JP3377428B2 - ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same - Google Patents

ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same

Info

Publication number
JP3377428B2
JP3377428B2 JP36825297A JP36825297A JP3377428B2 JP 3377428 B2 JP3377428 B2 JP 3377428B2 JP 36825297 A JP36825297 A JP 36825297A JP 36825297 A JP36825297 A JP 36825297A JP 3377428 B2 JP3377428 B2 JP 3377428B2
Authority
JP
Japan
Prior art keywords
steel
electric resistance
steel pipe
pipe
sizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36825297A
Other languages
Japanese (ja)
Other versions
JPH11189844A (en
Inventor
修次 古川
康裕 山元
欣哉 川端
隆弘 櫛田
靖司 梶原
信之 久宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nippon Steel Corp
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Metal Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP36825297A priority Critical patent/JP3377428B2/en
Publication of JPH11189844A publication Critical patent/JPH11189844A/en
Application granted granted Critical
Publication of JP3377428B2 publication Critical patent/JP3377428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、送電用鉄塔、特に
大型鉄塔に使用される大径厚肉の鉄塔用電縫鋼管及びそ
の製造方法に関し、更に詳しくは、耐溶融亜鉛めっき割
れ性に優れる鉄塔用電縫鋼管及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric resistance welded steel pipe for a power transmission tower, especially a large diameter and thick walled steel tower used for a large-sized steel tower, and a method for producing the same. More specifically, it is excellent in hot dip galvanizing crack resistance. The present invention relates to an electric resistance welded steel pipe for a steel tower and a method for manufacturing the same.

【0002】[0002]

【従来の技術】送電用鉄塔に使用される鋼管のうち、大
型鉄塔用の大径厚肉鋼管にはUOE鋼管が使用されてい
る。また、その防錆手段としては、鋼管サイズに関係な
く溶融亜鉛めっきが用いられている。溶融亜鉛めっき
は、周知の通り、約450℃の溶融亜鉛中に対象物を浸
漬してめっきを行う方法であり、鉄塔用鋼管の場合は、
フランジを始めとする各種の取り付け部材を鋼管に溶接
した後の溶接鋼構造物に対して、この溶融亜鉛めっきが
実施される。
2. Description of the Related Art Among steel pipes used for power transmission towers, UOE steel pipes are used as large-diameter thick-walled steel pipes for large-scale steel towers. Further, hot-dip galvanizing is used as the rust preventive means regardless of the size of the steel pipe. As is well known, hot-dip galvanizing is a method in which an object is immersed in hot-dip zinc at about 450 ° C. to perform plating, and in the case of steel pipes for steel towers,
This hot dip galvanizing is performed on the welded steel structure after welding various attachment members such as flanges to the steel pipe.

【0003】溶接鋼構造物に対する溶融亜鉛めっきで
は、主として溶接熱影響部(以下HAZ部と称す)に粒
界割れが発生することがあり、鉄塔用鋼管の場合は取り
付け部材の溶接に伴うHAZ部での割れが問題にされて
いる。この溶融亜鉛めっき割れは、粗粒化したHAZ部
粒界への液体亜鉛の侵入と、溶接部の残留応力や浴浸漬
時に発生する熱応力とが重畳して生じ、一般に高強度材
ほど多く発生する傾向を示し、HAZ部の硬さが260
−270Hvを超えると極めて割れ感受性が高くなる。
In hot dip galvanizing of a welded steel structure, intergranular cracking may occur mainly in the weld heat affected zone (hereinafter referred to as the HAZ portion), and in the case of steel pipes for steel towers, the HAZ portion accompanying welding of attachment members The cracking in is a problem. This hot-dip galvanizing crack is caused by the intrusion of liquid zinc into the grain boundaries of the HAZ portion that has been coarsened, and the residual stress of the welded portion and the thermal stress generated during bath immersion, which generally occur more often in high-strength materials. The HAZ part has a hardness of 260
If it exceeds -270 Hv, the cracking sensitivity becomes extremely high.

【0004】溶接鋼構造物の溶融亜鉛めっき割れについ
ては、その因子である応力と材料については広く研究さ
れ、その防止法として、溶接部の残留応力の低減や、熱
応力の少ない浴浸漬法、構造物の形状などが研究開発さ
れている。また、材料面からも、合金元素量を規定して
耐溶融亜鉛めっき割れ性を高めた鋼材などが提案されて
いる(特公平2−5814号公報)。
[0004] Regarding hot dip galvanizing cracks in welded steel structures, stress and materials that are the factors have been widely studied. As a method for preventing the cracks, there is a reduction in residual stress at the welded portion, a bath dipping method with less thermal stress, Research and development has been conducted on the shape of structures. Further, from the viewpoint of materials, steels and the like have been proposed in which the amount of alloying elements is regulated to improve the hot-dip galvanizing crack resistance (Japanese Patent Publication No. 2-5814).

【0005】[0005]

【発明が解決しようとする課題】ところで、大径厚肉の
鉄塔用鋼管については、これまでUOE鋼管が使用され
てきたが、最近になって、UOE鋼管よりも製管コスト
の安い電縫鋼管への転換が一部で進められいる。出願人
は比較的早くこの転換に着手し、それ以来種々研究を続
けているが、その過程で鉄塔用の大径厚肉電縫鋼管には
次のような問題のあることが判明した。
By the way, for steel pipes for large-diameter and thick-walled steel towers, UOE steel pipes have been used so far, but recently, electric resistance welded steel pipes which are cheaper in pipe manufacturing cost than UOE steel pipes. The conversion to is partly underway. The applicant started this conversion relatively early and has been conducting various studies since then, but in the process, it was found that large-diameter thick-walled ERW steel pipes for steel towers have the following problems.

【0006】鉄塔用の大径厚肉電縫鋼管も通常の電縫鋼
管と同様に、熱延鋼帯を素材として造管成形−電縫溶接
−溶接ビード除去加工−溶接部熱処理−サイザーによる
縮管加工の各工程により製造されるが、サイズは通常の
電縫鋼管よりも大径厚肉であり、製造された電縫鋼管に
対しては、種々の取り付け部材の溶接が行われた後、防
錆のための溶融亜鉛めっきが実施される。
Large-diameter thick-walled ERW steel pipes for steel towers are also made of hot-rolled steel strip as a material for pipe forming-ERW welding-Welding bead removal processing-Welding portion heat treatment-Reduction by sizer. It is manufactured by each step of pipe processing, but the size is larger in diameter and thickness than a normal ERW steel pipe, and for the manufactured ERW steel pipe, after welding of various mounting members is performed, Hot dip galvanizing is performed for rust prevention.

【0007】ところが、鉄塔用の大径厚肉電縫鋼管は、
電縫HAZ部を含む電縫溶接部近傍が熱処理により軟化
されているにもかかわらず、溶融亜鉛めっきを行った場
合には、鋼管本体の電縫溶接部近傍にめっき割れを生じ
る危険のあることが判明した。同じ溶接鋼管でもUOE
鋼管の場合は、取り付け部材の溶接に伴うHAZ部に割
れが生じることはあっても、シーム溶接部近傍を含む鋼
管本体の側にめっき割れが生じることはない。また、同
じ鉄塔用電縫鋼管でも、本来の電縫製管サイズである小
中径管の場合は、このめっき割れは問題になっていな
い。これらのことから、電縫溶接部近傍に生じる溶融亜
鉛めっき割れは、鉄塔用の大径厚肉電縫鋼管に特有の現
象と判断される。
However, large-diameter thick-walled ERW steel pipes for steel towers are
Despite the fact that the vicinity of the electric resistance welded part including the electric resistance welded HAZ part is softened by heat treatment, there is a risk of plating cracks in the vicinity of the electric resistance welded part of the steel pipe body when hot dip galvanizing is performed. There was found. UOE with the same welded steel pipe
In the case of a steel pipe, cracks may occur in the HAZ portion due to welding of the mounting member, but plating cracks do not occur in the steel pipe body side including the vicinity of the seam welded portion. Even with the same electric resistance welded steel pipe for steel towers, this plating crack does not pose a problem in the case of a small medium diameter pipe that is the original electric resistance welded pipe size. From these facts, it is considered that the hot dip galvanizing crack near the electric resistance welded portion is a phenomenon peculiar to the large-diameter thick ERW steel pipe for steel towers.

【0008】そして、従来考えられているめっき割れ対
策は、取り付け部材の溶接に伴うHAZ部の割れに対し
ては有効であっても、鉄塔用の大径厚肉電縫鋼管に特有
の電縫溶接部近傍に生じる溶融亜鉛めっき割れに対して
は効力を有しない。
[0008] Although the conventionally considered countermeasures against plating cracks are effective against cracks in the HAZ portion due to welding of mounting members, electric resistance welding peculiar to large-diameter thick-walled electric resistance welded steel pipes for steel towers It has no effect on hot dip galvanizing cracks that occur in the vicinity of welds.

【0009】本発明の目的は、鉄塔用の大径厚肉電縫鋼
管に特有の電縫溶接部近傍の溶融亜鉛めっき割れに対し
て優れた耐性を示す、耐溶融亜鉛めっき割れ性に優れる
鉄塔用電縫鋼管及びその製造方法を提供することにあ
る。
An object of the present invention is a steel tower having excellent hot-dip galvanizing crack resistance, which exhibits excellent resistance to hot-dip galvanizing cracks in the vicinity of the electric resistance welded portion peculiar to large-diameter thick ERW steel pipes for steel towers. An object of the present invention is to provide an electric resistance welded steel pipe and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは鉄塔用の大径厚肉電縫鋼管に特有の電
縫溶接部近傍の溶融亜鉛めっき割れの現象、原因、更に
は対策について、調査研究を行った。その結果、以下の
知見が得られた。
In order to achieve the above object, the inventors of the present invention have a phenomenon, a cause, of a hot dip galvanization crack near an electric resistance welded portion peculiar to a large-diameter thick ERW steel pipe for a steel tower, Furthermore, we conducted a research study on countermeasures. As a result, the following findings were obtained.

【0011】電縫鋼管は、熱延鋼帯を素材として造管成
形−電縫溶接−溶接ビード除去加工−溶接部熱処理−サ
イザーによる縮管加工の各工程により製造される。この
ような電縫鋼管の製造では、電縫溶接でアプセットが行
われるため、図1(a)に示すように、電縫溶接部近傍
が鋼管1の主に外面側に膨らんで溶接ビード2を生じ、
この溶接ビード2は電縫溶接に続く工程でバイト等によ
り切削除去される。ところが、電縫製管ラインを進行す
る鋼管は不可避的に蛇行等を生じている。その結果、実
際の製管では、図1(b)に示すように、溶接ビード2
の削り残しに起因する段差部3が、鋼管長手方向に間欠
的に生じる。
The electric resistance welded steel pipe is manufactured by using the hot rolled steel strip as a raw material in the following steps: pipe forming-electric resistance welding-welding bead removal processing-weld portion heat treatment-contractor processing using a sizer. In the production of such an electric resistance welded steel pipe, since the upset is performed by electric resistance welding, as shown in FIG. 1A, the vicinity of the electric resistance welded portion swells mainly on the outer surface side of the steel pipe 1 to form the weld bead 2. Occurs,
This welding bead 2 is cut and removed by a bite or the like in a step following the electric resistance welding. However, the steel pipe that advances along the electric resistance welded pipe line inevitably causes meandering and the like. As a result, in the actual pipe manufacturing, as shown in FIG.
The stepped portion 3 caused by the uncut portion is intermittently generated in the longitudinal direction of the steel pipe.

【0012】段差部3が残った鋼管は、最終的にサイザ
ーによる縮管成形加工を受けるが、このとき段差部3の
高さhが大きいと(大きいといっても通常0.5mm以
下、0.2〜0.3mm程度であるが)、図1(b)
(c)に示すように、段差部3による凸部が加工時に冷
間で強く圧下され、段差部3の下部からその下方にかけ
てのハッチング部分4′に応力が集中することから、こ
のハッチング部分4′が加工硬化を起こし、この加工硬
化部4の溶融亜鉛めっき割れ感受性が高くなる。実際、
鉄塔用の大径厚肉電縫鋼管に特有の電縫溶接部近傍の溶
融亜鉛めっき割れは、溶接ビード2の両側部分に対応す
る部分に、位置的に対応して発生する現象であることが
確認されている。
The steel pipe on which the step portion 3 remains is finally subjected to a shrink pipe forming process by a sizer. At this time, if the height h of the step portion 3 is large (although it is large, it is usually 0.5 mm or less, 0 .2 to 0.3 mm), FIG. 1 (b)
As shown in (c), the convex portion formed by the step portion 3 is strongly pressed cold during processing, and stress concentrates on the hatched portion 4 ′ from the lower portion of the step portion 3 to the lower portion thereof. ′ Causes work hardening, and the hot-dip galvanizing crack susceptibility of this work hardened portion 4 increases. In fact
The hot dip galvanizing cracks in the vicinity of the electric resistance welded portion, which is peculiar to the large-diameter thick ERW steel pipe for steel towers, is a phenomenon that occurs correspondingly to the positions corresponding to both sides of the weld bead 2 in a positional manner. It has been confirmed.

【0013】そして、この割れが鉄塔用電縫鋼管のなか
でも大径厚肉管に特徴的に発生するのは、その鋼管が本
来はUOE製管で製造されるような大径厚肉(外径45
7mm以上、肉厚14mm以上)であり、且つ高強度
(強度50kgf/mm2 以上)であるため、サイザー
成形時に受ける圧下力が大きいこと、電縫溶接時のアプ
セット量が大きく、溶接ビード2及び段差部3の高さが
本質的に大きいこと、電縫鋼管の外径が大きくなるに従
ってその蛇行が顕著になり、段差部3の高さが増加する
傾向のあること、こられのために加工硬化が顕著となる
ことなどが原因と考えられる。一方、従来の鉄塔用大径
厚肉鋼管であるUOE鋼管に溶融亜鉛めっき割れが生じ
ないのは、この種の鋼管がサイザーによる縮管成形加工
を受けないことによる。
[0013] Among the electric resistance welded steel pipes for steel towers, this cracking characteristically occurs in the large-diameter thick-walled pipes because a large-diameter thick-walled pipe (external Diameter 45
7 mm or more, wall thickness 14 mm or more) and high strength (strength of 50 kgf / mm 2 or more), the rolling force received during sizer molding is large, the upset amount during electric resistance welding is large, and the welding beads 2 and The height of the stepped portion 3 is essentially large, the meandering of the electric resistance welded steel pipe becomes noticeable as the outer diameter of the pipe increases, and the height of the stepped portion 3 tends to increase. It is thought that the cause is remarkable hardening. On the other hand, the fact that hot-dip galvanizing cracks do not occur in UOE steel pipes, which are conventional large-diameter thick-wall steel pipes for steel towers, is because this type of steel pipe is not subjected to contraction pipe forming by a sizer.

【0014】電縫鋼管の母材強度は鋼中C量の影響を受
け、その鋼中C量が0.12%以上の場合に電縫溶接部
近傍の溶融亜鉛めっき割れ感受性が高まる。
The base metal strength of the electric resistance welded steel pipe is affected by the C content in the steel, and when the C content in the steel is 0.12% or more, the susceptibility to hot dip galvanizing cracks near the electric resistance welded portion increases.

【0015】サイザー成形での冷間加工による硬化現象
は、溶接鋼構造物として問題になる取り付け部材のHA
Z部の硬化現象や、溶接部熱処理を受ける前の電縫HA
Z部の硬化現象とは全く異なるメカニズムのものである
が、溶融亜鉛めっき割れに及ぼす硬さの定量的な影響に
限って言えば、これらのHAZ部の硬化現象と同様の結
果となり、その硬さが260−270Hvを超えると溶
融亜鉛めっき割れ感受性が顕著に高くなる。
The hardening phenomenon due to cold working in the sizer molding is a problem for welded steel structures.
Electric resistance HA before hardening phenomenon of Z part and heat treatment of welded part
Although it has a completely different mechanism from the hardening phenomenon of the Z part, as far as the quantitative effect of the hardness on the hot dip galvanizing cracks is concerned, the same result as the hardening phenomenon of the HAZ part is obtained, and the hardening When it exceeds 260-270 Hv, the hot-dip galvanizing crack susceptibility is significantly increased.

【0016】このように、鉄塔用の大径厚肉電縫鋼管に
おいては、サイザーでの段差部の圧下が加工硬化を招
き、引いては溶融亜鉛めっき割れ感受性を高めるので、
サイザー成形に先立って段差部が除去されたものは、耐
溶融亜鉛めっき割れ性に優れるものとなる。また、段差
部が除去されずにサイザー成形を受けたものであって
も、サイザー成形で生じた加工硬化部が除去されたもの
は、耐溶融亜鉛めっき割れ性に優れるものとなる。更
に、製管工程における対策としては、サイザー成形に先
立って段差部を除去すること、及びサイザー成形の後に
そのサイザー成形で生じた加工硬化部を除去することが
有効となる。
As described above, in a large-diameter thick-walled electric resistance welded steel pipe for a steel tower, the reduction of the stepped portion at the sizer causes work hardening, which in turn increases the susceptibility to hot dip galvanizing cracks.
The one in which the step portion is removed before the sizer molding has excellent hot-dip galvanizing crack resistance. In addition, even if the sizer is not removed and subjected to sizer molding, but the work-hardened part generated by sizer is removed, the hot dip galvanizing crack resistance is excellent. Furthermore, as a countermeasure in the pipe manufacturing process, it is effective to remove the stepped portion before the sizer molding and to remove the work-hardened portion generated by the sizer molding after the sizer molding.

【0017】本発明は上記知見を基礎として完成された
ものであり、以下の鉄塔用電縫鋼管及びその製造方法を
要旨とする。
The present invention has been completed based on the above findings, and the gist of the following is an electric resistance welded steel pipe for a steel tower and a method for manufacturing the same.

【0018】[0018]

【0019】第1の鉄塔用電縫鋼管; 鋼中C量が重量比でCを0.12%以上で、外径が45
7mm以上、肉厚が14mm以上である大径厚肉の鉄塔
用電縫鋼管であって、電縫溶接ビード部が除去される第
1の表面加工を受け、且つ、第1の表面加工の後に当該
加工部近傍に部分的に残る段差部が除去される第2の表
面加工を受けていることを特徴とする耐溶融亜鉛めっき
割れ性に優れる鉄塔用電縫鋼管。
The first electric resistance welded steel pipe for a steel tower; the amount of C in the steel is 0.12% or more by weight, and the outer diameter is 45.
A large-diameter, thick-walled electric resistance welded steel pipe for a steel tower having a wall thickness of 7 mm or more and 14 mm or more, which is subjected to a first surface treatment for removing the electric resistance weld bead portion, and after the first surface treatment. An electric resistance welded steel pipe for a steel tower having excellent resistance to hot dip galvanization cracking, which has undergone a second surface treatment that removes a step portion that partially remains near the processed portion.

【0020】第2の鉄塔用電縫鋼管; 鋼中C量が重量比でCを0.12%以上で、外径が45
7mm以上、肉厚が14mm以上である大径厚肉の鉄塔
用電縫鋼管であって、電縫溶接ビード部が除去される第
1の表面加工を受け、且つ、第1の表面加工の後に当該
加工部近傍に部分的に残る段差部に起因して当該近傍に
生じる加工硬化部が除去される第2の表面加工を受けて
いることを特徴とする耐溶融亜鉛めっき割れ性に優れる
鉄塔用電縫鋼管。
Second electric resistance welded steel pipe for steel towers; the C content in steel is 0.12% or more by weight, and the outer diameter is 45.
A large-diameter, thick-walled electric resistance welded steel pipe for a steel tower having a wall thickness of 7 mm or more and 14 mm or more, which is subjected to a first surface treatment for removing the electric resistance weld bead portion, and after the first surface treatment. For a steel tower excellent in hot dip galvanizing cracking resistance, which is subjected to a second surface treatment that removes a work-hardened portion generated in the vicinity due to a step portion partially remaining in the vicinity of the processed portion. ERW steel pipe.

【0021】第1の製造方法;鋼中C量が重量比でCを
0.12%以上である熱延鋼帯を素材として、造管成形
−電縫溶接−溶接ビード除去加工−溶接部熱処理−サイ
ザーによる縮管加工の各工程により、外径が457mm
以上、肉厚が14mm以上である大径厚肉の鉄塔用電縫
鋼管を製造する方法において、電縫溶接ビード除去加工
を終えた後、サイザーによる縮管加工を行う前の段階
で、電縫溶接ビード除去加工部近傍に残る表面段差を
0.1mm以下に切削又は研削することを特徴とする鉄
塔用電縫鋼管の製造方法。
First manufacturing method: Pipe forming-electric resistance welding-welding bead removal processing-weld portion heat treatment using a hot-rolled steel strip having a C content in the steel of 0.12% or more by weight as a raw material. -Outer diameter is 457 mm due to each process of shrink pipe processing with sizer
As described above, in the method for producing a large-diameter thick-walled electric-resistance-welded steel pipe for a steel tower having a thickness of 14 mm or more, the electric-resistance welding is performed at a stage after the electric-resistance welding weld bead removal processing is finished and before the shrink pipe processing with the sizer A method for producing an electric resistance welded steel pipe for a steel tower, which comprises cutting or grinding a surface step remaining in the vicinity of a weld bead removal processed portion to 0.1 mm or less.

【0022】第2の製造方法;鋼中C量が重量比でCを
0.12%以上である熱延鋼帯を素材として、造管成形
−電縫溶接−溶接ビード除去加工−溶接部熱処理−サイ
ザーによる縮管加工の各工程により、外径が457mm
以上、肉厚が14mm以上である大径厚肉の鉄塔用電縫
鋼管を製造する方法において、サイザーによる縮管加工
を行った後の段階で、少なくとも電縫溶接ビード除去加
工部近傍の表面を0.1mm以上の深さに切削又は研削
することを特徴とする鉄塔用電縫鋼管の製造方法。
Second production method: Pipe forming-electric resistance welding-weld bead removal processing-weld portion heat treatment using a hot-rolled steel strip in which the C content in steel is 0.12% or more by weight. -Outer diameter is 457 mm due to each process of shrink pipe processing with sizer
As described above, in the method for producing a large diameter thick-walled electric resistance welded steel pipe for a steel tower having a thickness of 14 mm or more, at least the surface in the vicinity of the electric resistance welded bead removal processed portion is treated at the stage after the shrink pipe processing with the sizer is performed. A method for producing an electric resistance welded steel pipe for a steel tower, which comprises cutting or grinding to a depth of 0.1 mm or more.

【0023】[0023]

【0024】本発明において素材鋼のC含有量を0.1
2%以上に限定したのは、0.12%未満では冷間加工
部の加工硬化が比較的軽微で、サイザー成形による電縫
溶接部近傍の溶融亜鉛めっき割れを生じ難いからであ
る。また、電縫鋼管の外径を457mm以上、肉厚を1
4mm以上に限定したのは、この寸法範囲内で電縫溶接
時のアプセット量が大きくなり、溶接ビート及び段差部
が高くなると共に、サイザー成形時の圧下力が本質的に
大きくなり、結果、サイザー成形による電縫溶接部近傍
の溶融亜鉛めっき割れが生じ易くなるからである。特に
有効な寸法範囲は外径500mm以上、肉厚14mm以
上である。
In the present invention, the C content of the raw steel is 0.1
The reason for limiting the content to 2% or more is that if it is less than 0.12%, the work hardening of the cold-worked portion is relatively small, and hot-dip galvanizing cracks near the electric resistance welded portion due to sizer molding are unlikely to occur. In addition, the outer diameter of the electric resistance welded steel pipe is 457 mm or more, and the wall thickness is 1
The reason why the size is limited to 4 mm or more is that the upset amount at the time of electric resistance welding becomes large within this size range, the welding beat and the step portion become high, and the rolling force at the time of forming the sizer becomes essentially large. This is because hot dip galvanizing cracks near the electric resistance welded portion due to forming are likely to occur. A particularly effective dimensional range is an outer diameter of 500 mm or more and a wall thickness of 14 mm or more.

【0025】[0025]

【発明の実施の形態】以下に本発明の実施形態を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0026】電縫製管ラインにおいて、大型鉄塔用鋼管
の素材鋼板として使用されるC0.12%以上の炭素鋼
からなる厚肉広幅の熱延鋼帯を所定の幅に切断した後、
連続的に円管状に成形しつつ、突き合わせエッジ部を電
縫溶接して大径厚肉鋼管となす。このとき電縫溶接部の
近傍に溶接ビードが発生する〔図1(a)参照〕。
In the electric resistance welded pipe line, a thick and wide hot-rolled steel strip made of carbon steel having a carbon content of 0.12% or more, which is used as a steel plate for steel pipes for large towers, is cut into a predetermined width.
A large diameter thick-walled steel pipe is formed by electro-welding the butt edges while continuously forming a circular pipe. At this time, welding beads are generated in the vicinity of the electric resistance welded portion [see FIG. 1 (a)].

【0027】電縫溶接を終えた鋼管を引き続きビード除
去装置に送り、ここで溶接ビードをバイト等により切削
除去する。このとき、鋼管の蛇行等に起因して、溶接ビ
ードの削り残しが発生し、これによる段差部が、ビード
除去加工部の近傍、具体的には溶接ビードの両側部分に
対応する部分に、鋼管長手方向に間欠的に生じる〔図1
(b)参照〕。
The steel pipe after the electric resistance welding is continuously sent to a bead removing device, where the welding bead is cut and removed by a bite or the like. At this time, due to the meandering of the steel pipe etc., the uncut portion of the weld bead occurs, and the stepped portion due to this causes the steel pipe to be near the bead removal processing part, specifically, the part corresponding to both sides of the weld bead. Occurs intermittently in the longitudinal direction [Fig. 1
(B)].

【0028】ビード除去加工を受けた鋼管は、溶接部熱
処理及びサイザーによる縮管成形加工を経て鉄塔用の大
径厚肉電縫鋼管とされるが、ビード除去加工後の鋼管を
そのままサイザーに送ったのでは、サイザー成形で段差
部が圧下され、これに起因する加工硬化部が溶融亜鉛め
っき割れ感受性を高める原因となる。
The steel pipe subjected to bead removal processing is subjected to heat treatment at the welded portion and contracted pipe forming processing with a sizer to be a large diameter thick-walled electric resistance welded steel pipe for a steel tower. However, the stepped portion is pressed down by the sizer molding, and the work-hardened portion resulting from this is a cause of increasing the susceptibility to hot dip galvanizing.

【0029】そこで本発明では、サイザー成形より前に
段差部を除去する。段差部を除去する方法としては、バ
イトによる切削、ベルダ(グラインダ)による研削、或
いは他の機械的手段による切削又は研削があるが、押し
潰しは含まない。押し潰しは、加工硬化を伴い、溶融亜
鉛めっき割れ感受性を高める原因となる。
Therefore, in the present invention, the step portion is removed before the sizer molding. Methods for removing the stepped portion include cutting with a cutting tool, grinding with a velder (grinder), and cutting or grinding with other mechanical means, but crushing is not included. Crushing is accompanied by work hardening and becomes a cause of increasing susceptibility to hot dip galvanizing cracking.

【0030】また、段差部があってもその高さが0.1
mm以下の場合は、サイザー成形での圧下による加工硬
化が軽微であり、そのミクロ硬さが260Hvを超えな
いので、溶融亜鉛めっき割れ感受性を高める原因にはな
らない。従って、0.1mm以下の段差部は放置してよ
く、一方、段差部を除去する場合にあってはその高さを
0.1mm以下にする必要がある。また、傾斜角度θが
45°未満の段差部は加工硬化が比較的軽微であるの
で、放置してもよい。
Even if there is a step, the height is 0.1.
When it is less than or equal to mm, work hardening due to reduction in sizer molding is slight, and its microhardness does not exceed 260 Hv, so it does not become a cause for increasing hot-dip galvanizing crack susceptibility. Therefore, the stepped portion of 0.1 mm or less may be left unattended, while the height of the stepped portion needs to be 0.1 mm or less when removing the stepped portion. Further, since the work hardening of the step portion having the inclination angle θ of less than 45 ° is relatively slight, it may be left.

【0031】このような段差部除去加工をサイザー成形
前に行うことにより、サイザー成形では段差部の圧下に
よる加工硬化が回避され、鉄塔用の大径厚肉電縫鋼管で
の溶融亜鉛めっき割れの原因が取り除かれる。この段差
部除去加工プロセスを含む電縫鋼管製造方法が本発明の
第1の製造方法であり、また、この加工を受けることに
より、耐溶融亜鉛めっき割れ性の向上した電縫鋼管が本
発明の第1の電縫鋼管である。
By performing such step removal processing before sizer molding, work hardening due to reduction of the step is avoided in sizer molding, and hot dip galvanizing cracks in large-diameter thick ERW steel pipes for steel towers are avoided. The cause is removed. A method for producing an electric resistance welded steel pipe including this step removing process is the first production method of the present invention, and an electric resistance welded steel pipe having improved hot dip galvanization cracking resistance of the present invention is subjected to this processing. This is the first ERW pipe.

【0032】この段差部除去加工を行う段階は、サイザ
ー成形の前であれば、溶接部熱処理の前でも後でもよ
い。ちなみに、溶接部熱処理は、鋼管の少なくともHA
Z部を含む溶接部近傍をAr3点以上に加熱した後、A
c1点以下までを空冷以上の冷却し、その後必要に応じ
て550℃以上Ac1点以下の温度に再加熱した後、空
冷以上の冷却速度で冷却することにより行われる。
The step of removing the step may be performed before or after the heat treatment of the welded portion as long as it is before the sizer molding. By the way, the weld heat treatment is at least HA of the steel pipe.
After heating the vicinity of the weld including the Z part to 3 or more points of Ar,
It is carried out by cooling to c1 point or less by air cooling or more, then reheating to a temperature of 550 ° C. or more and Ac1 point or less as necessary, and then cooling at a cooling rate of air cooling or more.

【0033】また、本発明ではサイザー成形前の段差部
除去加工に代えて、或いは必要に応じて段差部除去加工
に加えて、サイザー成形後に段差部の圧下によって生じ
た冷間加工硬化部を除去することも可能である。この硬
化部除去は機械的に行う
Further, in the present invention, instead of the step removing process before the sizer molding, or in addition to the step removing process as required, the cold work hardening part caused by the reduction of the step after the sizer molding is removed. It is also possible to do so. This hardened part is removed mechanically .

【0034】機械的方法としては、バイトによる表面切
削やベルダ(グラインダ)による表面研削がある。この
表面切削又は研削は、全表面に対して行う必要はなく、
少なくとも加工硬化部に対して行えばよい。また、段差
部がサイザー成形されて、めっき割れ上問題となる加工
硬化(260Hv以上)を生じる範囲は、表面からの肉
厚方向の深さdでほぼ0.1mmであることが確かめら
れているので、表面の削り代は0.1mm以上を必要と
する。しかし、過度の削り込みは鋼管の肉厚減少及び効
果の飽和を招く。また、後述するように、深層の硬化部
はめっき割れの原因にならない。望ましい削り代は0.
15〜0.3mmである。
Mechanical methods include surface cutting with a cutting tool and surface grinding with a velder (grinder). This surface cutting or grinding does not have to be performed on all surfaces,
It may be performed at least for the work hardening part. Further, it has been confirmed that the range in which the step portion is sizer-formed to cause work hardening (260 Hv or more), which is a problem in plating cracking, is about 0.1 mm in the depth d in the thickness direction from the surface. Therefore, the surface cutting margin needs to be 0.1 mm or more. However, excessive shaving reduces the wall thickness of the steel pipe and saturates the effect. Further, as will be described later, the hardened portion in the deep layer does not cause plating cracks. The desired cutting allowance is 0.
It is 15 to 0.3 mm.

【0035】[0035]

【0036】このような硬化部除去加工をサイザー成形
後に行うことにより、鉄塔用大径厚肉電縫鋼管での溶融
亜鉛めっき割れの原因となる加工硬化部が除去され、そ
の割れ感受性が低下する。この加工のプロセスを含む電
縫鋼管製造方法が本発明の第2の製造方法である。ま
た、この加工を受けることにより耐溶融亜鉛めっき割れ
性の向上した電縫鋼管が本発明の第2の電縫鋼管であ
る。
By carrying out such hardened portion removing processing after the sizer molding, the work hardened portion which causes hot dip galvanizing cracks in the large-diameter thick ERW steel pipe for steel towers is removed, and the cracking susceptibility is lowered. . ERW manufacturing method comprising a process of processing a second manufacturing method of the present invention. Further, an electric resistance welded steel pipe having improved resistance to hot dip galvanizing cracking by undergoing this processing is the second electric resistance welded steel pipe of the present invention.

【0037】そして、このような段差部除去や硬化部除
去を鋼管の全長に実施し、電縫溶接ビードの両側部分に
対応する部分のミクロ硬度を、少なくとも外表面から肉
厚方向に0.2mmの範囲において、当該鋼管の実質全
長にわたり260Hv以下とすることにより、電縫溶接
部近傍の耐溶融亜鉛めっき割れは完全なものとなる。
Then, such steps and hardened portions are removed over the entire length of the steel pipe, and the micro hardness of the portions corresponding to both sides of the electric resistance weld bead is 0.2 mm at least from the outer surface in the thickness direction. In the above range, by setting the steel pipe to 260 Hv or less over substantially the entire length of the steel pipe, the hot dip galvanizing crack near the electric resistance welded portion becomes complete.

【0038】ミクロ硬度が260Hvを超える部分が存
在すると、この部分が溶融亜鉛めっき割れの起点とな
る。また、耐溶融亜鉛めっき割れ性の指標となる浴中伸
び(図2にて定義)がこの部分で2%以下となる。望ま
しいミクロ硬度は250Hv以下である。なお、この硬
度はビッカース硬度計を用いて、荷重100〜500g
程度で測定した値である。
If there is a portion having a micro hardness of more than 260 Hv, this portion becomes the starting point of hot dip galvanizing cracks. Further, the elongation in the bath (defined in FIG. 2), which is an index of hot-dip galvanizing cracking resistance, is 2% or less in this portion. A desirable micro hardness is 250 Hv or less. The hardness is 100-500 g using a Vickers hardness tester.
It is a value measured in degree.

【0039】鋼管全体の平均硬さは強度レベルにもよる
が、55キロ級で200〜220Hv、60キロ級でせ
いぜい230Hv程度までであり、電縫HAZ部の硬さ
も軟化熱処理を受けることによりこの程度の硬さに管理
されている。従来の鉄塔用の大径厚肉電縫鋼管では、溶
接部近傍に軟化熱処理が施されているにもかかわらず、
溶接ビードの両側部分に対応する部分に、ビード部の削
り残しに伴う段差部に起因する260Hv超の局部的な
加工硬化部が形成され、これが溶融亜鉛めっき割れの原
因となる可能性があった。
Although the average hardness of the entire steel pipe depends on the strength level, it is 200 to 220 Hv in the 55 kg class and up to about 230 Hv in the 60 kg class, and the hardness of the electric resistance welded HAZ part is also affected by the softening heat treatment. It is controlled to a certain degree of hardness. In the conventional large-diameter thick ERW steel pipe for steel towers, despite softening heat treatment near the weld,
A local work-hardened portion of more than 260 Hv due to a step portion due to the uncut portion of the bead portion was formed in a portion corresponding to both sides of the weld bead, and this might cause hot dip galvanization cracking. .

【0040】また、鉄塔用の大径厚肉電縫鋼管における
溶融亜鉛めっき割れの発生は、鋼管の外表面に限定され
る。それは外表面側において、電縫鋼管の残留応力並び
に溶融亜鉛めっき時の熱応力が引張応力となり、割れの
発生と伝播を加速するからである。また、この割れは、
溶融亜鉛が鋼管表面から粒界へ侵入することによって引
き起こされることにもよる。
The occurrence of hot dip galvanizing cracks in a large-diameter thick ERW steel pipe for steel towers is limited to the outer surface of the steel pipe. This is because, on the outer surface side, the residual stress of the electric resistance welded steel pipe and the thermal stress at the time of hot dip galvanizing become tensile stress, which accelerates the generation and propagation of cracks. Also, this crack is
It is also caused by the fact that molten zinc penetrates into the grain boundaries from the surface of the steel pipe.

【0041】これらのことから、溶融亜鉛に触れる外表
面を除けば、その影響が及ぶのは肉厚方向の深さでせい
ぜい0.2mmまでであり、外表面からの肉厚方向の深
さが0.2mmの範囲でミクロ硬さが260Hv以下で
あれば、耐溶融亜鉛めっき割れ性の観点からは十分であ
る。言い換えれば、外表面から0.2mmを超える内表
面側で260Hvを超える硬さとなっても、耐溶融亜鉛
めっき割れ性は損なわれない。従って、ミクロ硬さを2
60Hv以下に規定する範囲は、少なくとも外表面から
肉厚方向に0.2mmの範囲とした。
From these facts, except for the outer surface which is in contact with molten zinc, the influence is up to 0.2 mm at the depth in the thickness direction, and the depth in the thickness direction from the outer surface is affected. If the micro hardness is 260 Hv or less in the range of 0.2 mm, it is sufficient from the viewpoint of hot-dip galvanizing crack resistance. In other words, even if the hardness exceeds 260 Hv on the inner surface side exceeding 0.2 mm from the outer surface, the hot-dip galvanizing crack resistance is not impaired. Therefore, the micro hardness is 2
The range defined as 60 Hv or less is at least 0.2 mm in the thickness direction from the outer surface.

【0042】[0042]

【実施例】次に本発明の実施例を示し、比較例と対比す
ることにより、本発明の効果を明らかにする。
EXAMPLES Next, examples of the present invention will be shown, and the effects of the present invention will be clarified by comparison with comparative examples.

【0043】表1に示す組成の熱延鋼帯を素材とし、造
管成形−電縫溶接−溶接ビード除去−溶接部熱処理−サ
イザーによる縮管の各工程により、表2に示す仕様の鉄
塔用大径厚肉電縫鋼管を製造した。いずれの電縫鋼管に
おいても鋼中C量は0.12%以上であり、外径は45
7mm以上、肉厚は14mm以上である。
Using a hot-rolled steel strip having the composition shown in Table 1, as a raw material, for steel towers having the specifications shown in Table 2 by pipe forming-electric resistance welding-welding bead removal-weld portion heat treatment-condensation pipe with a sizer A large-diameter thick ERW steel pipe was manufactured. In all of the electric resistance welded steel pipes, the C content in steel is 0.12% or more and the outer diameter is 45
It is 7 mm or more and the wall thickness is 14 mm or more.

【0044】このとき、溶接ビード切削用のビード位置
を単位長さずつ段階的に変化させ、意図的に削り残し部
分を発生させることにより、種々の高さの段差部を形成
し、単位長での段差部の最大高さを段差高さとした。段
差部が形成された鋼管の一部分に、サイザー成形より前
の段階で段差部をベルダにより表面研削する加工を行っ
た。サイザー成形後の鋼管を単位長ずつ切断してグルー
プ分けした。
At this time, the bead position for welding the bead is changed stepwise by the unit length to intentionally generate the uncut portion, thereby forming stepped portions of various heights, and by the unit length. The maximum height of the stepped portion was defined as the stepped height. A part of the steel pipe in which the step portion was formed was subjected to surface grinding with a velder before the step of forming the sizer. The steel pipe after the sizer molding was cut into unit lengths and divided into groups.

【0045】あるグループは切断まま溶接部付近から瓦
状の試片を切り出し、溶接部近傍の外表面に圧下がかか
らないように展開してから、外表面をそのまま残して、
図3に示す引張試験片を採取した。そして、引張試験片
において外表面の最高ミクロ硬度を測定すると共に、試
験片を蒸留亜鉛浴中引張試験に供して、図3に定義され
る浴中伸びを調査し、これが2%以上あるものを耐溶融
亜鉛めっき割れ性が良好とした。
In one group, a tile-shaped test piece was cut out from the vicinity of the welded portion as it was, expanded so as not to apply a reduction to the outer surface near the welded portion, and then the outer surface was left as it was.
The tensile test piece shown in FIG. 3 was sampled. Then, the maximum microhardness of the outer surface of the tensile test piece was measured, and the test piece was subjected to a tensile test in a distilled zinc bath to examine the elongation in the bath defined in FIG. The hot-dip galvanizing crack resistance was considered good.

【0046】別のグループについては、サイザー成形
後、ベルダにより溶接部両側の外表面をそれぞれ約20
mmの幅で管長方向に全長研削することにより、サイザ
ー成形で段差部が圧下されて形成された加工硬化部を機
械的に除去し、同様の調査を行った。
In another group, after molding with a sizer, the outer surfaces on both sides of the welded portion are each about 20 by a velder.
By performing full length grinding in the pipe length direction with a width of mm, the work hardened portion formed by pressing down the step portion by sizer molding was mechanically removed, and the same investigation was conducted.

【0047】[0047]

【0048】ちなみに、溶接ビード幅w(図1参照)
は、鋼Aで平均6mm、鋼Bで平均8mmであった。
Incidentally, the weld bead width w (see FIG. 1)
Was 6 mm on average for Steel A and 8 mm on average for Steel B.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】調査結果を表3に示す。なお、鋼管仕様を
示す表2において、YS,TS,Hv(5kg)は、鋼
管に形成した後の母材部で試験した値である。また、H
v(5kg)は、荷重5kgにて測定した値であり、外
表面の冷間加工による硬化は、この荷重5kgでは測定
されない。
The results of the investigation are shown in Table 3. In Table 2 showing the steel pipe specifications, YS, TS, and Hv (5 kg) are values tested on the base metal portion after forming the steel pipe. Also, H
v (5 kg) is a value measured with a load of 5 kg, and hardening of the outer surface by cold working is not measured with this load of 5 kg.

【0053】試番1,2,21,22はサイザー前の段
差が0.1mmを超え、且つ、この段差を放置したもの
である。結果として、サイザー後の表面硬度が260H
vを超え、耐溶融亜鉛めっき性は不芳(浴中伸びが2%
未満)となった。
Trial Nos. 1, 2, 21, and 22 are those in which the step difference in front of the sizer exceeds 0.1 mm and the step difference is left unattended. As a result, the surface hardness after sizer is 260H.
v, the hot-dip galvanizing resistance is poor (elongation in the bath is 2%
Less than).

【0054】試番3〜5,23〜25はサイザー前の段
差が0.1mmを超えるも、この段差を0.1mm以下
に研削したものである。サイザー後の表面硬度は260
Hv以下となり、耐溶融亜鉛めっき性は良好(浴中伸び
が2%以上)となった。
Test Nos. 3 to 5 and 23 to 25 are those in which the step before the sizer exceeds 0.1 mm, but the step is ground to 0.1 mm or less. Surface hardness after sizer is 260
It was Hv or less, and the hot dip galvanizing resistance was good (elongation in the bath was 2% or more).

【0055】試番6,26は、試番1,2,21,22
と同様、サイザー前の段差が0.1mmを超え、且つ、
この段差を放置したものである。サイザー後の表面硬度
は260Hvを超え、耐溶融亜鉛めっき性は不芳となっ
た。
The trial numbers 6 and 26 are trial numbers 1, 2, 21 and 22.
Similar to, the step in front of the sizer exceeds 0.1 mm, and
This step is left unattended. The surface hardness after the sizer exceeded 260 Hv, and the hot dip galvanizing resistance was poor.

【0056】試番7,27はサイザー前の段差が0.1
mmを超えたので、サイザー後に表面をベルダ研削した
が、研削量が0.1mmに達しなかったものである。段
差による表面硬化層が十分に除去されず、結果として表
面硬度が260Hvを超える部分が残り、耐溶融亜鉛め
っき性は不芳となった。
The trial numbers 7 and 27 have a step difference of 0.1 in front of the sizer.
Since the diameter exceeded 0.1 mm, the surface was velder ground after the sizer, but the grinding amount did not reach 0.1 mm. The surface hardened layer due to the step was not sufficiently removed, and as a result, a portion having a surface hardness of more than 260 Hv remained, and the hot dip galvanizing resistance became poor.

【0057】試番8〜10,28〜30はサイザー前の
段差が0.1mmを超えるも、サイザー後に表面を0.
1mm以上研削したものである。段差による表面硬化層
が除去され、サイザー後の表面硬度は260Hvを超え
ず、耐溶融亜鉛めっき性は良好となった。
In the test Nos. 8 to 10 and 28 to 30, the step before the sizer exceeds 0.1 mm, but the surface after the sizer is 0.
It is ground by 1 mm or more. The surface hardened layer due to the step was removed, the surface hardness after sizer did not exceed 260 Hv, and the hot dip galvanizing resistance was good.

【0058】[0058]

【0059】[0059]

【発明の効果】以上の説明から明らかなように、本発明
の鉄塔用電縫鋼管及びその製造方法は、鉄塔に使用され
る大径厚肉電縫鋼管の溶接部近傍に特徴的に生じる溶融
亜鉛めっき割れを防止することにより、大型鉄塔への電
縫鋼管の適用を可能にし、これにより大型鉄塔の建設コ
スト低減を可能にする。
As is apparent from the above description, the electric resistance welded steel pipe for a steel tower and the method for producing the same according to the present invention are characterized by the melting characteristically occurring in the vicinity of the welded portion of the large diameter thick wall electric resistance welded steel pipe used in the steel tower. By preventing galvanizing cracks, it will be possible to apply electric resistance welded steel pipes to large steel towers, which will reduce the construction cost of large steel towers.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶融亜鉛めっき割れの原因となる段差部及びこ
れに起因する硬化部の発生メカニズムを示す概念図であ
る。
FIG. 1 is a conceptual diagram showing a mechanism of generation of a step portion which causes hot-dip galvanizing cracks and a hardened portion caused by the step portion.

【図2】耐溶融亜鉛めっき割れ性の指標となる浴中伸び
の説明図である。
FIG. 2 is an explanatory view of elongation in a bath, which is an index of hot-dip galvanizing cracking resistance.

【図3】浴中伸びを調査するための試験片の寸法図であ
る。
FIG. 3 is a dimensional drawing of a test piece for investigating elongation in a bath.

【符号の説明】[Explanation of symbols]

1 鋼管 2 溶接ビード 3 段差部 4 硬化部 1 steel pipe 2 weld beads 3 steps 4 curing section

フロントページの続き (72)発明者 川端 欣哉 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 櫛田 隆弘 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 梶原 靖司 和歌山県和歌山市湊1850番地 住友金属 工業株式会社和歌山製鉄所内 (72)発明者 久宗 信之 和歌山県和歌山市湊1850番地 住友金属 工業株式会社和歌山製鉄所内 (56)参考文献 特開 平6−136481(JP,A) 特開 平8−144008(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 Front page continued (72) Inventor Kinya Kawabata 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Company (72) Inventor Takahiro Kushida 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Sumitomo Metal Industry Co., Ltd. (72) Inventor Yasushi Kajiwara, 1850 Minato, Wakayama, Wakayama Sumitomo Metal Industries, Ltd.Wakayama Steel Works (72) Nobuyuki Kusou, 1850, Minato, Wakayama, Wakayama Sumitomo Metal Industries, Ltd. 56) References JP-A-6-136481 (JP, A) JP-A-8-144008 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼中C量が重量比で0.12%以上で、
外径が457mm以上、肉厚が14mm以上である大径
厚肉の鉄塔用電縫鋼管であって、電縫溶接ビードが除去
される第1の表面加工を受け、且つ、第1の表面加工の
後に当該加工部近傍に部分的に残る段差部が除去される
第2の表面加工を受けていることを特徴とする耐溶融亜
鉛めっき割れ性に優れる鉄塔用電縫鋼管。
1. The amount of C in steel is 0.12% or more by weight,
A large-diameter, thick-walled electric resistance welded steel pipe for a steel tower having an outer diameter of 457 mm or more and a wall thickness of 14 mm or more, which has undergone a first surface treatment for removing an electric resistance weld bead and also has a first surface treatment. An electric resistance welded steel pipe for a steel tower having excellent resistance to hot-dip galvanizing cracking, which is characterized by being subjected to a second surface treatment in which a step portion partially remaining near the processed portion is removed.
【請求項2】 鋼中C量が重量比で0.12%以上で、
外径が457mm以上、肉厚が14mm以上である大径
厚肉の鉄塔用電縫鋼管であって、電縫溶接ビードが除去
される第1の表面加工を受け、且つ、第1の表面加工の
後に当該加工部近傍に部分的に残る段差部に起因して当
該近傍に生じる加工硬化部が除去される第2の表面加工
を受けていることを特徴とする耐溶融亜鉛めっき割れ性
に優れる鉄塔用電縫鋼管。
2. The C content in steel is 0.12% or more by weight,
A large-diameter, thick-walled electric resistance welded steel pipe for a steel tower having an outer diameter of 457 mm or more and a wall thickness of 14 mm or more, which has undergone a first surface treatment for removing an electric resistance weld bead and also has a first surface treatment. Hot dip galvanizing, characterized by being subjected to a second surface treatment for removing a work-hardened portion generated in the vicinity of the processed portion due to a step portion partially remaining in the vicinity of the processed portion. ERW steel pipe for steel towers with excellent crackability.
【請求項3】 鋼中C量が重量比で0.12%以上で重
量比である熱延鋼帯を素材として、造管成形−電縫溶接
−溶接ビード除去加工−溶接部熱処理−サイザーによる
縮管加工の各工程により、外径が457mm以上、肉厚
が14mm以上である大径厚肉の鉄塔用電縫鋼管を製造
する方法において、電縫溶接ビード除去加工を終えた後
サイザーによる縮管を行う前の段階で、電縫溶接ビード
除去加工部近傍に残る表面段差を0.1mm以下に切削
又は研削することを特徴とする鉄塔用電縫鋼管の製造方
法。
3. Pipe forming-electric resistance welding-welding bead removal processing-weld zone heat treatment-by sizer, using a hot-rolled steel strip having a C content in the steel of 0.12% or more by weight as a weight ratio. In a method for producing a large-diameter thick-walled electric-resistance welded steel pipe for a steel tower having an outer diameter of 457 mm or more and a wall thickness of 14 mm or more by each process of reducing pipe processing, after the electric-resistance welding weld bead removing process is completed, reduction by a sizer is performed. A method for producing an electric resistance welded steel pipe for a steel tower, which comprises cutting or grinding a surface step remaining in the vicinity of a portion where an electric resistance welded bead is removed to a depth of 0.1 mm or less before the pipe is formed.
【請求項4】 鋼中C量が重量比で0.12%以上で重
量比である熱延鋼帯を素材として、造管成形−電縫溶接
−溶接ビード除去加工−溶接部熱処理−サイザーによる
縮管加工の各工程により、外径が457mm以上、肉厚
が14mm以上である大径厚肉の鉄塔用電縫鋼管を製造
する方法において、サイザーによる縮管加工を行った後
の段階で、少なくとも電縫溶接ビード除去加工部近傍の
表面を0.1mm以上の深さに切削又は研削することを
特徴とする鉄塔用電縫鋼管の製造方法。
4. A pipe forming-electric resistance welding-welding bead removing process-weld portion heat treatment-by using a sizer, using a hot-rolled steel strip having a C content in steel of 0.12% or more by weight as a weight ratio. In the method for manufacturing a large diameter thick-walled electric resistance welded steel pipe for a steel tower having an outer diameter of 457 mm or more and a wall thickness of 14 mm or more by each step of the shrinking process, after performing the shrinking process with a sizer, A method for manufacturing an electric resistance welded steel pipe for a steel tower, which comprises cutting or grinding at least a surface of a portion near an ERW weld bead removing processed portion to a depth of 0.1 mm or more.
JP36825297A 1997-12-25 1997-12-25 ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same Expired - Fee Related JP3377428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36825297A JP3377428B2 (en) 1997-12-25 1997-12-25 ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36825297A JP3377428B2 (en) 1997-12-25 1997-12-25 ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11189844A JPH11189844A (en) 1999-07-13
JP3377428B2 true JP3377428B2 (en) 2003-02-17

Family

ID=18491345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36825297A Expired - Fee Related JP3377428B2 (en) 1997-12-25 1997-12-25 ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3377428B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998821B2 (en) * 2007-03-14 2012-08-15 住友金属工業株式会社 Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP4998820B2 (en) * 2007-03-14 2012-08-15 住友金属工業株式会社 Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method

Also Published As

Publication number Publication date
JPH11189844A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
US10016837B2 (en) Method of joining heat-treatable aluminum alloy members by friction stir welding
EP0466606B1 (en) Process for manufacturing corrosion-resistant welded titanium alloy tubes and pipes
CN108025401B (en) Arc fillet weld and method for manufacturing same
CN1829816A (en) Method for producing a hardened profile part by a thin steel plate
JP2023120195A (en) Method for producing welded steel blank by providing filler wire with predefined carbon content, associated welded blank, hot press-formed and cooled steel part, and method for producing welded part using associated part
US20170333971A1 (en) Method for producing a component by subjecting a sheet bar of steel to a forming process
JP2007154257A (en) Tailored blank material for hot press, hot press member and its production method
US7892368B2 (en) UOE steel pipe excellent in collapse strength and method of production thereof
CN112437710B (en) Steel sheet, tailor-welded blank, hot-press molded article, steel pipe, hollow quenched molded article, and method for producing these
EP3433387B1 (en) Method for manufacturing cold-rolled, welded steel sheets, and sheets thus produced
US20200271247A1 (en) Steel sheet, tailored blank, hot stamped product, steel pipe, hollow hot stamped product, method of manufacturing steel sheet, method of manufacturing tailored blank, method of manufacturing hot stamped product, method of manufacturing steel pipe, and method of manufacturing hollow hot stamped product
JP7047387B2 (en) Manufacturing methods for steel sheets, butt welded members, hot pressed molded products, steel pipes, hollow hardened products, and steel plates.
JP3377428B2 (en) ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same
JP3419289B2 (en) Manufacturing method of ERW steel pipe
WO2020152887A1 (en) Steel sheet, tailored blank, hot-press molded article, steel pipe, hollow quenched molded article, and method for producing steel sheet
JPH09194998A (en) Welded steel tube and its production
JP2650558B2 (en) Manufacturing method of high workability welded steel pipe
JPH0454728B2 (en)
JP7099330B2 (en) Steel Sheet, Tailored Blank, Hot Press Formed Product, Steel Tubular Tailored Blank, Hollow Hot Press Formed Product, and Steel Sheet Manufacturing Method
JP2000317642A (en) Flash butt welding method for high-carbon steel sheet or steel strip
JP2827839B2 (en) Method of manufacturing high strength, thick wall, high toughness bend steel pipe
JPH09194997A (en) Welded steel tube and its production
CN114450456B (en) Square steel pipe, method for producing same, and building structure
JP2542293B2 (en) Manufacturing method of ERW steel pipe with less hardening of ERW welded part
JP3232040B2 (en) Method of manufacturing high carbon steel ERW steel pipe for high workability machine structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees