JP3900490B2 - Fatigue reinforcement method for girders with flange gussets - Google Patents

Fatigue reinforcement method for girders with flange gussets Download PDF

Info

Publication number
JP3900490B2
JP3900490B2 JP2002334470A JP2002334470A JP3900490B2 JP 3900490 B2 JP3900490 B2 JP 3900490B2 JP 2002334470 A JP2002334470 A JP 2002334470A JP 2002334470 A JP2002334470 A JP 2002334470A JP 3900490 B2 JP3900490 B2 JP 3900490B2
Authority
JP
Japan
Prior art keywords
fatigue
flange
treatment
crack
reinforcement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002334470A
Other languages
Japanese (ja)
Other versions
JP2004167516A (en
Inventor
嘉昭 佐藤
宏二 本間
知徳 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002334470A priority Critical patent/JP3900490B2/en
Publication of JP2004167516A publication Critical patent/JP2004167516A/en
Application granted granted Critical
Publication of JP3900490B2 publication Critical patent/JP3900490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Leg Units, Guards, And Driving Tracks Of Cranes (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属材を溶接接合して形成されるクレーン走行桁において、疲労弱点部としてのフランジガッセットを持つ桁構造の耐久性を向上させる疲労補強工法に関する。
【0002】
【従来の技術】
金属部材の耐久性は、しばしば疲労によって規定される。複数の金属材を溶接接合して構成される金属部材においては、溶接部が疲労弱点部となり、金属部材の耐久性を低下させる要因となっている。そのため、様々な溶接部の疲労向上処理策が取られている。特に、フランジガセットを持つ桁構造においては、フランジガセット端部の溶接部のフランジ側止端から疲労亀裂が発生しやすい。
【0003】
【特許文献1】
特開昭54−56953号公報
【特許文献2】
特開昭62−207579号公報
【特許文献3】
特開平10−279273号公報
【非特許文献1】
(Surface Nanocrystallization(SN C)of metallic Materials−Presentaion of the Concept behind a New Approach,J.Master.Sci.Technol.Vol.15 No.3,1999)
【0004】
金属部材の溶接部の疲労向上処理策には大きく分けて2種類あり、まず、疲労が問題となる部分の形状を変えて応力集中を少なくする、グラインディング、TIGドレッシングなどがある。また、疲労が問題となる部分に圧縮残留応力を与えて、実質的な繰り返し応力範囲を小さくする、ハンマーピーニング、ニードルピーニング、ショットピーニング、低温変態溶材などがある。このうち、ハンマーピーニングに関しては、応力集中を少なくする効果と圧縮応力を導入する効果の両方を持つとされている。
【0005】
【発明の解決しようとする課題】
上記の疲労向上処理策のうち、応力集中を少なくする処理策の効果は目に見えて明らかであるが、実際には、疲労が問題となる箇所においてはわずかな傷などが疲労強度をむしろ悪化させる原因となることがあるために、グラインダー処理などに関しては処理に熟練が必要のみならず、作業に時間が必要であり、大きなコスト増加要因となる。
【0006】
また、TIGドレッシングに関しても、作業には熟練者が必要なのと、適用部位に熱を加えるために、金属部材の補修に使う場合などについては、応力変動に起因する溶接材料の高温割れを防ぐために作業中は走行桁等の使用を止める必要があるなど、やはり大きなコスト増加要因となる。
【0007】
一方、圧縮残留応力を導入する処理策であるが、圧縮残留応力は目に見えないために、処理後の影響が測定しにくく、検査によって効果を保証することが困難であるということが問題となり、品質管理上の観点から、判断・診断能力あるエンジニアが立ち会えないような状況では、通常は使われない。
【0008】
また、ハンマーピーニングでは、処理部に大きな塑性変形を与えることができるため、処理の痕跡を大きくし、実施後に処理を特定することはできるが、処理時にできる表面の傷がかえって応力集中をもたらし、疲労強度を低下させることがあるのと、その塑性変形を与えるときの大きな反動のために著しく作業性が悪いために、細かいコントロールが困難であり、品質管理が非常に難しい。
【0009】
また、上記のような圧縮残留応力を導入する疲労向上処理策を特に金属部材の補修に用いる場合、疲労亀裂の発生初期である寸法1mm以下の小さな時点では、浸透探傷試験、磁粉探傷試験、渦流探傷試験などの現在の検査法では検出は不可能であるが、このような亀裂を残している状態で、上記の疲労寿命向上処理策を適用しても、亀裂の進展を止めることができないために、圧縮残留応力導入による疲労寿命向上効果はほとんど無いと考えられる。
【0010】
また、溶接部に低温変態溶材を使用する場合についても、止端部に圧縮残留応力を導入する場合についても、高強度鋼では効果が大きいが、低強度鋼では効果がほとんど無くなってしまうという特性があるのと、やはり、溶接による熱が加えられることから、TIGドレッシング同様、施工上の問題があって使いにくい部分があり、また、他の処理法と同様に導入した圧縮残留応力の効果が判定しにくい。
【0011】
上記のように、応力集中を減らす疲労向上処理策には、主に施工上の効率、施工者の熟練の問題があり、一方、圧縮応力を導入する疲労向上処理策には、その効果を計測して、品質管理を行うことができないことが問題であり、そのために、このような疲労寿命向上処理策を一般的金属部材に使うことは困難であった。
【0012】
本発明は、上記の事情に鑑みてなされたもので、金属部材の溶接部、特に疲労亀裂の発生しやすいフランジガセットを持つ桁構造の疲労性能向上方法として、超音波で先端を振幅20μm〜60μm、周波数15kHz〜60kHzで振動させる工具を用いて、フランジガッセットの溶接部表面を打撃するピーニングを行う超音波衝撃処理を行い、溶接部の疲労強度を向上させ、耐久性の高いフランジガセットを持つ桁構造の疲労補強工法を得ることを目的とする。
【0013】
【課題を解決するための手段】
本第1発明は、前記課題を解決するために、フランジガセットを持つ桁構造の疲労補強工法において、フランジガセット端部の溶接部のフランジ側止端について、フランジガセットの板厚をtとしたとき、フランジガセット端部から上面と下面のそれぞれ少なくとも1t以上の範囲について、超音波衝撃処理を施して溝を形成し、止端形状を改善したことを特徴とする。
【0014】
本第2発明は、本第1発明のフランジガセットを持つ桁構造の疲労補強工法において、前記超音波衝撃処理を行う前に、非破壊の亀裂探傷試験を行なって、予め亀裂がないことを確認し、亀裂を発見したらグラインダーで亀裂の明示が消えるまで研削を行ってから超音波衝撃処理を実施することを特徴とする。
【0015】
本第3発明は、本第1発明のフランジガセットを持つ桁構造の疲労補強工法において、前記超音波衝撃処理を行う前に、フランジガセットのまわし溶接の脚長が5mm以上であることを確認し、それ以下の場合、溶接を増し盛りして脚長を5mm以上とした上で、その増し盛りしたビードの止端部および元ビードと増し盛ビード間を温度100℃以下で超音波衝撃処理したことを特徴とする。
【0016】
本第4発明は、本第1〜第3のいずれか1つの発明のフランジガセットを持つ桁構造の疲労補強工法において、いったん超音波衝撃処理を行った後、定期的に超音波衝撃処理を行うことを特徴とする。
【0017】
【発明の実施形態】
金属部材の疲労破壊の発生は、応力集中と残留応力に大きく影響される。荷重を受ける金属材においては応力集中部に転移がたまり、それがすべり線の蓄積となって亀裂に発展し、亀裂が発生後はそれが進展して行く。残留応力は、通常、溶接部などで引張残留応力として存在し、実効的な繰り返し応力範囲を拡大させて亀裂を発生しやすくするとともに、生成した亀裂の開口を促進すると考えられている。そのため、金属材料の疲労寿命を向上させるには、応力集中を緩和するとともに、残留応力をできるだけ圧縮状態に近づけることが必要となってくる。
【0018】
フランジとガセットの溶接部には、表面形状の急変部と引っ張り残留応力の両方が存在し、疲労強度的に最も弱点となる。この表面形状の急変部が切り欠きとして作用し、応力集中部となるために、この応力集中部に塑性変形を与え、なだらかな止端半径が大きな曲面によって形成された表面を形成することが、応力集中部を緩和することになる。また、このときフランジの板厚方向に塑性変形を与えれば、その塑性化したフランジが周囲の金属によって拘束されることによって圧縮力が導入される。
【0019】
このような、フランジとガセットとの溶接部に対する塑性加工を可能とする手段として、超音波で先端を振幅20μm〜60μm、周波数15kHz〜60kHzで振動させる工具を用いて、溶接部表面を打撃するピーニングを行う超音波衝撃処理という処理がある。この手法を用いることによって、溶接部表面に塑性加工を行い、深さ1.5mmほどにまで圧縮残留応力を導入することができる。
【0020】
この超音波衝撃処理という手法は、基本的にはハンマーピーニングと疲労強度向上に関する基本メカニズムは変わらないが、一回一回の打撃のエネルギーを小さい変わりに、1秒間に1万回以上の打撃を与えることによって、同じような塑性変形を実現している。しかも、一回一回の打撃力は小さいために、機器に生じる反動はほとんどまったく無く、ハンマーピーニングと比較して使用性、施工性の面で非常に有利である。
【0021】
また、この超音波衝撃処理という処理は、この金属表面に対し非常に多くの回数の打撃を与えているということで、金属材表面に対して従来のハンマーピーニングには無い効果をもたらしている。また、一回一回の打撃エネルギーがショットピーニングより大きいことで、従来のショットピーニングにも無い効果をもたらしている。
【0022】
まず、回数を多く表面を叩くことで、処理の均一性が得られる。ハンマーピーニングでも数パスを同一線上で実施すればある程度の均一性が得られることは知られているが、超音波衝撃処理の打撃サイクル数は15〜60kHzであり、その得られる均一性はハンマーピーニングと全く異なるレベルにあり、処理スピードが0.5m/分程度であれば、ほとんど溶接部表面を均一に仕上げ、欠陥を全く残すことがない。
【0023】
また、その処理後の表面は著しい平滑さを持つ。超音波衝撃処理による処理後の平滑さは、グラインダー仕上げ後の溶接部表面よりも著しく平滑である。
【0024】
また、処理後の溶接部表面の組織は超音波を利用して塑性加工を数多く繰り返すことによって、著しく組織が細かくなることがわかっている。(非特許文献1参照)
【0025】
実際、超音波衝撃処理を疲労向上の目的で金属材に使った結果、処理前後で金属材組織は大きく変化している。このような、金属材の組織を細かくする効果は、特に金属材の組織が粗大化する溶接近傍のHAZ部で顕著であり、通常は100μmまで粗大化するHAZの粒径が、超音波衝撃処理の処理後はほとんど粒径が観察できないほどの寸法に小さくなっており、独特な金属材組織が超音波衝撃処理によって達成されている。
【0026】
また、超音波衝撃処理によって金属材の表面での金属材の組織が細かくなるのに伴って、硬さが増す。超音波衝撃処理後の母材部、溶金部、HAZ部の硬さの分布は、特に溶接金属材としてよく用いられる高強度の鋼については、硬さが20%以上増している。ほか、材質と処理時間によっては、硬さは最大、処理前の約2倍まで増加することがあるが、ただし、これは固くてもろいマルテンサイとなったわけではなく、主に、細粒化による効果と、転移の蓄積による加工硬化であるため、溶接割れをもたらすような種類の硬さの増加ではない。
【0027】
金属材の疲労破壊は、亀裂の発生と進展から構成される。亀裂発生寿命と亀裂進展寿命の合計が疲労亀裂にいたる全寿命となる。そして、応力集中や、残留応力が厳しい箇所から亀裂が発生する場合が多く、発生した亀裂は、さらに進展を継続して最終的に部材の破断に至る。金属材の疲労破壊の寿命を向上させるためには、疲労亀裂の発生及び疲労亀裂の進展を抑制することが必要である。
【0028】
しかし、通常はいったん金属材に亀裂が発生すると、その亀裂先端での応力集中は極めて大きく、この進行を止めることは極めて困難であるとされている。例えば、先端にストップホールをあけ、その穴を高力ボルトで締め上げても、亀裂先端を残した場合はボルト内部に亀裂が進展して、切断してしまうことすらある。
【0029】
初期の疲労亀裂を観察すると、まわし溶接試験体の疲労試験中のひずみ計測により、発生を検知した時点の亀裂の状態である初期の疲労亀裂を観察すると、この時点でまわし溶接継ぎ手での普通の疲労寿命の約1割が経過しており、残りの9割の寿命は、この亀裂の進展寿命であり、この亀裂を取り除かない限りほとんど決まってしまう状態にある。
【0030】
しかしながら、この状態の亀裂は通常の浸透探傷試験や、磁粉探傷試験では検知することができない。もし、この状態で従来の疲労寿命向上手法であるハンマーピーニングやショットピーニングを行ったとすると、この亀裂を残したまま処理を行ってしまうため、見かけ上は処理面には塑性変形が生じているが、亀裂の進展は止められないために、改善効果は形状改良による応力集中の低減程度しかなく、寿命がほとんど伸びないという状況が考えられる。
【0031】
ところが、この状態でも超音波衝撃処理を行うと、深さ1.5mm程度まで塑性変形による圧縮応力を導入するために、亀裂を叩き潰し、亀裂先端を開口しないようにしてしまうことができる。もちろん、圧縮応力を導入できる深さは、ハンマーピーニングでも同程度以上の深さが可能であるが、ハンマーピーニングは処理効果にむらがあり、亀裂を叩けずに残す部分が多いと考えられ、その点、超音波衝撃処理は前述のように打撃回数が著しく多いために、均一に亀裂の開口を抑制することができる。
【0032】
よって、効果的に疲労寿命向上効果を得るには、溶接金属材については超音波衝撃処理を溶接部の止端部を中心に、溶接金属部、HAZ部に処理することが基本である。もっとも疲労的な弱点になる溶接金属とHAZの境界面を疲労に対して強化する、また、溶接金属部表面に生じる高温割れの悪影響も著しく緩和できる。ただし、低温の水素割れについてはほとんど効果を持たないと考えられるので注意が必要である。
【0033】
溶接部の処理にあたっては、1処理線での処理回数は1パスでも充分であるが、より均一性を高めたい場合や、よりコントロール性を向上させたり、過大な塑性変形を防止するために、処理1回あたりの入力パワーを押えたい場合は、2回以上の処理を同一線上に対して行うことにより、より確実な疲労寿命向上効果を得ることができる。
【0034】
本発明の一実施形態を図により説明する。図1は、金属部材の一例として、形鋼等の金属材を溶接接合して形成される天井クレーン走行桁1をあげ、その金属部材の疲労亀裂の発生する可能性のある溶接部を示すものである。
【0035】
図2は、前記天井クレーン走行桁1の疲労亀裂の発生する可能性の大きいH形金属材2のフランジ3とフランジガセット4との溶接部5示す。この溶接部5には、表面形状の急変部と引っ張り残留応力が存在し、この表面形状の急変部が切り欠きとして作用し、応力集中部となるため疲労亀裂6を発生させ、引っ張り残留応力は応力範囲を拡大して疲労亀裂を発生しやすくするとともに、生成した疲労亀裂の進展を促進すると考えられる。この対策として、本第1発明は、図3に示されるように、フランジガセット4の端部から上面と下面の溶接部5のそれぞれフランジガセット4の板厚t以上の範囲について、超音波衝撃処理をしてなだらかな曲面の溝を形成し、止端部形状を応力集中のしなものに改善する。板厚t以上の範囲とは応力集中する止端部の範囲はほぼ板厚程度であるから、止端部の形状改善の範囲として板厚t以上としいたものである。さらに、溶接部5の上面と下面のそれぞれに超音波衝撃処理を行うことにより、板厚方向に塑性変形を与え、その塑性化した金属材が周囲の金属材により拘束され圧縮残留応力が導入され、引っ張り残留応力を緩和し、疲労亀裂の発生と進展を抑制する。
【0036】
本第2発明の構成は、超音波衝撃処理により除去できる亀裂は非破壊の亀裂探傷試験で発見できない程度の亀裂であり、それ以上の大きさの亀裂は超音波衝撃処理では除去できないため、超音波衝撃処理の前にグラインダーで除去するということである。
【0037】
本第3発明の構成は、前記のように溶接部の止端部の形状改善し応力集中をなくす範囲は、少なくとも板厚以上であるから、5mm以下の脚長では、止端部の形状改善が十分でないので増し盛りして5mm以上として超音波衝撃処理をするということである。また、100℃以下で超音波衝撃処理するとは、溶接直後の熱い時点よりも、温度の下がったときの方が圧縮残留応力の導入には効率がよいからである。
【0038】
本第4発明の構成は、超音波衝撃処理を行った後も、定期的に超音波衝撃処理を行うことにより、発生した疲労亀裂が超音波衝撃処理により除去できる程度の小さな段階で除去して、耐久性を向上するということである。
【0039】
【発明の効果】
本発明の疲労補強工法における超音波衝撃処理は、1秒間に1万回以上の打撃を与え、一回一回の打撃力が小さいので、他のピーニングに比較し使用性、施工性が優れた衝撃処理が可能となり、効率的にフランジガセットの溶接部の板厚以上の範囲の止端部形状改善が可能となり応力集中を抑制し、優れたフランジガセットを持つ桁構造の疲労補強工法となる。
【0040】
本発明の超音波衝撃処理は、回数を多く金属表面を打撃するので、処理の均一性が得られ、処理後の表面の平滑さを得られ、溶接部の止端部の形状改善性に優れ、さらに圧縮残留応力の導入も効率的に行えるフランジガセットを持つ桁構造の疲労補強工法となる。
【0041】
本発明の超音波衝撃処理は、数多くの打撃による塑性加工を繰り返すことにより処理後の金属表面の組織を著しく細かくすることができ、疲労亀裂の発生を抑制でき、効果的なフランジガセットを持つ桁構造の疲労補強工法となる。
【0042】
本発明の超音波衝撃処理は、一度処理を行った後、定期的に処理を行うことにより、疲労亀裂が大きくならない段階で除去できるので、効果的なフランジガセットを持つ桁構造の疲労補強工法となる。
【図面の簡単な説明】
【図1】 疲労補強工法を適用する桁構造としての走行桁の一実施形態を示す斜視図。
【図2】 フランジガセットとフランジの溶接部の斜視図。
【図3】 (a)(b)溶接部の超音波衝撃処理範囲を示す斜視図。
【符号の説明】
1:天井クレーン走行桁
2:H形金属材
3:下フランジ
4:フランジガセット
5:溶接部
6:疲労亀裂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fatigue reinforcement method for improving durability of a girder structure having a flange gusset as a fatigue weak point portion in a crane traveling girder formed by welding and joining metal materials.
[0002]
[Prior art]
The durability of metal parts is often defined by fatigue. In a metal member configured by welding and joining a plurality of metal materials, the welded portion becomes a fatigue weak point portion, which is a factor of reducing the durability of the metal member. For this reason, various measures for improving the fatigue of welds have been taken. In particular, in a girder structure having a flange gusset, fatigue cracks are likely to occur from the flange side toe of the welded portion of the flange gusset end.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 54-56953 [Patent Document 2]
JP 62-207579 A [Patent Document 3]
JP-A-10-279273 [Non-patent Document 1]
(Surface Nanocrystallization (SN C) of metallic Materials-Presentation of the Concept behind a New Approach, J. Master. Sci. Technol. Vol. 15 No. 15).
[0004]
There are roughly two types of measures for improving the fatigue of a welded portion of a metal member. First, there are grinding, TIG dressing, etc., which reduce the stress concentration by changing the shape of the portion where fatigue is a problem. In addition, there are hammer peening, needle peening, shot peening, low temperature transformation melts, etc., which give compressive residual stress to a portion where fatigue is a problem and reduce a substantial repetitive stress range. Of these, hammer peening is said to have both the effect of reducing stress concentration and the effect of introducing compressive stress.
[0005]
[Problem to be Solved by the Invention]
Of the above-mentioned measures to improve fatigue, the effects of measures that reduce stress concentration are visibly obvious, but in fact, in places where fatigue is a problem, slight scratches or the like rather deteriorates the fatigue strength. Therefore, the grinder processing and the like not only require skill in processing but also require time for work, which is a significant cost increase factor.
[0006]
Also, regarding TIG dressing, skilled workers are required for the work, and when applying heat to the application site, when using it for repairing metal members, etc., in order to prevent hot cracking of the welding material due to stress fluctuations During work, it is necessary to stop the use of traveling girders and so on.
[0007]
On the other hand, it is a treatment measure that introduces compressive residual stress, but since compressive residual stress is invisible, it is difficult to measure the effect after treatment and it is difficult to guarantee the effect by inspection. It is not usually used in situations where engineers with the ability to judge and diagnose cannot be present from the viewpoint of quality control.
[0008]
In addition, in hammer peening, since a large plastic deformation can be given to the processing part, the trace of the processing can be enlarged and the processing can be specified after the implementation, but the surface scratches that can be made at the time of processing can change the stress concentration, The fatigue strength may be lowered and the workability is remarkably poor due to the large reaction when the plastic deformation is given, so fine control is difficult and quality control is very difficult.
[0009]
In addition, when the above-described fatigue improvement treatment method that introduces compressive residual stress is used for repair of metal members, at a small point of 1 mm or less, which is the initial stage of fatigue crack generation, a penetrant flaw detection test, magnetic particle flaw detection test, eddy current Although detection is not possible with current inspection methods such as flaw detection tests, it is not possible to stop the progress of cracks even if the above-mentioned fatigue life improvement treatment measures are applied in a state where such cracks remain. In addition, it is considered that there is almost no effect of improving fatigue life by introducing compressive residual stress.
[0010]
In addition, when using a low-temperature transformation melt for the welded part, and when introducing compressive residual stress to the toe, the effect is high in high-strength steel, but the effect is almost lost in low-strength steel. As with TIG dressing, there are parts that are difficult to use due to construction problems, as well as the effects of compressive residual stress introduced in the same way as other treatment methods. Difficult to judge.
[0011]
As described above, the fatigue improvement treatment measures that reduce stress concentration mainly have problems in construction efficiency and the skill of the installer, while the fatigue improvement treatment measures that introduce compressive stress measure the effect. Thus, it is a problem that quality control cannot be performed, and for this reason, it has been difficult to use such a fatigue life improving treatment measure for a general metal member.
[0012]
The present invention has been made in view of the above circumstances, and as a method for improving the fatigue performance of a welded portion of a metal member, particularly a girder structure having a flange gusset that is prone to fatigue cracking, the tip of the tip is ultrasonically 20 μm to 60 μm. Using a tool that vibrates at a frequency of 15 kHz to 60 kHz, ultrasonic impact treatment is performed to perform peening that strikes the surface of the welded portion of the flange gusset, improving the fatigue strength of the welded portion, and having a highly durable flange gusset It aims at obtaining the fatigue reinforcement method of a girder structure.
[0013]
[Means for Solving the Problems]
In the first aspect of the present invention, in order to solve the above-mentioned problem, in the fatigue reinforcement method of a girder structure having a flange gusset, when the flange gusset end thickness of the welded portion of the flange gusset end is set to t In the range from the flange gusset end to at least 1 t on each of the upper surface and the lower surface, ultrasonic impact treatment was performed to form grooves to improve the toe shape.
[0014]
In the second aspect of the present invention, in the fatigue reinforcement method for a girder structure having the flange gusset according to the first aspect of the present invention, a non-destructive crack inspection test is performed before the ultrasonic impact treatment to confirm that there is no crack in advance. If a crack is found, grinding is performed with a grinder until the crack clearly disappears, and then ultrasonic shock treatment is performed.
[0015]
In the fatigue reinforcement method for a girder structure having a flange gusset according to the first invention, the third invention confirms that the leg length of the turn welding of the flange gusset is 5 mm or more before performing the ultrasonic impact treatment. In the case of less than that, after welding and increasing the leg length to 5 mm or more, ultrasonic shock treatment was performed at a temperature of 100 ° C. or less between the increased end of the bead and the former bead and the increased bead. Features.
[0016]
In the fourth aspect of the present invention, in the fatigue reinforcement method for a girder structure having the flange gusset according to any one of the first to third aspects of the invention, the ultrasonic impact treatment is performed periodically after the ultrasonic impact treatment is performed once. It is characterized by that.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The occurrence of fatigue failure of metal members is greatly influenced by stress concentration and residual stress. In a metal material subjected to a load, a transition accumulates in a stress concentration portion, which accumulates slip lines and develops into a crack, and after a crack occurs, it progresses. Residual stress is usually present as tensile residual stress in welds and the like, and it is considered that the effective repeated stress range is expanded to easily generate cracks and promote the opening of the generated cracks. Therefore, in order to improve the fatigue life of the metal material, it is necessary to alleviate the stress concentration and bring the residual stress as close to the compressed state as possible.
[0018]
The welded portion of the flange and the gusset has both a surface shape sudden change portion and a tensile residual stress, and is the weakest point in terms of fatigue strength. This suddenly changing portion of the surface shape acts as a notch and becomes a stress concentration portion, so that the stress concentration portion is plastically deformed, and the surface formed by a curved surface with a large toe radius is formed. The stress concentration part will be relaxed. At this time, if plastic deformation is applied in the plate thickness direction of the flange, the plasticized flange is restrained by the surrounding metal, thereby introducing a compressive force.
[0019]
As means for enabling plastic working on the welded portion between the flange and the gusset, peening that strikes the surface of the welded portion using a tool that vibrates the tip with an ultrasonic wave with an amplitude of 20 μm to 60 μm and a frequency of 15 kHz to 60 kHz. There is a process called an ultrasonic impact process. By using this method, plastic working can be performed on the surface of the welded portion, and compressive residual stress can be introduced to a depth of about 1.5 mm.
[0020]
This method of ultrasonic impact treatment basically does not change the basic mechanism for hammer peening and fatigue strength improvement, but changes the energy of one shot at a time to a small amount, and hits more than 10,000 times per second. By giving, the same plastic deformation is realized. In addition, since the impact force at one time is small, there is almost no recoil generated in the equipment, which is very advantageous in terms of usability and workability compared to hammer peening.
[0021]
In addition, this ultrasonic impact treatment has a very large number of impacts on the metal surface, and thus has an effect not found in conventional hammer peening on the metal surface. Moreover, since the impact energy per shot is larger than the shot peening, an effect not found in the conventional shot peening is brought about.
[0022]
First, processing uniformity can be obtained by hitting the surface many times. Even with hammer peening, it is known that a certain degree of uniformity can be obtained if several passes are performed on the same line, but the number of striking cycles of ultrasonic impact treatment is 15-60 kHz, and the obtained uniformity is hammer peening. If the processing speed is about 0.5 m / min, the surface of the welded portion is almost uniformly finished and no defects are left.
[0023]
Moreover, the surface after the treatment has a remarkable smoothness. The smoothness after the treatment by the ultrasonic impact treatment is remarkably smoother than the surface of the welded portion after the grinder finish.
[0024]
Further, it is known that the structure of the surface of the welded portion after the treatment becomes extremely fine by repeating plastic processing many times using ultrasonic waves. (See Non-Patent Document 1)
[0025]
Actually, as a result of using ultrasonic impact treatment for a metal material for the purpose of improving fatigue, the metal material structure is greatly changed before and after the treatment. Such an effect of making the metal material structure finer is particularly noticeable in the HAZ portion in the vicinity of the weld where the metal material structure becomes coarser, and the particle size of the HAZ that usually becomes coarser to 100 μm is an ultrasonic impact treatment. After the treatment, the particle size is so small that the particle size cannot be observed, and a unique metal material structure is achieved by the ultrasonic impact treatment.
[0026]
Further, the hardness increases as the microstructure of the metal material on the surface of the metal material becomes finer by the ultrasonic impact treatment. Regarding the hardness distribution of the base metal part, the molten metal part, and the HAZ part after the ultrasonic impact treatment, the hardness is increased by 20% or more particularly for high-strength steel often used as a weld metal material. In addition, depending on the material and processing time, the hardness may increase up to twice as much as before processing, but this does not become hard but brittle martensi, mainly due to the effect of fine graining Since it is work hardening by accumulation of transition, it is not an increase in the kind of hardness that causes weld cracking.
[0027]
Fatigue fracture of a metal material is composed of crack initiation and development. The sum of the crack initiation life and the crack growth life is the total life leading to fatigue cracks. In many cases, cracks are generated from places where stress concentration or residual stress is severe, and the generated cracks continue to further progress to finally break the member. In order to improve the life of fatigue fracture of a metal material, it is necessary to suppress the occurrence of fatigue cracks and the progress of fatigue cracks.
[0028]
However, normally, once a crack occurs in a metal material, the stress concentration at the tip of the crack is extremely large, and it is extremely difficult to stop this progress. For example, even if a stop hole is made at the tip and the hole is tightened with a high-strength bolt, if a crack tip is left, a crack may develop inside the bolt and even cut.
[0029]
When observing the initial fatigue crack, the initial fatigue crack, which is the state of the crack when the occurrence was detected, was measured by strain measurement during the fatigue test of the rotary welded specimen. About 10% of the fatigue life has elapsed, and the remaining 90% of the life is the progress life of this crack, which is almost determined unless the crack is removed.
[0030]
However, the crack in this state cannot be detected by a normal penetrant test or a magnetic particle test. If hammer peening or shot peening, which is a conventional fatigue life improving method, is performed in this state, the processing is performed with the cracks left, and apparently plastic deformation occurs on the treated surface. Since the progress of cracks cannot be stopped, the improvement effect is limited only to the reduction of stress concentration due to the shape improvement, and the life is hardly extended.
[0031]
However, when ultrasonic shock treatment is performed even in this state, the crack can be crushed and the crack tip can be prevented from opening to introduce compressive stress due to plastic deformation to a depth of about 1.5 mm. Of course, the depth at which compressive stress can be introduced can be the same level or higher even with hammer peening, but hammer peening has uneven processing effects, and it is thought that there are many parts to leave without hitting cracks, On the other hand, since the ultrasonic impact treatment has a remarkably large number of impacts as described above, it is possible to uniformly suppress the opening of cracks.
[0032]
Therefore, in order to effectively obtain the fatigue life improving effect, it is fundamental that the weld metal material is subjected to the ultrasonic impact treatment on the weld metal portion and the HAZ portion centering on the toe portion of the weld portion. The interface between the weld metal and HAZ, which is the most fatigued weak point, is strengthened against fatigue, and the adverse effect of hot cracking that occurs on the surface of the weld metal part can be remarkably mitigated. However, it should be noted that low temperature hydrogen cracking is considered to have little effect.
[0033]
In the treatment of the welded portion, the number of treatments in one treatment line is sufficient even in one pass, but in order to improve uniformity, improve controllability, and prevent excessive plastic deformation, When it is desired to suppress the input power per process, a more reliable fatigue life improvement effect can be obtained by performing two or more processes on the same line.
[0034]
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an overhead crane traveling girder 1 formed by welding and joining a metal material such as a shape steel as an example of a metal member, and shows a welded portion where fatigue cracks may occur in the metal member. It is.
[0035]
FIG. 2 shows a welded portion 5 between the flange 3 and the flange gusset 4 of the H-shaped metal material 2 that is likely to cause fatigue cracks in the overhead crane traveling beam 1. The weld 5 has a sudden change in surface shape and a tensile residual stress. The sudden change in surface shape acts as a notch and becomes a stress concentrated portion, so that a fatigue crack 6 is generated. It is considered that the stress range is expanded to facilitate the generation of fatigue cracks and the progress of the generated fatigue cracks is promoted. As a countermeasure against this, according to the first aspect of the present invention, as shown in FIG. To form a gently curved groove and improve the shape of the toe to a stress-concentrated shape. The range of the plate thickness t or more means that the range of the toe portion where the stress is concentrated is approximately the plate thickness, and therefore the range of the shape improvement of the toe portion is set to the plate thickness t or more. Further, by performing ultrasonic impact treatment on each of the upper surface and the lower surface of the welded portion 5, plastic deformation is given in the thickness direction, and the plasticized metal material is restrained by the surrounding metal material, and compressive residual stress is introduced. , Relieve tensile residual stress and suppress the occurrence and development of fatigue cracks.
[0036]
In the configuration of the second invention, cracks that can be removed by ultrasonic impact treatment are cracks that cannot be detected by nondestructive crack testing, and cracks larger than that cannot be removed by ultrasonic impact treatment. It is to be removed with a grinder before the sonic impact treatment.
[0037]
In the configuration of the third invention, as described above, the shape improvement of the toe portion of the welded portion and the range of eliminating stress concentration are at least the plate thickness or more. Since it is not enough, it is increased to 5 mm or more and subjected to ultrasonic impact treatment. Further, the ultrasonic shock treatment at 100 ° C. or less is because introduction of the compressive residual stress is more efficient when the temperature is lowered than when the temperature is hot immediately after welding.
[0038]
In the fourth aspect of the invention, the ultrasonic fatigue treatment is performed periodically even after the ultrasonic impact treatment, so that the generated fatigue cracks are removed at a small stage that can be removed by the ultrasonic impact treatment. It means improving durability.
[0039]
【The invention's effect】
The ultrasonic impact treatment in the fatigue reinforcement method of the present invention gives 10,000 or more hits per second, and the hitting force is small once, so the usability and workability are superior compared to other peening. Impact processing becomes possible, and the shape of the toe portion can be improved in a range that is more than the thickness of the welded portion of the flange gusset, which suppresses stress concentration and provides a fatigue reinforcement method for a girder structure with excellent flange gusset.
[0040]
Since the ultrasonic impact treatment of the present invention hits the metal surface many times, the uniformity of the treatment is obtained, the smoothness of the surface after the treatment is obtained, and the shape improving property of the toe portion of the welded portion is excellent. In addition, this is a fatigue reinforcement method for a girder structure having a flange gusset that can efficiently introduce compressive residual stress.
[0041]
The ultrasonic impact treatment of the present invention can remarkably refine the metal surface structure after repeated plastic working by numerous impacts, can suppress the occurrence of fatigue cracks, and has an effective flange gusset. It becomes a structural fatigue reinforcement method.
[0042]
Since the ultrasonic impact treatment of the present invention can be removed at a stage where fatigue cracks do not become large by performing treatment periodically after performing treatment once, the fatigue reinforcement method of the girder structure having an effective flange gusset and Become.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a traveling girder as a girder structure to which a fatigue reinforcing method is applied.
FIG. 2 is a perspective view of a welded portion between a flange gusset and a flange.
FIGS. 3A and 3B are perspective views showing an ultrasonic impact treatment range of a welded portion. FIGS.
[Explanation of symbols]
1: overhead crane traveling girder 2: H-shaped metal material 3: lower flange 4: flange gusset 5: weld 6: fatigue crack

Claims (4)

フランジガセットを持つ桁構造の、フランジガセット端部の溶接部のフランジ側止端について、フランジガセットの板厚をtとしたとき、フランジガセット端部から上面と下面のそれぞれ少なくとも1t以上の範囲について、超音波衝撃処理を施して溝を形成し、止端形状を改善したことを特徴とするフランジガッセットを持つ桁構造の疲労補強工法。For the flange side toe of the welded part of the flange gusset end of the girder structure with flange gusset, when the thickness of the flange gusset is t, the range from the flange gusset end to at least 1t each of the upper and lower surfaces, Fatigue reinforcement method for girder structures with flange gussets, characterized by the formation of grooves by applying ultrasonic impact treatment and improved toe shape. 前記超音波衝撃処理を行う前に、非破壊の亀裂探傷試験を行なって、予め亀裂がないことを確認し、亀裂を発見したらグラインダーで亀裂の明示が消えるまで研削を行ってから超音波衝撃処理を実施することを特徴とする請求項1に記載のフランジガッセットを持つ桁構造の疲労補強工法。Before performing the ultrasonic shock treatment, a nondestructive crack detection test is performed to confirm that there are no cracks in advance. If a crack is found, grinding is performed with a grinder until the indication of the crack disappears, and then the ultrasonic shock treatment is performed. The fatigue reinforcement method for a girder structure having a flange gusset according to claim 1. 前記超音波衝撃処理を行う前に、フランジガセットのまわし溶接の脚長が5mm以上であることを確認し、それ以下の場合、溶接を増し盛りして脚長を5mm以上とした上で、その増し盛りしたビードの止端部および元ビードと増し盛ビード間を温度100℃以下で超音波衝撃処理したことを特徴とする請求項1に記載のフランジガッセットを持つ桁構造の疲労補強工法。Before performing the ultrasonic impact treatment, confirm that the length of the flange gusset turning weld is 5 mm or more, and if it is less than that, increase the welding to increase the leg length to 5 mm or more. The fatigue reinforcement method for a girder structure with flange gussets according to claim 1, wherein an ultrasonic shock treatment is performed at a temperature of 100 ° C. or less between the toe portion of the bead and the former bead and the additional bead. いったん超音波衝撃処理を行った後、定期的に超音波衝撃処理を行うことを特徴とする請求項1〜3のいずれか1項に記載のフランジガッセットを持つ桁構造の疲労補強工法。The fatigue reinforcement method for a girder structure having a flange gusset according to any one of claims 1 to 3, wherein the ultrasonic impact treatment is periodically performed after the ultrasonic impact treatment is performed once.
JP2002334470A 2002-11-19 2002-11-19 Fatigue reinforcement method for girders with flange gussets Expired - Lifetime JP3900490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334470A JP3900490B2 (en) 2002-11-19 2002-11-19 Fatigue reinforcement method for girders with flange gussets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334470A JP3900490B2 (en) 2002-11-19 2002-11-19 Fatigue reinforcement method for girders with flange gussets

Publications (2)

Publication Number Publication Date
JP2004167516A JP2004167516A (en) 2004-06-17
JP3900490B2 true JP3900490B2 (en) 2007-04-04

Family

ID=32698841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334470A Expired - Lifetime JP3900490B2 (en) 2002-11-19 2002-11-19 Fatigue reinforcement method for girders with flange gussets

Country Status (1)

Country Link
JP (1) JP3900490B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4441641B1 (en) * 2008-11-25 2010-03-31 国立大学法人名古屋大学 Fatigue crack repair method for steel structures

Also Published As

Publication number Publication date
JP2004167516A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
Kirkhope et al. Weld detail fatigue life improvement techniques. Part 1
JP2003113418A (en) Method for improving fatigue life and long-life metal material
Pedersen et al. Comparison of post-weld treatment of high-strength steel welded joints in medium cycle fatigue
Roy et al. Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT)
US6843957B2 (en) Ultrasonic impact methods for treatment of welded structures
Marquis Failure modes and fatigue strength of improved HSS welds
Galtier et al. The influence of ultrasonic impact treatment on fatigue behaviour of welded joints in high-strength steel
US7399371B2 (en) Treatment method for improving fatigue life and long-life metal material treated by using same treatment
JP3965106B2 (en) Girder structure reinforcement method
KR100770423B1 (en) Weld structure having excellent brittle crack propagation resistance and method of welding the weld structure
JP3793501B2 (en) Rail reinforcement and repair method
JP5052918B2 (en) Welded joint, welded structure excellent in crack initiation propagation characteristics, and method for improving crack initiation propagation characteristics
JP5251486B2 (en) Machining method using ultrasonic impact treatment
Gerster et al. Pneumatic impact treatment (pit)–application and quality assurance
JP4837428B2 (en) Ultrasonic impact treatment method for weld toe
JP2006175512A (en) Method for increasing fatigue strength of weld zone and welded structure using the same
JP3900490B2 (en) Fatigue reinforcement method for girders with flange gussets
JP4709697B2 (en) Method for improving fatigue strength of metal lap weld joints
JP4000051B2 (en) Repair method of girder structure with flange gusset
Tominaga et al. Fatigue improvement of weld repaired crane runway girder by ultrasonic impact treatment
JP4580220B2 (en) Fatigue performance improving structure of joint weld and fatigue performance improving method
JP2003275890A (en) Treating method for prolonging fatigue life and welded joint having long service life with this method
Manurung et al. Structural life enhancement on friction stir welded AA6061 with optimized process and HFMI/PIT parameters
Salleh et al. Improvement of mechanical properties in treated spot welded joint
JP2008213021A (en) Weld joint and welded structure having excellent brittle crack propagation stop characteristic and method of improving this characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R151 Written notification of patent or utility model registration

Ref document number: 3900490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term