JPH0761519B2 - Method for manufacturing spring with excellent fatigue resistance - Google Patents

Method for manufacturing spring with excellent fatigue resistance

Info

Publication number
JPH0761519B2
JPH0761519B2 JP19788786A JP19788786A JPH0761519B2 JP H0761519 B2 JPH0761519 B2 JP H0761519B2 JP 19788786 A JP19788786 A JP 19788786A JP 19788786 A JP19788786 A JP 19788786A JP H0761519 B2 JPH0761519 B2 JP H0761519B2
Authority
JP
Japan
Prior art keywords
spring
fatigue resistance
polishing
wire
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19788786A
Other languages
Japanese (ja)
Other versions
JPS6352729A (en
Inventor
闘志 柴田
義弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19788786A priority Critical patent/JPH0761519B2/en
Publication of JPS6352729A publication Critical patent/JPS6352729A/en
Publication of JPH0761519B2 publication Critical patent/JPH0761519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は自動車エンジンその他耐疲れ性を高度に要求
される分野に用いられる高強度ばねの製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for manufacturing a high-strength spring used in an automobile engine and other fields in which fatigue resistance is highly required.

〈従来の技術〉 金属材料の耐疲れ性は、その硬さとともに増加するが、
ある硬さ以上になると、表面疵や材料内部に含まれる非
金属介在物などの影響を受けて低下すると云われてい
る。
<Prior Art> Fatigue resistance of a metal material increases with its hardness,
It is said that if the hardness exceeds a certain level, it will decrease due to the influence of surface defects and non-metallic inclusions contained in the material.

従って、高強度でしかも欠陥の少ない材料が耐疲れ性に
は有利であると考えられる。
Therefore, it is considered that a material having high strength and few defects is advantageous for fatigue resistance.

例えば自動車エンジンに使用される弁ばねは、その過酷
な使用環境から、耐疲れ性、耐熱性が高度に要求されて
いる。この弁ばね用の素材としては、高強度のほかに耐
熱性、コイリング成形性、経済性などを考慮して高炭素
鋼線や低合金鋼線が実用化されている。
For example, a valve spring used in an automobile engine is highly required to have fatigue resistance and heat resistance due to its harsh usage environment. In addition to high strength, high-carbon steel wire and low-alloy steel wire have been put into practical use as materials for this valve spring in consideration of heat resistance, coiling formability, economy, and the like.

最近では上記の中でも耐疲れ性、耐熱性にすぐれたSiCr
鋼線の使用が広まっている。また、マルエージング鋼線
などの高合金鋼線を使用した開発も進められ、ばね用鋼
線はさらに高強度化の傾向にある。
Recently, among the above, SiCr has excellent fatigue resistance and heat resistance.
The use of steel wire is widespread. Further, development using high alloy steel wire such as maraging steel wire has been promoted, and spring steel wire tends to have higher strength.

近年、この高強度化と相俟って皮剥ぎなどの表面手入れ
技術や、疵発生源対策による表面疵の低減と清浄鋼溶製
技術の確立による非金属介在物の低減により材料欠陥は
改善され、弁ばねの耐疲れ性は一段と向上している。
In recent years, in combination with this increase in strength, surface care techniques such as peeling, reduction of surface flaws by countermeasures against flaw generation sources and reduction of non-metallic inclusions by establishing clean steel melting technology have improved material defects. The fatigue resistance of the valve spring is further improved.

〈発明が解決しようとする問題点〉 ところが、最近の自動車エンジンの開発動向をみると、
従来よりもさらに高出力であって、しかも軽量であるこ
とが要求されている。
<Problems to be solved by the invention> However, looking at the recent development trend of automobile engines,
It is required to have a higher output and lighter weight than ever before.

そのため、弁ばねにおいてもさらに高応力設計、高寿命
が要求され、一層の改善が望まれている。
Therefore, the valve spring is required to have a higher stress design and a longer life, and further improvement is desired.

従来より、ばねの耐疲労性を向上させるための表面処理
方法として鋼製の粒子からなる多数のショットを素線の
表面に高速度で打ちつけるショットピーニング処理が行
なわれている。この効果はショットが素線に衝突する際
に生ずる局部的な塑性変形が素線表面全面におよび、表
面層のみが延展されることにより生ずる外周部の圧縮残
留応力の作用によるものである。
BACKGROUND ART Conventionally, as a surface treatment method for improving the fatigue resistance of springs, shot peening treatment has been performed in which a large number of shots made of steel particles are hit at the surface of a wire at a high speed. This effect is due to the action of the compressive residual stress in the outer peripheral portion caused by the local plastic deformation that occurs when the shot collides with the strand, which extends over the entire surface of the strand and only the surface layer extends.

ところが、ショットピーニングにより生じた圧痕は、応
力集中の原因となり、これは耐疲れ性に対しマイナスに
作用するので好ましくない。
However, the indentation generated by shot peening causes stress concentration, which has a negative effect on fatigue resistance, and is not preferable.

〈問題点を解決するための手段〉 本発明者らは上記したような従来法の問題点に鑑みて、
検討の結果耐疲れ性にすぐれた新規なコイルばねの製造
方法を見出したのである。
<Means for Solving Problems> In view of the problems of the conventional method as described above, the present inventors have
As a result of investigation, they have found a new method for manufacturing a coil spring having excellent fatigue resistance.

即ち、この発明は炭素鋼線または合金鋼線を用いて母材
硬さがHv≧550に調整されたコイルばねを得る製造工程
において、コイルばねに成形後行なわれるショットピー
ニング処理後に電解研摩または化学研摩によって素線表
面を線径にして10〜100μm除去することにより、表面
粗さをJIS B0601の十点平均粗さにて1μm以上、4μ
m未満に仕上げることを特徴とし、さらに上記研摩処理
を電解研摩による場合、当該コイルばねの内側に陰極を
配置することを特徴とする耐疲れ性にすぐれたばねの製
造方法であり、要するにショットピーニングを施すこと
によってばねの耐疲れ性に及ぼされるマイナスの影響
を、電解研摩または化学研摩により除去することで、従
来にない耐疲れ性にすぐれたばねを得るに至ったもので
ある。
That is, the present invention uses a carbon steel wire or an alloy steel wire to obtain a coil spring whose base material hardness is adjusted to Hv ≧ 550, in a manufacturing process, electrolytic polishing or chemical polishing after shot peening treatment performed after forming the coil spring. By removing the wire diameter to 10 to 100 μm by polishing, the surface roughness is 1 μm or more, 4 μ or more, according to JIS B0601 ten-point average roughness.
A method of manufacturing a spring having excellent fatigue resistance, which is characterized in that a cathode is arranged inside the coil spring when the polishing treatment is electrolytic polishing. By removing the negative influence on the fatigue resistance of the spring by applying it by electrolytic polishing or chemical polishing, a spring excellent in fatigue resistance that has never been obtained can be obtained.

〈作用〉 ばねの製造工程においては、通常コイリング成形後ショ
ットピーニング処理が施される。これは周知のように耐
疲れ性向上のために線表面部に圧縮残留応力を付与する
目的で行なわれるものであるが、この処理は同時にショ
ットの圧痕による疵を線表面全面に発生させる。
<Operation> In the spring manufacturing process, shot peening is usually performed after coiling. As is well known, this is performed for the purpose of applying a compressive residual stress to the surface of the wire in order to improve fatigue resistance, but this treatment also causes flaws due to shot impressions on the entire surface of the wire.

一方、耐疲れ性を確保するためには母材硬さを少なくと
もHv≧550に調整し、高強度化を図る必要がある。
On the other hand, in order to ensure fatigue resistance, it is necessary to adjust the hardness of the base material to at least Hv ≧ 550 to achieve high strength.

従って、切欠感受性は高くなり、負荷応力の大部分が集
中する外周部に材料欠陥が存在する場合は、逆に耐疲れ
性は低下してしまう。
Therefore, the notch sensitivity becomes high, and when there are material defects in the outer peripheral portion where most of the load stress concentrates, conversely the fatigue resistance decreases.

従来、当該欠陥としては、素鋼線の非金属介在物や表面
疵が挙げられたが、前述の如く、現在これらは著しく改
善されており、ショットピーニングにより生じた疵が材
料欠陥として残存している。従って、このショットピー
ニングによる疵を研摩除去することにより、耐疲れ性の
向上が図れる。
Conventionally, such defects include non-metallic inclusions and surface flaws in the raw steel wire, but as mentioned above, these are now significantly improved, and flaws caused by shot peening remain as material defects. There is. Therefore, the fatigue resistance can be improved by polishing and removing the flaws caused by the shot peening.

コイルばねは、複雑な形状をしているので、この表面を
研摩するには化学研摩あるいは電解研摩が考えられる。
Since the coil spring has a complicated shape, chemical polishing or electrolytic polishing can be considered for polishing this surface.

また、電解研摩による場合は、第1図に示すように陰極
をばねの内側に設けることで効率のよい研摩が可能であ
る。
Further, in the case of electrolytic polishing, as shown in FIG. 1, the cathode can be provided inside the spring for efficient polishing.

その理由について以下説明する。The reason will be described below.

高強度ばねは通常単線の状態で伸線加工または熱処理に
より強度調整を施したのち、コイリングされる。従って
コイリング時に内側に発生した引張残留応力の影響が製
品にも残るため、ばねが圧縮されると、コイル外側に比
べ内側に高い応力がかかる。
The high-strength spring is usually coiled after the strength is adjusted by wire drawing or heat treatment in the state of a single wire. Therefore, the influence of the tensile residual stress generated inside during coiling remains in the product as well, so that when the spring is compressed, higher stress is applied to the inside than to the outside of the coil.

従って研摩処理はコイル内側のみを対象に実施すること
で十分その目的が達せられる。第1図のようにコイル内
側に陰極を設けて電解研摩を行なうと、優先的にコイル
内側のみ研摩されるため、ほぼ上記のような研摩が可能
である。
Therefore, the purpose can be sufficiently achieved by performing the polishing process only on the inside of the coil. When electrolytic polishing is performed by providing a cathode inside the coil as shown in FIG. 1, only the inside of the coil is preferentially polished, so that the above-described polishing is possible.

また、線表面の研摩量を線径にして10〜100μmに限定
したのは以下の理由のためである。
The reason for limiting the amount of polishing of the wire surface to the wire diameter of 10 to 100 μm is as follows.

ショットピーニングを施したばねに電解研摩を施した場
合のばね素線の除去された層の厚みと、JIS B−0601
により測定された最大高さ(Rmax)および十点平均粗さ
(Rz)の関係は第2図に示す通りである。
The thickness of the layer from which the spring wire has been removed when electrolytic polishing is applied to a spring subjected to shot peening, and JIS B-0601
The relationship between the maximum height (R max ) and the ten-point average roughness (Rz) measured by is shown in FIG.

これは、化学研摩による場合もほぼ同等の傾向を示す。
この図より少なくとも線表面層を厚さ10μm以上研摩
し、JIS B−0601による十点平均粗さにして4μm未
満にする必要があることが認められる。
This shows almost the same tendency even by chemical polishing.
From this figure, it is recognized that it is necessary to polish at least the line surface layer to a thickness of 10 μm or more so that the ten-point average roughness according to JIS B-0601 is less than 4 μm.

一方、圧縮残留応力の分布は、鋼線の硬さやショットの
硬さ、大きさ、速度、ピーニング回数により異なるが、
通常表面よりの深さ50〜150μmで最大となるので、除
去された層の厚みが50μmを超え、JIS B−0601によ
る十点平均粗さにして1μm未満になることは好ましく
ない。
On the other hand, the distribution of the compressive residual stress varies depending on the hardness of the steel wire, the hardness of the shot, the size, the speed, and the number of times of peening,
Since the maximum depth is usually 50 to 150 μm from the surface, it is not preferable that the thickness of the removed layer exceeds 50 μm and the ten-point average roughness according to JIS B-0601 is less than 1 μm.

以上のことから、線表面を均等に研摩する場合、研摩量
の範囲は線径にして20〜100μmに相当する。
From the above, in the case of uniformly polishing the wire surface, the range of the amount of polishing corresponds to a wire diameter of 20 to 100 μm.

しかし、電解研摩によりコイル内側が優先的に研摩され
る場合を考慮して下限を10μmとした。
However, the lower limit is set to 10 μm in consideration of the case where the inside of the coil is preferentially polished by electrolytic polishing.

なお、高強度ばねは、通常ショットピーニング後歪取り
焼きなまし、さらにセッティングが施されるが、当該研
摩処理はショットピーニング以後であれば任意の段階で
処理可能である。
The high-strength spring is usually subjected to strain relief annealing after shot peening and further set, but the polishing treatment can be performed at any stage after shot peening.

〈実施例〉 以下、実施例にてこの発明を詳細に説明する。<Examples> Hereinafter, the present invention will be described in detail with reference to Examples.

素鋼線としてSWOSC−V(C 0.6%、Si 1.4%、Cr 0.7
%、Mn 0.7%、残部Feおよび不可避的不純物)の鋼線
で、圧延のままの線材を皮剥、伸線、酸洗いした径4.0m
mのものを用い、850℃にて5分間加熱したのち、油中50
℃で焼き入れし、400℃にて15分間の焼き戻しを連続的
に行なった。
As a bare steel wire, SWOSC-V (C 0.6%, Si 1.4%, Cr 0.7
%, Mn 0.7%, balance Fe and unavoidable impurities) steel wire stripped, wire-drawn, pickled, diameter 4.0m
After heating for 5 minutes at 850 ° C using a m-thick one, 50 in oil
Quenching was carried out at 400C, and tempering was continuously carried out at 400C for 15 minutes.

次いで下記第1表に示す諸元でばねに成形加工後、ショ
ットピーニング処理を行ない30個のばねを試作した。
Then, after forming into springs with the specifications shown in Table 1 below, shot peening treatment was carried out to manufacture 30 springs as prototypes.

このうち、15個のばねについて、第1図に示す電解研摩
装置にて第2表に示す条件で電解研摩を行なった。
Of these, 15 springs were electrolytically polished by the electrolytic polishing apparatus shown in FIG. 1 under the conditions shown in Table 2.

なお第1図において1が被処理材、即ちばねであり、2
は陽極、3は陰極、4は陽極支持ガイド(絶縁体)、5
は電解層、6は電解液である。
In FIG. 1, 1 is a material to be treated, that is, a spring, and 2
Is an anode, 3 is a cathode, 4 is an anode support guide (insulator), 5
Is an electrolytic layer, and 6 is an electrolytic solution.

上記電解研摩を行なったばねと、研摩を行なっていない
ばね、それぞれ15個を平均締付応力60kgf/mm2、応力振
幅60kgf/mm2でばね疲労試験を行なった。
A spring fatigue test was carried out on 15 springs each subjected to the above-mentioned electrolytic polishing and 15 springs not subjected to polishing with an average tightening stress of 60 kgf / mm 2 and a stress amplitude of 60 kgf / mm 2 .

電解研摩を行なったばねの線径は、研摩前後の質量を測
定し、この重量差分だけ素線径が減少したものとして算
出した。
The wire diameter of the spring subjected to electrolytic polishing was calculated by measuring the mass before and after polishing and reducing the wire diameter by this weight difference.

疲労試験の結果は、第3図に示した。The results of the fatigue test are shown in FIG.

この図より、この発明によるばねの耐疲れ性は従来法に
よるものに比べて極めてすぐれていることが認められ
た。
From this figure, it was recognized that the fatigue resistance of the spring according to the present invention was extremely superior to that of the conventional method.

〈発明の効果〉 以上詳述したように、この発明により得られるばねは、
従来になく高い耐疲れ性を有し、特に自動車エンジンの
弁ばねとして用いた場合、その軽量化が可能となり、エ
ンジンの性能向上が期待されるのである。
<Effects of the Invention> As described in detail above, the spring obtained by the present invention is
It has unprecedentedly high fatigue resistance, and when it is used as a valve spring for an automobile engine, in particular, its weight can be reduced, and improvement in engine performance is expected.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の製造方法を行うに当って実施する電
解研摩の際の電解研摩装置の一例を示す概略図、第2図
はショットピーニングを行なったばねに電解研摩を施し
た場合のばね素線の除去された層の厚みと最大高さ(R
max)および十点平均粗さ(Rz)の関係を示す分布図、
第3図はこの発明により得られたばねと比較に用いたば
ねの疲労試験結果を示す分布図である。
FIG. 1 is a schematic diagram showing an example of an electrolytic polishing apparatus for electrolytic polishing carried out in carrying out the manufacturing method of the present invention, and FIG. 2 is a spring element in the case where electrolytic polishing is applied to a shot-peened spring. The thickness and maximum height of the stripped layer (R
max ) and ten-point average roughness (Rz)
FIG. 3 is a distribution chart showing the fatigue test results of springs used for comparison with the springs obtained according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素鋼線または合金鋼線を用いて母材硬さ
がHv≧550に調整されたコイルばねを得る製造工程にお
いて、コイルばねに成形後行なわれるショットピーニン
グ処理後に電解研摩または化学研摩によって素線表面を
線径にして10〜100μm除去することにより、表面粗さ
をJIS B0601の十点平均粗さにて1μm以上、4μm未
満に仕上げることを特徴とする耐疲れ性にすぐれたばね
の製造方法。
1. In a manufacturing process for obtaining a coil spring having a base metal hardness adjusted to Hv ≧ 550 using a carbon steel wire or an alloy steel wire, electrolytic polishing or chemical polishing is performed after shot peening treatment performed after forming the coil spring. A spring with excellent fatigue resistance, characterized by finishing the surface roughness to 1 μm or more and less than 4 μm in terms of JIS B0601 ten-point average roughness by removing 10 to 100 μm of the wire diameter to the wire diameter by polishing. Manufacturing method.
【請求項2】電解研摩処理において、コイルばねの内側
に陰極を配置することを特徴とする特許請求の範囲第1
項記載の耐疲れ性にすぐれたばねの製造方法。
2. The electrolytic polishing process, wherein a cathode is arranged inside a coil spring.
A method for manufacturing a spring having excellent fatigue resistance according to the item.
JP19788786A 1986-08-22 1986-08-22 Method for manufacturing spring with excellent fatigue resistance Expired - Fee Related JPH0761519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19788786A JPH0761519B2 (en) 1986-08-22 1986-08-22 Method for manufacturing spring with excellent fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19788786A JPH0761519B2 (en) 1986-08-22 1986-08-22 Method for manufacturing spring with excellent fatigue resistance

Publications (2)

Publication Number Publication Date
JPS6352729A JPS6352729A (en) 1988-03-05
JPH0761519B2 true JPH0761519B2 (en) 1995-07-05

Family

ID=16381946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19788786A Expired - Fee Related JPH0761519B2 (en) 1986-08-22 1986-08-22 Method for manufacturing spring with excellent fatigue resistance

Country Status (1)

Country Link
JP (1) JPH0761519B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240408A (en) * 1993-02-17 1994-08-30 Sumitomo Electric Ind Ltd Steel wire for spring and its production
JP5020843B2 (en) * 2008-02-04 2012-09-05 新日本製鐵株式会社 Processing method of processing end of electrical steel sheet
DE102008015061A1 (en) * 2008-03-19 2009-09-24 Christian Bauer Gmbh & Co. Kg Process for the surface treatment of a spring

Also Published As

Publication number Publication date
JPS6352729A (en) 1988-03-05

Similar Documents

Publication Publication Date Title
JP5184935B2 (en) Oil tempered wire manufacturing method and spring
US3516874A (en) Method of increasing the fatigue life of metal parts
US5904830A (en) Process for finishing steelwire
JP2001220650A (en) Steel wire, spring and producing method therefor
JP2682645B2 (en) Oil tempered hard drawn steel wire spring and method for manufacturing the same
JP3859331B2 (en) High fatigue strength steel wires and springs and methods for producing them
JPH0761519B2 (en) Method for manufacturing spring with excellent fatigue resistance
JP2004010965A (en) High strength spring steel having excellent corrosion fatigue strength
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP3301088B2 (en) Spring with excellent fatigue resistance
JP2001082518A (en) Coil spring and its manufacturing method
JPH11241280A (en) Steel wire and its production
JP4116383B2 (en) Oil temper wire for valve spring or spring and manufacturing method thereof
JP3045795B2 (en) High-strength spring and oil-tempered wire for spring used in its manufacture
JP2006291252A (en) Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube
JPH05331597A (en) Coil spring with high fatigue strength
JP2009270150A (en) Method for manufacturing coil spring
JPH05156351A (en) Manufacture of coil spring with oil tempered wire
JP3009452B2 (en) Method of manufacturing high strength carbonitrided coil spring
JP2775777B2 (en) High strength coil spring and manufacturing method thereof
CN114134291B (en) Method for prolonging fatigue life of high-strength variable-cross-section transverse plate spring
JP3142689B2 (en) Spring with excellent fatigue strength
JPH02129422A (en) High-strength coil spring and manufacture thereof
JP2003096544A (en) Wire for high strength high carbon steel wire, and production method therefor
JPH0580544B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees