plane strain element model. 図9は、フランク角を調べるゲージを説明する概略図である。FIG. 9 is a schematic diagram for explaining a gauge for examining a flank angle.

以下、本発明について詳細に説明する。本発明は、溶接金属の引張強度が鋼材の引張強度よりも小さい、アンダーマッチの溶接接合部である。本発明は、従来適用し難かった高強度の鋼材にも適用することができ、さらには、鋼材と溶接金属の引張強度差が大きいものについても適用することができる。具体的には、本発明においては、鋼材の引張強度が、600〜900MPaの高強度のものに好ましく適用可能であり、鋼材の引張強度はさらに好ましくは600〜800MPaである。また、溶接金属の引張強度は、例えば550MPa以上であり、また、上限は例えば800MPaである。溶接施工性の観点等から、溶接金属の引張強度は、現実的には例えば550〜700MPaである。また、本発明においては、鋼材と溶接金属の引張強度差を200MPa超とすることもできる。勿論、鋼材と溶接金属の引張強度差が200MPa以下のものに適用することもできる。鋼材と溶接金属の引張強度差は、好ましくは250MPa以下である。なお、本発明において、鋼材の引張強度はJIS Z 2241金属材料引張試験方法に従い求める。溶接金属の引張強度は、JIS Z 3111 A0号試験片、A1号試験片またはA2号試験片を用い、JIS Z 2241金属材料引張試験方法に従い求める。   Hereinafter, the present invention will be described in detail. The present invention is an undermatched weld joint in which the tensile strength of the weld metal is smaller than the tensile strength of the steel material. The present invention can also be applied to high-strength steel materials that have been difficult to apply in the past, and can also be applied to materials having a large difference in tensile strength between steel materials and weld metals. Specifically, in the present invention, the steel material is preferably applicable to a steel material having a tensile strength of 600 to 900 MPa, and the steel material preferably has a tensile strength of 600 to 800 MPa. The tensile strength of the weld metal is, for example, 550 MPa or more, and the upper limit is, for example, 800 MPa. From the viewpoint of welding workability and the like, the tensile strength of the weld metal is practically, for example, 550 to 700 MPa. Moreover, in this invention, the tensile strength difference of steel materials and a weld metal can also be over 200 MPa. Of course, the present invention can be applied to a steel material and a weld metal having a tensile strength difference of 200 MPa or less. The difference in tensile strength between the steel material and the weld metal is preferably 250 MPa or less. In addition, in this invention, the tensile strength of steel materials is calculated | required according to the JISZ2241 metal material tensile test method. The tensile strength of the weld metal is determined according to the JIS Z 2241 metal material tensile test method using JIS Z 3111 A0 test piece, A1 test piece or A2 test piece.

図1は、突合せ溶接における溶接接合部の断面概略図であり、本発明の一実施形態を説明する概略図である。図1に示すように、本発明の溶接接合部は、突合せ溶接によるものであって、母材(鋼材)の全厚にわたって溶け込ませる完全溶け込み溶接によるものである。図1に示された溶接接合部は左右でほぼ対称の形状を有している。以下、本発明の説明では溶接熱影響部の図示は省略してある。   FIG. 1 is a schematic cross-sectional view of a welded joint in butt welding, and is a schematic diagram illustrating an embodiment of the present invention. As shown in FIG. 1, the weld joint of the present invention is based on butt welding, and is based on complete penetration welding in which the entire thickness of the base material (steel material) is melted. The weld joint shown in FIG. 1 has a substantially symmetrical shape on the left and right. In the following description of the present invention, the illustration of the weld heat affected zone is omitted.

溶接接合部(溶接継手)1は、両鋼材4とそれらの接合部に溶接金属3を備える、すなわち、溶接接合部(溶接継手)1は、溶接金属3とその両側の鋼材4を備える。溶接金属3において、点線であらわされた幅(鋼材4の最も溶接金属部3側どうしの間)の領域は幅方向中心部2である。鋼材4どうしのルートギャプ部に裏当金6を備えた状態で溶接を行うことで、このような溶接接合部を得ることができる。なお、「裏当金」は、溶接前は溶接される鋼材側の表面に凹部を有さない平板(例えば平鋼)であり、溶接によって一部が溶けて図1のように凹部を有する形状になる。   The weld joint (welded joint) 1 includes both steel materials 4 and weld metals 3 at the joint portions thereof, that is, the weld joint (welded joint) 1 includes weld metal 3 and steel materials 4 on both sides thereof. In the weld metal 3, a region having a width represented by a dotted line (between the weld metal 3 side closest to the steel material 4) is the center portion 2 in the width direction. Such welding joints can be obtained by performing welding in a state in which the backing metal 6 is provided at the root gap portion between the steel materials 4. The “back metal” is a flat plate (for example, flat steel) that does not have a recess on the surface of the steel material to be welded before welding, and a shape that has a recess as shown in FIG. become.

図1上側の面は、最大厚さaの余盛を有し、両鋼材4の表面にも肉盛りした余盛(補強ビード5)を備えている。鋼材表面端部の余盛厚さは両矢印9で示してある。また、鋼材表面端部から溶接止端部8までが補強ビードの幅である。溶接止端部8のフランク角はθ、鋼材4における開先部のベベル角度はφで示した。余盛を備える面とは反対側の面には裏当金6が備えられ、該裏当金は深さdの溶け込み部7を有する。   The upper surface in FIG. 1 has a surplus of the maximum thickness a, and is provided with a surplus (reinforcing bead 5) that is also built up on the surfaces of both steel materials 4. The extra thickness at the end of the steel surface is indicated by a double arrow 9. Further, the width of the reinforcing bead is from the steel surface end to the weld toe 8. The flank angle of the weld toe 8 is indicated by θ, and the bevel angle of the groove in the steel material 4 is indicated by φ. A backing metal 6 is provided on the surface opposite to the surface provided with the surplus, and the backing metal has a penetration portion 7 having a depth d.

図2により、幅方向中心部2上の余盛、鋼材表面端部の余盛、補強ビード幅について、好ましい実施形態を更に説明する。図2では、横軸をXとし、幅方向中心部2の中央がX=0である。Xは開先の先端位置、Xは鋼材表面端部位置、Xは補強ビード止端部位置である。With reference to FIG. 2, a preferred embodiment will be further described with respect to the surplus on the central portion 2 in the width direction, the surplus at the end portion of the steel material, and the reinforcing bead width. In FIG. 2, the horizontal axis is X, and the center of the center portion 2 in the width direction is X = 0. X 1 is the distal end position of the groove, X 2 is steel surface and edge position, X 3 is a reinforcing bead toe position.

図2におけるaは余盛の最大厚さであり、幅方向中心部2上(幅方向中心部2真上)において余盛が最大厚さとなることが好ましい。なお、溶接部よりも鋼材での破断を先行させる観点から、本発明の溶接接合部は下記式(1)の条件を満たす。また、各補強ビードの幅が鋼材表面端部の余盛厚さ以上としてある。   In FIG. 2, a is the maximum thickness of the surplus, and it is preferable that the surplus becomes the maximum thickness on the center portion 2 in the width direction (just above the center portion 2 in the width direction). In addition, from the viewpoint of causing the steel material to break before the welded portion, the welded joint portion of the present invention satisfies the condition of the following formula (1). Moreover, the width | variety of each reinforcement bead is more than the extra thickness of the steel material surface edge part.

式(1)において、aは余盛の最大厚さ(mm)、tは鋼材の厚さ(mm)、σuwは溶接金属の引張強度(MPa)、αは安全率(単位なし)であって1.01〜1.20により定める値、Tslは鋼材の引張強度(MPa)である。dは0以上であって、両表面に余盛がある場合は他の余盛の最大厚さ(mm)である。すなわち、dは鋼材の裏面の余盛の最大厚さ(mm)(裏面に裏当金を設ける場合は、裏当金の溶け込み深さ)であり、裏面に余盛が無い場合は0である。図1においては、dは溶け込み部における溶け込み深さ(mm)である。なお、裏当金を備えない、裏当金において溶け込み部が無い場合は、d=0としてよい。また、式(1)において、αは安全率(単位なし)であって1.03〜1.20により定める値であることが好ましい。このようにαが1.03〜1.20であると、本発明の効果、すなわち、高強度鋼材を使用したアンダーマッチ溶接接合部での溶接接合部強度を確保し、脆性的な破断が防止でき、溶接施工条件の緩和が可能な溶接接合部を提供できるという効果を、より確実に発揮することができる。In Equation (1), a is the maximum thickness (mm) of the surplus, t is the thickness (mm) of the steel material, σ uw is the tensile strength (MPa) of the weld metal, and α is the safety factor (no unit). The value defined by 1.01-1.20, T sl is the tensile strength (MPa) of the steel material. d is 0 or more, and when both surfaces have extras, it is the maximum thickness (mm) of other extras. That is, d is the maximum thickness (mm) of the backside reinforcement of the steel material (in the case where a backing metal is provided on the backside, the depth of penetration of the backing metal), and 0 if there is no backfilling on the backside. . In FIG. 1, d is the penetration depth (mm) at the penetration portion. If the backing metal is not provided and there is no melted portion in the backing metal, d = 0 may be set. Moreover, in Formula (1), (alpha) is a safety factor (unitless), and it is preferable that it is a value defined by 1.03-1.20. Thus, when α is 1.03-1.20, the effect of the present invention, that is, the weld joint strength at the undermatch weld joint using the high-strength steel material is secured, and brittle fracture is prevented. It is possible to more reliably exhibit the effect of providing a welded joint that can relax welding conditions.

図2において、X位置における余盛厚さが鋼材表面端部の余盛厚さである。図2におけるX〜X間の任意の位置における開先部余盛aは下記式(2)の条件を満たすことが好ましい。2, excess metal thickness at X 2 position is weld reinforcement thickness of the steel material surface and edge. Groove portion excess Sheng a x at an arbitrary position between the X 1 to X 2 in FIG. 2 is preferably satisfies the following formula (2).

ここで、tは鋼材の厚さ(mm)、tは開先部の鋼材の厚さ(mm)、σuwは溶接金属の引張強度(MPa)、αは安全率(単位なし)であって1.01〜1.20により定める値、Tslは鋼材の引張強度(MPa)である。式(2)において、αは安全率(単位なし)であって1.03〜1.20により定める値であることが好ましい。このようにαが1.03〜1.20であると、本発明の効果をより確実に発揮することができる。Here, t is the thickness of the steel (mm), t x is the thickness of the steel material of the groove portion (mm), sigma uw tensile weld metal strength (MPa), alpha is met safety factor (unitless) The value defined by 1.01-1.20, T sl is the tensile strength (MPa) of the steel material. In the formula (2), α is a safety factor (no unit) and is preferably a value determined by 1.03 to 1.20. Thus, the effect of the present invention can be more reliably exhibited when α is 1.03 to 1.20.

図2におけるX−Xは補強ビードの幅(mm)である。補強ビードの幅は下記式(3)の条件を満たすことが好ましい。 X 3 -X 2 in FIG. 2 is the width of the reinforcing bead (mm). The width of the reinforcing bead preferably satisfies the condition of the following formula (3).

なお、上記式(3)において、ax2は鋼材表面端部の余盛厚さ(mm)、θはフランク角である。In the above formula (3), a x2 is the extra thickness (mm) of the steel material surface end, and θ is the flank angle.

図3は、溶接接合部の寸法等を説明する概略図であり、本発明の実施形態について、複数の板厚での余盛高さ(厚さ)と幅方向中心部の中央からの距離の関係をあらわすグラフである。条件は以下の通り。なお、図3のグラフは以下条件にて式(1)〜(3)により求めた。
・幅方向中心部2の幅方向距離(各鋼材の最も溶接金属部側どうしの間隔)=7.0mm、ベベル角度φ=35°、フランク角θ=150°、鋼材の厚さ=25〜50mm、d=0mm
・鋼材引張強さ規格下限値Tsl=780MPa、溶接金属引張強度σuw=650MPa
・安全率α=1.1
図3に示すように、上述のとおり、幅方向中心部(図3における0〜X)のいずれかにおいて余盛高さは最大となることが好ましい。幅方向中心部の余盛高さ(余盛の最大厚さa)は、t=25mmのときに8.0mm、t=28mmのときに9.0mm、t=32mmのときに10.2mm、t=36mmのときに11.5mm、t=40mmのときに12.8mm、t=45mmのときに14.4mm、t=50mmのときに16.0mm、である。
FIG. 3 is a schematic diagram for explaining the dimensions and the like of the welded joint, and in the embodiment of the present invention, the height of the surplus height (thickness) at a plurality of plate thicknesses and the distance from the center of the central portion in the width direction are shown. It is a graph showing the relationship. The conditions are as follows. In addition, the graph of FIG. 3 was calculated | required by Formula (1)-(3) on the following conditions.
-Width direction distance of center part 2 in the width direction (interval between the weld metal parts of each steel material) = 7.0 mm, bevel angle φ = 35 °, flank angle θ = 150 °, steel thickness = 25 to 50 mm , D = 0mm
Steel material tensile strength standard lower limit value T sl = 780 MPa, weld metal tensile strength σ uw = 650 MPa
・ Safety factor α = 1.1
As shown in FIG. 3, as described above, it is preferable that the extra height is maximized at any one of the center portions in the width direction (0 to X 1 in FIG. 3). The extra height (maximum extra thickness a) of the central portion in the width direction is 8.0 mm when t = 25 mm, 9.0 mm when t = 28 mm, 10.2 mm when t = 32 mm, 11.5 mm when t = 36 mm, 12.8 mm when t = 40 mm, 14.4 mm when t = 45 mm, and 16.0 mm when t = 50 mm.

鋼材表面端部(図3におけるX)における余盛高さ(鋼材表面端部の余盛の厚さax2)は、t=25mmのときに3.0mm、t=28mmのときに3.4mm、t=32mmのときに3.8mm、t=36mmのときに4.3mm、t=40mmのときに4.8mm、t=45mmのときに5.4mm、t=50mmのときに6.0mm、である。The extra height (the extra thickness a x2 ) of the steel surface end (X 2 in FIG. 3) is 3.0 mm when t = 25 mm, and 3.3 when t = 28 mm. 4 mm, 3.8 mm when t = 32 mm, 4.3 mm when t = 36 mm, 4.8 mm when t = 40 mm, 5.4 mm when t = 45 mm, and 6 when t = 50 mm. 0 mm.

幅方向中心部の中央から補強ビード止端部までの距離は、t=25mmのときに26.2mm、t=28mmのときに28.9mm、t=32mmのときに32.6mm、t=36mmのときに36.2mm、t=40mmのときに39.8mm、t=45mmのときに44.4mm、t=50mmのときに48.9mm、である。   The distance from the center in the width direction to the toe end of the reinforcing bead is 26.2 mm when t = 25 mm, 28.9 mm when t = 28 mm, 32.6 mm when t = 32 mm, and t = 36 mm. 36.2 mm when t = 40 mm, 44.4 mm when t = 45 mm, 48.9 mm when t = 50 mm.

また、補強ビードの幅X−Xは、t=25mmのときに5.2mm、t=28mmのときに5.8mm、t=32mmのときに6.6mm、t=36mmのときに7.5mm、t=40mmのときに8.3mm、t=45mmのときに9.4mm、t=50mmのときに10.4mm、である。The width X 3 -X 2 of the reinforcing beads is 5.2 mm when t = 25 mm, 5.8 mm when t = 28 mm, 6.6 mm when t = 32 mm, and 7 when t = 36 mm. 0.5 mm, 8.3 mm when t = 40 mm, 9.4 mm when t = 45 mm, and 10.4 mm when t = 50 mm.

なお、本発明において、溶接部強度確保の観点から余盛高さの最大値(余盛の最大厚さa)は7.0〜20.0mmが好ましく、15mm〜20mmとすることがより好ましい。   In addition, in this invention, 7.0-20.0 mm is preferable and, as for the maximum value (maximum thickness a of a surplus), it is more preferable to set it as 15 mm-20 mm from a viewpoint of ensuring welded-part strength.

また、補強ビード止端部での破断防止の観点から鋼材表面端部の余盛厚さax2は2.5〜10mmが好ましく、5mm〜10mmとすることがより好ましい。Further, from the viewpoint of preventing breakage at the toe end of the reinforcing bead, the surplus thickness a x2 of the steel material surface end is preferably 2.5 to 10 mm, and more preferably 5 to 10 mm.

また、補強ビード止端部の応力集中緩和の観点から補強ビードの幅X−Xは5.0mm〜50mmとすることが好ましい。The width X 3 -X 2 reinforcing beads from the viewpoint of stress concentration relieving reinforcing bead toe portion is preferably set to 5.0Mm~50mm.

また、補強ビード溶接施工性の観点から鋼材の厚さtは12〜80mmが好ましく、12mm〜60mmとすることがより好ましい。   Further, from the viewpoint of reinforcing bead welding workability, the thickness t of the steel material is preferably 12 to 80 mm, and more preferably 12 to 60 mm.

また、溶接部溶け込み量確保の観点から幅方向中心部の幅方向距離(ルートギャップ)は3.0mm〜10.0mmとすることが好ましい。   Moreover, it is preferable that the width direction distance (root gap) of the width direction center part shall be 3.0 mm-10.0 mm from a viewpoint of ensuring the welding part penetration amount.

次に、フランク角について説明する。本発明において、フランク角はラジアスゲージにより求める。なお、フランク角とは、補強ビード止端部8における補強ビード5の接線と鋼材4表面とのなす角θである。   Next, the flank angle will be described. In the present invention, the flank angle is determined by a radius gauge. The flank angle is an angle θ between the tangent line of the reinforcing bead 5 at the reinforcing bead toe 8 and the surface of the steel material 4.

図1に示す構成を備える溶接接合部について、補強ビード止端部のフランク角と応力集中係数(溶接継ぎ手部材に作用する平均応力の何倍の応力が発生しているか)をFEM弾性塑性解析にて検討した。モデルは、2次元平面ひずみ要素モデルでフランク角を180°から140°まで変化させた解析を行った。図8は要素モデルの一例である。また、解析結果例として、鋼材板厚32mm、鋼材強度780MPa、溶接金属強度700MPaの場合の結果を図4に示す。   For the welded joint having the configuration shown in FIG. 1, the flank angle and stress concentration factor (how many times the average stress acting on the welded joint member is generated) of the reinforcing bead toe are analyzed in the FEM elastic-plastic analysis. And examined. The model was a two-dimensional plane strain element model and analyzed by changing the flank angle from 180 ° to 140 °. FIG. 8 is an example of an element model. Further, as an example of the analysis result, the result in the case of a steel plate thickness of 32 mm, a steel material strength of 780 MPa, and a weld metal strength of 700 MPa is shown in FIG.

これまでの実験からFEM弾性解析での応力集中係数が3以下であれば、実際の溶接接合部では塑性化の影響によりほぼ最大耐力を保持することを確認している。本発明では、やや安全を見て、応力集中係数2.5以下となるようなフランク角θとした。   From the experiments so far, it has been confirmed that if the stress concentration coefficient in the FEM elastic analysis is 3 or less, the actual welded joint will retain almost the maximum proof stress due to the effect of plasticization. In the present invention, the flank angle θ is set so that the stress concentration factor is 2.5 or less, in view of a little safety.

補強ビード止端部での応力・ひずみ集中を低減して脆性的破断を防止するため、フランク角θは145°以上である。一方、溶接施工性の観点から、フランク角θは170°以下である。フランク角は、好ましくは145°〜160°である。   The flank angle θ is 145 ° or more in order to reduce stress / strain concentration at the toe portion of the reinforcing bead and prevent brittle fracture. On the other hand, from the viewpoint of welding workability, the flank angle θ is 170 ° or less. The flank angle is preferably 145 ° to 160 °.

図1の溶接接合部1において、各鋼材4は片側開先を有している。なし割れ等を防ぐためベベル角度φは15°〜35°であることが好ましい。   In the weld joint 1 of FIG. 1, each steel material 4 has a groove on one side. In order to prevent cracks and the like, the bevel angle φ is preferably 15 ° to 35 °.

図1の溶接接合部1において、下側の面は裏当金6が備えられ、溶接部よりも鋼材での破断を先行させる観点から該裏当金6は深さdの溶け込み部7を有している。深さdは、2mm以上とすることが好ましく、3mm以上とすることがより好ましい。鋼材強度が780MPa以上の場合や、鋼材の厚さ(t)が19mm〜40mmの場合に、板厚に対して過大な余盛を避けるという観点から、深さdを5mm〜10mmとする(深溶け込み部)ことがより好ましい。なお、深溶け込み部を形成する場合は、予め溶接条件を決め、どの程度溶け込むかを確認しておくことが好ましい。なお、溶け込み深さdを考慮し余盛高さを決定する場合には、裏当金6は溶接金属強度確保の観点から、強度590〜780MPaの材料を用いるのが望ましい。   In the welded joint 1 of FIG. 1, the lower surface is provided with a backing metal 6, and the backing metal 6 has a penetration portion 7 having a depth d from the viewpoint of making the steel material break before the welded portion. doing. The depth d is preferably 2 mm or more, and more preferably 3 mm or more. When the steel material strength is 780 MPa or more, or when the steel material thickness (t) is 19 mm to 40 mm, the depth d is set to 5 mm to 10 mm from the viewpoint of avoiding excessive surplus with respect to the plate thickness (depth). More preferred is a melted part). In addition, when forming a deep penetration part, it is preferable to determine welding conditions beforehand and to confirm how much it melts. When determining the surplus height in consideration of the penetration depth d, it is desirable to use a material having a strength of 590 to 780 MPa as the backing metal 6 from the viewpoint of securing the weld metal strength.

図5は、図1に示した実施形態の変形例を示す概略図である。図5に記載の実施形態では、鋼材の上下側両面において余盛を備えており、各面において上記図1に基づく実施形態と同様の構成を備えている。上記式(1)では、dは溶け込み部における溶け込み深さではなく、余盛の高さ(mm)である。すなわち、上記式(1)では、上下面の余盛高さをそれぞれa、dとする。   FIG. 5 is a schematic diagram showing a modification of the embodiment shown in FIG. In the embodiment described in FIG. 5, the upper and lower sides of the steel material are provided with extras and each surface has the same configuration as the embodiment based on FIG. 1 described above. In the above formula (1), d is not the penetration depth at the penetration portion, but the height (mm) of the overfill. That is, in the above formula (1), the extra heights on the upper and lower surfaces are a and d, respectively.

以下、更に他の実施形態を説明する。以下の実施形態においても、既に述べた構成を備えることができる。いずれの実施形態についても、図5に示したように、鋼材の上下側両面において余盛を備えてよい。   Other embodiments will be described below. Also in the following embodiment, the structure already described can be provided. In any of the embodiments, as shown in FIG. 5, extra reinforcement may be provided on both the upper and lower sides of the steel material.

図6は、本発明の一実施形態を説明する概略図であり、この実施形態では、凹部を有する凹型裏当金6を用いている。前記凹部は幅方向中心部2上に位置していればよい。該凹部内には溶接金属の充填部10がある。凹部(充填部10)の深さdは特に限定されず、5mm〜10mmが好ましい。なお、充填部10の深さ(充填深さ)dと上記溶け込み部の深さdは、いずれも、溶接部よりも鋼材での破断を先行させる観点から設けられる点で共通する。図6に示す実施形態は、溶接施工性の観点から、鋼材強度が780MPa以上の場合や、鋼材の厚さ(t)が40mm〜80mmの場合に、好ましく適用される。   FIG. 6 is a schematic diagram for explaining an embodiment of the present invention. In this embodiment, a concave backing metal 6 having a concave portion is used. The recessed part should just be located on the center part 2 of the width direction. Within the recess is a weld metal fill 10. The depth d of the concave portion (filling portion 10) is not particularly limited, and is preferably 5 mm to 10 mm. It should be noted that the depth (filling depth) d of the filling portion 10 and the depth d of the penetration portion are common in that they are provided from the viewpoint of causing the steel material to break before the welded portion. The embodiment shown in FIG. 6 is preferably applied from the viewpoint of welding workability when the steel material strength is 780 MPa or more, or when the steel material thickness (t) is 40 mm to 80 mm.

図7は、本発明の一実施形態を説明する概略図である。各鋼材4の厚さが異なり、かつ、一方の鋼材4は開先を備えていないレ型開先である。この場合であっても、両側に補強ビード5を設ける。左側鋼材(厚い方の鋼材)の表面端部の余盛厚さaは右側鋼材(薄い方の鋼材)の表面端部の余盛厚さaX2、両鋼材の厚さt、t(薄いほうの鋼材の厚さがt、厚いほうの鋼材の厚さがt)から求めることができる(a=aX2−(t−t))。左右いずれも、補強ビード5の幅(mm)が鋼材表面端部の余盛厚さ以上である。一方の鋼材が開先を備えない場合、他方の鋼材のベベル角度φは溶接施工性の観点から25°〜35°が好ましい。FIG. 7 is a schematic diagram illustrating one embodiment of the present invention. The thickness of each steel material 4 is different, and one steel material 4 is a ladle groove not provided with a groove. Even in this case, the reinforcing beads 5 are provided on both sides. The surplus thickness a 0 at the surface end of the left steel material (thicker steel material) is the surplus thickness a X2 at the surface end of the right steel material (thin steel material), and the thicknesses t 1 and t 2 of both steel materials (the thinner one) The thickness of the steel material is t 1 , and the thickness of the thicker steel material is t 2 ) (a 0 = a X2 − (t 2 −t 1 )). In both the left and right sides, the width (mm) of the reinforcing bead 5 is equal to or greater than the thickness of the steel material surface end. When one steel material does not have a groove, the bevel angle φ of the other steel material is preferably 25 ° to 35 ° from the viewpoint of weldability.

なお、図7に示す実施形態では幅方向中心部2における余盛厚さは一義的には決まらない。しかし、左側の鋼材を基準として判断した場合に幅方向中心部2における余盛厚さが余盛厚さa以上であり、かつ、右側の鋼材を基準として判断した場合に幅方向中心部2における余盛厚さが余盛厚さaX2以上であれば、「幅方向中心部2上において余盛が最大」と判断することができる。また、上記式(1)では、薄い方の板厚を採用する。In the embodiment shown in FIG. 7, the extra thickness at the central portion 2 in the width direction is not uniquely determined. However, when the left steel material is determined as a reference, the surplus thickness in the width direction center portion 2 is equal to or greater than the surplus thickness a 0 , and when the right steel material is determined as a reference, the surplus thickness in the width direction center portion 2 is If the surplus thickness a X2 or more, it can be determined that “the surplus is maximum on the central portion 2 in the width direction”. In the above formula (1), the thinner plate thickness is adopted.

本発明において、鋼材は適宜選択して使用可能である。例えば、鋼材の組合せとして、鋼板と鋼板、H形鋼のフランジと鋼板の組合せとすることができる。また、UOE鋼管やスパイラル鋼管の溶接接合部として本発明を適用してもよい。   In the present invention, the steel material can be appropriately selected and used. For example, as a combination of steel materials, a combination of a steel plate and a steel plate, a flange of H-shaped steel and a steel plate can be used. Moreover, you may apply this invention as a welding joint part of a UOE steel pipe or a spiral steel pipe.

上記本発明の溶接接合部の製造方法、すなわち、形成方法(溶接方法)は特に限定されない。例えば、両鋼材のルートギャップに溶接金属を形成し、さらに少なくとも一方の面は両鋼材の表面に肉盛りした余盛を形成する本発明の溶接接合部の製造方法により、製造することができる。その際、ルートギャップに裏当金又は凹型裏当金を備えて溶接を行うことが好ましい。具体的には、例えば、サブマージアーク溶接により形成可能である。また、入熱量50〜200kJ/cmでの1パスで溶接接合部を形成してもよいし、入熱量10〜40kJ/cmでの2パス以上の複数パスにより溶接接合部を形成してもよい。   The manufacturing method of the welded joint according to the present invention, that is, the forming method (welding method) is not particularly limited. For example, it can be manufactured by the method for manufacturing a welded joint according to the present invention, in which a weld metal is formed in the root gap of both steel materials, and at least one surface is formed with a buildup on the surfaces of both steel materials. In that case, it is preferable to perform welding by providing a backing metal or a concave backing metal in the root gap. Specifically, for example, it can be formed by submerged arc welding. Further, the weld joint may be formed by one pass at a heat input of 50 to 200 kJ / cm, or the weld joint may be formed by a plurality of passes of two or more at a heat input of 10 to 40 kJ / cm. .

溶接継手(溶接接合部)の引張試験を実施した。具体的には、図1に示すように、まず、2枚の同じ鋼板(板厚25mm×幅400mm×長さ200mmの引張強度780MPa級の鋼板)を余盛厚さ目標値が10mm(安全率α=1.1狙い)、8mm(安全率α=1.01狙い)、4mmとなるように突合わせ溶接をし、溶接継手(溶接部材)を得た。そして、試験体として、得られた溶接継手から試験部位が幅75mmとなるように機械加工にて切り出した。得られた試験体のマクロ試験(溶接部の断面を観察する試験)から、試験体No.1〜No.3はいずれも、補強ビード止端部のフランク角θは145°であった。なお、フランク角θについて、図8に示すようなステンレス製のゲージ20を用いることにより、所定の範囲内の角度であるかを簡単に確認することもできる。図8はフランク角を調べるゲージを説明する概略図であり、例えば角度Zが145°であるゲージと角度Zが170°であるゲージとを用いることにより、フランク角θが145°〜170°の範囲内か否かを簡単に判断することができる。開先・溶接条件は、以下である。
<開先>
開先形状:V形開先、開先角度(ベベル角度φ):35°、ルートギャップ(R.G.):5mm、裏当金:厚さ9mm×幅25mm
<溶接条件>
溶接材料:680N/mm級ソリッドワイヤ、直径=1.4mm
電流:280〜300(A)、電圧:28〜30(V)、速度:18〜30(cm/min)、パス間温度:最大250℃
引張強度、溶接部の測定結果および引張試験結果を表1に示す。母材(鋼材)および溶接金属の引張強度は、それぞれ上記の方法で求めた。母材(鋼材)の降伏強度および溶接金属の0.2%耐力は、それぞれJIS Z 2241の規定に準拠して求めた。なお、No.3では補強ビードは存在しなかった。
A tensile test of the welded joint (welded joint) was performed. Specifically, as shown in FIG. 1, first, two same steel plates (plate thickness 25 mm × width 400 mm × length 200 mm, tensile strength 780 MPa class steel plate) are set to a surplus thickness target value of 10 mm (safety factor α = 1.1 aim), 8 mm (safety factor α = 1.01 aim), butt welding was performed so as to be 4 mm to obtain a welded joint (welded member). And it cut out by machining so that a test site | part might be set to 75 mm in width from the obtained welded joint as a test body. From the macro test (test for observing the cross section of the welded portion) of the obtained test specimen, the test specimen No. 1-No. In all cases, the flank angle θ of the reinforcing bead toe was 145 °. In addition, about the flank angle (theta), it can also be easily confirmed whether it is an angle within a predetermined range by using the stainless steel gauge 20 as shown in FIG. FIG. 8 is a schematic diagram illustrating a gauge for examining a flank angle. For example, by using a gauge having an angle Z of 145 ° and a gauge having an angle Z of 170 °, the flank angle θ is 145 ° to 170 °. It can be easily determined whether or not it is within the range. The groove and welding conditions are as follows.
<Cave>
Groove shape: V-shaped groove, groove angle (bevel angle φ): 35 °, route gap (RG): 5 mm, backing metal: thickness 9 mm × width 25 mm
<Welding conditions>
Welding material: 680 N / mm class 2 solid wire, diameter = 1.4 mm
Current: 280-300 (A), Voltage: 28-30 (V), Speed: 18-30 (cm / min), Temperature between passes: Maximum 250 ° C.
Table 1 shows the tensile strength, the measurement results of the welds, and the tensile test results. The tensile strengths of the base material (steel material) and the weld metal were determined by the methods described above. The yield strength of the base material (steel material) and the 0.2% proof stress of the weld metal were determined in accordance with JIS Z 2241, respectively. In addition, No. In 3, there was no reinforcing bead.

表1に示すように、本発明に従い製作した試験体、すなわち、補強ビードの幅が鋼材表面端部の余盛厚さ以上であり、補強ビード止端部のフランク角が145°以上170°以下であり、溶接金属の引張強度が各鋼材の引張強度より小さく、上記式(1)の条件を満たす、No.1試験体およびNo.1試験体より安全率αがやや低いNo.2試験体では、溶接金属強度が弱くても母材(鋼材)での破断が先行することが確認できた。一方、余盛厚さの少ないNo.3試験体では、溶接金属での破断が先行する結果となった。試験結果から、本発明による効果が確認された。   As shown in Table 1, the specimen manufactured according to the present invention, that is, the width of the reinforcing bead is equal to or greater than the extra thickness of the steel surface end, and the flank angle of the reinforcing bead toe is not less than 145 ° and not more than 170 °. The tensile strength of the weld metal is smaller than the tensile strength of each steel material, and the conditions of the above formula (1) are satisfied. No. 1 specimen and No. 1 No. 1 with safety factor α slightly lower than 1 specimen. In the two specimens, it was confirmed that the base material (steel material) was preceded by breakage even when the weld metal strength was weak. On the other hand, no. In the three specimens, the weld metal breakage preceded. From the test results, the effect of the present invention was confirmed.

1 溶接接合部
2 幅方向中心部
3 溶接金属
4 鋼材
5 補強ビード
6 裏当金
7 溶け込み部
8 補強ビード止端部
9 鋼材表面端部の余盛厚さ
10 充填部
DESCRIPTION OF SYMBOLS 1 Welded joint part 2 Width direction center part 3 Weld metal 4 Steel material 5 Reinforcement bead 6 Back metal 7 Melting part 8 Reinforcement bead toe part 9 Extra thickness 10 of steel surface end part Filling part

Claims (7)

両鋼材とそれらの接合部に溶接金属を備え、かつ、少なくとも一方の面は前記両鋼材の表面に肉盛りした余盛を備える溶接接合部であって、
前記鋼材の表面に肉盛りした余盛である各補強ビードの幅が下記(3)式の条件を満たし
各補強ビード止端部のフランク角θが145°〜170°であり、
前記溶接金属の引張強度が前記各鋼材の引張強度より小さく、
下記式(1)の条件を満たす、溶接接合部。
式(1)において、aは余盛の最大厚さ(mm)、tは鋼材の厚さ(mm)、σuwは溶接金属の引張強度(MPa)、αは安全率(単位なし)であって1.01〜1.20により定める値、Tslは鋼材の引張強度(MPa)である。dは0以上であって、両表面に余盛がある場合は他の余盛の最大厚さ(mm)である。
式(3)において、x は補強ビード止端部位置、x は開先の鋼材表面端部位置、a x2 は開先の鋼材表面端部の余盛厚さ(mm)、θはフランク角である。
Both steel materials and their joints are provided with weld metal, and at least one surface is a weld joint having a surfacing on the surface of both steel materials,
The width of each reinforcing bead that is a surplus piled up on the surface of the steel material satisfies the condition of the following formula (3) ,
The flank angle θ of each reinforcing bead toe is 145 ° to 170 °,
The tensile strength of the weld metal is smaller than the tensile strength of each steel material,
A welded joint that satisfies the following formula (1).
In Equation (1), a is the maximum thickness (mm) of the surplus, t is the thickness (mm) of the steel material, σ uw is the tensile strength (MPa) of the weld metal, and α is the safety factor (no unit). The value defined by 1.01-1.20, T sl is the tensile strength (MPa) of the steel material. d is 0 or more, and when both surfaces have extras, it is the maximum thickness (mm) of other extras.
In the formula (3), x 3 is reinforcing bead toe position, x 2 is the steel surface and edge positions of the groove, a x2 are excess metal thickness of the steel surface and edge of the groove (mm), θ is a flank angle is there.
αは安全率(単位なし)であって1.03〜1.20により定める値である、請求項1に記載の溶接接合部。   The welded joint according to claim 1, wherein α is a safety factor (no unit) and is a value determined by 1.03 to 1.20. 前記余盛を備える面とは反対側の面において凹部を有する凹型裏当金を備え、前記式(1)におけるdが該凹型裏当金における充填深さ(mm)である、請求項1または2に記載の溶接接合部。   2. A concave backing metal having a concave portion on a surface opposite to the surface including the surplus is provided, and d in the formula (1) is a filling depth (mm) in the concave backing metal. The weld joint according to 2. 前記余盛を備える面とは反対側の面において裏当金を備え、該裏当金が溶け込み部を有し、前記式(1)におけるdが該溶け込み部における溶け込み深さ(mm)である、請求項1または2に記載の溶接接合部。   A backing metal is provided on the surface opposite to the surface provided with the surplus, the backing metal has a penetration portion, and d in the formula (1) is a penetration depth (mm) in the penetration portion. The welded joint according to claim 1 or 2. 前記鋼材の少なくとも一方はベベル角度φが15°〜35°の開先を有する請求項1〜4のいずれかに記載の溶接接合部。   The weld joint according to any one of claims 1 to 4, wherein at least one of the steel materials has a groove having a bevel angle φ of 15 ° to 35 °. 請求項1〜5のいずれかに記載の溶接接合部の製造方法であって、
両鋼材のルートギャップに溶接金属を形成し、さらに少なくとも一方の面は前記両鋼材の表面に肉盛りした余盛を形成する、溶接接合部の製造方法。
A method for manufacturing a welded joint according to any one of claims 1 to 5,
A method for manufacturing a welded joint, wherein a weld metal is formed in a root gap of both steel materials, and further, at least one surface forms an overfill on the surfaces of both steel materials.
前記ルートギャップに裏当金又は凹型裏当金を備えて溶接を行う、請求項6に記載の溶接接合部の製造方法。   The method for manufacturing a welded joint according to claim 6, wherein welding is performed by providing a backing metal or a concave backing metal in the route gap.
JP2017521173A 2016-01-29 2017-01-19 Welded joint and its manufacturing method Active JP6380672B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016015135 2016-01-29
JP2016015135 2016-01-29
PCT/JP2017/001725 WO2017130830A1 (en) 2016-01-29 2017-01-19 Weld joint and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2017130830A1 JPWO2017130830A1 (en) 2018-02-01
JP6380672B2 true JP6380672B2 (en) 2018-08-29

Family

ID=59397964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017521173A Active JP6380672B2 (en) 2016-01-29 2017-01-19 Welded joint and its manufacturing method

Country Status (5)

Country Link
JP (1) JP6380672B2 (en)
CN (1) CN108602152B (en)
SG (1) SG11201804642UA (en)
TW (1) TWI630054B (en)
WO (1) WO2017130830A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280970A (en) * 1989-04-22 1990-11-16 Sumitomo Metal Ind Ltd Method of welding titanium clad steel plate
JP2825168B2 (en) * 1991-06-03 1998-11-18 新日本製鐵株式会社 High fatigue strength gas shielded arc welding method
US5258600A (en) * 1992-03-31 1993-11-02 Exxon Production Research Company Process for welding thermally and/or mechanically treated metal conduits
JP3820493B2 (en) * 1998-03-27 2006-09-13 株式会社竹中工務店 Welding method for steel structures
JP3657135B2 (en) * 1998-11-10 2005-06-08 株式会社神戸製鋼所 Solid wire for gas shielded arc welding
JP4633959B2 (en) * 2001-05-08 2011-02-16 三菱重工業株式会社 Welded joint of high-strength heat-resistant steel and its welding method
JP5333003B2 (en) * 2009-03-02 2013-11-06 新日鐵住金株式会社 Laser-arc hybrid welding method that achieves long fatigue life
ES2542743T3 (en) * 2009-12-04 2015-08-11 Nippon Steel & Sumitomo Metal Corporation Welded structure with a butt welded joint and method for manufacturing
JP5627493B2 (en) * 2011-02-08 2014-11-19 日鐵住金溶接工業株式会社 Submerged arc welding method

Also Published As

Publication number Publication date
CN108602152B (en) 2020-11-10
WO2017130830A1 (en) 2017-08-03
TW201731616A (en) 2017-09-16
JPWO2017130830A1 (en) 2018-02-01
SG11201804642UA (en) 2018-07-30
CN108602152A (en) 2018-09-28
TWI630054B (en) 2018-07-21

Similar Documents

Publication Publication Date Title
US7748596B2 (en) Welded structure having excellent resistance to brittle crack propagation and welding method therefor
JP6008072B1 (en) Fillet welded joint and manufacturing method thereof
RU2486996C2 (en) Method of hidden arc welding of steel material using multiple electrodes
JP6901001B2 (en) Rotating tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method
EP3195973A1 (en) Laser welded joint and laser welding method
JP2008212992A (en) T-welded joint structure having excellent fragility fracture resistance crack propagation stopping characteristics
KR20180034561A (en) Spot welding method
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
JP2013139047A (en) Weld joint part of steel member
JP6380672B2 (en) Welded joint and its manufacturing method
KR102105614B1 (en) Welding structure
JP5052976B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP5935395B2 (en) Welding assembly groove part for square welding of four-sided box section
JP6859105B2 (en) Laminated laser spot welded joint and manufacturing method of the welded joint
JP6677429B2 (en) Welded steel pipe and oil supply pipe
TWI654312B (en) Laser welded steel and manufacturing method thereof
JP7339511B2 (en) Welded joint and manufacturing method thereof
KR20190016586A (en) Overlap fillet arc welding joint
RU2611609C2 (en) Circumferential welding joint of main pipe, method for fabrication of circumferential welding joint of main pipe and main pipe
JP6852797B2 (en) Laminated laser welded joints, manufacturing methods of lap laser welded joints and skeleton parts for automobiles
KR102035954B1 (en) Laser welding section steel and manufacturing method
JP6740805B2 (en) Welding method, manufacturing method of welded joint, and welded joint
JP2021028071A (en) Welding joint and manufacturing method thereof
JP6451218B2 (en) Fillet welding method for stiffeners
Ishiguro Fatigue strength of welded joints

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6380672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250