JPH11189844A - Resistance welded steel tube for steel tower, excellent in hot dip galvanizing crack resistance, and its production - Google Patents

Resistance welded steel tube for steel tower, excellent in hot dip galvanizing crack resistance, and its production

Info

Publication number
JPH11189844A
JPH11189844A JP36825297A JP36825297A JPH11189844A JP H11189844 A JPH11189844 A JP H11189844A JP 36825297 A JP36825297 A JP 36825297A JP 36825297 A JP36825297 A JP 36825297A JP H11189844 A JPH11189844 A JP H11189844A
Authority
JP
Japan
Prior art keywords
steel
erw
pipe
steel pipe
sizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36825297A
Other languages
Japanese (ja)
Other versions
JP3377428B2 (en
Inventor
Shuji Furukawa
修次 古川
Yasuhiro Yamamoto
康裕 山元
Kinya Kawabata
欣哉 川端
Takahiro Kushida
隆弘 櫛田
Yasushi Kajiwara
靖司 梶原
Nobuyuki Hisamune
信之 久宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nippon Steel Corp
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Metal Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP36825297A priority Critical patent/JP3377428B2/en
Publication of JPH11189844A publication Critical patent/JPH11189844A/en
Application granted granted Critical
Publication of JP3377428B2 publication Critical patent/JP3377428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of hot dip galvanizing crack in the vicinity of a weld zone, which is the problem of a resistance welded steel tube, for steel tower, having >=0.12% C content in the steel and also having >=457 mm outside diameter and >=14 mm wall thickness. SOLUTION: A weld bead 2 resultant from resistance welding is cut, and also a stepped part 3 resultant from the uncut remainder of the weld bead 2 is removed before sizer forming. Instead of the removal of the stepped part 3, a hardened part 4 resultant from the application of reduction to the stepped part 3 at the time of sizer forming is removed after sizer forming. By these procedures, the part having surface microhardness exceeding 260 Hv can be removed from the vicinity of a resistance welded zone, and the occurrence of hot dip galvanizing crack can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、送電用鉄塔、特に
大型鉄塔に使用される大径厚肉の鉄塔用電縫鋼管及びそ
の製造方法に関し、更に詳しくは、耐溶融亜鉛めっき割
れ性に優れる鉄塔用電縫鋼管及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission tower, particularly to a large-diameter thick-walled electric resistance welded steel pipe used for a large tower, and more particularly to a method for manufacturing the same. The present invention relates to an electric resistance welded steel pipe for a steel tower and a method for producing the same.

【0002】[0002]

【従来の技術】送電用鉄塔に使用される鋼管のうち、大
型鉄塔用の大径厚肉鋼管にはUOE鋼管が使用されてい
る。また、その防錆手段としては、鋼管サイズに関係な
く溶融亜鉛めっきが用いられている。溶融亜鉛めっき
は、周知の通り、約450℃の溶融亜鉛中に対象物を浸
漬してめっきを行う方法であり、鉄塔用鋼管の場合は、
フランジを始めとする各種の取り付け部材を鋼管に溶接
した後の溶接鋼構造物に対して、この溶融亜鉛めっきが
実施される。
2. Description of the Related Art Among steel pipes used for power transmission towers, UOE steel pipes are used for large-diameter thick steel pipes for large towers. In addition, hot-dip galvanizing is used as the rust prevention means regardless of the steel pipe size. As is well known, hot-dip galvanizing is a method of immersing an object in hot-dip zinc at about 450 ° C. to perform plating.
This hot-dip galvanizing is performed on a welded steel structure after welding various mounting members including a flange to a steel pipe.

【0003】溶接鋼構造物に対する溶融亜鉛めっきで
は、主として溶接熱影響部(以下HAZ部と称す)に粒
界割れが発生することがあり、鉄塔用鋼管の場合は取り
付け部材の溶接に伴うHAZ部での割れが問題にされて
いる。この溶融亜鉛めっき割れは、粗粒化したHAZ部
粒界への液体亜鉛の侵入と、溶接部の残留応力や浴浸漬
時に発生する熱応力とが重畳して生じ、一般に高強度材
ほど多く発生する傾向を示し、HAZ部の硬さが260
−270Hvを超えると極めて割れ感受性が高くなる。
In hot-dip galvanizing of a welded steel structure, grain boundary cracking may occur mainly in a heat affected zone (hereinafter, referred to as a HAZ portion). In the case of a steel pipe for a steel tower, the HAZ portion accompanying the welding of a mounting member is sometimes used. Cracking at has been a problem. This hot-dip galvanizing crack is generated by superimposition of penetration of liquid zinc into the grain boundary of the coarse-grained HAZ, thermal stress generated at the time of immersion in a bath, and residual stress at a welded portion. And the hardness of the HAZ portion is 260
If it exceeds -270 Hv, the cracking sensitivity becomes extremely high.

【0004】溶接鋼構造物の溶融亜鉛めっき割れについ
ては、その因子である応力と材料については広く研究さ
れ、その防止法として、溶接部の残留応力の低減や、熱
応力の少ない浴浸漬法、構造物の形状などが研究開発さ
れている。また、材料面からも、合金元素量を規定して
耐溶融亜鉛めっき割れ性を高めた鋼材などが提案されて
いる(特公平2−5814号公報)。
With respect to hot-dip galvanizing cracking of welded steel structures, stress and material which are factors thereof have been studied extensively, and as methods for preventing them, reduction of residual stress in welds, bath immersion method with less thermal stress, Research and development have been conducted on the shape of structures. Further, from the viewpoint of the material, a steel material or the like in which the amount of alloying elements is specified to enhance the hot-dip galvanizing crack resistance has been proposed (Japanese Patent Publication No. 2-5814).

【0005】[0005]

【発明が解決しようとする課題】ところで、大径厚肉の
鉄塔用鋼管については、これまでUOE鋼管が使用され
てきたが、最近になって、UOE鋼管よりも製管コスト
の安い電縫鋼管への転換が一部で進められいる。出願人
は比較的早くこの転換に着手し、それ以来種々研究を続
けているが、その過程で鉄塔用の大径厚肉電縫鋼管には
次のような問題のあることが判明した。
By the way, UOE steel pipes have hitherto been used as large-diameter thick-wall steel pipes for steel towers, but recently, ERW steel pipes having lower pipe manufacturing costs than UOE steel pipes have been used. Conversion to some is being promoted. The applicant started this conversion relatively early, and has been conducting various studies since then. In the course of the research, it has been found that large-diameter thick-wall ERW pipes for steel towers have the following problems.

【0006】鉄塔用の大径厚肉電縫鋼管も通常の電縫鋼
管と同様に、熱延鋼帯を素材として造管成形−電縫溶接
−溶接ビード除去加工−溶接部熱処理−サイザーによる
縮管加工の各工程により製造されるが、サイズは通常の
電縫鋼管よりも大径厚肉であり、製造された電縫鋼管に
対しては、種々の取り付け部材の溶接が行われた後、防
錆のための溶融亜鉛めっきが実施される。
[0006] Large-diameter thick-wall ERW steel pipes for steel towers, like ordinary ERW steel pipes, are formed from hot-rolled steel strip as pipes, ERW welding, welding bead removal processing, welding heat treatment, and shrinking with a sizer. Manufactured by each process of pipe processing, the size is larger diameter and thicker than normal ERW steel pipe, after welding of various mounting members to the manufactured ERW steel pipe, Hot-dip galvanizing for rust prevention is performed.

【0007】ところが、鉄塔用の大径厚肉電縫鋼管は、
電縫HAZ部を含む電縫溶接部近傍が熱処理により軟化
されているにもかかわらず、溶融亜鉛めっきを行った場
合には、鋼管本体の電縫溶接部近傍にめっき割れを生じ
る危険のあることが判明した。同じ溶接鋼管でもUOE
鋼管の場合は、取り付け部材の溶接に伴うHAZ部に割
れが生じることはあっても、シーム溶接部近傍を含む鋼
管本体の側にめっき割れが生じることはない。また、同
じ鉄塔用電縫鋼管でも、本来の電縫製管サイズである小
中径管の場合は、このめっき割れは問題になっていな
い。これらのことから、電縫溶接部近傍に生じる溶融亜
鉛めっき割れは、鉄塔用の大径厚肉電縫鋼管に特有の現
象と判断される。
However, large-diameter thick-wall ERW steel pipes for steel towers are:
Despite the fact that the vicinity of the ERW weld, including the ERW HAZ, has been softened by heat treatment, there is a risk of plating cracking near the ERW weld of the steel pipe body when galvanizing is performed. There was found. UOE for the same welded steel pipe
In the case of a steel pipe, cracking may occur in the HAZ portion due to welding of the mounting member, but plating cracking does not occur on the side of the steel pipe main body including the vicinity of the seam weld. Even in the case of the same electric resistance welded steel pipe for a steel tower, in the case of a small-medium diameter pipe which is the original electric resistance welded pipe size, this plating crack is not a problem. From these facts, it is judged that the hot-dip galvanizing cracks generated in the vicinity of the ERW weld is a phenomenon peculiar to the large-diameter thick-wall ERW steel pipe for the steel tower.

【0008】そして、従来考えられているめっき割れ対
策は、取り付け部材の溶接に伴うHAZ部の割れに対し
ては有効であっても、鉄塔用の大径厚肉電縫鋼管に特有
の電縫溶接部近傍に生じる溶融亜鉛めっき割れに対して
は効力を有しない。
[0010] Although the conventional measures against plating cracking are effective for cracking of the HAZ part due to welding of the mounting member, the electric resistance specific to large-diameter thick-wall ERW steel pipes for steel towers is effective. It has no effect on hot-dip galvanizing cracks generated near the weld.

【0009】本発明の目的は、鉄塔用の大径厚肉電縫鋼
管に特有の電縫溶接部近傍の溶融亜鉛めっき割れに対し
て優れた耐性を示す、耐溶融亜鉛めっき割れ性に優れる
鉄塔用電縫鋼管及びその製造方法を提供することにあ
る。
An object of the present invention is to provide a steel tower having excellent resistance to hot-dip galvanizing cracks in the vicinity of an ERW weld peculiar to large-diameter thick-wall ERW steel pipes for steel towers and having excellent hot-dip galvanizing crack resistance. An electric resistance welded steel pipe and a method for manufacturing the same are provided.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは鉄塔用の大径厚肉電縫鋼管に特有の電
縫溶接部近傍の溶融亜鉛めっき割れの現象、原因、更に
は対策について、調査研究を行った。その結果、以下の
知見が得られた。
In order to achieve the above-mentioned object, the present inventors have developed a phenomenon, a cause, and a cause of a galvanizing crack near an ERW weld peculiar to a large-diameter thick-wall ERW steel pipe for a steel tower. In addition, we conducted research on countermeasures. As a result, the following findings were obtained.

【0011】電縫鋼管は、熱延鋼帯を素材として造管成
形−電縫溶接−溶接ビード除去加工−溶接部熱処理−サ
イザーによる縮管加工の各工程により製造される。この
ような電縫鋼管の製造では、電縫溶接でアプセットが行
われるため、図1(a)に示すように、電縫溶接部近傍
が鋼管1の主に外面側に膨らんで溶接ビード2を生じ、
この溶接ビード2は電縫溶接に続く工程でバイト等によ
り切削除去される。ところが、電縫製管ラインを進行す
る鋼管は不可避的に蛇行等を生じている。その結果、実
際の製管では、図1(b)に示すように、溶接ビード2
の削り残しに起因する段差部3が、鋼管長手方向に間欠
的に生じる。
The electric resistance welded steel pipe is manufactured by using a hot rolled steel strip as a raw material in the steps of pipe forming, electric resistance welding, welding bead removal processing, welding heat treatment, and pipe contracting by a sizer. In the production of such an electric resistance welded steel pipe, since the upset is performed by electric resistance welding, as shown in FIG. 1A, the vicinity of the electric resistance welded part is expanded mainly on the outer surface side of the steel pipe 1 and the weld bead 2 is formed. Arises
The weld bead 2 is cut and removed by a tool or the like in a process following the electric resistance welding. However, the steel pipe traveling along the ERW pipe line inevitably has meandering or the like. As a result, in an actual pipe production, as shown in FIG.
The stepped portion 3 due to the uncut portion of the steel pipe is generated intermittently in the longitudinal direction of the steel pipe.

【0012】段差部3が残った鋼管は、最終的にサイザ
ーによる縮管成形加工を受けるが、このとき段差部3の
高さhが大きいと(大きいといっても通常0.5mm以
下、0.2〜0.3mm程度であるが)、図1(b)
(c)に示すように、段差部3による凸部が加工時に冷
間で強く圧下され、段差部3の下部からその下方にかけ
てのハッチング部分4′に応力が集中することから、こ
のハッチング部分4′が加工硬化を起こし、この加工硬
化部4の溶融亜鉛めっき割れ感受性が高くなる。実際、
鉄塔用の大径厚肉電縫鋼管に特有の電縫溶接部近傍の溶
融亜鉛めっき割れは、溶接ビード2の両側部分に対応す
る部分に、位置的に対応して発生する現象であることが
確認されている。
The steel pipe in which the step 3 remains is finally subjected to a tube forming process by a sizer. At this time, if the height h of the step 3 is large (even if it is large, it is usually 0.5 mm or less, 0 mm or less). .2 to 0.3 mm), FIG.
As shown in (c), the convex portion formed by the step portion 3 is strongly pressed down cold during processing, and stress concentrates on a hatched portion 4 ′ from the lower portion of the step portion 3 to the lower portion thereof. ′ Causes work hardening, and the work hardened portion 4 becomes more sensitive to hot-dip galvanizing cracking. In fact,
Hot-dip galvanizing cracks near the ERW weld peculiar to large-diameter thick-wall ERW steel pipes for steel towers are phenomena that occur in positions corresponding to both sides of the weld bead 2 in a positionally corresponding manner. Has been confirmed.

【0013】そして、この割れが鉄塔用電縫鋼管のなか
でも大径厚肉管に特徴的に発生するのは、その鋼管が本
来はUOE製管で製造されるような大径厚肉(外径45
7mm以上、肉厚14mm以上)であり、且つ高強度
(強度50kgf/mm2 以上)であるため、サイザー
成形時に受ける圧下力が大きいこと、電縫溶接時のアプ
セット量が大きく、溶接ビード2及び段差部3の高さが
本質的に大きいこと、電縫鋼管の外径が大きくなるに従
ってその蛇行が顕著になり、段差部3の高さが増加する
傾向のあること、こられのために加工硬化が顕著となる
ことなどが原因と考えられる。一方、従来の鉄塔用大径
厚肉鋼管であるUOE鋼管に溶融亜鉛めっき割れが生じ
ないのは、この種の鋼管がサイザーによる縮管成形加工
を受けないことによる。
[0013] Among the ERW steel pipes for steel towers, this crack is characteristically generated in a large-diameter thick-walled pipe because the steel pipe is originally made of a UOE pipe. Diameter 45
7 mm or more, wall thickness of 14 mm or more) and high strength (strength of 50 kgf / mm 2 or more), so that a large rolling force is received at the time of sizer molding, the upset amount at the time of electric resistance welding is large, and the welding beads 2 and The fact that the height of the stepped portion 3 is essentially large, that the meandering becomes remarkable as the outer diameter of the ERW steel pipe increases, and that the height of the stepped portion 3 tends to increase, This is considered to be due to remarkable curing. On the other hand, the reason why hot-dip galvanizing cracks do not occur in UOE steel pipes, which are conventional large-diameter thick-walled steel pipes for steel towers, is that such steel pipes are not subjected to shrink-forming by a sizer.

【0014】電縫鋼管の母材強度は鋼中C量の影響を受
け、その鋼中C量が0.12%以上の場合に電縫溶接部
近傍の溶融亜鉛めっき割れ感受性が高まる。
The base metal strength of the ERW pipe is affected by the C content in the steel. When the C content in the steel is 0.12% or more, the susceptibility to hot-dip galvanization cracking near the ERW weld increases.

【0015】サイザー成形での冷間加工による硬化現象
は、溶接鋼構造物として問題になる取り付け部材のHA
Z部の硬化現象や、溶接部熱処理を受ける前の電縫HA
Z部の硬化現象とは全く異なるメカニズムのものである
が、溶融亜鉛めっき割れに及ぼす硬さの定量的な影響に
限って言えば、これらのHAZ部の硬化現象と同様の結
果となり、その硬さが260−270Hvを超えると溶
融亜鉛めっき割れ感受性が顕著に高くなる。
The hardening phenomenon caused by cold working in sizer molding is a problem for welded steel structures.
Z part hardening phenomena and ERW before welding heat treatment
Although it has a completely different mechanism from the hardening phenomenon of the Z part, the same result as the hardening phenomenon of the HAZ part is obtained as far as the quantitative effect of hardness on hot-dip galvanizing cracks is concerned. If it exceeds 260 to 270 Hv, the susceptibility to hot-dip galvanizing cracks is significantly increased.

【0016】このように、鉄塔用の大径厚肉電縫鋼管に
おいては、サイザーでの段差部の圧下が加工硬化を招
き、引いては溶融亜鉛めっき割れ感受性を高めるので、
サイザー成形に先立って段差部が除去されたものは、耐
溶融亜鉛めっき割れ性に優れるものとなる。また、段差
部が除去されずにサイザー成形を受けたものであって
も、サイザー成形で生じた加工硬化部が除去されたもの
は、耐溶融亜鉛めっき割れ性に優れるものとなる。更
に、製管工程における対策としては、サイザー成形に先
立って段差部を除去すること、及びサイザー成形の後に
そのサイザー成形で生じた加工硬化部を除去することが
有効となる。
As described above, in a large-diameter thick-walled electric resistance welded steel pipe for a steel tower, the reduction of the stepped portion by the sizer causes work hardening, and further increases the susceptibility to hot-dip galvanizing cracking.
The one from which the step is removed prior to the sizer molding has excellent hot-dip galvanizing crack resistance. In addition, even if the work hardened portion generated by the sizer molding is removed, even if the material is subjected to sizer molding without removing the stepped portion, the material has excellent hot-dip galvanizing crack resistance. Further, as a countermeasure in the pipe making process, it is effective to remove the stepped portion prior to the sizer molding and to remove the work hardened portion generated by the sizer molding after the sizer molding.

【0017】本発明は上記知見を基礎として完成された
ものであり、以下の鉄塔用電縫鋼管及びその製造方法を
要旨とする。
The present invention has been completed on the basis of the above findings, and has the following features of an electric resistance welded steel pipe for a steel tower and a method for producing the same.

【0018】第1の鉄塔用電縫鋼管;鋼中C量が重量比
でCを0.12%以上で、外径が457mm以上、肉厚
が14mm以上である大径厚肉の鉄塔用電縫鋼管であっ
て、電縫溶接ビードの両側部分に対応する部分のミクロ
硬度が、少なくとも外表面から肉厚方向に0.2mmの
範囲において、当該鋼管の実質全長にわたり260Hv
以下であることを特徴とする耐溶融亜鉛めっき割れ性に
優れる鉄塔用電縫鋼管。
A first electric-resistance welded steel pipe for a steel tower; a large-diameter thick-walled steel tower having a C content in steel of 0.12% or more by weight, an outer diameter of 457 mm or more, and a wall thickness of 14 mm or more. In a sewn steel pipe, a portion corresponding to both side portions of the electric resistance welded bead has a micro hardness of at least 260 Hv over the substantial entire length of the steel pipe at least in a range of 0.2 mm in a thickness direction from an outer surface.
An electric resistance welded steel pipe for steel towers having excellent hot-dip galvanizing crack resistance, characterized by the following.

【0019】第2の鉄塔用電縫鋼管;鋼中C量が重量比
でCを0.12%以上で、外径が457mm以上、肉厚
が14mm以上である大径厚肉の鉄塔用電縫鋼管であっ
て、電縫溶接ビード部が除去される第1の表面加工を受
け、且つ、第1の表面加工の後に当該加工部近傍に部分
的に残る段差部が除去される第2の表面加工を受けてい
ることを特徴とする耐溶融亜鉛めっき割れ性に優れる鉄
塔用電縫鋼管。
A second electric-resistance-welded steel pipe for steel towers; a large-diameter thick-wall steel tower having a C content in steel of 0.12% or more by weight, an outer diameter of 457 mm or more, and a wall thickness of 14 mm or more. A second part of the sewn steel pipe, which is subjected to a first surface processing in which an electric resistance welded bead part is removed, and a step part which is partially left in the vicinity of the processed part after the first surface processing. An electric resistance welded steel pipe for steel towers that has been subjected to surface processing and has excellent hot-dip galvanizing crack resistance.

【0020】第3の鉄塔用電縫鋼管;鋼中C量が重量比
でCを0.12%以上で、外径が457mm以上、肉厚
が14mm以上である大径厚肉の鉄塔用電縫鋼管であっ
て、電縫溶接ビード部が除去される第1の表面加工を受
け、且つ、第1の表面加工の後に当該加工部近傍に部分
的に残る段差部に起因して当該近傍に生じる加工硬化部
が除去される第2の表面加工又は熱処理を受けているこ
とを特徴とする耐溶融亜鉛めっき割れ性に優れる鉄塔用
電縫鋼管。
Third electric-resistance-welded steel pipe for steel towers: A large-diameter thick-wall steel tower having a C content in steel of 0.12% or more by weight, an outer diameter of 457 mm or more, and a wall thickness of 14 mm or more. A welded steel pipe that has undergone a first surface treatment from which an electric resistance welded bead portion has been removed, and has a stepped portion that is partially left in the vicinity of the processed portion after the first surface processing. An electric resistance welded steel pipe for a steel tower excellent in hot-dip galvanizing crack resistance, which is subjected to a second surface treatment or heat treatment in which a generated work hardened portion is removed.

【0021】第1の製造方法;鋼中C量が重量比でCを
0.12%以上である熱延鋼帯を素材として、造管成形
−電縫溶接−溶接ビード除去加工−溶接部熱処理−サイ
ザーによる縮管加工の各工程により、外径が457mm
以上、肉厚が14mm以上である大径厚肉の鉄塔用電縫
鋼管を製造する方法において、電縫溶接ビード除去加工
を終えた後、サイザーによる縮管加工を行う前の段階
で、電縫溶接ビード除去加工部近傍に残る表面段差を
0.1mm以下に切削又は研削することを特徴とする鉄
塔用電縫鋼管の製造方法。
First production method: pipe forming, electric resistance welding, welding bead removal processing, heat treatment of a welded portion, using a hot-rolled steel strip having a C content of 0.12% or more by weight in steel as a raw material. -The outer diameter is 457 mm due to each step of the tube shrinking by the sizer.
As described above, in the method of manufacturing a large-diameter thick-walled ERW steel pipe for a steel tower having a wall thickness of 14 mm or more, after the ERW welding bead removal processing is completed, the ERW is performed at a stage before performing the tube reduction processing by a sizer. A method for producing an electric resistance welded steel pipe for a steel tower, comprising cutting or grinding a surface step remaining in the vicinity of a weld bead removal processed portion to 0.1 mm or less.

【0022】第2の製造方法;鋼中C量が重量比でCを
0.12%以上である熱延鋼帯を素材として、造管成形
−電縫溶接−溶接ビード除去加工−溶接部熱処理−サイ
ザーによる縮管加工の各工程により、外径が457mm
以上、肉厚が14mm以上である大径厚肉の鉄塔用電縫
鋼管を製造する方法において、サイザーによる縮管加工
を行った後の段階で、少なくとも電縫溶接ビード除去加
工部近傍の表面を0.1mm以上の深さに切削又は研削
することを特徴とする鉄塔用電縫鋼管の製造方法。
Second production method: pipe forming, electric resistance welding, welding bead removal processing, heat treatment of a weld portion, using a hot-rolled steel strip having a C content of 0.12% or more by weight in steel as a raw material. -The outer diameter is 457 mm due to each step of the tube shrinking by the sizer.
As described above, in the method for producing a large-diameter thick-walled ERW steel pipe having a wall thickness of 14 mm or more, at least after the tube is reduced by the sizer, at least the surface in the vicinity of the ERW weld bead removing portion is processed. A method for producing an electric resistance welded steel pipe for a steel tower, comprising cutting or grinding to a depth of 0.1 mm or more.

【0023】第3の製造方法;鋼中C量が重量比でCを
0.12%以上である熱延鋼帯を素材として、造管成形
−電縫溶接−溶接ビード除去加工−溶接部熱処理−サイ
ザーによる縮管加工の各工程により、外径が457mm
以上、肉厚が14mm以上である大径厚肉の鉄塔用電縫
鋼管を製造する方法において、サイザーによる縮管加工
を行った後の段階で、少なくとも電縫溶接ビード除去加
工部近傍の表面を軟化熱処理することを特徴とする鉄塔
用電縫鋼管の製造方法。
Third production method: pipe forming, electric resistance welding, welding bead removal processing, heat treatment of a welded portion, using a hot rolled steel strip having a C content of 0.12% or more by weight in steel as a raw material. -The outer diameter is 457 mm due to each step of the tube shrinking by the sizer.
As described above, in the method for producing a large-diameter thick-walled ERW steel pipe having a wall thickness of 14 mm or more, at least after the tube is reduced by the sizer, at least the surface in the vicinity of the ERW weld bead removing portion is processed. A method for producing an electric resistance welded steel pipe for a steel tower, which comprises softening heat treatment.

【0024】本発明において素材鋼のC含有量を0.1
2%以上に限定したのは、0.12%未満では冷間加工
部の加工硬化が比較的軽微で、サイザー成形による電縫
溶接部近傍の溶融亜鉛めっき割れを生じ難いからであ
る。また、電縫鋼管の外径を457mm以上、肉厚を1
4mm以上に限定したのは、この寸法範囲内で電縫溶接
時のアプセット量が大きくなり、溶接ビート及び段差部
が高くなると共に、サイザー成形時の圧下力が本質的に
大きくなり、結果、サイザー成形による電縫溶接部近傍
の溶融亜鉛めっき割れが生じ易くなるからである。特に
有効な寸法範囲は外径500mm以上、肉厚14mm以
上である。
In the present invention, the C content of the raw steel is set to 0.1
The reason for limiting the content to 2% or more is that if the content is less than 0.12%, the work hardening of the cold-worked portion is relatively slight, and it is difficult to cause hot-dip galvanizing cracks in the vicinity of the electric resistance welded portion by sizer molding. In addition, the outer diameter of the ERW steel pipe is 457 mm or more and the wall thickness is 1
The reason why the diameter is limited to 4 mm or more is that, within this size range, the upset amount at the time of electric resistance welding becomes large, the welding beat and the step portion become high, and the rolling force at the time of sizer molding becomes essentially large. This is because hot-dip galvanizing cracks in the vicinity of the electric resistance welded portion due to forming are likely to occur. Particularly effective dimensions are an outer diameter of 500 mm or more and a wall thickness of 14 mm or more.

【0025】[0025]

【発明の実施の形態】以下に本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0026】電縫製管ラインにおいて、大型鉄塔用鋼管
の素材鋼板として使用されるC0.12%以上の炭素鋼
からなる厚肉広幅の熱延鋼帯を所定の幅に切断した後、
連続的に円管状に成形しつつ、突き合わせエッジ部を電
縫溶接して大径厚肉鋼管となす。このとき電縫溶接部の
近傍に溶接ビードが発生する〔図1(a)参照〕。
In an ERW pipe line, a thick and wide hot-rolled steel strip made of carbon steel of C0.12% or more used as a material steel plate of a steel pipe for a large steel tower is cut into a predetermined width.
While being continuously formed into a tubular shape, a butt edge portion is subjected to electric resistance welding to form a large-diameter thick-walled steel pipe. At this time, a weld bead is generated in the vicinity of the electric resistance welded portion (see FIG. 1A).

【0027】電縫溶接を終えた鋼管を引き続きビード除
去装置に送り、ここで溶接ビードをバイト等により切削
除去する。このとき、鋼管の蛇行等に起因して、溶接ビ
ードの削り残しが発生し、これによる段差部が、ビード
除去加工部の近傍、具体的には溶接ビードの両側部分に
対応する部分に、鋼管長手方向に間欠的に生じる〔図1
(b)参照〕。
The steel pipe after the electric resistance welding is continuously sent to a bead removing device, where the weld bead is cut and removed by a cutting tool or the like. At this time, due to the meandering of the steel pipe, etc., uncut shavings of the weld bead are generated, and the stepped portion due to this remains in the vicinity of the bead removal processing part, specifically, at the part corresponding to both sides of the weld bead. It occurs intermittently in the longitudinal direction [Fig.
(See (b)).

【0028】ビード除去加工を受けた鋼管は、溶接部熱
処理及びサイザーによる縮管成形加工を経て鉄塔用の大
径厚肉電縫鋼管とされるが、ビード除去加工後の鋼管を
そのままサイザーに送ったのでは、サイザー成形で段差
部が圧下され、これに起因する加工硬化部が溶融亜鉛め
っき割れ感受性を高める原因となる。
The steel pipe subjected to the bead removal processing is made into a large-diameter thick-walled electric resistance welded steel pipe for a steel tower through a heat treatment of a weld portion and a contraction forming processing by a sizer. The steel pipe after the bead removal processing is sent to the sizer as it is. In this case, the step portion is reduced by the sizer molding, and the work hardened portion caused by the step portion causes the hot-dip galvanizing crack susceptibility to increase.

【0029】そこで本発明では、サイザー成形より前に
段差部を除去する。段差部を除去する方法としては、バ
イトによる切削、ベルダ(グラインダ)による研削、或
いは他の機械的手段による切削又は研削があるが、押し
潰しは含まない。押し潰しは、加工硬化を伴い、溶融亜
鉛めっき割れ感受性を高める原因となる。
Therefore, in the present invention, the step portion is removed before the sizer molding. As a method of removing the stepped portion, cutting by a cutting tool, grinding by a bender (grinder), or cutting or grinding by other mechanical means, but does not include crushing. The crushing is accompanied by work hardening and causes the hot-dip galvanizing crack susceptibility to increase.

【0030】また、段差部があってもその高さが0.1
mm以下の場合は、サイザー成形での圧下による加工硬
化が軽微であり、そのミクロ硬さが260Hvを超えな
いので、溶融亜鉛めっき割れ感受性を高める原因にはな
らない。従って、0.1mm以下の段差部は放置してよ
く、一方、段差部を除去する場合にあってはその高さを
0.1mm以下にする必要がある。また、傾斜角度θが
45°未満の段差部は加工硬化が比較的軽微であるの
で、放置してもよい。
In addition, even if there is a step, the height is 0.1
In the case of not more than mm, work hardening due to reduction in sizer molding is slight and its microhardness does not exceed 260 Hv, so that it does not cause an increase in hot-dip galvanizing cracking susceptibility. Therefore, the step portion having a height of 0.1 mm or less may be left as it is, while the height of the step portion needs to be 0.1 mm or less when the step portion is removed. Further, the step portion having an inclination angle θ of less than 45 ° may be left as it is because the work hardening is relatively slight.

【0031】このような段差部除去加工をサイザー成形
前に行うことにより、サイザー成形では段差部の圧下に
よる加工硬化が回避され、鉄塔用の大径厚肉電縫鋼管で
の溶融亜鉛めっき割れの原因が取り除かれる。この段差
部除去加工プロセスを含む電縫鋼管製造方法が本発明の
第1の製造方法であり、また、この加工を受けることに
より、耐溶融亜鉛めっき割れ性の向上した電縫鋼管が本
発明の第2の電縫鋼管である。
By performing such a stepped portion removing process before sizer forming, work hardening due to the reduction of the stepped portion in the sizer forming is avoided, and the hot-dip galvanizing crack in a large-diameter thick-walled electric resistance welded steel pipe for a steel tower is prevented. The cause is removed. The ERW steel pipe manufacturing method including the step removal process is the first manufacturing method of the present invention, and the ERW steel pipe having improved hot-dip galvanized cracking resistance according to the present invention is obtained by receiving this processing. This is a second ERW steel pipe.

【0032】この段差部除去加工を行う段階は、サイザ
ー成形の前であれば、溶接部熱処理の前でも後でもよ
い。ちなみに、溶接部熱処理は、鋼管の少なくともHA
Z部を含む溶接部近傍をAr3点以上に加熱した後、A
c1点以下までを空冷以上の冷却し、その後必要に応じ
て550℃以上Ac1点以下の温度に再加熱した後、空
冷以上の冷却速度で冷却することにより行われる。
The step of removing the stepped portion may be performed before or after the heat treatment of the welded portion as long as it is performed before the sizer forming. By the way, the heat treatment of the welded part is at least HA of the steel pipe.
After heating the vicinity of the weld including the Z portion to an Ar3 point or higher, A
The cooling is performed by cooling at a temperature of c1 or lower by air cooling or higher, and then, if necessary, reheating to a temperature of 550 ° C. or higher and an Ac1 point or lower, and then cooling at a cooling rate of air cooling or higher.

【0033】また、本発明ではサイザー成形前の段差部
除去加工に代えて、或いは必要に応じて段差部除去加工
に加えて、サイザー成形後に段差部の圧下によって生じ
た冷間加工硬化部を除去することも可能である。この硬
化部除去は、機械的に又は熱処理により行うことができ
る。
In the present invention, instead of the step removal before the sizer molding, or in addition to the step removal if necessary, the cold work hardened portion caused by the reduction of the step after the sizer molding is removed. It is also possible. The removal of the hardened portion can be performed mechanically or by heat treatment.

【0034】機械的方法としては、バイトによる表面切
削やベルダ(グラインダ)による表面研削がある。この
表面切削又は研削は、全表面に対して行う必要はなく、
少なくとも加工硬化部に対して行えばよい。また、段差
部がサイザー成形されて、めっき割れ上問題となる加工
硬化(260Hv以上)を生じる範囲は、表面からの肉
厚方向の深さdでほぼ0.1mmであることが確かめら
れているので、表面の削り代は0.1mm以上を必要と
する。しかし、過度の削り込みは鋼管の肉厚減少及び効
果の飽和を招く。また、後述するように、深層の硬化部
はめっき割れの原因にならない。望ましい削り代は0.
15〜0.3mmである。
As mechanical methods, there are surface cutting with a cutting tool and surface grinding with a verder (grinder). This surface cutting or grinding need not be performed on the entire surface,
What is necessary is just to perform at least to a work hardening part. In addition, it has been confirmed that the range in which the step portion is formed by sizer and causes work hardening (260 Hv or more) which causes a problem in plating cracking is approximately 0.1 mm in the depth d from the surface in the thickness direction. Therefore, the surface shaving allowance needs to be 0.1 mm or more. However, excessive cutting results in a reduction in the wall thickness of the steel pipe and saturation of the effect. Further, as described later, the deep hardened portion does not cause plating crack. Desirable cutting allowance is 0.
15 to 0.3 mm.

【0035】一方、熱処理によって加工硬化部を除去す
る方法としては、誘導加熱による表面加熱が最も効率的
かつ効果的である。この表面加熱は少なくとも加工硬化
部に対して行えばよく、現実的には溶接部近傍、具体的
には溶接ビード乃至はビード両側部分に対応する部分に
直線的に実行するのが合理的である。表面加熱法は誘導
加熱法に限定されるものではない。また、コストはかか
るが、鋼管全体の焼入・焼戻しや焼きならしによる再熱
処理は確実である。
On the other hand, as a method of removing the work hardened portion by heat treatment, surface heating by induction heating is the most efficient and effective. This surface heating may be performed at least on the work hardened portion, and in reality, it is reasonable to linearly execute the vicinity of the welded portion, specifically, a portion corresponding to the weld bead or both sides of the bead. . The surface heating method is not limited to the induction heating method. Although the cost is high, the re-heat treatment by quenching / tempering or normalizing the entire steel pipe is reliable.

【0036】このような硬化部除去加工・処理をサイザ
ー成形後に行うことにより、鉄塔用大径厚肉電縫鋼管で
の溶融亜鉛めっき割れの原因となる加工硬化部が除去さ
れ、その割れ感受性が低下する。この加工・処理のプロ
セスを含む電縫鋼管製造方法が本発明の第2及び第3の
製造方法である。また、この加工・処理を受けることに
より耐溶融亜鉛めっき割れ性の向上した電縫鋼管が本発
明の第3の電縫鋼管である。
By performing such hardened portion removal processing and treatment after sizer molding, a work hardened portion that causes hot-dip galvanizing cracks in a large-diameter thick-walled electric resistance welded steel pipe for a steel tower is removed, and the crack sensitivity is reduced. descend. The method for producing an electric resistance welded steel pipe including the processing and processing is the second and third production methods of the present invention. The ERW steel pipe having improved hot-dip galvanizing crack resistance by undergoing the processing and treatment is the third ERW steel pipe of the present invention.

【0037】そして、このような段差部除去や硬化部除
去を鋼管の全長に実施し、電縫溶接ビードの両側部分に
対応する部分のミクロ硬度を、少なくとも外表面から肉
厚方向に0.2mmの範囲において、当該鋼管の実質全
長にわたり260Hv以下とすることにより、電縫溶接
部近傍の耐溶融亜鉛めっき割れは完全なものとなる。こ
れが本発明の第1の電縫鋼管である。
Then, the stepped portion and the hardened portion are removed over the entire length of the steel pipe, and the micro hardness of the portion corresponding to both sides of the ERW bead is set to at least 0.2 mm in the thickness direction from the outer surface. In the range above, by setting the Hp to 260 Hv or less over the substantial entire length of the steel pipe, hot-dip galvanizing cracking near the ERW weld portion becomes complete. This is the first ERW steel pipe of the present invention.

【0038】ミクロ硬度が260Hvを超える部分が存
在すると、この部分が溶融亜鉛めっき割れの起点とな
る。また、耐溶融亜鉛めっき割れ性の指標となる浴中伸
び(図2にて定義)がこの部分で2%以下となる。望ま
しいミクロ硬度は250Hv以下である。なお、この硬
度はビッカース硬度計を用いて、荷重100〜500g
程度で測定した値である。
When there is a portion having a micro hardness of more than 260 Hv, this portion becomes a starting point of hot-dip galvanizing cracks. Further, the elongation in the bath (defined in FIG. 2), which is an index of the hot-dip galvanizing cracking resistance, is 2% or less in this portion. Desirable micro hardness is 250 Hv or less. The hardness was measured using a Vickers hardness tester with a load of 100 to 500 g.
It is a value measured in degrees.

【0039】鋼管全体の平均硬さは強度レベルにもよる
が、55キロ級で200〜220Hv、60キロ級でせ
いぜい230Hv程度までであり、電縫HAZ部の硬さ
も軟化熱処理を受けることによりこの程度の硬さに管理
されている。従来の鉄塔用の大径厚肉電縫鋼管では、溶
接部近傍に軟化熱処理が施されているにもかかわらず、
溶接ビードの両側部分に対応する部分に、ビード部の削
り残しに伴う段差部に起因する260Hv超の局部的な
加工硬化部が形成され、これが溶融亜鉛めっき割れの原
因となる可能性があった。
Although the average hardness of the entire steel pipe depends on the strength level, it is 200 to 220 Hv at 55 kg class and at most 230 Hv at 60 kg class, and the hardness of the ERW HAZ is also subject to softening heat treatment. It is managed to a degree of hardness. In conventional large-diameter thick ERW steel pipes for steel towers, despite the fact that softening heat treatment has been applied near the weld,
In portions corresponding to both side portions of the weld bead, a local work hardened portion of more than 260 Hv due to a stepped portion due to uncut portion of the bead portion was formed, which could cause hot-dip galvanizing cracks. .

【0040】また、鉄塔用の大径厚肉電縫鋼管における
溶融亜鉛めっき割れの発生は、鋼管の外表面に限定され
る。それは外表面側において、電縫鋼管の残留応力並び
に溶融亜鉛めっき時の熱応力が引張応力となり、割れの
発生と伝播を加速するからである。また、この割れは、
溶融亜鉛が鋼管表面から粒界へ侵入することによって引
き起こされることにもよる。
Further, the occurrence of hot-dip galvanizing cracks in a large-diameter thick-walled electric resistance welded steel pipe for a steel tower is limited to the outer surface of the steel pipe. This is because, on the outer surface side, the residual stress of the ERW steel pipe and the thermal stress during hot-dip galvanizing become tensile stress, which accelerates the generation and propagation of cracks. Also, this crack
It is also caused by the penetration of molten zinc from the steel pipe surface to the grain boundaries.

【0041】これらのことから、溶融亜鉛に触れる外表
面を除けば、その影響が及ぶのは肉厚方向の深さでせい
ぜい0.2mmまでであり、外表面からの肉厚方向の深
さが0.2mmの範囲でミクロ硬さが260Hv以下で
あれば、耐溶融亜鉛めっき割れ性の観点からは十分であ
る。言い換えれば、外表面から0.2mmを超える内表
面側で260Hvを超える硬さとなっても、耐溶融亜鉛
めっき割れ性は損なわれない。従って、ミクロ硬さを2
60Hv以下に規定する範囲は、少なくとも外表面から
肉厚方向に0.2mmの範囲とした。
From these facts, except for the outer surface that comes into contact with the molten zinc, the effect is at most 0.2 mm in the thickness direction, and the depth in the thickness direction from the outer surface is less than 0.2 mm. If the micro hardness is 260 Hv or less in the range of 0.2 mm, it is sufficient from the viewpoint of hot-dip galvanizing cracking resistance. In other words, even if the hardness exceeds 260 Hv on the inner surface side more than 0.2 mm from the outer surface, the hot-dip galvanizing crack resistance is not impaired. Therefore, the micro hardness is 2
The range specified as 60 Hv or less was at least 0.2 mm in the thickness direction from the outer surface.

【0042】[0042]

【実施例】次に本発明の実施例を示し、比較例と対比す
ることにより、本発明の効果を明らかにする。
EXAMPLES Next, examples of the present invention will be shown, and the effects of the present invention will be clarified by comparison with comparative examples.

【0043】表1に示す組成の熱延鋼帯を素材とし、造
管成形−電縫溶接−溶接ビード除去−溶接部熱処理−サ
イザーによる縮管の各工程により、表2に示す仕様の鉄
塔用大径厚肉電縫鋼管を製造した。いずれの電縫鋼管に
おいても鋼中C量は0.12%以上であり、外径は45
7mm以上、肉厚は14mm以上である。
A hot-rolled steel strip having the composition shown in Table 1 was used as a material, and was subjected to each process of pipe forming, electric resistance welding, welding bead removal, heat treatment of a welded portion, and shrinking by a sizer for steel towers having specifications shown in Table 2. A large-diameter thick-wall ERW steel pipe was manufactured. In all ERW pipes, the C content in the steel is 0.12% or more, and the outer diameter is 45%.
The thickness is 7 mm or more, and the thickness is 14 mm or more.

【0044】このとき、溶接ビード切削用のビード位置
を単位長さずつ段階的に変化させ、意図的に削り残し部
分を発生させることにより、種々の高さの段差部を形成
し、単位長での段差部の最大高さを段差高さとした。段
差部が形成された鋼管の一部分に、サイザー成形より前
の段階で段差部をベルダにより表面研削する加工を行っ
た。サイザー成形後の鋼管を単位長ずつ切断してグルー
プ分けした。
At this time, the bead position for welding bead cutting is changed stepwise by unit length to intentionally generate uncut portions, thereby forming step portions having various heights, and forming a step portion having various heights. The maximum height of the step portion was determined as the step height. A part of the steel pipe where the step was formed was subjected to surface grinding using a verda at a stage prior to the sizer forming. The steel pipes after sizer molding were cut into unit lengths and grouped.

【0045】あるグループは切断まま溶接部付近から瓦
状の試片を切り出し、溶接部近傍の外表面に圧下がかか
らないように展開してから、外表面をそのまま残して、
図3に示す引張試験片を採取した。そして、引張試験片
において外表面の最高ミクロ硬度を測定すると共に、試
験片を蒸留亜鉛浴中引張試験に供して、図3に定義され
る浴中伸びを調査し、これが2%以上あるものを耐溶融
亜鉛めっき割れ性が良好とした。
One group cut out a tile-shaped specimen from the vicinity of the welded portion as it was cut and developed it so that no reduction was applied to the outer surface near the welded portion, and then left the outer surface as it was.
The tensile test piece shown in FIG. 3 was collected. Then, the highest micro hardness of the outer surface of the tensile test piece was measured, and the test piece was subjected to a tensile test in a distilled zinc bath to investigate the elongation in the bath defined in FIG. The hot-dip galvanizing crack resistance was determined to be good.

【0046】別のグループについては、サイザー成形
後、ベルダにより溶接部両側の外表面をそれぞれ約20
mmの幅で管長方向に全長研削することにより、サイザ
ー成形で段差部が圧下されて形成された加工硬化部を機
械的に除去し、同様の調査を行った。
For another group, after molding with a sizer, the outer surfaces of both sides of the welded portion were each approximately 20
By performing full length grinding in the pipe length direction with a width of mm, the work hardened portion formed by pressing down the step portion by sizer molding was mechanically removed, and the same investigation was performed.

【0047】更に別のグループについては、熱処理によ
る表面軟化を実施してから、同様の調査を行った。熱処
理による表面軟化は、誘導加熱による表面加熱と鋼管全
体の再熱処理の2種類とした。誘導加熱による表面加熱
では、鋼管を加熱装置に2回通すことにより、溶接部両
側の外表面をそれぞれ30〜40mmの幅で管長方向に
全長加熱した。
For another group, the same investigation was performed after the surface softening was performed by heat treatment. The surface softening by heat treatment was of two types: surface heating by induction heating and reheat treatment of the entire steel pipe. In the surface heating by induction heating, the steel pipe was passed twice through the heating device, so that the outer surfaces on both sides of the weld were each heated to a length of 30 to 40 mm in the pipe length direction.

【0048】ちなみに、溶接ビード幅w(図1参照)
は、鋼Aで平均6mm、鋼Bで平均8mmであった。
Incidentally, the weld bead width w (see FIG. 1)
The average of steel A was 6 mm, and the average of steel B was 8 mm.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】調査結果を表3に示す。なお、鋼管仕様を
示す表2において、YS,TS,Hv(5kg)は、鋼
管に形成した後の母材部で試験した値である。また、H
v(5kg)は、荷重5kgにて測定した値であり、外
表面の冷間加工による硬化は、この荷重5kgでは測定
されない。
Table 3 shows the inspection results. In Table 2 showing the specifications of the steel pipe, YS, TS, and Hv (5 kg) are values obtained by testing the base material after forming the steel pipe. Also, H
v (5 kg) is a value measured at a load of 5 kg, and the hardening of the outer surface by cold working is not measured at the load of 5 kg.

【0053】試番1,2,21,22はサイザー前の段
差が0.1mmを超え、且つ、この段差を放置したもの
である。結果として、サイザー後の表面硬度が260H
vを超え、耐溶融亜鉛めっき性は不芳(浴中伸びが2%
未満)となった。
Test numbers 1, 2, 21, and 22 are those in which the step before the sizer exceeds 0.1 mm, and this step is left as it is. As a result, the surface hardness after sizer is 260H
v, hot-dip galvanizing resistance is poor (elongation in bath is 2%
Less).

【0054】試番3〜5,23〜25はサイザー前の段
差が0.1mmを超えるも、この段差を0.1mm以下
に研削したものである。サイザー後の表面硬度は260
Hv以下となり、耐溶融亜鉛めっき性は良好(浴中伸び
が2%以上)となった。
Test Nos. 3 to 5 and 23 to 25 were obtained by grinding the step before the sizer to 0.1 mm or less, even though the step exceeded 0.1 mm. Surface hardness after sizer is 260
Hv or less, and the hot-dip galvanizing resistance was good (elongation in the bath was 2% or more).

【0055】試番6,26は、試番1,2,21,22
と同様、サイザー前の段差が0.1mmを超え、且つ、
この段差を放置したものである。サイザー後の表面硬度
は260Hvを超え、耐溶融亜鉛めっき性は不芳となっ
た。
Test numbers 6, 26 are test numbers 1, 2, 21, 22
Similarly, the step before the sizer exceeds 0.1 mm, and
This step is left as it is. The surface hardness after the sizer exceeded 260 Hv, and the hot-dip galvanizing resistance was poor.

【0056】試番7,27はサイザー前の段差が0.1
mmを超えたので、サイザー後に表面をベルダ研削した
が、研削量が0.1mmに達しなかったものである。段
差による表面硬化層が十分に除去されず、結果として表
面硬度が260Hvを超える部分が残り、耐溶融亜鉛め
っき性は不芳となった。
In Test Nos. 7 and 27, the step before the sizer was 0.1.
mm, the surface was subjected to verda grinding after the sizer, but the grinding amount did not reach 0.1 mm. The surface hardened layer due to the step was not sufficiently removed, and as a result, a portion where the surface hardness exceeded 260 Hv remained, and the hot-dip galvanizing resistance was poor.

【0057】試番8〜10,28〜30はサイザー前の
段差が0.1mmを超えるも、サイザー後に表面を0.
1mm以上研削したものである。段差による表面硬化層
が除去され、サイザー後の表面硬度は260Hvを超え
ず、耐溶融亜鉛めっき性は良好となった。
In Test Nos. 8 to 10 and 28 to 30, the step before the sizer exceeded 0.1 mm, but the surface after the sizer was 0.1 mm.
It was ground by 1 mm or more. The surface hardened layer due to the step was removed, the surface hardness after the sizer did not exceed 260 Hv, and the hot-dip galvanizing resistance was good.

【0058】試番11,12,31,32はサイザー前
の段差が0.1mmを超えるも、サイザー後に表面を軟
化熱処理したものである。段差による表面硬化層が除去
されて、サイザー後の表面硬度は260Hv以下とな
り、耐溶融亜鉛めっき性は良好となった。
Test Nos. 11, 12, 31, and 32 are those in which the step before the sizer exceeds 0.1 mm, but the surface is softened and heat-treated after the sizer. The surface hardened layer due to the step was removed, the surface hardness after the sizer became 260 Hv or less, and the hot-dip galvanizing resistance was improved.

【0059】[0059]

【発明の効果】以上の説明から明らかなように、本発明
の鉄塔用電縫鋼管及びその製造方法は、鉄塔に使用され
る大径厚肉電縫鋼管の溶接部近傍に特徴的に生じる溶融
亜鉛めっき割れを防止することにより、大型鉄塔への電
縫鋼管の適用を可能にし、これにより大型鉄塔の建設コ
スト低減を可能にする。
As is apparent from the above description, the electric resistance welded steel pipe for a steel tower of the present invention and the method for producing the same are characterized in that the molten steel characteristically generated near the weld of a large-diameter thick electric resistance welded steel pipe used for a steel tower. By preventing galvanizing cracks, it is possible to apply ERW steel pipes to large towers, thereby reducing the construction cost of large towers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶融亜鉛めっき割れの原因となる段差部及びこ
れに起因する硬化部の発生メカニズムを示す概念図であ
る。
FIG. 1 is a conceptual diagram showing a stepped portion which causes hot-dip galvanizing cracks and a mechanism of generation of a hardened portion caused by the stepped portion.

【図2】耐溶融亜鉛めっき割れ性の指標となる浴中伸び
の説明図である。
FIG. 2 is an explanatory diagram of elongation in a bath, which is an indicator of hot-dip galvanizing cracking resistance.

【図3】浴中伸びを調査するための試験片の寸法図であ
る。
FIG. 3 is a dimensional diagram of a test piece for investigating elongation in a bath.

【符号の説明】[Explanation of symbols]

1 鋼管 2 溶接ビード 3 段差部 4 硬化部 Reference Signs List 1 steel pipe 2 weld bead 3 stepped part 4 hardened part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 欣哉 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 櫛田 隆弘 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 梶原 靖司 和歌山県和歌山市湊1850番地 住友金属工 業株式会社和歌山製鉄所内 (72)発明者 久宗 信之 和歌山県和歌山市湊1850番地 住友金属工 業株式会社和歌山製鉄所内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Kinya Kawabata, Kinya Kawabata 3-3-22 Nakanoshima, Kita-ku, Osaka, Japan Inside Kansai Electric Power Company (72) Inventor Takahiro Kushida 4-5-Kitahama, Chuo-ku, Osaka, Osaka No. 33 Sumitomo Metal Industries, Ltd. (72) Inventor Yasushi Kajiwara 1850 Minato, Wakayama City, Wakayama Prefecture Sumitomo Metal Industries, Ltd.Wakayama Works (72) Inventor Nobuyuki Kusune 1850 Minato, Wakayama City, Wakayama Prefecture Sumitomo Metal Industries Co., Ltd. Inside the Wakayama Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鋼中C量が重量比で0.12%以上で、
外径が457mm以上、肉厚が14mm以上である大径
厚肉の鉄塔用電縫鋼管であって、電縫溶接ビードの両側
部分に対応する部分のミクロ硬度が、少なくとも外表面
から肉厚方向に0.2mmの範囲において、当該鋼管の
実質全長にわたり260Hv以下であることを特徴とす
る耐溶融亜鉛めっき割れ性に優れる鉄塔用電縫鋼管。
1. The steel having a C content of 0.12% or more by weight,
A large-diameter, thick-walled ERW steel pipe for a steel tower having an outer diameter of 457 mm or more and a wall thickness of 14 mm or more, wherein the micro hardness of a portion corresponding to both side portions of the ERW bead is at least a thickness direction from the outer surface in the thickness direction. An electric resistance welded steel pipe for steel towers having excellent hot-dip galvanizing crack resistance, wherein the steel pipe has a hot-dip galvanizing resistance of 260 Hv or less over the entire length of the steel pipe in a range of 0.2 mm.
【請求項2】 鋼中C量が重量比で0.12%以上で、
外径が457mm以上、肉厚が14mm以上である大径
厚肉の鉄塔用電縫鋼管であって、電縫溶接ビードが除去
される第1の表面加工を受け、且つ、第1の表面加工の
後に当該加工部近傍に部分的に残る段差部が除去される
第2の表面加工を受けていることを特徴とする耐溶融亜
鉛めっき割れ性に優れる鉄塔用電縫鋼管。
2. The steel having a C content of 0.12% or more by weight,
A large-diameter thick-wall ERW steel pipe for an iron tower having an outer diameter of 457 mm or more and a wall thickness of 14 mm or more, which is subjected to a first surface treatment for removing an ERW weld bead, and a first surface treatment. An electric resistance welded steel pipe for a steel tower excellent in hot-dip galvanizing crack resistance, which has been subjected to a second surface treatment for removing a step portion partially left in the vicinity of the processed portion after the step (c).
【請求項3】 鋼中C量が重量比で0.12%以上で、
外径が457mm以上、肉厚が14mm以上である大径
厚肉の鉄塔用電縫鋼管であって、電縫溶接ビードが除去
される第1の表面加工を受け、且つ、第1の表面加工の
後に当該加工部近傍に部分的に残る段差部に起因して当
該近傍に生じる加工硬化部が除去される第2の表面加工
又は熱処理を受けていることを特徴とする耐溶融亜鉛め
っき割れ性に優れる鉄塔用電縫鋼管。
3. The steel having a C content of 0.12% or more by weight,
A large-diameter thick-walled ERW steel pipe for a steel tower having an outer diameter of not less than 457 mm and a thickness of not less than 14 mm, which has undergone a first surface treatment for removing an ERW weld bead, and a first surface treatment. Characterized by being subjected to a second surface processing or heat treatment for removing a work hardened portion generated in the vicinity due to a step portion partially left in the vicinity of the processed portion after hot-dip galvanizing. ERW steel pipes for steel towers with excellent resistance.
【請求項4】 鋼中C量が重量比で0.12%以上で重
量比である熱延鋼帯を素材として、造管成形−電縫溶接
−溶接ビード除去加工−溶接部熱処理−サイザーによる
縮管加工の各工程により、外径が457mm以上、肉厚
が14mm以上である大径厚肉の鉄塔用電縫鋼管を製造
する方法において、電縫溶接ビード除去加工を終えた後
サイザーによる縮管を行う前の段階で、電縫溶接ビード
除去加工部近傍に残る表面段差を0.1mm以下に切削
又は研削することを特徴とする鉄塔用電縫鋼管の製造方
法。
4. A hot rolled steel strip having a C content of 0.12% or more by weight in steel and having a weight ratio as a raw material is formed by pipe forming, electric resistance welding, welding bead removal processing, welding heat treatment, and heat treatment with a sizer. In the method of manufacturing a large-diameter thick-walled ERW steel pipe for a steel tower having an outer diameter of 457 mm or more and a wall thickness of 14 mm or more by each step of the pipe-shrinking processing, shrinking by a sizer after finishing the ERW welding bead removal processing. A method for producing an electric resistance welded steel pipe for a steel tower, comprising cutting or grinding a surface step remaining in the vicinity of an ERW weld bead removing portion to 0.1 mm or less at a stage before the pipe is formed.
【請求項5】 鋼中C量が重量比で0.12%以上で重
量比である熱延鋼帯を素材として、造管成形−電縫溶接
−溶接ビード除去加工−溶接部熱処理−サイザーによる
縮管加工の各工程により、外径が457mm以上、肉厚
が14mm以上である大径厚肉の鉄塔用電縫鋼管を製造
する方法において、サイザーによる縮管加工を行った後
の段階で、少なくとも電縫溶接ビード除去加工部近傍の
表面を0.1mm以上の深さに切削又は研削することを
特徴とする鉄塔用電縫鋼管の製造方法。
5. A hot rolled steel strip having a C content of 0.12% or more by weight in steel and having a weight ratio as a raw material, which is formed by pipe forming, electric resistance welding, welding bead removal processing, heat treatment of a weld portion, and sizer. In each of the steps of the pipe-shrinking process, the outer diameter is 457 mm or more, and in the method of manufacturing a large-diameter thick-wall ERW steel pipe for a steel tower having a wall thickness of 14 mm or more, at a stage after performing the tube-shrinking process with a sizer, A method for manufacturing an electric resistance welded steel pipe for a steel tower, wherein at least a surface near an electric resistance welded bead removing portion is cut or ground to a depth of 0.1 mm or more.
【請求項6】 鋼中C量が重量比で0.12%以上であ
る熱延鋼帯を素材として、造管成形−電縫溶接−溶接ビ
ード除去加工−溶接部熱処理−サイザーによる縮管加工
の各工程により、外径が457mm以上、肉厚が14m
m以上である大径厚肉の鉄塔用電縫鋼管を製造する方法
において、サイザーによる縮管加工を行った後の段階
で、少なくとも電縫溶接ビード除去加工部近傍の表面を
軟化熱処理することを特徴とする鉄塔用電縫鋼管の製造
方法。
6. Using a hot-rolled steel strip having a C content of 0.12% or more by weight in steel as a material, pipe forming, electric resistance welding, welding bead removal processing, welding heat treatment, shrinking with a sizer. The outer diameter is 457mm or more and the wall thickness is 14m
m, in a method of manufacturing a large-diameter thick-walled ERW steel pipe for a steel tower having a diameter of at least m, in a stage after performing the pipe-shrinking process with a sizer, at least the surface in the vicinity of the ERW weld bead removal processing part is subjected to softening heat treatment. A method for producing an electric resistance welded steel pipe for a steel tower.
JP36825297A 1997-12-25 1997-12-25 ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same Expired - Fee Related JP3377428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36825297A JP3377428B2 (en) 1997-12-25 1997-12-25 ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36825297A JP3377428B2 (en) 1997-12-25 1997-12-25 ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11189844A true JPH11189844A (en) 1999-07-13
JP3377428B2 JP3377428B2 (en) 2003-02-17

Family

ID=18491345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36825297A Expired - Fee Related JP3377428B2 (en) 1997-12-25 1997-12-25 ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3377428B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224495A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
JP2008224494A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224495A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
JP2008224494A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
WO2008126554A1 (en) * 2007-03-14 2008-10-23 Sumitomo Metal Industries, Ltd. Eddy current inspection method, steel pipe inspected by the eddy current inspection method, and eddy current inspection device for carrying out the eddy current inspection method
WO2008126553A1 (en) * 2007-03-14 2008-10-23 Sumitomo Metal Industries, Ltd. Eddy current inspection method, steel pipe inspected by the eddy current inspection method, and eddy current inspection device for carrying out the eddy current inspection method
US8269488B2 (en) 2007-03-14 2012-09-18 Sumitomo Metal Industries, Ltd. Eddy current testing method, steel pipe or tube tested by the eddy current testing method, and eddy current testing apparatus for carrying out the eddy current testing method

Also Published As

Publication number Publication date
JP3377428B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP7299956B2 (en) Method for manufacturing steel plate for press hardening and method for manufacturing laser welded blank for press hardening
US10016837B2 (en) Method of joining heat-treatable aluminum alloy members by friction stir welding
CN108025401B (en) Arc fillet weld and method for manufacturing same
US20170333971A1 (en) Method for producing a component by subjecting a sheet bar of steel to a forming process
KR20210003186A (en) Steel plates, tailored blanks, hot press molded products, steel pipes, hollow quenching molded products, steel sheet manufacturing methods, tailored blank manufacturing methods, hot press molded products manufacturing methods, steel pipe manufacturing methods, and hollow quenching molded products manufacturing methods
US20200271247A1 (en) Steel sheet, tailored blank, hot stamped product, steel pipe, hollow hot stamped product, method of manufacturing steel sheet, method of manufacturing tailored blank, method of manufacturing hot stamped product, method of manufacturing steel pipe, and method of manufacturing hollow hot stamped product
JPH08325641A (en) Production of high strength and high toughness steel tube excellent in workability
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
JP3419289B2 (en) Manufacturing method of ERW steel pipe
JPH11189844A (en) Resistance welded steel tube for steel tower, excellent in hot dip galvanizing crack resistance, and its production
US5180204A (en) High strength steel pipe for reinforcing door of car
JP2000317642A (en) Flash butt welding method for high-carbon steel sheet or steel strip
JP2827839B2 (en) Method of manufacturing high strength, thick wall, high toughness bend steel pipe
JPS6076232A (en) Manufacture of high strength hollow stabilizer
CN114450456B (en) Square steel pipe, method for producing same, and building structure
JP2001321948A (en) Method of welding for aluminum alloy material of heat treatment type
JPH04289122A (en) Production of as-rolled type ultrahigh tensile strength resistance welded tube for vehicle door impact bar
JPH0581658B2 (en)
JPH07132378A (en) Flash welding method of high tension steel
JP2820784B2 (en) Method of manufacturing high-strength thin steel sheet for door reinforcement pipe
JPS6411086B2 (en)
EP0070082B1 (en) A high strength hot rolled steel sheet having excellent flash butt weldability
JP3127065B2 (en) ERW pipes for door reinforcements with excellent delayed fracture resistance
JP2810154B2 (en) Hot rolled steel sheet for processing with excellent fatigue resistance of welded joints
JPH0647707B2 (en) Double-layer structural electric resistance welded steel pipe and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees