JP3974840B2 - Steel plate dehydrogenation method and steel plate manufacturing method using the same - Google Patents

Steel plate dehydrogenation method and steel plate manufacturing method using the same Download PDF

Info

Publication number
JP3974840B2
JP3974840B2 JP2002297528A JP2002297528A JP3974840B2 JP 3974840 B2 JP3974840 B2 JP 3974840B2 JP 2002297528 A JP2002297528 A JP 2002297528A JP 2002297528 A JP2002297528 A JP 2002297528A JP 3974840 B2 JP3974840 B2 JP 3974840B2
Authority
JP
Japan
Prior art keywords
steel sheet
dehydrogenation
steel plate
hydrogen
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297528A
Other languages
Japanese (ja)
Other versions
JP2004131794A (en
Inventor
忠 石川
清孝 中島
哲郎 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002297528A priority Critical patent/JP3974840B2/en
Publication of JP2004131794A publication Critical patent/JP2004131794A/en
Application granted granted Critical
Publication of JP3974840B2 publication Critical patent/JP3974840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄所における厚板等の鋼板製造工程における鋼板や、建築、造船、橋梁、建設機械、海洋構造物などの溶接構造物における溶接部周辺の鋼板に内在する水素を低減する鋼板の脱水素方法およびそれを用いた鋼板の製造方法に関する。
【0002】
【従来の技術】
鋼板に内在する水素は、鋼板の靭性を低下させる。
特に、溶接部など、応力集中が発生し易い箇所は、この鋼板中に内在する水素が遅れ破壊の原因となるため、従来から、鋼板の脱水素方法が提案されている。鋼中水素濃度の低減方法としては、溶鋼の脱ガス処理や、鋳込み後スラブの保温が実施され、さらに圧延後鋼板の加熱保温も行われる。連続鋳造の場合、不純物除去や成分調整の目的もあって、溶鋼の多くが脱ガス処理されるが、これには主としてRH脱ガス法が採用されている。溶鋼中の水素は、この脱ガス処理の時間を長くすることにより十分な低減が可能であるが、処理時間が長くなると処理コストが増し、連続鋳造のサイクルによる時間の制約もあるため、限界がある。より十分な水素濃度低下は、鋳込み終了直後のスラブを間隔をあけて積み重ね、カバーで覆うなどして保温し、高温にある時間を長くしてスラブ中の水素を表面まで拡散させて排除することによって行うことができる。この場合、厚いスラブでは水素の拡散に時間がかかるので数日以上の放置を要し、しかも、スラブの温度が低下してしまう。
近年、エネルギーの効率的利用および製造工程短縮の観点から、鋳込み直後の高温のスラブを、冷却することなく直ちに所要温度に調整して、製品寸法にまで圧延してしまうホットチャージないしは直接圧延の製造方法が多く採用されるようになってきた。この場合、鋳造過程で鋼中に残存した水素は、十分除去されないまま圧延され厚鋼板形状となるので、圧延後の冷却過程において温度の高い間に水素を放出させ低下させなければ、水素起因の靭性低下や遅れ破壊が発生する危険性が増してくる。このため、圧延後の鋼板を積み重ねて徐冷のための場所、加熱保温設備、さらにはそれらによる所要時間の増大など、工程上の問題は避けられない(例えば、特許文献1参照。)。
なお、例えば、特許文献2に、溶接継手部に超音波振動を与えることによって、疲労強度を向上させる方法が開示されているが、超音波振動を鋼板の脱水素処理に利用することは開示されていない。
【0003】
【特許文献1】
特許第3298519号掲載公報
【特許文献2】
米国特許第6,171,415号公報
【0004】
【発明が解決しようとする課題】
本発明は、前述のような従来技術の問題点を解決し、鋼板の板厚方向に分散した水素を表層部に集めることによって、鋼板に内在する水素を十分に効率よく低減する鋼板の脱水素方法およびそれを用いた鋼板の製造方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は前述の課題を解決するために鋭意検討の結果なされたもので、鋼板の内部応力を増大させることによって、鋼板の板厚方向に分散した水素を表層部に誘導した後に加熱して、鋼板に内在する水素を十分に効率よく低減する鋼板の脱水素方法およびそれを用いた鋼板の製造方法を提供するものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
【0006】
(1)鋼板中に内在する水素を低減する鋼板の脱水素方法であって、200℃以下の前記鋼板の表面を、先端の径が5mm以上の超音波振動端子で打撃することにより、該鋼板の表層部の内部応力を増大させた後に、該表層部を150〜220℃に加熱することを特徴とする、鋼板の脱水素方法。
(2)鋼板中に内在する水素を低減する鋼板の脱水素方法であって、200℃以下の前記鋼板の表面に、超音波振動を付与した鋼球を衝突させる超音波ショットピーニング処理を行うことにより、該鋼板の表層部の内部応力を増大させた後に、該表層部を150〜220℃に加熱することを特徴とする、鋼板の脱水素方法。
(3)200℃以下の前記鋼板の表層部を、誘導電流により加熱する誘導加熱装置を用いて加熱することを特徴とする、上記(1)または(2)に記載の鋼板の脱水素方法。
(4)上記(1)乃至(3)のいずれか1項に記載の鋼板の脱水素方法を用いることを特徴とする、鋼板の製造方法。
【0007】
【発明の実施の形態】
本発明の実施の形態について、以下に詳細に説明する。
まず、脱水素を行う前に、予め鋼板の表層部の内部応力を増大させる。
鋼板の板厚方向に分散している水素は、内部応力の高い部分に集まる性質があるので、鋼板の表層部の内部応力を増大させることによって、この部分に水素を誘導して偏在させることにより、水素を除去し易くすることができる。
【0008】
本発明においては、鋼板表層部の内部応力を高める手段は問わないが、脱水素を行う箇所の鋼板表面を先端の直径が5mm以上の超音波振動端子(ハンマー)で打撃する方法(Ultrasonic Impact Treatment、UIT)が好ましい。
鋼板表面を超音波振動端子で打撃することによって、鋼板表面に深さ数百μmの圧痕を形成することができ、これによって、前述の鋼板表層部の内部応力を鋼板の降伏応力の約30%以上に増加させることができる。
前記鋼板の表層部は200℃以下であることが好ましい。表層部の温度が200℃を超えると、UITで内部応力を高めようとしても鋼板が軟化しており容易に塑性変形してしまい、加工が板厚内部まで伝達しなくなるからである。
超音波振動端子の先端の径を5mm以上とするのは、先端の径が大きい方が鋼板表面の広い範囲を打撃することができ、より広範囲で深い範囲の内部応力を高めることができるからである。ただし、30mmを超えると、超音波源の出力が大きくなり過ぎて工業的に成り立たないので、超音波振動端子(ハンマー)の先端の直径は10〜30mmが好ましい。
本発明においては、前述のハンマーで打撃する際の鋼板温度は、脱水素に影響が少ないので、省エネルギーの観点から150℃以下が好ましい。
【0009】
また、本発明に使用する超音波発生装置は問わないが、200w〜3kwの電源を用いて、トランスデューサによって19Hz〜60Hzの超音波振動を発生させ、ウェーブガイドにて増幅させることにより、5mm〜30mmφのピンからなる超音波振動端子を20〜60μmの振幅で振動させる装置が好ましい。
また、超音波振動端子の代わりに、超音波により振動を与えた直径1〜3mmの鋼球を鋼板表面に衝突させる超音波ショットピーニング処理を行うことにより、より広い範囲の内部応力を増大させることができるので、製鉄所において、鋼板を製造する際に、圧延後脱水素処理を実施する際でも、鋼板表層部の内部応力を増大させ、水素を表層に集めてから、焼き戻し炉を短時間通過させれば、効率的に脱水素を行うことができる。
【0010】
鋼板表層部の加熱温度は、150〜220℃とする。
水素は150〜220℃の範囲まで加熱すれば拡散し易くなり、鋼板表層部に集まった水素が大気中に放散されるからであり、150℃未満では鋼板中の水素の除去が不十分であり、220℃超まで加熱しても除去できる水素の量は飽和してしまううえ、鋼板温度が250℃以上になると青熱脆化を起こして靭性が劣化する場合があるほか、300℃以上になると鋼板の強度が圧延ままの材料よりも低下してしまうからである。
ここに、加熱する鋼板の表層部は、脱水素を行う箇所の鋼板表面から板厚方向に4mm以上の深さまで、20分以上加熱することが好ましい。
脱水素を行うためには、板厚方向により深く、長い時間加熱することが好ましいが、本発明においては鋼板の表層部に水素が集められているので、板厚方向に4mm以上の深さまで、20分以上加熱することで十分に脱水素を行うことができる。
本発明においては、鋼板表層部の加熱方法は問わないので、前述のような焼き戻し炉を用いて加熱してもよいが、水素による遅れ破壊が懸念される応力集中部などに限定して加熱するためには、誘導電流により加熱する誘導加熱装置を用いて加熱することが好ましい。
なお、以上説明した鋼板の脱水素方法を用いて鋼板を製造することによって、鋼板に内在する水素が少なく、靭性の優れた鋼板を製造することができる。
【0011】
【実施例】
本発明における鋼板の脱水素方法の実施例を表1乃至表4に示す。
表1および表2は、厚板の製造工程において脱水素処理を行った実施例を示す。
表1に示す化学成分および製造プロセスを用いた厚板に、超音波打撃処理(UIT処理)と脱水素処理を行った結果を表2に示す。
脱水素の評価は、試験片に切欠き(ノッチ)を設けて、脆性の指標であるKc値を測定するディープノッチ試験(金沢武、越賀房夫著、「脆性破壊2−破壊靭性試験−、破壊力学と材料強度講座8」,培風館,1977年9月20日、pp8−14参照。)により行い、切欠きの底部に水素性の脆性破面が無い場合を脱水素が良好とし、切欠きの底部に水素性の脆性破面が有る場合を脱水素が不良とした。
この水素性の脆性破面は、水素が一定量以上含まれている鋼材に負荷している最中に形成される破面であって、それが自然にき裂になるため、き裂先端の応力集中が増大し、150(N/mm1.5)以下の低いKc値にて破断する。
【0012】
NO.1〜NO.5は、本発明例であり、表1に示す化学成分のスラブを1000〜1100℃に加熱して圧延し、鋼板表面を先端の直径が10〜30mmの超音波端子(ハンマー)で打撃した後、180〜220℃まで加熱して脱水素処理を行ったところ、本発明の条件を全て満足しているので、前述のディープノッチ試験の結果、切欠きの底部に水素性の破面は無く、脱水素は良好だった。
NO.6〜NO.10は、比較例であり、表1に示す化学成分のスラブを1000〜1100℃に加熱して圧延し、本発明と異なる条件で脱水素処理を行う場合と、
脱水素処理を行わない場合について、前述のディープノッチ試験を行った。
【0013】
NO.6は、ハンマーの直径が1mmと小さいうえ、脱水素のための加熱温度が100℃と低過ぎるので、Kc値が低く、切欠きの底部に水素性の破面が認められたので、脱水素は不良だった。
NO.7は、水素熱処理温度が250℃と高く青熱脆化が起こったために、Kc値が低く、切欠きの底部に水素性の破面が認められたので、脱水素も不良だった。
NO.8は、UITプロセスでの処理温度が300℃と高いため、UITで内部応力を高めようとしても鋼板が軟化しており容易に塑性変形してしまい、加工が板厚内部まで伝達しないので、Kc値が低く、切欠きの底部に水素性の破面が認められたので、脱水素も不良だった。
NO.9およびNO.10は、脱水素処理を行わなかったので、Kc値が低く、切欠きの底部に水素性の破面が認められたので、脱水素は不良だった。
本発明における鋼板の脱水素方法の実施例を表1乃至表4に示す。
表3および表4は、溶接部に脱水素処理を行った実施例を示す。
表3に示す化学成分および製造プロセスを用いた厚板に、種々の溶接方法にて溶接した溶接継手に、超音波打撃処理(UIT処理)と脱水素処理を行った結果を表4に示す。
脱水素の評価は、前述の厚板の実施例と同様である。
【0014】
NO.11〜NO.15は、本発明例であり、表1に示す化学成分の厚板同士を種々の溶接方法にて溶接した継手表面を先端の直径が10〜30mmの超音波端子(ハンマー)で打撃した後、180〜220℃まで加熱して脱水素処理を行ったところ、本発明の条件を全て満足しているので、前述のディープノッチ試験の結果、切欠きの底部に水素性の破面は無く、脱水素は良好だった。
NO.16〜NO.20は、比較例であり、表1に示す化学成分の厚板同士を種々の溶接方法にて溶接し、本発明と異なる条件で脱水素処理を行う場合と、脱水素処理を行わない場合について、前述のディープノッチ試験を行った。
【0015】
NO.16は、ハンマーの直径が1mmと小さいうえ、脱水素のための加熱温度が100℃と低過ぎるので、Kc値が低く、切欠きの底部に水素性の破面が認められたので、脱水素は不良だった。
NO.17は、水素熱処理温度が250℃と高く青熱脆化が起こったために、Kc値が低く、切欠きの底部に水素性の破面が認められたので、脱水素も不良だった。
NO.18は、UITプロセスでの処理温度が300℃と高いため、UITで内部応力を高めようとしても鋼板が軟化しており容易に塑性変形してしまい、加工が板厚内部まで伝達しないので、Kc値が低く、切欠きの底部に水素性の破面が認められたので、脱水素も不良だった。
NO.19およびNO.20は、脱水素処理を行わなかったので、Kc値が低く、切欠きの底部に水素性の破面が認められたので、脱水素は不良だった。
なお、本実施例におけるUIT処理は、超音波振動端子で鋼板表面を打撃する方法としたが、直径1〜3mmの鋼球を鋼板表面に衝突させる超音波ショットピーニング処理に代えても効果は変わらない。
【0016】
【発明の効果】
本発明によれば、鋼板の内部応力を増大させることによって、鋼板の板厚方向に分散した水素を表層部に誘導した後に加熱して、鋼板に内在する水素を十分に効率よく低減する鋼板の脱水素方法およびそれを用いた鋼板の製造方法を提供することができ、産業上有用な著しい効果を奏する。
【表1】

Figure 0003974840
【表2】
Figure 0003974840
【表3】
Figure 0003974840
【表4】
Figure 0003974840
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel sheet for reducing hydrogen inherent in a steel sheet in a steel plate manufacturing process such as a thick plate at a steelworks, and a steel sheet around a welded portion in a welded structure such as a building, shipbuilding, bridge, construction machine, or marine structure. The present invention relates to a dehydrogenation method and a method for producing a steel plate using the same.
[0002]
[Prior art]
Hydrogen inherent in the steel sheet reduces the toughness of the steel sheet.
In particular, in a portion where stress concentration is likely to occur, such as a welded portion, hydrogen present in the steel plate causes delayed fracture, and thus a method for dehydrogenating a steel plate has been proposed. As a method for reducing the hydrogen concentration in the steel, a degassing treatment of the molten steel, a heat retention of the slab after casting, and a heat insulation of the steel plate after rolling are also performed. In the case of continuous casting, for the purpose of removing impurities and adjusting components, most of the molten steel is degassed. For this purpose, the RH degassing method is mainly employed. Hydrogen in the molten steel can be sufficiently reduced by increasing the time of this degassing treatment, but the treatment cost increases as the treatment time increases, and there is a limit due to the time limitation due to the continuous casting cycle. is there. For more sufficient hydrogen concentration reduction, stack the slabs immediately after the casting is completed, cover them with a cover, etc., and keep them warm, extending the time at high temperatures and diffusing the hydrogen in the slabs to the surface. Can be done by. In this case, a thick slab takes a long time to diffuse hydrogen, so it needs to be left for several days or more, and the slab temperature decreases.
In recent years, from the viewpoints of efficient use of energy and shortening of manufacturing processes, hot slabs immediately after casting are immediately adjusted to the required temperature without cooling and rolled to product dimensions, or hot rolling or direct rolling manufacturing. Many methods have been adopted. In this case, the hydrogen remaining in the steel in the casting process is rolled without being sufficiently removed and becomes a thick steel plate shape. Therefore, in the cooling process after rolling, if hydrogen is not released and lowered while the temperature is high, it is caused by hydrogen. The risk of reduced toughness and delayed fracture increases. For this reason, the problem in a process, such as the increase in the time required by the place for slow cooling by stacking the steel plates after rolling, heating heat insulation equipment, and those, cannot be avoided (for example, refer patent document 1).
For example, Patent Document 2 discloses a method for improving fatigue strength by applying ultrasonic vibration to a welded joint, but it is disclosed that ultrasonic vibration is used for dehydrogenation treatment of a steel sheet. Not.
[0003]
[Patent Document 1]
Patent No. 3298519 [Patent Document 2]
US Pat. No. 6,171,415 [0004]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, and collects hydrogen dispersed in the thickness direction of the steel sheet in the surface layer portion, thereby sufficiently reducing the hydrogen present in the steel sheet sufficiently efficiently. It is an object of the present invention to provide a method and a method for producing a steel plate using the method.
[0005]
[Means for Solving the Problems]
The present invention was made as a result of intensive studies to solve the above-mentioned problems, and by increasing the internal stress of the steel sheet, the hydrogen dispersed in the thickness direction of the steel sheet was induced in the surface layer part and then heated, The present invention provides a method for dehydrogenating a steel sheet that sufficiently and efficiently reduces the hydrogen present in the steel sheet, and a method for producing a steel sheet using the same, the gist of which is as described in the claims below. It is.
[0006]
(1) A method for dehydrogenating a steel sheet that reduces hydrogen inherent in the steel sheet, the surface of the steel sheet having a temperature of 200 ° C. or less being struck with an ultrasonic vibration terminal having a tip diameter of 5 mm or more. of the after increasing the internal stress of the surface layer portion, you characterized that you heat the surface layer portion to 150 to 220 ° C., the dehydrogenation process of the steel plate.
(2) A method for dehydrogenating a steel sheet that reduces hydrogen present in the steel sheet, and performing an ultrasonic shot peening process in which a steel ball imparted with ultrasonic vibration is collided with the surface of the steel sheet at 200 ° C. or lower. Accordingly, after increasing the internal stress of the surface layer portion of the steel plate, it characterized that you heat the surface layer portion to 150 to 220 ° C., the dehydrogenation process of the steel plate.
(3) The method for dehydrogenating a steel sheet according to (1) or (2) above , wherein the surface layer part of the steel sheet at 200 ° C. or less is heated using an induction heating device that heats the steel sheet with an induced current.
(4) above (1) to (3) comprises using a dehydrogenation process of the steel sheet according to any one of method for manufacturing a steel plate.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below.
First, before performing dehydrogenation, the internal stress of the surface layer part of a steel plate is increased in advance.
Hydrogen dispersed in the thickness direction of the steel sheet has the property of gathering in a portion with a high internal stress, so by increasing the internal stress of the surface layer portion of the steel plate, the hydrogen is induced and unevenly distributed in this portion. , Hydrogen can be easily removed.
[0008]
In the present invention, there is no limitation on the means for increasing the internal stress of the surface layer portion of the steel sheet, but a method of hitting the surface of the steel sheet where dehydrogenation is performed with an ultrasonic vibration terminal (hammer) having a tip diameter of 5 mm or more (Ultrasonic Impact Treatment , UIT) is preferred.
By striking the surface of the steel sheet with an ultrasonic vibration terminal, an indentation with a depth of several hundreds μm can be formed on the surface of the steel sheet, whereby the internal stress of the steel sheet surface layer is about 30% of the yield stress of the steel sheet. It can be increased above.
It is preferable that the surface layer part of the said steel plate is 200 degrees C or less. If the surface layer temperature exceeds 200 ° C., the steel sheet is softened and easily plastically deformed even if the internal stress is increased by the UIT, and the processing cannot be transmitted to the inside of the plate thickness.
The reason why the diameter of the tip of the ultrasonic vibration terminal is set to 5 mm or more is that a larger tip diameter can hit a wider area on the surface of the steel sheet and can increase internal stress in a wider area and deeper. is there. However, if it exceeds 30 mm, the output of the ultrasonic source becomes too large to be industrially established, so the diameter of the tip of the ultrasonic vibration terminal (hammer) is preferably 10 to 30 mm.
In the present invention, the steel plate temperature at the time of hitting with the above-mentioned hammer is less affected by dehydrogenation, and is preferably 150 ° C. or less from the viewpoint of energy saving.
[0009]
The ultrasonic generator used in the present invention is not limited, but by using a power source of 200 w to 3 kw, an ultrasonic vibration of 19 Hz to 60 Hz is generated by a transducer, and amplified by a wave guide, 5 mm to 30 mmφ. An apparatus that vibrates an ultrasonic vibration terminal composed of a plurality of pins with an amplitude of 20 to 60 μm is preferable.
Also, in place of the ultrasonic vibration terminal, the internal stress in a wider range is increased by performing an ultrasonic shot peening process in which a steel ball having a diameter of 1 to 3 mm that is vibrated by ultrasonic waves collides with the steel plate surface. Therefore, when producing steel sheets at steelworks, even when performing dehydrogenation after rolling, the internal stress of the steel sheet surface layer is increased and hydrogen is collected on the surface layer, and then the tempering furnace is operated for a short time. If it passes, dehydrogenation can be performed efficiently.
[0010]
The heating temperature of the steel sheet surface layer portion is set to 150 to 220 ° C.
This is because hydrogen is easily diffused when heated to a range of 150 to 220 ° C., and hydrogen collected in the surface layer portion of the steel sheet is diffused into the atmosphere. Below 150 ° C., removal of hydrogen in the steel sheet is insufficient. In addition, the amount of hydrogen that can be removed even when heated to over 220 ° C. is saturated, and when the steel plate temperature is 250 ° C. or higher, blue heat embrittlement may occur and the toughness may be deteriorated. This is because the strength of the steel plate is lower than that of the as-rolled material.
Here, it is preferable that the surface layer portion of the steel plate to be heated is heated for 20 minutes or more from the steel plate surface where dehydrogenation is performed to a depth of 4 mm or more in the thickness direction.
In order to perform dehydrogenation, it is preferable to heat deeper in the plate thickness direction for a longer time, but in the present invention, since hydrogen is collected in the surface layer portion of the steel plate, to a depth of 4 mm or more in the plate thickness direction, Dehydrogenation can be sufficiently performed by heating for 20 minutes or more.
In the present invention, since the heating method of the steel sheet surface layer portion is not limited, heating may be performed using the tempering furnace as described above, but heating is limited to a stress concentration portion where delayed fracture due to hydrogen is a concern. In order to do so, it is preferable to heat using an induction heating device that heats by induction current.
In addition, by manufacturing a steel plate using the above-described method for dehydrogenating a steel plate, it is possible to manufacture a steel plate having less toughness and excellent toughness.
[0011]
【Example】
Examples of the steel sheet dehydrogenation method in the present invention are shown in Tables 1 to 4.
Tables 1 and 2 show examples in which dehydrogenation treatment was performed in the manufacturing process of thick plates.
Table 2 shows the results of ultrasonic striking treatment (UIT treatment) and dehydrogenation treatment on a thick plate using the chemical components and the manufacturing process shown in Table 1.
The evaluation of dehydrogenation was conducted by providing a notch (notch) in the test piece and measuring the Kc value, which is an indicator of brittleness (taken by Kanazawa Takeshi, Fumio Koshiga, “Brittle Fracture 2—Fracture Toughness Test, Fracture Mechanics and Material Strength Lecture 8 ”, Bafukan, September 20, 1977, pp. 8-14)). If there is no hydrogen brittle fracture surface at the bottom of the notch, the dehydrogenation is good. Dehydrogenation was considered to be defective when there was a hydrogen brittle fracture surface at the bottom.
This hydrogen brittle fracture surface is a fracture surface that is formed during loading of steel containing a certain amount or more of hydrogen, and it spontaneously cracks. Stress concentration increases, and fracture occurs at a low Kc value of 150 (N / mm 1.5 ) or less.
[0012]
NO.1 to NO.5 are examples of the present invention, and the slabs of chemical components shown in Table 1 are heated and rolled at 1000 to 1100 ° C., and the surface of the steel sheet is an ultrasonic terminal (with a tip diameter of 10 to 30 mm). When the dehydrogenation treatment was performed by heating to 180-220 ° C. after hitting with a hammer, all the conditions of the present invention were satisfied. As a result of the above-mentioned deep notch test, the bottom of the notch was hydrogenated. There was no fracture surface and dehydrogenation was good.
NO.6 to NO.10 are comparative examples, the slabs of chemical components shown in Table 1 are heated and rolled at 1000 to 1100 ° C., and dehydrogenation is performed under conditions different from the present invention.
The above-described deep notch test was performed for the case where dehydrogenation treatment was not performed.
[0013]
NO. No. 6 has a small hammer diameter of 1 mm, and the heating temperature for dehydrogenation is too low at 100 ° C., so the Kc value is low, and a hydrogen-like fracture surface was observed at the bottom of the notch. Was bad.
NO. No. 7 was poor in dehydrogenation because the hydrogen heat treatment temperature was 250 ° C. and blue heat embrittlement occurred, so the Kc value was low, and a hydrogen-like fracture surface was observed at the bottom of the notch.
NO. In No. 8, since the processing temperature in the UIT process is as high as 300 ° C., even if the internal stress is increased by the UIT, the steel plate is softened and easily plastically deforms, and the processing does not transmit to the inside of the plate thickness. Dehydrogenation was poor because the value was low and a hydrogen-like fracture surface was observed at the bottom of the notch.
NO. 9 and NO. No. 10 was not dehydrogenated, so the Kc value was low, and a hydrogen-like fracture surface was observed at the bottom of the notch, so the dehydrogenation was poor.
Examples of the steel sheet dehydrogenation method in the present invention are shown in Tables 1 to 4.
Tables 3 and 4 show examples in which dehydrogenation treatment was performed on the welds.
The plank with chemical components and manufacturing process are shown in Table 3, the weld joint welded in various welding methods, an ultrasonic striking treatment (UIT treatment) results in the dehydrogenation process was carried out in Table 4.
The evaluation of dehydrogenation is the same as in the above-described embodiment of the thick plate.
[0014]
NO.11 to NO.15 are examples of the present invention, and an ultrasonic terminal (hammer) having a tip diameter of 10 to 30 mm on a joint surface obtained by welding thick plates having chemical components shown in Table 1 by various welding methods. ), After dehydrogenation treatment was performed by heating to 180 to 220 ° C., all the conditions of the present invention were satisfied. As a result of the aforementioned deep notch test, the bottom of the notch There was no fracture surface and dehydrogenation was good.
NO.16 to NO.20 are comparative examples, in which thick plates of chemical components shown in Table 1 are welded by various welding methods, and dehydrogenation is performed under conditions different from the present invention, The above-described deep notch test was performed for the case where the treatment was not performed.
[0015]
NO.16 has a hammer diameter as small as 1 mm and the heating temperature for dehydrogenation is too low at 100 ° C., so the Kc value is low, and a hydrogen-like fracture surface was observed at the bottom of the notch. Dehydrogenation was bad.
No. 17 had a high hydrogen heat treatment temperature of 250 ° C. and blue heat embrittlement, so the Kc value was low, and a hydrogen fracture surface was observed at the bottom of the notch, so dehydrogenation was also poor.
NO.18 has a high processing temperature of 300 ° C in the UIT process, so even if you try to increase the internal stress with UIT, the steel plate is softened and easily plastically deforms, so the processing does not transmit to the inside of the plate thickness. Since the Kc value was low and a hydrogen fracture surface was observed at the bottom of the notch, the dehydrogenation was also poor.
Since NO.19 and NO.20 were not subjected to dehydrogenation treatment, the Kc value was low, and a hydrogen-like fracture surface was observed at the bottom of the notch, so that dehydrogenation was poor.
In addition, although the UIT process in a present Example was set as the method of hit | damaging a steel plate surface with an ultrasonic vibration terminal, an effect is changed even if it replaces with the ultrasonic shot peening process which makes a steel ball with a diameter of 1-3 mm collide with a steel plate surface. Absent.
[0016]
【The invention's effect】
According to the present invention, by increasing the internal stress of the steel sheet, the hydrogen dispersed in the thickness direction of the steel sheet is guided to the surface layer and then heated to reduce the hydrogen present in the steel sheet sufficiently efficiently. It is possible to provide a dehydrogenation method and a method for producing a steel plate using the same, and have remarkable industrially useful effects.
[Table 1]
Figure 0003974840
[Table 2]
Figure 0003974840
[Table 3]
Figure 0003974840
[Table 4]
Figure 0003974840

Claims (4)

鋼板中に内在する水素を低減する鋼板の脱水素方法であって、200℃以下の前記鋼板の表面を、先端の径が5mm以上の超音波振動端子で打撃することにより、該鋼板の表層部の内部応力を増大させた後に、該表層部を150〜220℃に加熱することを特徴とする、鋼板の脱水素方法。 A method for dehydrogenating a steel sheet to reduce hydrogen present in the steel sheet, wherein the surface of the steel sheet is struck by an ultrasonic vibration terminal having a tip diameter of 5 mm or more at a surface of the steel sheet at 200 ° C. or lower. internal stress after increasing the, it characterized that you heat the surface layer portion to 150 to 220 ° C., the dehydrogenation process of the steel plate. 鋼板中に内在する水素を低減する鋼板の脱水素方法であって、200℃以下の前記鋼板の表面に、超音波振動を付与した鋼球を衝突させる超音波ショットピーニング処理を行うことにより、該鋼板の表層部の内部応力を増大させた後に、該表層部を150〜220℃に加熱することを特徴とする、鋼板の脱水素方法。 A method for dehydrogenating a steel sheet to reduce hydrogen present in the steel sheet, wherein the surface of the steel sheet at 200 ° C. or lower is subjected to an ultrasonic shot peening treatment in which a steel ball imparted with ultrasonic vibration is collided, after increasing the internal stress of the surface layer portion of the steel sheet, it characterized that you heat the surface layer portion to 150 to 220 ° C., the dehydrogenation process of the steel plate. 200℃以下の前記鋼板の表層部を、誘導電流により加熱する誘導加熱装置を用いて加熱することを特徴とする、請求項1または請求項2に記載の鋼板の脱水素方法。The method for dehydrogenating a steel sheet according to claim 1 or 2, wherein the surface layer portion of the steel sheet at 200 ° C or lower is heated using an induction heating device that heats the steel sheet with an induced current. 請求項1乃至請求項3のいずれか1項に記載の鋼板の脱水素方法を用いることを特徴とする、鋼板の製造方法。It claims 1 to you, comprising using the dehydrogenation process of the steel sheet according to any one of claims 3, method for manufacturing a steel plate.
JP2002297528A 2002-10-10 2002-10-10 Steel plate dehydrogenation method and steel plate manufacturing method using the same Expired - Fee Related JP3974840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297528A JP3974840B2 (en) 2002-10-10 2002-10-10 Steel plate dehydrogenation method and steel plate manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297528A JP3974840B2 (en) 2002-10-10 2002-10-10 Steel plate dehydrogenation method and steel plate manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2004131794A JP2004131794A (en) 2004-04-30
JP3974840B2 true JP3974840B2 (en) 2007-09-12

Family

ID=32287209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297528A Expired - Fee Related JP3974840B2 (en) 2002-10-10 2002-10-10 Steel plate dehydrogenation method and steel plate manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP3974840B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770238B2 (en) * 2005-03-31 2011-09-14 Jfeスチール株式会社 Warm shot peening method for thick steel plate
WO2022014172A1 (en) * 2020-07-14 2022-01-20 Jfeスチール株式会社 Dehydrogenation method for steel material and steel product, and manufacturing method for steel material and steel product
US20230265539A1 (en) * 2020-07-14 2023-08-24 Jfe Steel Corporation Continuous annealing line, continuous hot-dip galvanizing line, and steel sheet production method
MX2023000702A (en) * 2020-07-14 2023-02-13 Jfe Steel Corp Dehydrogenation device, system for manufacturing steel sheet, and method for manufacturing steel sheet.
JP6977916B1 (en) * 2020-07-14 2021-12-08 Jfeスチール株式会社 Dehydrogenation method for steel products and steel products, and manufacturing method for steel products and steel products
WO2023286440A1 (en) * 2021-07-14 2023-01-19 Jfeスチール株式会社 Continuous annealing apparatus, continuous hot-dip galvanization apparatus, and steel sheet manufacturing method
WO2023286441A1 (en) * 2021-07-14 2023-01-19 Jfeスチール株式会社 Dehydrogenation device, system for manufacturing steel sheet, and method for manufacturing steel sheet
WO2023181821A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Dehydrogenation device, system for manufacturing steel sheet, and method for manufacturing steel sheet

Also Published As

Publication number Publication date
JP2004131794A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP3974840B2 (en) Steel plate dehydrogenation method and steel plate manufacturing method using the same
JP2012508651A5 (en)
JP4358807B2 (en) Method for preventing cracks in continuous cast pieces of high-strength steel
JP5088035B2 (en) Manufacturing method for welded joints with excellent fatigue resistance
JP2010149187A (en) Resistance spot welding method
JP6050912B1 (en) How to prevent cracks in drawn products of high-strength steel sheets
Sun et al. Fatigue behavior and fractography of laser-processed hot work tool steel
JP2006212671A (en) METHOD FOR PREVENTING SURFACE FLAW AT THE TIME OF ROLLING IN Ni-CONTAINING STEEL
JPH11256273A (en) High strength steel plate excellent in impact resistance
JP4537649B2 (en) Rotating welded joint, manufacturing method of Rotated welded joint, and welded structure
KR101242688B1 (en) Laser welding method of silicon steel
JP2004167519A (en) Method for preventing delayed fracture of steel structure, and method for producing steel structure
CN106337111B (en) A kind of surface reinforcing method based on heat radiation and laser impact intensified combination
JP5594240B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4619635B2 (en) Welding method for high carbon steel
JP4015929B2 (en) Turbine or blower blade repair method
CN115803138A (en) Resistance spot welding method and method for manufacturing welded joint
JP2005298879A (en) Method for producing metal product having fine crystallized surface layer part
JP2001029518A (en) Titanium alloy material for golf club head
JP3546617B2 (en) Manufacturing method of steel sheet with excellent surface properties
JP2006257528A (en) Method for manufacturing thin sheet of pure molybdenum or molybdenum alloy superior in deep drawability
JP3377428B2 (en) ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same
JP2002256339A (en) Method for manufacturing steel plate
KR20120075292A (en) Welding apparatus of non-oriented electrical steels with excellent formability of welding part and welding method of same
JP6316912B1 (en) Manufacturing method for high-strength steel sheet press products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R151 Written notification of patent or utility model registration

Ref document number: 3974840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees