JP2820784B2 - Method of manufacturing high-strength thin steel sheet for door reinforcement pipe - Google Patents

Method of manufacturing high-strength thin steel sheet for door reinforcement pipe

Info

Publication number
JP2820784B2
JP2820784B2 JP25338590A JP25338590A JP2820784B2 JP 2820784 B2 JP2820784 B2 JP 2820784B2 JP 25338590 A JP25338590 A JP 25338590A JP 25338590 A JP25338590 A JP 25338590A JP 2820784 B2 JP2820784 B2 JP 2820784B2
Authority
JP
Japan
Prior art keywords
pipe
thin steel
steel sheet
strength
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25338590A
Other languages
Japanese (ja)
Other versions
JPH04131327A (en
Inventor
秀則 白沢
福輝 田中
高弘 鹿島
広幸 前田
昭文 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25338590A priority Critical patent/JP2820784B2/en
Publication of JPH04131327A publication Critical patent/JPH04131327A/en
Application granted granted Critical
Publication of JP2820784B2 publication Critical patent/JP2820784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動車用鋼板の製造に係り、特にドア補強パ
イプ用の高強度薄鋼板の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to the manufacture of steel sheets for automobiles, and more particularly to a method of manufacturing a high-strength thin steel sheet for a door reinforcing pipe.

(従来の技術) 自動車車体の燃費向上及び衝突時の安全性向上のため
に自動車補強部材の高強度化、軽量化が推進されてい
る。特にドア補強用部材には、従来、100kgf/mm2級のプ
レス品が主として使用されていたが、最近、CAMP−ISIJ
Vol.2(1989)−2023に記載されているように、より
強度の高いパイプ材が軽量化の点で有利なため、使用さ
れるようになってきた。このようなパイプ品でプレス品
と同様の吸収エネルギーを得るためには150kgf/mm2程度
の高い引張強度が必要である。
(Prior Art) Higher strength and lighter weight of automobile reinforcing members have been promoted in order to improve fuel efficiency of automobile bodies and safety in collisions. In particular, the door reinforcing member, conventional, but 100kgf / mm 2 class of pressed product has been mainly used, recently, CAMP-ISIJ
As described in Vol. 2 (1989) -2023, higher strength pipe materials have been used because they are advantageous in terms of weight reduction. In order to obtain the same absorbed energy as that of a pressed product using such a pipe product, a high tensile strength of about 150 kgf / mm 2 is required.

(発明が解決しようとする課題) 従来、このような高強度パイプ材を得るために、60kg
f/mm2程度の薄鋼板を電縫溶接によりパイプ材とし、引
き続き高周波加熱などで加熱し、オーステナイト温度域
から水冷などによって急冷して製造されていた。しか
し、電縫溶接などによって溶融接合したパイプ材には、
その接合界面に第1図に示すようなホワイトバンドと呼
ばれる脱炭層が生成される。このホワイドバンド部は、
溶接時に溶融した部分であり、酸化物、介在物などが存
在し、本来加工性が低い。更に、このホワイトバンド部
は、パイプの強度を上げるための焼入れ処理によっても
硬さが増加しにくいため、第2図に示すように熱影響部
に軟化域が生じる。したがって、第3図に示す曲げ試験
(圧壊試験)を行った場合、この部分に変形が集中し、
パイプが座屈に至る前に該ホワイトバンド部分、すなわ
ち、溶接部で割れが生じ、第4図中のNo.4のように所定
の吸収エネルギーが得られない。この挙動は低温での試
験でより顕著となる。
(Problems to be solved by the invention) Conventionally, to obtain such high-strength pipe material, 60 kg
A thin steel plate of about f / mm 2 was manufactured by pipe welding by electric resistance welding, subsequently heated by high frequency heating, etc., and rapidly cooled from the austenite temperature range by water cooling or the like. However, pipe materials fused by ERW etc.
At the joint interface, a decarburized layer called a white band as shown in FIG. 1 is generated. This white band part,
It is a portion that is melted during welding and contains oxides, inclusions, etc., and originally has low workability. Further, since the hardness of the white band portion hardly increases even by quenching treatment for increasing the strength of the pipe, a softened zone is generated in the heat-affected zone as shown in FIG. Therefore, when the bending test (crush test) shown in FIG. 3 is performed, the deformation concentrates on this portion,
Before the pipe buckles, cracks occur in the white band portion, that is, the welded portion, and a predetermined absorbed energy cannot be obtained as in No. 4 in FIG. This behavior is more pronounced in low temperature tests.

共晶点よりも低い炭素量を含む鉄合金であれば、パイ
プの電縫溶接などによって溶融接合した場合、ホワイト
バンド部の生成を防止することは殆ど不可能である。ま
た、ホワイトバンド部の幅を狭くするために電縫溶接時
のアプセット量を多くすると、冷接などの接合不良を招
き、溶接部強度がより低下する。
It is almost impossible to prevent the formation of a white band portion when an iron alloy containing a carbon content lower than the eutectic point is melt-joined by electric resistance welding or the like of a pipe. Also, if the upset amount at the time of electric resistance welding is increased in order to reduce the width of the white band portion, joint failure such as cold welding is caused, and the weld strength is further reduced.

また、ホワイトバンド部を有するパイプ材をオーステ
ナイト域に加熱後、水冷などにより焼入れた場合、ホワ
イトバンド部の硬さは前述のように母材部よりも低い硬
さになる。したがつて、圧壊時に該部分に変形が集中
し、割れが発生するため、所定の吸収エネルギーが得ら
れない。一方、溶接したままであれば、溶接部の硬さが
高く、延性が低いために、圧壊時の歪み量が大きくなっ
た場合、溶接部でビードと直角方向に又はホワイトバン
ド部で破断し、吸収エネルギーが低くなる。
Further, when the pipe material having the white band portion is heated to the austenitic region and then quenched by water cooling or the like, the hardness of the white band portion becomes lower than that of the base material portion as described above. Therefore, when the crushing occurs, the deformation concentrates on the portion and the crack occurs, so that a predetermined absorbed energy cannot be obtained. On the other hand, if it remains welded, the hardness of the weld is high and the ductility is low, so if the amount of strain at the time of crushing is large, the weld will break in the direction perpendicular to the bead or in the white band, The absorbed energy is low.

電縫溶接パイプの溶接部の加工性を改善する方法につ
いては、従来知られていないが、類似の溶接方法である
フラッシュバット溶接方法を用いたホイールのリム用材
では、特開昭57−35663号において、母材の組織をベイ
ナイト主体として溶接部と母材の硬さの差を小さくする
ことが提案されている。
A method for improving the workability of a welded portion of an electric resistance welded pipe is not conventionally known, but in a rim material for a wheel using a flash butt welding method which is a similar welding method, Japanese Patent Application Laid-Open No. It has been proposed to reduce the difference in hardness between the welded portion and the base material by making the structure of the base material bainite.

ドア補強用パイプ材においても、このホイールリム材
のような硬さ分布にすると、溶接部での割れが防止で
き、所定の吸収エネルギーを得ることができるものと考
えられる。しかし、上記提案は、C量の低い60kgf/mm2
級の鋼板を対象としているものであり、かつ、フラッシ
ュバット溶接と電縫溶接では溶接速度、冷却速度も異な
るため、100kgf/mm2以上の高強度パイプ材のようにC、
Mn量など焼入強化能の高い元素を多く含むパイプで、同
様の硬さ分布を得ることは困難である。また、上記提案
における比較材の複合組織鋼板に溶接熱影響部で軟化域
が認められるが、前述と同様、焼入強化能の高い元素を
多く含む100kgf/mm2以上のパイプで、かつ、溶接速度の
速い電縫溶接で同様な硬さ分布が得られるかどうか、更
にはそれがパイプの圧壊時の影響については不明であ
る。
It is considered that even in the door reinforcing pipe material, if the hardness distribution is made like the wheel rim material, cracks at the welded portion can be prevented, and a predetermined absorbed energy can be obtained. However, the above proposal is based on a low C content of 60 kgf / mm 2
It is intended for high-grade steel sheets, and because the welding speed and cooling speed are different between flash butt welding and ERW welding, C, such as high-strength pipe material of 100 kgf / mm 2 or more,
It is difficult to obtain the same hardness distribution in a pipe containing many elements having high quenching strengthening ability such as the amount of Mn. Although the softening zone in the weld heat affected zone in the composite structure steel sheet of comparative material in the proposed observed, similar to the above, at 100 kgf / mm 2 or more pipes containing a large amount of high hardening strengthening capacity element, and welding It is unclear whether similar hardness distributions can be obtained with high-speed ERW welding, and furthermore, whether it affects the crushing of pipes.

本発明は、上記従来技術の問題点を解決して、電縫溶
接により造管したパイプが圧壊時に溶接部で破断するこ
となく、高い吸収エネルギーを有するドア補強パイプ用
高強度薄鋼板を製造する方法を提供することを目的とす
るものである。
The present invention solves the above-mentioned problems of the prior art, and manufactures a high-strength thin steel sheet for a door reinforcing pipe having high absorption energy without breaking a pipe formed by ERW welding at a welded portion at the time of crushing. It is intended to provide a method.

(課題を解決するための手段) 前記課題を解決するため、本発明者らは、薄鋼板を電
縫溶接したパイプの溶接部品質について鋭意研究を重ね
た結果、ここに本発明を完成したものである。
(Means for Solving the Problems) In order to solve the above problems, the present inventors have conducted intensive studies on the quality of welded portions of pipes formed by electric resistance welding of thin steel plates, and as a result, completed the present invention here. It is.

すなわち、本発明は、C:0.10〜0.30%及びMn:1.5〜3.
0%を含み、かつ、C量が下式 0.367−3.0×10-3σ+1.5×10-5σB 2≧C ≧0.248−3.0×10-3σ+1.5×10-5σB 2 但し、σB:引張強度(kgf/mm2) を満たし、必要に応じて更に、Si:0.2〜2.0%、P:0.02
〜0.15%、Cr:0.1〜1.0%、Mo:0.1〜1.0%及びB:0.0003
〜0.005%のうちの1種又は2種以上、及び/又は、N
b、Ti、Zr及びVがそれぞれ0.01〜0.06%の範囲で1種
又は2種以上含み、残部がFe及び不可避的不純物からな
る鋼を、常法により熱間圧延し或いは冷間圧延後に連続
焼鈍して、低温変態生成物が70%以上で、かつ降伏比が
0.7以上のパイプ用薄鋼板を得ることを特徴とする電縫
溶接で加工されるドア補強パイプ用の高強度薄鋼板の製
造方法を要旨とするものである。
That is, the present invention provides C: 0.10 to 0.30% and Mn: 1.5 to 3.
0% and the C content is as follows: 0.367−3.0 × 10 −3 σ B + 1.5 × 10 −5 σ B 2 ≧ C ≧ 0.248−3.0 × 10 −3 σ B + 1.5 × 10 −5 σ B 2 However, σ B : tensile strength (kgf / mm 2 ) is satisfied, and if necessary, Si: 0.2 to 2.0%, P: 0.02
~ 0.15%, Cr: 0.1 ~ 1.0%, Mo: 0.1 ~ 1.0% and B: 0.0003
One or more of 0.005% and / or N
b, Ti, Zr and V are each in the range of 0.01 to 0.06%, each containing one or two or more steels, the balance being Fe and unavoidable impurities, hot-rolled by a conventional method or continuous annealing after cold rolling. And the low-temperature transformation product is 70% or more and the yield ratio is
A gist of the present invention is to provide a method of manufacturing a high-strength thin steel sheet for a door reinforcing pipe processed by electric resistance welding, which is characterized by obtaining a thin steel sheet for a pipe of 0.7 or more.

以下に本発明を更に詳述する。 Hereinafter, the present invention will be described in more detail.

(作用) 本発明の方法は、要するに、C:0.10〜0.30%及びMn:
1.5〜3.0%を必須成分として含む鋼を常法により熱間圧
延し或いは冷間圧延後に連続焼鈍して、低温変態生成物
が70%以上で、かつ降伏比が0.7以上のパイプ用薄鋼板
を製造するものである。
(Action) In short, the method of the present invention comprises: C: 0.10 to 0.30% and Mn:
Steel containing 1.5 to 3.0% as an essential component is hot-rolled or cold-rolled and continuously annealed to obtain a thin steel sheet for pipes having a low-temperature transformation product of 70% or more and a yield ratio of 0.7 or more. It is manufactured.

ここで、低温変態生成物としてはベイナイト、マルテ
ンサイト、焼戻しマルテンサイト又はこれらが混在して
いてもよく、特に制限されるものではない。
Here, the low-temperature transformation product may be bainite, martensite, tempered martensite or a mixture thereof, and is not particularly limited.

一般に降伏比が高い程、パイプ圧壊時の吸収エネルギ
ーが高くなる。したがつて、低温変態生成物が多い程、
同一強度で降伏比が高くなるので好ましく、特にフル焼
戻しマルテンサイト材ではその値が0.90以上と非常に高
くなる。また、高降伏比材は、同一降伏強度の低降伏比
材に比較して強度が低いため、切断が容易で生産性が高
い。しかし、このような化学成分、組織及び降伏比を有
する鋼板を単に電縫溶接したのみでは、パイプ圧壊時に
割れが発生し、所定の吸収エネルギーが得られない。
In general, the higher the yield ratio, the higher the absorbed energy when crushing the pipe. Therefore, the more low-temperature transformation products, the more
It is preferable because the yield ratio is increased at the same strength, and particularly in the case of a fully tempered martensite material, the value is as high as 0.90 or more. Further, since the high yield ratio material has lower strength than the low yield ratio material having the same yield strength, cutting is easy and productivity is high. However, if a steel sheet having such a chemical composition, structure, and yield ratio is simply subjected to electric resistance welding, a crack occurs at the time of pipe crushing, and a predetermined absorbed energy cannot be obtained.

そこで、本発明者らは、この点について更に研究を重
ねた結果、上記化学成分範囲内でC量を次式の範囲内に
制御することにより、圧壊時に割れることなく、高い吸
収エネルギーを得ることができるとの知見を得た。
Therefore, the present inventors have conducted further studies on this point, and as a result, by controlling the amount of C within the range of the above chemical components within the range of the following formula, it is possible to obtain high absorption energy without cracking during crushing. I learned that I can do it.

0.367−3.0×10-3σ+1.5×10-5σB 2≧C ≧0.248−3.0×10-3σ+1.5×10-5σB 2 但し、σB:引張強度(kgf/mm2) すなわち、上記条件を満たすことによって溶接熱影響
部に適正な硬さの軟化域を具備させることにより、溶接
部での変形を軽減することができることを知見したので
ある。
0.367−3.0 × 10 −3 σ B + 1.5 × 10 −5 σ B 2 ≧ C ≧ 0.248−3.0 × 10 -3 σ B + 1.5 × 10 −5 σ B 2 where σ B : tensile strength (kgf / mm 2 ) That is, it has been found that the deformation at the welded portion can be reduced by satisfying the above conditions to provide the heat affected zone with a softened region of appropriate hardness.

溶接熱影響部の最低硬さHv1と母材の硬さHv2の比、Hv
1/Hv2がパイプの引張強度σの関数で示される式、−
0.001σ+1.05よりも高い場合は、圧壊時に熱影響部
での変形が小さいため、溶接部での変形量が多くなり、
溶接部でのホワイトバンドなどで破断し、所定の吸収エ
ネルギーが得られない。また、Hv1/Hv2が−0.003σ
1.05よりも小さいときは熱影響部での変形が大きくな
り、圧壊時に座屈が生じ易くなって所定の吸収エネルギ
ーが得られない。既に述べたように、熱影響部での軟化
域の硬さ比、Hv1/Hv2はパイプの引張強度σによって
適正な範囲がある。σが100kgf/mm2程度の比較的強度
の低いパイプ材においては、Hv1/Hv2の値は比較的高く
て良い。これは、溶接部の最高硬さがあまり高くなく、
或る程度の加工性を有するためである。しかし、パイプ
の強度σが200kgf/mm2程度になると熱影響部での変形
量を多くすることが重要であり、Hv1/Hv2の値を比較的
低くしなければ、圧壊時の割れを防止して高い吸収エネ
ルギーをえることができない。
Minimum hardness Hv 1 and the ratio of the hardness Hv 2 of the base material of the weld heat affected zone, Hv
Formula 1 / Hv 2 is shown as a function of the tensile strength sigma B of the pipe, -
Higher than 0.001σ B +1.05, because variations in the heat affected zone during crushing is small, the number of deformation of the weld portion,
It breaks due to a white band or the like at the welded portion, and the predetermined absorbed energy cannot be obtained. Hv 1 / Hv 2 is −0.003σ B +
If it is smaller than 1.05, the deformation in the heat-affected zone becomes large, and buckling is likely to occur at the time of crush, so that a predetermined absorbed energy cannot be obtained. As already mentioned, the hardness ratio of the softening zone in the heat-affected zone, Hv 1 / Hv 2 is the proper range by the tensile strength sigma B of the pipe. In a relatively low-strength pipe material having a σ B of about 100 kgf / mm 2 , the value of Hv 1 / Hv 2 may be relatively high. This is because the maximum hardness of the weld is not very high,
This is because it has a certain degree of workability. However, when the pipe strength σ B is about 200 kgf / mm 2 , it is important to increase the amount of deformation in the heat-affected zone, and unless the value of Hv 1 / Hv 2 is relatively low, cracking during crushing To prevent high energy absorption.

本発明者らは、このようなパイプの強度に応じて適正
なHv1/Hv2の値を得るためには、C量を 0.367−3.0×10-3σ+1.5×10-5σB 2 から 0.248−3.0×10-3σ+1.5×10-5σB 2 の範囲に制御することが必要であることを見い出したの
である。
The present inventors have found that in order to obtain a proper value of Hv 1 / Hv 2 in response to the strength of such pipes, the C amount 0.367-3.0 × 10 -3 σ B + 1.5 × 10 -5 σ it was found that it is necessary to control the B 2 in the range of 0.248-3.0 × 10 -3 σ B + 1.5 × 10 -5 σ B 2.

この範囲よりもC量が多いと、Hv1/Hv2が高くなり、
圧壊時に溶接部で割れが生じ易くなり、C量が少ない
と、Hv1/Hv2が低くなり、圧壊時に座屈が生じ易くな
り、いずれの場合も高い吸収エネルギーが得られない。
When C amount is larger than this range, the higher the Hv 1 / Hv 2,
Cracks in the weld tends to occur at the time of collapse, when the C amount is small, Hv 1 / Hv 2 is lowered, tends to occur buckling during crushing, not obtain a high absorbed energy in any case.

なお、熱影響部の軟化域での最低硬さHv1は、上述の
ように適正な値が必要であるが、軟化域の広さについて
は特に限定されるものではなく、通常の電縫溶接で得ら
れる範囲で良い。更に、熱影響部での軟化域の広さはパ
イプの板厚、パイプ用素板の組織、化学成分によって変
わるが、電縫溶接で得られる範囲であれば特に問題はな
い。
The minimum hardness Hv 1 in the softened zone of the heat-affected zone needs to have an appropriate value as described above, but the width of the softened zone is not particularly limited. In the range obtained by Further, the width of the softened zone in the heat-affected zone varies depending on the thickness of the pipe, the structure of the pipe blank, and the chemical composition, but there is no particular problem as long as the range can be obtained by electric resistance welding.

また、本発明で得られる所定の強度を有する鋼板を電
縫溶接したパイプの場合には、造管後熱処理をしたパイ
プと異なり、溶接位置をビードセンサーなどで容易に識
別できる。したがつて、実車への装着に際しては、溶接
部を負荷される点の直下ではなく、負荷される点と直角
な横の方向に制御しセットすることで、溶接部の変形を
より小さくして、割れに対する安全度を更に高めること
ができる。
Also, in the case of a pipe obtained by the present invention, which is obtained by electric resistance welding of a steel plate having a predetermined strength, unlike a pipe subjected to heat treatment after pipe formation, a welding position can be easily identified by a bead sensor or the like. Therefore, when mounted on an actual vehicle, the deformation of the welded portion is made smaller by controlling and setting the welded portion not just below the loaded point but in a horizontal direction perpendicular to the loaded point. Thus, the degree of safety against cracking can be further increased.

次に本発明における化学成分の限定理由を説明する。 Next, the reasons for limiting the chemical components in the present invention will be described.

C: Cは鋼板の強度を高めるために極めて重要な元素であ
るが、C量が0.10%よりも少ないと100kgf/mm2以上の引
張強度が得られず、また0.30%を超えて過多に添加する
と溶接部が脆くなり、圧壊時に割れが生じ、所定の吸収
エネルギーが得られない。したがって、C量は0.10〜0.
30%の範囲とする。
C: C is an extremely important element for increasing the strength of steel sheets. However, if the C content is less than 0.10%, a tensile strength of 100 kgf / mm 2 or more cannot be obtained, and excessive C content exceeds 0.30%. Then, the weld becomes brittle, cracks occur at the time of crushing, and a predetermined absorbed energy cannot be obtained. Therefore, the amount of C is 0.10-0.
The range is 30%.

但し、C量は、前述の理由により上記範囲内において
次式を満たす必要がある。
However, the amount of C must satisfy the following expression within the above range for the above-mentioned reason.

0.367−3.0×10-3σ+1.5×10-5σB 2≧C ≧0.248−3.0×10-3σ+1.5×10-5σB 2 Mn: Mnは強化能の高い低温変態生成物を得るために必要
で、その添加量が1.5%よりも少ないと、低温変態生成
物を得るための熱延での巻き取り時の冷却速度、又は連
続焼鈍での急冷開始温度が高くなり、鋼板の形状不良が
発生する。また3.0%を超えると、偏析が大きくなり、
パイプ溶接部のメタルフローが悪くなり、圧壊時に割れ
が生じ、所定の吸収エネルギーが得られない。したがつ
て、Mn量は1.5〜3.0%の範囲とする。
0.367−3.0 × 10 −3 σ B + 1.5 × 10 −5 σ B 2 ≧ C ≧ 0.248−3.0 × 10 −3 σ B + 1.5 × 10 −5 σ B 2 Mn: Mn is a low temperature with high strengthening ability It is necessary to obtain a transformation product, and if the addition amount is less than 1.5%, the cooling rate at the time of winding by hot rolling to obtain a low-temperature transformation product or the quenching start temperature in continuous annealing is high. And the shape defect of the steel plate occurs. If it exceeds 3.0%, segregation increases,
The metal flow in the welded portion of the pipe deteriorates, cracks occur at the time of crushing, and a predetermined absorbed energy cannot be obtained. Therefore, the Mn content is in the range of 1.5 to 3.0%.

以上のC、Mnを必須成分とするが、必要に応じてSi、
P、Cr、Mo及びBのうちの1種又は2種以上、及び又
は、Nb、Ti、Zr及びVのうちの1種又は2種以上を適量
で添加することができる。
Although the above C and Mn are essential components, Si,
One or more of P, Cr, Mo and B, and / or one or more of Nb, Ti, Zr and V can be added in an appropriate amount.

Si: Siは鋼の降伏強度を高めるのに有効な元素であるが、
0.2%よりも少ないとその効果が得られず、また2.0%を
超えて添加すると溶接部での欠陥が増し、圧壊時に割れ
が生じる。したがって、Si量は0.2〜2.0%の範囲とす
る。
Si: Si is an effective element to increase the yield strength of steel,
If it is less than 0.2%, the effect cannot be obtained, and if it exceeds 2.0%, defects in the welded portion increase and cracks occur at the time of crushing. Therefore, the Si content is in the range of 0.2 to 2.0%.

P: Pは、Siと同様、鋼の降伏強度を高めるのに有効な元
素であるが、0.02%よりも少ないとその効果が得られ
ず、また0.15%を超えて添加すると溶接部が脆化して圧
壊時に割れが生じる。したがつて、P量は0.02〜0.15%
の範囲とする。
P: P, like Si, is an effective element for increasing the yield strength of steel. However, if it is less than 0.02%, the effect cannot be obtained, and if added over 0.15%, the weld becomes brittle. Cracks when crushed. Therefore, the P content is 0.02-0.15%
Range.

Cr: Crは、Mnと同様、低温変態生成物を生じ易く、熱延で
の巻き取り時の冷却速度、又は連続焼鈍での急冷開始温
度を低くでき、鋼板の反りが改善される。しかし、0.1
%よりも少ないとその効果が得られず、また1.0%を超
えて添加してもその効果が飽和する。したがつて、Cr量
は0.1〜1.0%の範囲とする。
Cr: Like Mn, Cr is liable to generate low-temperature transformation products, can lower the cooling rate during winding in hot rolling or the quenching start temperature in continuous annealing, and improves the warpage of the steel sheet. But 0.1
%, The effect cannot be obtained, and even if added over 1.0%, the effect is saturated. Therefore, the Cr content is in the range of 0.1 to 1.0%.

Mo: Moは、Mnと同様、鋼の焼入性を高める元素であるが、
0.1%よりも少ないとその効果がなく、また1.0%を超え
るとその効果が飽和するので、Mo量は0.1〜1.0%の範囲
とする。
Mo: Mo, like Mn, is an element that enhances the hardenability of steel,
When the amount is less than 0.1%, the effect is not obtained, and when the amount exceeds 1.0%, the effect is saturated. Therefore, the amount of Mo is set in the range of 0.1 to 1.0%.

B: Bは焼入性を増す元素であり、Mnと同様の効果を有す
るが、0.0003%よりも少ないとその効果がなく、また0.
005%を超えるとその効果が飽和するので、B量は0.000
3〜0.005%の範囲とする。
B: B is an element that increases the hardenability and has the same effect as Mn, but if less than 0.0003%, it has no effect, and the content is 0.1%.
If the content exceeds 005%, the effect is saturated, so the B content is 0.000%.
The range is 3 to 0.005%.

Nb、Ti、Zr、V: Nb、Ti、Zr及びVはいずれも鋼中で炭、窒化物を形成
し、鋼を強化して降伏比を高める元素である。しかし、
いずれの元素とも0.01%よりも少ないとその効果が得ら
れず、また0.06%を超えるとその効果が飽和する。した
がつて、Nb、Ti、Zr及びV量はそれぞれ0.01〜0.06%の
範囲とする。
Nb, Ti, Zr, V: Nb, Ti, Zr, and V are elements that form carbon and nitride in steel, strengthen the steel, and increase the yield ratio. But,
If any element is less than 0.01%, the effect cannot be obtained, and if it exceeds 0.06%, the effect is saturated. Therefore, the amounts of Nb, Ti, Zr, and V are each in the range of 0.01 to 0.06%.

次に、本発明のドア補強パイプ用高強度薄鋼板の製造
工程及び条件について説明する。
Next, the manufacturing process and conditions of the high-strength thin steel sheet for a door reinforcing pipe of the present invention will be described.

上記化学成分を有する鋼は、通常の方法により、熱間
圧延した後、酸洗、冷間圧延し、引続き連続焼鈍して、
低温変態生成物の量を70%以上、降伏比0.7以上のパイ
プ用薄鋼板を得る。
Steel having the above chemical composition is hot-rolled, then pickled, cold-rolled, and continuously annealed by a normal method,
A thin steel sheet for pipes with a low-temperature transformation product amount of 70% or more and a yield ratio of 0.7 or more is obtained.

一方、熱間圧延により低温変態生成物の量を70%以
上、降伏比0.7以上のパイプ用薄鋼板を得ることもでき
る。例えば、熱間圧延の仕上げ温度を70%以上のオース
テナイトを含む温度として、30℃/秒以上の冷却速度で
ベイナイト変態点以下までに急冷して巻き取るなどの方
法が挙げられる。
On the other hand, it is also possible to obtain a thin steel sheet for a pipe having a low-temperature transformation product amount of 70% or more and a yield ratio of 0.7 or more by hot rolling. For example, a method of setting the finishing temperature of hot rolling to a temperature containing austenite of 70% or more, and rapidly cooling to a bainite transformation point or less at a cooling rate of 30 ° C./second or more, and winding.

低温変態生成物が70%以下或いは降伏比が0.7以下で
は、パイプ圧壊時の吸収エネルギーを高くできない。特
に低温変態生成物が70%以下では高い降伏比が得られ難
い。
If the low-temperature transformation product is 70% or less or the yield ratio is 0.7 or less, the absorbed energy at the time of pipe crushing cannot be increased. In particular, when the low-temperature transformation product is 70% or less, it is difficult to obtain a high yield ratio.

得られた薄鋼板は、通常の方法にて電縫溶接によりパ
イプに造管すればよい。造管後は熱処理を必要としな
い。
The obtained thin steel plate may be formed into a pipe by electric resistance welding by a usual method. No heat treatment is required after pipe making.

次に本発明の実施例を示す。 Next, examples of the present invention will be described.

(実施例) 第1表に示す化学成分を有する鋼を溶製し、通常の方
法で熱間圧延した後、酸洗し、冷間圧延した後、連続焼
鈍を施して、2.0mm厚さの薄鋼板を得た。
(Examples) Steel having the chemical components shown in Table 1 was melted, hot-rolled by a usual method, pickled, cold-rolled, and continuously annealed to obtain a 2.0 mm thick steel sheet. A thin steel plate was obtained.

この薄鋼板をスリットし、高周波誘導加熱により電縫
溶接して31.8mmφのパイプを製造した。
This thin steel plate was slit and subjected to electric resistance welding by high frequency induction heating to produce a 31.8 mmφ pipe.

薄鋼板の機械的性質を調べると共に、得られたパイプ
について圧壊試験を行い、また硬さ等を調べた。なお、
圧壊試験は、第3図に示す要領(スパン950mm)にて行
い、第4図に示すように荷重−変位曲線から150mm押し
込み時の吸収エネルギーを求めた。
In addition to examining the mechanical properties of the thin steel sheet, a crush test was performed on the obtained pipe, and the hardness and the like were examined. In addition,
The crush test was performed according to the procedure shown in FIG. 3 (span 950 mm), and as shown in FIG. 4, the absorbed energy at the time of pushing 150 mm was determined from the load-displacement curve.

これらの結果を第2表に併記する。 The results are shown in Table 2.

第2表並びに第2図及び第4図より以下の如く考察さ
れる。
The following is considered from Table 2 and FIGS. 2 and 4.

比較例No.1は、C量が少ないため、引張強度が不足し
ている。
Comparative Example No. 1 is insufficient in tensile strength because the amount of C is small.

比較例No.2は、素板の薄鋼板がマルテンサイトからな
る高降伏比材であるが、C量がσで決められた式の値
よりも低いため、熱影響部での軟化が大きくなり、Hv1/
Hv2の値が小さく、圧壊時に座屈が早かった。
Comparative Example No.2 is thin steel sheet material plate is a high yield ratio material consisting of martensite, lower than the value of the expression C amount is determined by the sigma B, softened in the heat affected zone is larger Nv, Hv 1 /
The value of Hv 2 was small, and buckling was rapid at the time of crush.

比較例No.4は、パイプの素板が600℃で焼戻されたマ
ルテンサイトを70%含むフェライトとの複合組織から高
降伏比材であるが、C量がσで決められた式の値より
も高いため、熱影響部での軟化が小さく、したがって、
Hv1/Hv2の値が大きくなり、圧壊時にホワイトバンド部
で割れが発生した。
Comparative Example No.4 is plain plates of the pipe is high yield ratio material from a composite structure of ferrite containing 70% tempered martensite at 600 ° C., of the formula where the C content is determined by sigma B Value, the softening in the heat-affected zone is small and therefore
The value of Hv 1 / Hv 2 increases, cracks in the white band portion occurring during crushing.

比較例No.5とNo.11は、低温変態生成物が少なく、降
伏比が低いため、所定の吸収エネルギーが得られない。
In Comparative Examples No. 5 and No. 11, the low-temperature transformation products are small and the yield ratio is low, so that the predetermined absorbed energy cannot be obtained.

比較例No.7は、C量が0.3%よりも多いため、圧壊時
に溶接部から破断した。
In Comparative Example No. 7, since the C amount was more than 0.3%, it broke from the weld at the time of crushing.

一方、本発明例は、いずれも、高い吸収エネルギーが
得られており、圧壊時に割れや破断が生じなかった。
On the other hand, in each of the examples of the present invention, high absorbed energy was obtained, and no cracking or breaking occurred during crushing.

第2図は比較例No.2及びNo.4と本発明例No.3について
パイプの溶接部の硬さ分布を示したものであり、本発明
例では適正なHv1/Hv2の値が得られているが、比較例で
はHv1/Hv2の値が大きくすぎたり或いは小さすぎること
がわかる。
FIG. 2 shows the hardness distribution of the welded portion of the pipe for Comparative Examples No. 2 and No. 4 and Example No. 3 of the present invention. In the present invention, the proper value of Hv 1 / Hv 2 is shown. It can be seen that the values of Hv 1 / Hv 2 are too large or too small in the comparative example.

(発明の効果) 以上詳述したように、本発明によれば、パイプが圧壊
時に溶接部で破断することなく、高い吸収エネルギーを
有するドア補強パイプ用の高強度薄鋼板を提供すること
ができる。また、電縫溶接による造管後に熱処理を必要
としないので経済的である。
(Effects of the Invention) As described in detail above, according to the present invention, a high-strength thin steel sheet for a door reinforcing pipe having high absorbed energy can be provided without the pipe breaking at the welded portion during crushing. . Further, it is economical because no heat treatment is required after pipe forming by electric resistance welding.

【図面の簡単な説明】[Brief description of the drawings]

第1図は電縫溶接部の金属組織を示す写真、 第2図は電縫溶接部の硬さ分布を示す図、 第3図はパイプの圧壊試験の要領を説明する図、 第4図はパイプの圧壊試験での荷重−変位曲線を示す図
である。
FIG. 1 is a photograph showing the metal structure of the ERW weld, FIG. 2 is a diagram showing the hardness distribution of the ERW weld, FIG. 3 is a view for explaining the procedure of a pipe crush test, and FIG. It is a figure which shows the load-displacement curve in the crush test of a pipe.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/18 C22C 38/18 (72)発明者 藤原 昭文 兵庫県西宮市仁川町4丁目4―4 (56)参考文献 特公 平7−42499(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C21D 9/46 C21D 8/02 C21D 8/10──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code FI C22C 38/18 C22C 38/18 (72) Inventor Akifumi Fujiwara 4-4-2, Inagawa-cho, Nishinomiya-shi, Hyogo (56) References Kohei 7-42499 (JP, B2) (58) Fields surveyed (Int. Cl. 6 , DB name) C21D 9/46 C21D 8/02 C21D 8/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で(以下、同じ)、C:0.10〜0.30%
及びMn:1.5〜3.0%を含み、かつ、C量が下式 0.367−3.0×10-3σ+1.5×10-5σB 2≧C≧0.248 −3.0×10-3σ+1.5×10-5σB 2 但し、σB:引張強度(kgf/mm2) を満たし、残部がFe及び不可避的不純物からなる鋼を、
常法により熱間圧延し或いは冷間圧延後に連続焼鈍し
て、低温変態生成物が70%以上で、かつ降伏比が0.7以
上のパイプ用薄鋼板を得ることを特徴とする電縫溶接で
加工されるドア補強パイプ用の高強度薄鋼板の製造方
法。
(1) C: 0.10 to 0.30% by weight (hereinafter the same)
And Mn: 1.5 to 3.0%, and the C content is as follows: 0.367−3.0 × 10 −3 σ B + 1.5 × 10 −5 σ B 2 ≧ C ≧ 0.248 −3.0 × 10 −3 σ B +1. 5 × 10 -5 σ B 2 However, σ B : steel that satisfies tensile strength (kgf / mm 2 ) and the balance is made of Fe and unavoidable impurities
Hot-rolled or cold-rolled and continuously annealed by a conventional method to obtain a thin steel sheet for pipes with a low-temperature transformation product of 70% or more and a yield ratio of 0.7 or more. Of manufacturing high-strength thin steel sheets for door reinforcement pipes to be used.
【請求項2】前記鋼は、更にSi:0.2〜2.0%、P:0.02〜
0.15%、Cr:0.1〜1.0%、Mo:0.1〜1.0%及びB:0.0003〜
0.005%のうちの1種又は2種以上を含んでいる請求項
1に記載の方法。
2. The steel further comprises: Si: 0.2 to 2.0%, P: 0.02 to
0.15%, Cr: 0.1-1.0%, Mo: 0.1-1.0% and B: 0.0003-
2. The method according to claim 1, comprising one or more of 0.005%.
【請求項3】前記鋼は、更にNb、Ti、Zr及びVがそれぞ
れ0.01〜0.06%の範囲で1種又は2種以上含んでいる請
求項1又は2に記載の方法。
3. The method according to claim 1, wherein the steel further contains one or more of Nb, Ti, Zr and V in the range of 0.01 to 0.06%.
JP25338590A 1990-09-20 1990-09-20 Method of manufacturing high-strength thin steel sheet for door reinforcement pipe Expired - Lifetime JP2820784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25338590A JP2820784B2 (en) 1990-09-20 1990-09-20 Method of manufacturing high-strength thin steel sheet for door reinforcement pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25338590A JP2820784B2 (en) 1990-09-20 1990-09-20 Method of manufacturing high-strength thin steel sheet for door reinforcement pipe

Publications (2)

Publication Number Publication Date
JPH04131327A JPH04131327A (en) 1992-05-06
JP2820784B2 true JP2820784B2 (en) 1998-11-05

Family

ID=17250631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25338590A Expired - Lifetime JP2820784B2 (en) 1990-09-20 1990-09-20 Method of manufacturing high-strength thin steel sheet for door reinforcement pipe

Country Status (1)

Country Link
JP (1) JP2820784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572156B (en) * 2012-07-18 2017-03-01 株式会社神户制钢所 The manufacture method of door reinforced pipe high-strength steel sheet
CN103757534B (en) * 2013-12-27 2016-01-20 首钢总公司 A kind of cold-rolled steel sheet and production method thereof with good flange welding property

Also Published As

Publication number Publication date
JPH04131327A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
JP4530606B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability
WO2020099473A1 (en) Hot-rolled steel strip & manufacturing method
JP2000080440A (en) High strength cold rolled steel sheet and its manufacture
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JP4196810B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP4012475B2 (en) Machine structural steel excellent in cold workability and low decarburization and method for producing the same
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
JP7167159B2 (en) Hot-rolled steel sheet for electric resistance welded steel pipe, manufacturing method thereof, and electric resistance welded steel pipe
JP2820784B2 (en) Method of manufacturing high-strength thin steel sheet for door reinforcement pipe
JP2002294404A (en) High carbon hot rolling steel material suitable for friction pressure welding and production method therefor
EP0492623B1 (en) Process for making an electric-resistance-welded steel pipe with high strength
JP2960771B2 (en) Door guard bar with excellent crushing strength
JP3251506B2 (en) High-strength hot-rolled steel sheet excellent in crushing properties and method for producing the same
JPH04135013A (en) High strength steel pipe for reinforcing door of car
JP3952714B2 (en) Hot-rolled steel sheet having excellent toughness after quenching and manufacturing method thereof
JPH04276018A (en) Manufacture of door guard bar excellent in collapse resistant property
KR102492994B1 (en) Steel sheet and steel pipe having uniforme tensile properties and excellent transverse crack resistance onto welded part and method for manufacturing thereof
JPH02197525A (en) Manufacture of high strength resistance welded tube for automobile use hardly causing softening in heat affected zone
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
US11535908B2 (en) Hot-rolled steel sheet having excellent durability and method for manufacturing same
JP2004162130A (en) Method for manufacturing high-strength formed body superior in formability and crushing characteristic
JP2000084614A (en) Production of high strength resistance welded steel tube for automobile excellent in toughness
JP2732885B2 (en) High strength hot rolled steel sheet excellent in cold workability and surface quality and method for producing the same
JPH04289122A (en) Production of as-rolled type ultrahigh tensile strength resistance welded tube for vehicle door impact bar

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070828

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080828

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090828

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100828

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110828

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110828