WO2023286440A1 - Continuous annealing apparatus, continuous hot-dip galvanization apparatus, and steel sheet manufacturing method - Google Patents

Continuous annealing apparatus, continuous hot-dip galvanization apparatus, and steel sheet manufacturing method Download PDF

Info

Publication number
WO2023286440A1
WO2023286440A1 PCT/JP2022/020579 JP2022020579W WO2023286440A1 WO 2023286440 A1 WO2023286440 A1 WO 2023286440A1 JP 2022020579 W JP2022020579 W JP 2022020579W WO 2023286440 A1 WO2023286440 A1 WO 2023286440A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
cold
rolled steel
less
vibration
Prior art date
Application number
PCT/JP2022/020579
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 南
一輝 遠藤
勇樹 田路
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022555184A priority Critical patent/JP7388570B2/en
Priority to KR1020237045028A priority patent/KR20240014501A/en
Priority to CN202280048053.3A priority patent/CN117616138A/en
Priority to EP22841787.9A priority patent/EP4361295A1/en
Publication of WO2023286440A1 publication Critical patent/WO2023286440A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a continuous annealing apparatus, a continuous hot-dip galvanizing apparatus, and a steel sheet manufacturing method.
  • INDUSTRIAL APPLICABILITY The present invention provides a continuous annealing apparatus and a continuous annealing apparatus for manufacturing steel sheets that are suitably used in the fields of automobiles, home electric appliances, building materials, etc., and have excellent resistance to hydrogen embrittlement due to the small amount of hydrogen contained in the steel.
  • the present invention relates to a hot dip galvanizing apparatus and a steel sheet manufacturing method.
  • an annealed steel sheet and a hot-dip galvanized steel sheet are produced in a continuous annealing apparatus and a continuous hot-dip galvanizing apparatus, respectively, the steel sheet is annealed in a reducing atmosphere containing hydrogen.
  • Hydrogen enters. Hydrogen present in the steel sheet lowers formability such as ductility, bendability and stretch-flangeability of the steel sheet.
  • hydrogen present in the steel sheet can embrittle the steel sheet and cause delayed fracture. Therefore, a treatment for reducing the amount of hydrogen in the steel sheet is required.
  • the amount of hydrogen in the steel can be reduced by leaving the product coils at room temperature after being manufactured with a continuous annealing device and a continuous hot dip galvanizing device.
  • a continuous annealing device and a continuous hot dip galvanizing device it takes time for hydrogen to move from the inside of the steel sheet to the surface and desorb from the surface. . Therefore, the space and time required for such dehydrogenation treatment pose a problem in the manufacturing process.
  • Patent Document 1 a steel sheet, a hot-dip galvanized steel sheet, or an alloyed hot-dip galvanized steel sheet after annealing is held in a temperature range of 50 ° C. or higher and 300 ° C. or lower for 1800 seconds or more and 43200 seconds or less.
  • a method for reducing the amount of hydrogen is disclosed.
  • Patent Document 1 there are concerns about changes in mechanical properties such as an increase in yield strength and temper embrittlement due to structural changes due to heating.
  • the present invention provides a continuous annealing apparatus and continuous hot-dip galvanizing capable of manufacturing steel sheets with excellent hydrogen embrittlement resistance without impairing production efficiency and without changing mechanical properties.
  • An object of the present invention is to provide an apparatus and a method for manufacturing a steel sheet.
  • the inventors of the present invention found the following as a result of extensive research. That is, in a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL), the steel sheet is annealed in a reducing atmosphere containing hydrogen, and then cooled from the annealing temperature to room temperature.
  • CAL continuous annealing line
  • CGL continuous hot-dip galvanizing line
  • the hydrogen in the steel sheet can be sufficiently and efficiently reduced by applying vibration of a predetermined frequency and maximum amplitude to the steel sheet that is subsequently being threaded.
  • the hydrogen in the steel sheet can be sufficiently efficiently reduced by micro-vibrating the steel sheet at a high frequency and a small maximum amplitude. This is presumed to be due to the following mechanism.
  • the steel plate By forcibly vibrating the steel plate, the steel plate is subjected to repeated bending deformation. As a result, the lattice spacing on the surface is expanded compared to the central part of the thickness of the steel plate. Hydrogen in the steel sheet diffuses toward the surface of the steel sheet with wide lattice spacing and low potential energy and desorbs from the surface.
  • a pay-off reel for dispensing the cold-rolled steel sheet from the cold-rolled coil An annealing furnace in which the cold-rolled steel sheet is passed through and continuously annealed, wherein a heating zone, a soaking zone, and a cooling zone are positioned from the upstream side in the sheet passing direction, and the heating zone and the soaking zone include a reducing zone containing hydrogen.
  • an annealing furnace for annealing the cold-rolled steel sheet in a cold-rolled atmosphere and cooling the cold-rolled steel sheet in the cooling zone; a downstream facility for continuously threading the cold-rolled steel sheet discharged from the annealing furnace; a tension reel for winding the cold-rolled steel sheet being passed through the downstream facility; With respect to the cold-rolled steel sheet being passed from the cooling zone to the tension reel, the vibration frequency of the cold-rolled steel sheet is 100 Hz or more and 100000 Hz or less, and the maximum amplitude of the cold-rolled steel sheet is 10 nm or more and 500 ⁇ m or less.
  • a vibration adding device that adds vibration so that continuous annealing equipment.
  • the vibration adding device has an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween, and the cold-rolled steel sheet is vibrated by an external force applied to the cold-rolled steel sheet by the electromagnet.
  • the continuous annealing apparatus according to any one of [1] to [4] above.
  • the vibration adding device has a vibrator that contacts the cold-rolled steel sheet, and is configured to vibrate the cold-rolled steel sheet by the vibrator.
  • the continuous annealing apparatus according to item 1.
  • the vibration adding device has an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween, and the cold-rolled steel sheet is vibrated by an external force applied to the cold-rolled steel sheet by the electromagnet.
  • the continuous hot dip galvanizing apparatus according to any one of [7] to [13] above.
  • the vibration adding device has a vibrator that contacts the cold-rolled steel sheet, and is configured to vibrate the cold-rolled steel sheet by the vibrator.
  • the continuous hot-dip galvanizing apparatus according to item 1.
  • the step (C) is (C-1) a step of immersing the cold-rolled steel sheet in a hot-dip galvanizing bath located downstream of the annealing furnace in the sheet running direction to apply hot-dip galvanization to the cold-rolled steel sheet.
  • the step (C) includes, following the step (C-1), (C-2) passing the cold-rolled steel sheet through an alloying furnace located downstream of the hot dip galvanizing bath in the sheet passing direction.
  • the cold-rolled steel sheet is vibrated by an external force applied to the cold-rolled steel sheet by an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween. 25].
  • the component composition further contains, in % by mass, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.500% or less, W: 0.500% or less, B: 0.0050% or less, Ni: 1.000% or less, Cr: 1.000% or less, Mo: 1.000% or less, Cu: 1.000% or less, Sn: 0.200% or less, Sb: 0.200% or less, Ta: 0.100% or less, Ca: 0.0050% or less, Mg: 0.0050% or less, The method for producing a steel sheet according to [29] above, containing at least one element selected from the group consisting of Zr: 0.1000% or less and REM: 0.0050% or less.
  • the cold-rolled steel sheet contains, by mass%, C: 0.001 to 0.400%, Si: 0.01 to 2.00%, Mn: 0.01 to 5.00%, P: 0.001 to 0.100%, S: 0.0001 to 0.0200%, Cr: 9.0 to 28.0%, Ni: 0.01 to 40.0%, N: 0.0005 to 0.500%, and Al: 0.001 to 3.000%,
  • the component composition further comprises, in % by mass, Ti: 0.500% or less, Nb: 0.500% or less, V: 0.500% or less, W: 2.000% or less, B: 0.0050% or less, Mo: 2.000% or less, Cu: 3.000% or less, Sn: 0.500% or less, Sb: 0.200% or less, Ta: 0.100% or less, Ca: 0.0050% or less, Mg: 0.0050% or less, The method for producing a steel sheet according to [31] above, containing at least one element selected from the group consisting of Zr: 0.1000% or less and REM: 0.0050% or less.
  • a steel sheet having excellent hydrogen embrittlement resistance can be manufactured without impairing production efficiency and without changing mechanical properties. be able to.
  • FIG. 1 is a schematic diagram of a continuous annealing apparatus 100 according to one embodiment of the present invention
  • FIG. 1 is a schematic diagram of a continuous hot dip galvanizing apparatus 200 according to one embodiment of the present invention
  • FIG. FIG. 3 is a schematic diagram of a continuous hot-dip galvanizing apparatus 300 according to another embodiment of the present invention
  • 1 is a schematic diagram showing the configuration of a vibration adding device 60 used in each embodiment of the present invention
  • FIG. (A) and (B) are diagrams schematically showing an example of an installation mode of an electromagnet 63 of a vibration adding device 60 with respect to a cold-rolled steel sheet S being threaded in each embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the configuration of a vibration adding device 70 used in each embodiment of the present invention
  • FIG. 4 is a diagram schematically showing an example of an installation mode of a vibrator 72 of a vibration adding device 70 with respect to a cold-rolled steel sheet S being threaded.
  • FIG. 1 and (B) are schematic diagrams showing an example of the positional relationship between the cooling nozzle 26A and the vibration adding device 60 or 70 when the vibration adding device 60 or 70 is installed in the cooling zone 26.
  • One embodiment of the present invention relates to a continuous annealing line (CAL), and another embodiment of the present invention relates to a continuous hot-dip galvanizing line (CGL). is.
  • CAL continuous annealing line
  • CGL continuous hot-dip galvanizing line
  • a steel sheet manufacturing method is realized by a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL).
  • CAL continuous annealing line
  • CGL continuous hot-dip galvanizing line
  • a continuous annealing apparatus (CAL) 100 includes a pay-off reel 10 for dispensing cold-rolled steel sheet S from a cold-rolled coil C, and a cold-rolled steel sheet S for threading.
  • An annealing furnace 20 for continuous annealing, a downstream facility 30 for continuously threading the cold-rolled steel sheet S discharged from the annealing furnace 20, and the cold-rolled steel sheet S being threaded in the downstream facility 30 is wound up to produce a product coil P and a tension reel 50.
  • a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet passing direction.
  • the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen.
  • the cold-rolled steel sheet S is cooled in the cooling zone 26 .
  • the annealing furnace 20 of CAL100 preferably has an overaging treatment zone 28 downstream of the cooling zone 26, but this is not essential. In the overaging zone 28, the cold-rolled steel sheet S is overaged.
  • CAL 100 produces product coils of cold-rolled and annealed steel sheets (CR).
  • the steel sheet manufacturing method realized by a continuous annealing apparatus (CAL) 100 includes (A) a cold-rolled steel sheet (steel strip) S from a cold-rolled coil C by a pay-off reel 10; (B) Passing the cold-rolled steel sheet S through the annealing furnace 20 in which the heating zone 22, the soaking zone 24, and the cooling zone 26 are located from the upstream side in the sheet passing direction, (B-1 ) annealing the cold-rolled steel sheet S in a reducing atmosphere containing hydrogen in the heating zone 22 and the soaking zone 24, and (B-2) cooling the cold-rolled steel sheet S in the cooling zone 26, performing continuous annealing; C) a step of continuously threading the cold-rolled steel sheet S discharged from the annealing furnace 20; In the continuous annealing step (B) in the annealing furnace 20 of CAL100, (B-3) it is preferable to subject the cold-rolled steel sheet S to an overaging treatment in an overaging treatment zone 28
  • a continuous hot-dip galvanizing apparatus (CGL) 200 includes a pay-off reel 10 for dispensing a cold-rolled steel sheet S from a cold-rolled coil C, and a cold-rolled steel sheet S
  • An annealing furnace 20 for continuously annealing a sheet
  • a downstream facility 30 for continuously threading the cold-rolled steel sheet S discharged from the annealing furnace 20, and the cold-rolled steel sheet S being threaded in the downstream facility 30 is wound up to produce a product.
  • a tension reel 50 as a coil P.
  • a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet passing direction.
  • the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen.
  • the cold-rolled steel sheet S is cooled in the cooling zone 26 .
  • the CGL 200 is positioned downstream of the annealing furnace 20 in the direction of sheet passing as a downstream facility 30, and immerses the cold-rolled steel sheet S in a hot-dip galvanizing bath 31 for hot-dip galvanizing the cold-rolled steel sheet S; It further has an alloying furnace 33 which is located downstream of the plating bath 31 in the sheet passing direction, passes the cold-rolled steel sheet S, and heats and alloys the hot-dip galvanized steel sheet.
  • the CGL 200 produces a product coil of alloyed hot-dip galvanized steel sheet (GA) in which the galvanized layer is alloyed.
  • GA alloyed hot-dip galvanized steel sheet
  • GI hot-dip galvanized steel sheet
  • the steel sheet manufacturing method realized by a continuous hot dip galvanizing apparatus (CGL) 200 includes (A) a cold-rolled steel sheet (steel strip) from a cold-rolled coil C by a payoff reel 10; (B) passing the cold-rolled steel sheet S through an annealing furnace 20 in which a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet passing direction; -1) A step of continuously annealing the cold-rolled steel sheet S in a reducing atmosphere containing hydrogen in the heating zone 22 and the soaking zone 24, and (B-2) cooling the cold-rolled steel sheet S in the cooling zone 26; , (C) a step of continuously threading the cold-rolled steel sheet S discharged from the annealing furnace 20, and (D) a step of winding the cold-rolled steel sheet S by the tension reel 50 to form a product coil P, in this order.
  • a cold-rolled steel sheet (steel strip) from a cold-rolled coil C by a payoff
  • step (C) is (C-1) a step of immersing the cold-rolled steel sheet S in a hot-dip galvanizing bath 31 located downstream of the annealing furnace 20 in the sheet running direction to apply hot-dip galvanization to the cold-rolled steel sheet S.
  • step (C-2) the cold-rolled steel sheet S is passed through an alloying furnace 33 located downstream of the hot-dip galvanizing bath 31 in the sheet-passing direction to heat-alloy the hot-dip galvanized steel.
  • This embodiment is a method of manufacturing a product coil of an alloyed hot-dip galvanized steel sheet (GA) in which a galvanized layer is alloyed by CGL200.
  • a continuous hot dip galvanizing apparatus (CGL) 300 according to the third embodiment of the present invention has the same configuration as the CGL 200 except that it does not have an alloying furnace 33.
  • the CGL 300 produces product coils of hot-dip galvanized steel sheets (GI) in which the galvanized layer is unalloyed.
  • GI hot-dip galvanized steel sheets
  • the steel sheet manufacturing method according to the third embodiment in which the step (C-1) is performed and the step (C-2) is not performed is realized by, for example, the CGL 300 without the alloying furnace 33, and the CGL 200 It can also be realized by a method in which the steel plate S is passed through the alloying furnace 33 without heat alloying.
  • This embodiment is a method of manufacturing a product coil of a hot-dip galvanized steel sheet (GI) in which the galvanized layer is not alloyed by CGL200 or CGL300.
  • GI hot-dip galvanized steel sheet
  • Step (A) a payoff reel 10 pays out a cold-rolled steel sheet S from a cold-rolled coil C. As shown in FIG. That is, in step (A), the cold-rolled steel sheet S is paid out from the cold-rolled coil C by the pay-off reel 10 .
  • the discharged cold-rolled steel sheet S passes through the welding machine 11 , the cleaning equipment 12 and the entrance looper 13 and is supplied to the annealing furnace 20 .
  • the upstream equipment between the payoff reel 10 and the annealing furnace 20 is not limited to the welding machine 11, the cleaning equipment 12, and the entrance looper 13, and may be known or arbitrary equipment.
  • an annealing furnace 20 continuously anneals a cold-rolled steel sheet S through which it passes.
  • a heating zone 22 a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet passing direction.
  • the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen.
  • the cold-rolled steel sheet S is cooled in the cooling zone 26 .
  • step (B) the cold-rolled steel sheet S is passed through an annealing furnace 20 in which a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet-passing direction, and continuous annealing is performed.
  • the cooling zone 26 may be composed of multiple cooling zones. Further, a preheating zone may be provided on the upstream side of the heating zone 22 in the sheet threading direction.
  • the annealing furnace 20 of the CAL 100 shown in FIG. 1 preferably has an overaging treatment zone 28 downstream of the cooling zone 26, but this is not essential.
  • each belt is illustrated as a vertical furnace, but it is not limited to this, and may be a horizontal furnace. In the case of a vertical furnace, adjacent strips communicate through throats (throttles) connecting the upper parts or the lower parts of the respective strips.
  • the cold-rolled steel sheet S can be directly heated using a burner, or indirectly heated using a radiant tube (RT) or an electric heater. Heating by induction heating, roll heating, electric resistance heating, direct electric heating, salt bath heating, electron beam heating, etc. is also possible.
  • the average temperature inside the heating zone 22 is preferably 500-800.degree.
  • a reducing gas is separately supplied.
  • an H 2 -N 2 mixed gas is usually used, for example, H 2 : 1 to 35% by volume, the balance being one or both of N 2 and Ar and inevitable impurities (dew point : about -60°C).
  • the cold-rolled steel sheet S can be indirectly heated using a radiant tube (RT).
  • the average temperature inside the soaking zone 24 is preferably 600 to 950°C.
  • a reducing gas is supplied to the soaking zone 24 .
  • an H 2 -N 2 mixed gas is usually used, for example, H 2 : 1 to 35% by volume, the balance being one or both of N 2 and Ar and inevitable impurities (dew point : about -60°C).
  • cooling zone 26 In the cooling zone 26, the cold-rolled steel sheet S is cooled by either gas, a mixture of gas and water, or water. The cold-rolled steel sheet S is cooled to about 100 to 400° C. for CAL and to about 470 to 530° C. for CGL at the stage of leaving the annealing furnace 20 . As shown in FIGS. 8A and 8B, the cooling zone 26 is provided with a plurality of cooling nozzles 26A along the steel sheet conveying path.
  • the cooling nozzle 26A is, for example, a circular pipe longer than the width of the steel plate, as described in Japanese Unexamined Patent Application Publication No. 2010-185101, and is installed so that the extending direction of the circular pipe is parallel to the width direction of the steel plate. .
  • the circular pipe is provided with a plurality of through-holes at a predetermined interval along the extending direction of the circular pipe at a portion facing the steel plate, and the water inside the circular pipe is jetted from the through-holes toward the steel plate.
  • a pair of cooling nozzles are provided so as to face the front and back of the steel plate, and a plurality of pairs (for example, 5 to 10 pairs) of cooling nozzles are arranged at predetermined intervals along the steel plate conveying path to form one cooling zone. Constitute. It is preferable to arrange about 3 to 6 cooling zones along the steel plate conveying path.
  • cold-rolled steel sheet S exiting cooling zone 26 is subjected to at least one treatment of isothermal holding, reheating, furnace cooling, and air cooling.
  • the rolled steel sheet S is cooled to about 100 to 400° C. at the stage of leaving the annealing furnace 20 .
  • step (C) the cold-rolled steel sheet S discharged from the annealing furnace 20 is continuously passed through the downstream facility 30.
  • CGL 100 has a delivery side looper 35 and a temper rolling mill 36 as downstream equipment 30 .
  • CGL 200 has, as downstream equipment 30 , hot dip galvanizing bath 31 , gas wiping device 32 , alloying furnace 33 , cooling device 34 , exit looper 35 , and temper rolling mill 36 .
  • CGL 300 has, as downstream equipment 30 , hot dip galvanizing bath 31 , gas wiping device 32 , cooling device 34 , delivery side looper 35 , and temper rolling mill 36 .
  • the downstream equipment 30 is not limited to these, and may be known or arbitrary equipment.
  • the downstream equipment 30 can include tension levelers, chemical conversion equipment, surface conditioning equipment, oiling equipment, and inspection equipment.
  • the hot-dip galvanizing bath 31 is located downstream of the annealing furnace 20 in the direction of sheet feeding, immerses the cold-rolled steel sheet S, and hot-dip galvanizes the cold-rolled steel sheet S.
  • the cold-rolled steel sheet S is immersed in a hot-dip galvanizing bath 31 located downstream of the annealing furnace 20 in the sheet-threading direction, and the cold-rolled steel sheet S is hot-dip galvanized.
  • the snout 29 connected to the most downstream zone (cooling zone 26 in FIGS.
  • Hot-dip galvanizing may be performed according to a standard method.
  • the alloying furnace 33 is located downstream of the hot dip galvanizing bath 31 and the gas wiping device 32 in the sheet passing direction, passes the cold rolled steel sheet S, and heats and alloys the hot dip galvanized. . That is, in the step (C-2), the cold-rolled steel sheet S is passed through an alloying furnace 33 located downstream of the hot dip galvanizing bath 31 and the gas wiping device 32 in the sheet passing direction, and the hot dip galvanized is heated and alloyed. do.
  • the alloying treatment may be performed according to a standard method.
  • the heating means in the alloying furnace 33 is not particularly limited, and examples thereof include heating with high-temperature gas and induction heating. However, the alloying furnace 33 is optional equipment in the CGL, and the alloying process is an optional process in the steel sheet manufacturing method using the CGL.
  • the cooling device 34 is located downstream of the gas wiping device 32 and the alloying furnace 33 in the sheet passing direction.
  • the cold-rolled steel sheet S can be cooled by passing the cold-rolled steel sheet S through the cooling device 34 .
  • the cooling device 34 cools the cold-rolled steel sheet S by water cooling, air cooling, gas cooling, mist cooling, or the like.
  • the CAL 100 of the first embodiment, the CGL 200 of the second embodiment, and the CGL 300 of the third embodiment add vibration to the cold-rolled steel sheet S being threaded from the cooling band 26 to the tension reel 50. It is essential to have a vibration adding device 60 or 70 that That is, in the steel sheet manufacturing methods according to the first, second, and third embodiments, after the step (B-2) and before the step (D), the cold-rolled steel sheet S being threaded is It is essential to include a vibration adding step of adding vibrations at the bottom.
  • the vibration applied to the cold-rolled steel sheet S by the vibration adding device 60 or 70 has a vibration frequency of 100 Hz or more and 100000 Hz or less, and a maximum amplitude of the cold-rolled steel sheet S of 10 nm or more and 500 ⁇ m or less. It is essential to be something. As a result, the hydrogen contained in the cold-rolled steel sheet S can be sufficiently and efficiently reduced by annealing, and a steel sheet having excellent resistance to hydrogen embrittlement can be produced. Moreover, since vibration application is incorporated into the steel plate manufacturing process (in-line) by CAL100, CGL200 or CGL300, production efficiency is not impaired. In addition, since hydrogen is desorbed not by heating but by applying vibration, there is no fear of changing the mechanical properties of the steel sheet.
  • vibration adding device 60 Each embodiment of the present invention can be realized by installing a vibration adding device 60 as shown in FIG. Vibration is added to the rolled steel sheet S.
  • vibration adding device 60 includes controller 61 , amplifier 62 , electromagnet 63 , vibration detector 64 and power supply 65 .
  • vibration adding device 60 has electromagnet 63 including magnet 63A and coil 63B winding magnet 63A. has a magnetic pole face 63A1 spacedly opposed to the surface of the .
  • the vibration adding device 60 is configured to vibrate the cold-rolled steel sheet S by an external force (attractive force) applied to the cold-rolled steel sheet S by the electromagnet 63 .
  • the electromagnet 63 has a magnetic pole face 63A1 that faces the surface of the cold-rolled steel sheet S with a gap therebetween, its shape and installation mode are not limited. As a result, as shown in FIGS. 6A and 6B, the direction of the magnetic lines of force becomes perpendicular to the cold-rolled steel sheet S, and an attractive force can be exerted on the cold-rolled steel sheet S. Examples of the shape and installation mode of the electromagnet are shown in FIGS. 5A and 5B.
  • the rectangular parallelepiped electromagnet 63 extends along the width direction of the steel sheet with a predetermined gap from the surface of the cold-rolled steel sheet S.
  • An external force (attractive force) can be applied uniformly in the width direction of the , and uniform vibration in the width direction can be realized.
  • the electromagnet 63 has a magnet 63A and a coil 63B wound therearound. In this case, depending on the direction of the current flowing through the coil 63B, as shown in FIG. , the magnetic pole surface 63A1 facing the cold-rolled steel sheet S becomes the S pole.
  • a plurality of columnar electromagnets 63 are arranged at predetermined intervals along the width direction of the steel sheet S so that the magnetic pole faces at the bottom face the surface of the cold-rolled steel sheet S with a space therebetween.
  • an external force attractive force
  • each electromagnet 63 has a cylindrical magnet and a coil wound around it, and the axial direction of the coil coincides with the thickness direction of the cold-rolled steel sheet S.
  • the magnetic pole surface 63A1 facing the cold-rolled steel sheet S becomes the N pole as shown in FIG.
  • the magnetic pole surface 63A1 facing the cold-rolled steel sheet S becomes the S pole.
  • an external force acts on the cold-rolled steel sheet S by applying a current to the electromagnet 63 .
  • the current supplied to the electromagnet 63 is a direct current pulse current or an alternating current continuous current.
  • a DC pulse current is applied to the electromagnet 63
  • the cold-rolled steel sheet S vibrates due to intermittent attractive force acting on the cold-rolled steel sheet S.
  • a continuous alternating current is passed through the electromagnet, the magnetic pole surface 63A1 facing the cold-rolled steel sheet S switches between the N pole and the S pole each time the direction of the current changes.
  • An external force acts.
  • the magnitude of the external force (attractive force) acting on the cold-rolled steel sheet S also changes according to the change in the current value over time, the cold-rolled steel sheet S vibrates.
  • the electromagnet 63 it is sufficient to provide the electromagnet 63 so as to face one surface of the cold-rolled steel sheet S, but it may be provided so as to face both the front and back surfaces. However, in that case, it is preferable to shift the height position so that the electromagnet on one side is not at the same height position as the electromagnet on the other side.
  • the vibration detector 64 shown in FIG. 4 is a laser displacement meter or a laser Doppler vibrometer arranged at a predetermined distance from the surface of the cold-rolled steel sheet S, and measures the frequency and amplitude of the vibration of the cold-rolled steel sheet S. be able to. By disposing the vibration detector 64 at the same height position as the electromagnet 63 of the cold-rolled steel sheet S, the vibration detector 64 can measure the maximum amplitude of the vibration of the cold-rolled steel sheet S. The frequency and maximum amplitude detected by vibration detector 64 are output to controller 61 .
  • the controller 61 receives the values of the frequency and maximum amplitude output from the vibration detector 64, compares them with the set values, performs PID calculation on the deviation, etc., and controls the cold-rolled steel sheet S at a predetermined frequency and maximum amplitude.
  • the frequency of the electromagnet 63 (the frequency of the DC pulse current or the frequency of the continuous AC current) and the current value are determined so as to oscillate, and the current value to be given to the amplifier 62 is determined in consideration of the amplification factor of the amplifier 62. and gives a command value to the power supply 65 .
  • the power supply 65 is a power supply for supplying current to the coil of the electromagnet 63, receives a command value input from the controller 61, and provides the amplifier 62 with current having a predetermined frequency and current value.
  • the amplifier 62 amplifies the current value given from the power supply 65 with a predetermined amplification factor and gives a command value to the electromagnet 63 .
  • a current with a predetermined frequency and current value flows through the electromagnet 63, and the cold-rolled steel sheet S can be vibrated at a predetermined frequency and maximum amplitude.
  • vibration adding device 70 Each embodiment of the present invention can be realized by installing a vibration adding device 70 as shown in FIG. Vibration is added to the rolled steel sheet S.
  • vibration adding device 70 includes controller 71 , vibrator 72 , and vibration detector 73 .
  • the vibration adding device 70 has a vibrator 72 that contacts the cold-rolled steel sheet S, and is configured to vibrate the cold-rolled steel sheet S with the vibrator 72 .
  • the vibrator 72 is not particularly limited as long as it is a general piezoelectric element, and its shape and installation mode are also not limited. For example, as shown in FIG. is brought into surface contact with the cold-rolled steel sheet S, the cold-rolled steel sheet S can be vibrated.
  • the vibrator 72 it is sufficient to provide the vibrator 72 so as to be in contact with one surface of the cold-rolled steel sheet S, but it may be provided so as to be in contact with both the front and back surfaces. However, in that case, it is preferable to shift the height position so that the vibrator on one side is not at the same height position as the vibrator on the other side.
  • the vibration detector 73 shown in FIG. 7A is a laser displacement meter or a laser Doppler vibrometer arranged at a predetermined distance from the surface of the cold-rolled steel sheet S, and measures the frequency and amplitude of the vibration of the cold-rolled steel sheet S. be able to. By arranging the vibration detector 73 at the same height position as the vibrator 72 of the cold-rolled steel sheet S, the maximum amplitude of vibration of the cold-rolled steel sheet S can be measured by the vibration detector 73 . The frequency and maximum amplitude detected by vibration detector 73 are output to controller 71 .
  • the controller 71 receives the values of the frequency and maximum amplitude output from the vibration detector 73, compares them with the set values, performs PID calculation on the deviation, etc., and controls the cold-rolled steel sheet S at a predetermined frequency and maximum amplitude.
  • the frequency and current value of the DC pulse current flowing through the vibrator 72 are determined so as to vibrate the vibrator 72, and a power source (not shown) is controlled to give the vibrator 72 a DC pulse current of a predetermined frequency and current value.
  • the vibrator 72 vibrates at a predetermined frequency and amplitude, and as a result, the cold-rolled steel sheet S can be vibrated at a predetermined frequency and maximum amplitude.
  • the position of the vibration applying device 60 or 70 is such that vibration can be applied to the cold-rolled steel sheet S being threaded from the cooling band 26 to the tension reel 50. as unrestricted as possible.
  • a suitable position of the vibration applying device 60 or 70 that is, a suitable execution timing of the vibration applying process is explain.
  • a vibration applicator 60 or 70 may be provided on the cooling zone 26 .
  • the vibration application step can be performed in step (B-2).
  • the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. , B can be installed.
  • 8A and 8B show examples of the positional relationship between the cooling nozzle 26A and the vibration adding device 60 or 70 when the vibration adding device 60 or 70 is installed in the cooling zone 26.
  • FIG. It should be noted that the entire vibration adding device 60 or 70 does not have to be positioned inside the cooling zone 26 , and at least the electromagnet 63 or the vibrator 72 may be positioned inside the cooling zone 26 .
  • the vibration applying device 60 or 70 can be provided at a position where vibration can be applied to the cold-rolled steel sheet S being passed through the downstream facility 30 .
  • the vibration application step can be performed in step (C). Specifically, (i) between the overaging treatment zone 28 and the delivery side looper 35, (ii) within the delivery side looper 35, (iii) between the delivery side looper 35 and the temper rolling mill 36, (iv) )
  • a vibration adding device 60 or 70 can be provided at least one between the temper rolling mill 36 and the tension reel 50 .
  • the vibration applying device 60 or 70 may be provided both in the cooling zone 26 and in a position where vibration can be applied to the cold-rolled steel sheet S being passed through the downstream equipment 30 . That is, the vibration application step may be performed in both step (B-2) and step (C). Moreover, the vibration applying device 60 or 70 may be provided in the overaging treatment zone 28 to perform the vibration applying process during the overaging treatment.
  • the preferred position of the vibration applying device 60 or 70 that is, the preferred position of the vibration applying process I will explain the implementation timing.
  • the vibration applying device 60 or 70 can be provided upstream from the hot-dip galvanizing bath 31 at a first position where vibration can be applied to the cold-rolled steel sheet S being passed.
  • the vibration application step can be performed before step (C-1).
  • a vibration adding device 60 or 70 may be provided in the cooling zone 26 .
  • the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. A vibrator 72 shown in 7A and 7B can be installed.
  • the entire vibration adding device 60 or 70 does not need to be positioned inside the cooling zone 26 , and at least the electromagnet 63 or the vibrator 72 may be positioned inside the cooling zone 26 . Also, at least the electromagnet 63 or vibrator 72 of the vibration adding device 60 or 70 can be installed in the snout 29 .
  • the vibration applying device 60 or 70 can be provided downstream from the hot dip galvanizing bath 31 at a second position where vibration can be applied to the cold-rolled steel sheet S being passed.
  • the vibration applying step can be performed after the step (C-1). Specifically, (i) between the hot dip galvanizing bath 31 and the gas wiping device 32, (ii) between the gas wiping device 32 and the alloying furnace 33, (iii) inside the alloying furnace 33, and (iv) Air cooling zone between the alloying furnace 33 and the cooling device 34, (v) between the cooling device 34 and the delivery side looper 35, (vi) within the delivery side looper 35, (vii) the delivery side looper 35 and temper rolling (viii) between the temper mill 36 and the tension reel 50.
  • the vibration applying device 60 or 70 is preferably provided at the first position rather than at the second position. That is, the vibration application step is preferably performed before step (C-1) rather than after step (C-1). However, the vibration adding device 60 or 70 may be provided at both the first position and the second position. That is, the vibration applying step may be performed both before and after the step (C-1).
  • the preferred position of the vibration adding device 60 or 70 that is, the preferred execution of the vibration adding process Explain timing.
  • the vibration applying device 60 or 70 can be provided upstream from the hot-dip galvanizing bath 31 at a first position where vibration can be applied to the cold-rolled steel sheet S being passed.
  • the vibration application step can be performed before step (C-1).
  • a vibration adding device 60 or 70 may be provided in the cooling zone 26 .
  • the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. A vibrator 72 shown in 7A and 7B can be installed.
  • the entire vibration adding device 60 or 70 does not need to be positioned inside the cooling zone 26 , and at least the electromagnet 63 or the vibrator 72 may be positioned inside the cooling zone 26 . Also, at least the electromagnet 63 or vibrator 72 of the vibration adding device 60 or 70 can be installed in the snout 29 .
  • the vibration applying device 60 or 70 can be provided downstream from the hot dip galvanizing bath 31 at a second position where vibration can be applied to the cold-rolled steel sheet S being passed.
  • the vibration applying step can be performed after the step (C-1). Specifically, (i) between the hot dip galvanizing bath 31 and the gas wiping device 32, (ii) an air cooling zone between the gas wiping device 32 and the cooling device 34, and (iii) the cooling device 34 and the outlet looper 35, (iv) inside the delivery side looper 35, (v) between the delivery side looper 35 and the temper mill 36, and (vi) between the temper mill 36 and the tension reel 50.
  • a vibration adding device 60 or 70 can be provided. In particular, it is preferable to provide the vibration adding device 60 or 70 in the air cooling zone (ii).
  • the vibration applying device 60 or 70 is preferably provided at the first position rather than at the second position. That is, the vibration application step is preferably performed before step (C-1) rather than after step (C-1). However, the vibration adding device 60 or 70 may be provided at both the first position and the second position. That is, the vibration applying step may be performed both before and after the step (C-1).
  • the vibration frequency of the cold-rolled steel sheet S is 100 Hz or higher. If the frequency is less than 100 Hz, the effect of desorbing hydrogen contained in the cold-rolled steel sheet S cannot be obtained. From this point of view, the frequency is 100 Hz or higher, preferably 500 Hz or higher, and more preferably 1000 Hz or higher.
  • the cold-rolled steel sheet S naturally vibrates during the sheet threading process, or vibrates by receiving gas from the gas wiping device 32, for example. However, in these vibrations, the vibration frequency of the cold-rolled steel sheet S is at most about 20 Hz, and in this case, the effect of desorbing hydrogen contained in the cold-rolled steel sheet S cannot be obtained.
  • the frequency be 100,000 Hz or less, preferably 80,000 Hz or less, and more preferably 50,000 Hz or less.
  • the vibration frequency of the cold-rolled steel sheet S can be measured by the vibration detector 64 shown in FIG. 4 or the vibration detector 73 shown in FIG. 7A.
  • the vibration frequency of the cold-rolled steel sheet S can be adjusted by controlling the frequency of the DC pulse current or the frequency of the AC continuous current.
  • the vibration applying device 70 shown in B it can be adjusted by controlling the vibration frequency of the vibrator 72 .
  • the maximum amplitude of the cold-rolled steel sheet S is 10 nm or more, preferably 100 nm or more, and more preferably 500 nm or more.
  • the maximum amplitude of the cold-rolled steel sheet S exceeds 500 ⁇ m, the strain on the steel sheet surface increases, plastic deformation occurs, and as a result hydrogen is trapped, so hydrogen contained in the cold-rolled steel sheet S is removed.
  • the maximum amplitude of the cold-rolled steel sheet S is 500 ⁇ m or less, preferably 400 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the cold-rolled steel sheet S naturally vibrates during the sheet threading process, or vibrates by receiving gas from the gas wiping device 32, for example.
  • the maximum amplitude of the cold-rolled steel sheet S exceeds at least 0.5 mm, the effect of desorbing hydrogen contained in the cold-rolled steel sheet S cannot be obtained.
  • the maximum amplitude of the cold-rolled steel sheet S can be measured by the vibration detector 64 shown in FIG. 4 or the vibration detector 73 shown in FIG. 7A.
  • the maximum amplitude of the cold-rolled steel sheet S can be adjusted by controlling the amount of current flowing through the electromagnet 63 in the case of the vibration adding device 60 shown in FIG. can be adjusted by controlling the amplitude of the vibration of the vibrator 72 .
  • the vibration application time to the cold-rolled steel sheet S is preferably 1 second or longer, more preferably 5 seconds or longer. Seconds or longer is more preferable.
  • the duration of vibration applied to the cold-rolled steel sheet S is preferably 3600 seconds or less, more preferably 1800 seconds or less, and even more preferably 900 seconds or less.
  • vibration application time to the cold-rolled steel sheet S means the time during which vibration is applied to each position on the surface of the cold-rolled steel sheet S, and each position is provided with a plurality of vibration applying devices 60 or 70 .
  • vibration When vibration is given from , it means the accumulated time.
  • vibration applying device 60 when vibration applying device 60 is used, it can be considered that the portion of the surface of cold-rolled steel sheet S facing electromagnet 63 is vibrating. Therefore, the sum of the times during which each part of the cold-rolled steel sheet S faces the electromagnet 63 can be used as the vibration addition time.
  • the vibration adding device 70 shown in FIGS. 7A and 7B the cumulative time during which each part of the cold-rolled steel sheet S is in contact with the vibrator 72 can be used as the vibration adding time.
  • the vibration application time depends on the threading speed of the cold-rolled steel sheet S and the position of the vibration applying device 60 or 70 (for example, the number of electromagnets 63 shown in FIG. 72 along the threading direction).
  • the cold-rolled steel sheet S supplied to CAL100, CGL200 and CGL300 is not particularly limited.
  • the cold-rolled steel sheet S preferably has a thickness of less than 6 mm, and includes, for example, a high-strength steel sheet having a tensile strength of 590 MPa or more and a stainless steel sheet.
  • C 0.030-0.800% C has the effect of increasing the strength of the steel sheet. From the viewpoint of obtaining this effect, the amount of C should be 0.030% or more, preferably 0.080% or more. However, when the amount of C is excessive, the steel sheet becomes significantly embrittled regardless of the amount of hydrogen in the steel sheet. Therefore, the amount of C should be 0.800% or less, preferably 0.500% or less.
  • Si 0.01-3.00% Si has the effect of increasing the strength of the steel sheet. From the viewpoint of obtaining this effect, the amount of Si should be 0.01% or more, preferably 0.10% or more. However, when the amount of Si is excessive, the steel sheet becomes embrittled and the ductility is lowered, red scales are generated, the surface properties are deteriorated, and the plating quality is lowered. Therefore, the Si content is 3.00% or less, preferably 2.50% or less.
  • Mn 0.01-10.00%
  • Mn has the effect of increasing the strength of the steel sheet through solid-solution strengthening. From the viewpoint of obtaining this effect, the amount of Mn should be 0.01% or more, preferably 0.5% or more. However, when the amount of Mn is excessive, unevenness tends to occur in the steel structure due to the segregation of Mn, and hydrogen embrittlement starting from the unevenness may occur. Therefore, the Mn content is set to 10.00% or less, preferably 8.00% or less.
  • P 0.001 to 0.100%
  • P is an element that has a solid-solution strengthening action and can be added according to the desired strength. From the viewpoint of obtaining such effects, the amount of P should be 0.001% or more, preferably 0.003% or more. However, when the amount of P is excessive, the weldability deteriorates, and when the zinc plating is alloyed, the alloying speed decreases and the quality of the zinc plating deteriorates. Therefore, the P content is set to 0.100% or less, preferably 0.050% or less.
  • S 0.0001 to 0.0200% S segregates at grain boundaries to embrittle the steel during hot working, and also exists as sulfides to reduce local deformability. Therefore, the S content is 0.0200% or less, preferably 0.0100% or less, more preferably 0.0050% or less. On the other hand, the amount of S is set to 0.0001% or more due to production technology restrictions.
  • N 0.0005 to 0.0100% N is an element that deteriorates the aging resistance of steel. Therefore, the N content is set to 0.0100% or less, preferably 0.0070% or less. The smaller the amount of N, the better, but due to production technology restrictions, the amount of N is set to 0.0005% or more, preferably 0.0010% or more.
  • Al acts as a deoxidizing agent and is an element effective for the cleanliness of steel. From the viewpoint of obtaining this effect, the amount of Al should be 0.001% or more, preferably 0.010% or more. However, if the amount of Al is excessive, there is a possibility that cracks will occur during continuous casting. Therefore, the Al content is set to 2.000% or less, preferably 1.200% or less.
  • the balance other than the above components is Fe and unavoidable impurities. However, it may optionally contain at least one element selected from the following.
  • Ti 0.200% or less Ti contributes to an increase in the strength of the steel sheet by precipitation strengthening of the steel and fine grain strengthening by suppressing the growth of ferrite crystal grains. Therefore, when adding Ti, the amount of Ti is preferably 0.005% or more, more preferably 0.010% or more. However, if the amount of Ti is excessive, a large amount of carbonitrides may be precipitated and formability may deteriorate. Therefore, when adding Ti, the amount of Ti should be 0.200% or less, preferably 0.100% or less.
  • Nb 0.200% or less
  • V 0.500% or less
  • W 0.500% or less
  • Nb, V, and W are effective for precipitation strengthening of steel. Therefore, when Nb, V, and W are added, the content of each element is preferably 0.005% or more, more preferably 0.010% or more. However, if each content is excessive, a large amount of carbonitrides may be precipitated and formability may be lowered. Therefore, when Nb is added, the amount of Nb should be 0.200% or less, preferably 0.100% or less. When V and W are added, the content of each element should be 0.500% or less, preferably 0.300% or less.
  • B 0.0050% or less B is effective for strengthening grain boundaries and increasing the strength of steel sheets. Therefore, when adding B, the amount of B is preferably 0.0003% or more. However, when the amount of B is excessive, moldability may deteriorate. Therefore, when adding B, the amount of B should be 0.0050% or less, preferably 0.0030% or less.
  • Ni 1.000% or less
  • Ni is an element that increases the strength of steel through solid-solution strengthening. Therefore, when Ni is added, the amount of Ni is preferably 0.005% or more. However, when the amount of Ni is excessive, the area ratio of hard martensite becomes excessive, and microvoids at grain boundaries of martensite increase during tensile tests, furthermore, propagation of cracks progresses, resulting in ductility. may decrease. Therefore, when Ni is added, the amount of Ni should be 1.000% or less.
  • Cr 1.000% or less
  • Mo 1.000% or less Cr and Mo have the effect of improving the balance between strength and formability. Therefore, when Cr and Mo are added, the content of each element is preferably 0.005% or more. However, if each content is excessive, the area ratio of hard martensite becomes excessive, and microvoids at grain boundaries of martensite increase during tensile tests, and crack propagation progresses. Ductility may decrease. Therefore, when Cr and Mo are added, the content of each element should be 1.000% or less.
  • Cu 1.000% or less
  • Cu is an element effective in strengthening steel. Therefore, when adding Cu, the amount of Cu is preferably 0.005% or more. However, when the amount of Cu is excessive, the area ratio of hard martensite becomes excessive, and microvoids at grain boundaries of tempered martensite increase during a tensile test, and crack propagation progresses. Ductility may decrease. Therefore, when adding Cu, the amount of Cu is set to 1.000% or less.
  • Sn 0.200% or less
  • Sb 0.200% or less
  • Sn and Sb suppress decarburization of a region of about several tens of ⁇ m in the surface layer of the steel sheet caused by nitridation or oxidation of the steel sheet surface, and improve strength and material stability. It is effective in securing the sex. Therefore, when Sn and Sb are added, the content of each element is preferably 0.002% or more. However, if each content is excessive, the toughness may decrease. Therefore, when Sn and Sb are added, the content of each element should be 0.200% or less.
  • Ta 0.100% or less Ta, like Ti and Nb, forms alloy carbides and alloy carbonitrides and contributes to high strength.
  • the amount of Ta is preferably 0.001% or more.
  • the amount of Ta should be 0.100% or less.
  • Ca, Mg, Zr and REM have the shape of sulfides. It is an effective element for spheroidizing and ameliorating the adverse effects of sulfides on formability.
  • the content of each element is preferably 0.0005% or more. However, if each content is excessive, inclusions and the like increase, and surface and internal defects may occur. Therefore, when these elements are added, the content of each element should be 0.0050% or less.
  • C 0.001 to 0.400%
  • C is an essential element for obtaining high strength in stainless steel. However, it combines with Cr during tempering in steel production and precipitates as carbides, which deteriorate the corrosion resistance and toughness of the steel. If the amount of C is less than 0.001%, sufficient strength cannot be obtained, and if it exceeds 0.400%, the above deterioration becomes remarkable. Therefore, the amount of C is set to 0.001 to 0.400%.
  • Si 0.01-2.00% Si is an element useful as a deoxidizing agent. From the viewpoint of obtaining this effect, the amount of Si is made 0.01% or more. However, when the amount of Si is excessive, the Si dissolved in the steel reduces the workability of the steel. Therefore, Si should be 2.00% or less.
  • Mn 0.01-5.00% Mn has the effect of increasing the strength of steel. From the viewpoint of obtaining this effect, the amount of Mn is set to 0.01% or more. However, when the amount of Mn is excessive, the workability of the steel deteriorates. Therefore, the Mn content is set to 5.00% or less.
  • P 0.001 to 0.100%
  • P is an element that promotes intergranular fracture due to intergranular segregation. Therefore, the lower the P content is, the more preferably it is 0.100% or less, preferably 0.030% or less, and more preferably 0.020% or less. On the other hand, the amount of P is set to 0.001% or more due to restrictions on production technology.
  • S 0.0001 to 0.0200% S exists as sulfide-based inclusions such as MnS and lowers ductility, corrosion resistance, and the like. Therefore, the lower the S content is, the more preferably it is 0.0200% or less, preferably 0.0100% or less, and more preferably 0.0050% or less. On the other hand, the amount of S is set to 0.0001% or more due to production technology restrictions.
  • Cr 9.0-28.0%
  • Cr is a basic element that constitutes stainless steel, and is an important element that develops corrosion resistance.
  • the Cr content is set to 9.0 to 28.0%.
  • Ni 0.01-40.0% Ni is an element that improves the corrosion resistance of stainless steel. If the amount of Ni is less than 0.01%, the effect is not sufficiently exhibited. On the other hand, if the amount of Ni is excessive, the formability is deteriorated and stress corrosion cracking is likely to occur. Therefore, the Ni content is set to 0.01 to 40.0%.
  • N 0.0005 to 0.500% N is an element harmful to improving the corrosion resistance of stainless steel. Therefore, the N content is set to 0.500% or less, preferably 0.200% or less. The smaller the amount of N, the better, but due to production technology restrictions, the amount of N is set to 0.0005% or more.
  • Al 0.001-3.000%
  • Al has the effect of suppressing the peeling of oxide scale. From the viewpoint of obtaining these effects, the amount of Al is made 0.001% or more. However, when the amount of Al is excessive, a decrease in elongation and deterioration of surface quality occur. Therefore, the Al content is set to 3.000% or less.
  • the balance other than the above components is Fe and unavoidable impurities. However, it may optionally contain at least one element selected from the following.
  • Ti 0.500% or less Ti combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. However, when the amount of Ti exceeds 0.500%, the toughness deteriorates due to dissolved Ti. Therefore, when adding Ti, the amount of Ti shall be 0.500% or less.
  • Nb 0.500% or less Nb, like Ti, combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. In addition to improving workability and high-temperature strength, it suppresses crevice corrosion and promotes re-passivation. However, excessive addition causes hardening and deteriorates moldability. Therefore, when Nb is added, the amount of Nb should be 0.500% or less.
  • V 0.500% or less V suppresses crevice corrosion. However, excessive addition deteriorates moldability. Therefore, when adding V, the amount of V should be 0.500% or less.
  • W 2.000% or less W contributes to improvement of corrosion resistance and high-temperature strength.
  • excessive addition leads to deterioration of toughness and cost increase during steel sheet production. Therefore, when adding W, the amount of W shall be 2.000% or less.
  • B 0.0050% or less B segregates at grain boundaries to improve secondary workability of products.
  • excessive addition results in deterioration of workability and corrosion resistance. Therefore, when adding B, the amount of B shall be 0.0050% or less.
  • Mo 2.000% or less
  • Mo is an element that improves corrosion resistance and particularly suppresses crevice corrosion.
  • excessive addition deteriorates moldability. Therefore, when adding Mo, the amount of Mo shall be 2.000% or less.
  • Cu 3.000% or less
  • Cu is an austenite-stabilizing element and is effective in refining crystal grains by phase transformation. It also promotes suppression of crevice corrosion and re-passivation. However, excessive addition degrades toughness and formability. Therefore, when adding Cu, the amount of Cu is 3.000% or less.
  • Sn 0.500% or less Sn contributes to improvement in corrosion resistance and high-temperature strength. However, excessive addition may cause slab cracking during steel sheet production. Therefore, when Sn is added, the amount of Sn should be 0.500% or less.
  • Sb 0.200% or less Sb segregates at grain boundaries to increase high-temperature strength. However, excessive addition may cause cracks during welding due to Sb segregation. Therefore, when Sb is added, the amount of Sb should be 0.200% or less.
  • Ta 0.100% or less Ta combines with C and N and contributes to the improvement of toughness. However, excessive addition saturates the effect, leading to an increase in production costs. Therefore, when Ta is added, the amount of Ta is set to 0.100% or less.
  • Ca, Mg, Zr and REM have the shape of sulfides. It is an effective element for spheroidizing and ameliorating the adverse effects of sulfides on formability.
  • the content of each element is preferably 0.0005% or more. However, if each content is excessive, inclusions and the like increase, and surface and internal defects may occur. Therefore, when these elements are added, the content of each element should be 0.0050% or less.
  • the amount of diffusible hydrogen in the product coil is preferably 0.50 mass ppm or less, more preferably 0.30 mass ppm or less, and 0 .20 mass ppm or less is more preferable.
  • the lower limit of the amount of diffusible hydrogen in the product coil is not specified, the amount of diffusible hydrogen in the product coil can be 0.01 ppm by mass or more due to production technology restrictions.
  • the method for measuring the amount of diffusible hydrogen in the product coil is as follows.
  • a test piece with a length of 30 mm and a width of 5 mm is taken from the product coil.
  • the hot-dip galvanized layer or alloyed hot-dip galvanized layer of the test piece is removed by grinding or alkali.
  • the amount of hydrogen released from the test piece is measured by thermal desorption spectrometry (TDS). Specifically, the test piece was continuously heated from room temperature to 300°C at a temperature increase rate of 200°C/h, then cooled to room temperature, and the cumulative amount of hydrogen released from the test piece from room temperature to 210°C was measured. , the amount of diffusible hydrogen in the product coil.
  • a steel having a chemical composition with the elements shown in Table 1 and the balance being Fe and unavoidable impurities was melted in a converter and made into a slab by a continuous casting method.
  • the obtained slab was hot rolled and cold rolled to obtain a cold rolled coil.
  • some levels produced product coils of cold-rolled annealed steel sheets (CR) by CAL shown in FIG. 1, and other levels produced CGL shown in FIG. , produced product coils of hot-dip galvanized steel sheets (GI), and in the remaining levels, produced product coils of alloyed hot-dip galvanized steel sheets (GA) by CGL shown in FIG.
  • vibration application location indicates the area where the vibration application process was performed in CAL or CGL, that is, the location where the vibration application device was installed.
  • (B-2) means that in CAL and CGL, a vibration adding device was installed in the cooling zone and the vibration adding step was performed in the cooling zone of step (B-2).
  • (C) means that in CAL, the vibration applying device is installed at a position where vibration can be applied to the cold-rolled steel sheet being passed through the downstream equipment, and is positioned downstream from the cooling zone and upstream from the tension reel.
  • (C-1) Before” is a position downstream of the cooling zone and upstream of the hot dip galvanizing bath in the CGL, specifically, a vibration adding device is installed in the snout 29, and from the step (B-2) It means that the vibration applying step was performed after the step (C-1) and before the step (C-1).
  • (C-1) After is a position downstream of the hot dip galvanizing bath and upstream of the tension reel in the CGL, specifically, (i) between the hot dip galvanizing bath 31 and the gas wiping device 32, ( ii) between the gas wiping device 32 and the alloying furnace 33; (iii) within the alloying furnace 33; (iv) an air cooling zone between the alloying furnace 33 and the cooling device 34; (vi) inside the delivery side looper 35; (vii) between the delivery side looper 35 and the temper mill 36; (viii) between the temper mill 36 and the tension reel 50. It means that a vibration applying device is installed in at least one place, and the vibration applying step is performed in at least one of the above (i) to (viii) after the step (C-1).
  • the tensile test was performed in accordance with JIS Z 2241 (2011) using a JIS No. 5 test piece that was sampled so that the tensile direction was perpendicular to the rolling direction of the steel plate, and TS (tensile strength) and EL (total elongation) was measured.
  • the resistance to hydrogen embrittlement was evaluated as follows from the above tensile test. Good hydrogen embrittlement resistance when the value obtained by dividing the EL of the steel sheet after vibration addition measured above by the EL' when the amount of hydrogen in the steel of the same steel sheet is 0.00 mass ppm is 0.70 or more. I judged. In addition, EL' is obtained by leaving the same steel plate in the atmosphere for a long time to reduce the hydrogen in the steel inside, and then confirming that the amount of hydrogen in the steel was 0.00 ppm by mass by TDS. , was measured by performing a tensile test.
  • the vibration application process was performed under the conditions of a predetermined frequency and maximum amplitude, so a steel sheet with excellent resistance to hydrogen embrittlement was produced.
  • a steel sheet having excellent hydrogen embrittlement resistance can be manufactured without impairing production efficiency and without changing mechanical properties. be able to.
  • REFERENCE SIGNS LIST 100 continuous annealing device 200 continuous hot-dip galvanizing device 300 continuous hot-dip galvanizing device 10 payoff reel 11 welding machine 12 cleaning equipment 13 entrance looper 20 annealing furnace 22 heating zone 24 soaking zone 26 cooling zone 26A cooling nozzle 28 overaging treatment zone 29 Snout 30 Downstream equipment 31 Hot-dip galvanizing bath 32 Gas wiping device 33 Alloying furnace 34 Cooling device 35 Outgoing looper 36 Tempering rolling mill 50

Abstract

Provided is a continuous annealing apparatus capable of manufacturing a steel sheet having excellent hydrogen embrittlement resistance characteristics. This continuous annealing apparatus (100) has: a pay-off reel (10) for feeding a cold-rolled steel sheet (S) from a cold-rolled coil (C); an annealing furnace (20) through which the cold-rolled steel sheet (S) passes for continuous annealing, and which comprises a heating zone (22), a soaking zone (24), and a cooling zone (26) positioned in said order in the sheet passing direction from the upstream side of the annealing furnace (20), whereby the cold-rolled steel sheet (S) is annealed in a hydrogen-containing reducing atmosphere in the heating zone (22) and soaking zone (24), and the cold-rolled steel sheet (S) is cooled in the cooling zone (26); downstream equipment (30) through which the cold-rolled steel sheet (S) ejected from the annealing furnace (20) continues to pass; a tension reel (50) for taking up the cold-rolled steel sheet (S) passing through the downstream equipment (30); and a vibration application apparatus (60 or 70) for applying vibrations to the cold-rolled steel sheet (S) passing from the cooling zone (26) to the tension reel (50) such that the cold-rolled steel sheet has a vibrational frequency of 100 Hz to 100,000 Hz, and the cold-rolled steel sheet has a maximum amplitude of 10 nm to 500 µm.

Description

連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法CONTINUOUS ANNEALING APPARATUS, CONTINUOUS DIP GALVANIZING APPARATUS, AND METHOD FOR MANUFACTURING STEEL SHEET
 本発明は、連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法に関する。本発明は、特に、自動車、家電製品、及び建材等の分野で好適に使用され、鋼中に内在する水素量の少ない耐水素脆化特性に優れた鋼板を製造するための連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法に関する。 The present invention relates to a continuous annealing apparatus, a continuous hot-dip galvanizing apparatus, and a steel sheet manufacturing method. INDUSTRIAL APPLICABILITY The present invention provides a continuous annealing apparatus and a continuous annealing apparatus for manufacturing steel sheets that are suitably used in the fields of automobiles, home electric appliances, building materials, etc., and have excellent resistance to hydrogen embrittlement due to the small amount of hydrogen contained in the steel. The present invention relates to a hot dip galvanizing apparatus and a steel sheet manufacturing method.
 例えば、連続焼鈍装置及び連続溶融亜鉛めっき装置で、それぞれ焼鈍鋼板及び溶融亜鉛めっき鋼板を製造する際には、水素を含む還元性雰囲気下で鋼板の焼鈍が行われるため、この焼鈍時に鋼板中に水素が侵入する。鋼板に内在する水素は、鋼板の延性、曲げ性、伸びフランジ性などの成形性を低下させる。また、鋼板に内在する水素は、鋼板を脆化させ、遅れ破壊を引き起こし得る。そのため、鋼板中の水素量を低減させる処理が必要となる。 For example, when an annealed steel sheet and a hot-dip galvanized steel sheet are produced in a continuous annealing apparatus and a continuous hot-dip galvanizing apparatus, respectively, the steel sheet is annealed in a reducing atmosphere containing hydrogen. Hydrogen enters. Hydrogen present in the steel sheet lowers formability such as ductility, bendability and stretch-flangeability of the steel sheet. In addition, hydrogen present in the steel sheet can embrittle the steel sheet and cause delayed fracture. Therefore, a treatment for reducing the amount of hydrogen in the steel sheet is required.
 例えば、連続焼鈍装置及び連続溶融亜鉛めっき装置で製造後の製品コイルを室温下で放置することで、鋼中の水素量を低減することができる。しかし、室温においては、水素が鋼板の内部から表面に移動して、表面から脱離するのに時間がかかるため、鋼中の水素量を十分に低減するには、数週間以上の放置を要する。そのため、このような脱水素処理に要するスペースと時間が、製造工程上の問題となる。 For example, the amount of hydrogen in the steel can be reduced by leaving the product coils at room temperature after being manufactured with a continuous annealing device and a continuous hot dip galvanizing device. However, at room temperature, it takes time for hydrogen to move from the inside of the steel sheet to the surface and desorb from the surface. . Therefore, the space and time required for such dehydrogenation treatment pose a problem in the manufacturing process.
 また、特許文献1には、焼鈍後の鋼板、溶融亜鉛めっき鋼板、又は合金化溶融亜鉛めっき鋼板を、50℃以上300℃以下の温度域内で1800秒以上43200秒以下保持することによって、鋼中水素量を低減させる方法が開示されている。 Further, in Patent Document 1, a steel sheet, a hot-dip galvanized steel sheet, or an alloyed hot-dip galvanized steel sheet after annealing is held in a temperature range of 50 ° C. or higher and 300 ° C. or lower for 1800 seconds or more and 43200 seconds or less. A method for reducing the amount of hydrogen is disclosed.
国際公開第2019/188642号WO2019/188642
 しかしながら、特許文献1においては、加熱による組織変化に起因した降伏強度の上昇や焼戻し脆化といった機械的特性の変化が懸念される。 However, in Patent Document 1, there are concerns about changes in mechanical properties such as an increase in yield strength and temper embrittlement due to structural changes due to heating.
 そこで本発明は、上記課題に鑑み、生産効率を損なうことなく、機械的特性を変化させることなく、耐水素脆化特性に優れた鋼板を製造することが可能な連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention provides a continuous annealing apparatus and continuous hot-dip galvanizing capable of manufacturing steel sheets with excellent hydrogen embrittlement resistance without impairing production efficiency and without changing mechanical properties. An object of the present invention is to provide an apparatus and a method for manufacturing a steel sheet.
 本発明者らは、上記課題を解決するべく、鋭意研究を重ねたところ、以下のことを見出した。すなわち、連続焼鈍装置(Continuous Annealing Line:CAL)又は連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)において、水素を含む還元性雰囲気で鋼板を焼鈍した後に、焼鈍温度から室温までの冷却過程で、引き続き通板中の鋼板に所定の振動数及び最大振幅の振動を付加することによって、鋼板中の水素を十分に効率良く低減させることができることが分かった。具体的には、鋼板を高い周波数かつ小さい最大振幅で微振動させることによって、鋼板中の水素を十分に効率良く低減させることができることが分かった。これは、以下のメカニズムによるものと推測される。鋼板を強制的に微振動させることで、鋼板にくり返し曲げ変形が与えられる。その結果、鋼板の厚み中心部に比べて表面の格子間隔が拡張する。鋼板中の水素は、格子間隔が広くポテンシャルエネルギーの低い鋼板表面に向かって拡散し、当該表面から脱離する。 In order to solve the above problems, the inventors of the present invention found the following as a result of extensive research. That is, in a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL), the steel sheet is annealed in a reducing atmosphere containing hydrogen, and then cooled from the annealing temperature to room temperature. In the course of the process, it was found that the hydrogen in the steel sheet can be sufficiently and efficiently reduced by applying vibration of a predetermined frequency and maximum amplitude to the steel sheet that is subsequently being threaded. Specifically, it was found that the hydrogen in the steel sheet can be sufficiently efficiently reduced by micro-vibrating the steel sheet at a high frequency and a small maximum amplitude. This is presumed to be due to the following mechanism. By forcibly vibrating the steel plate, the steel plate is subjected to repeated bending deformation. As a result, the lattice spacing on the surface is expanded compared to the central part of the thickness of the steel plate. Hydrogen in the steel sheet diffuses toward the surface of the steel sheet with wide lattice spacing and low potential energy and desorbs from the surface.
 すなわち、本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
 [1]冷延コイルから冷延鋼板を払い出すペイオフリールと、
 前記冷延鋼板を通板させて連続焼鈍する焼鈍炉であって、通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置し、前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、前記冷却帯では前記冷延鋼板を冷却する焼鈍炉と、
 前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる下流設備と、
 前記下流設備を通板中の前記冷延鋼板を巻き取るテンションリールと、
 前記冷却帯から前記テンションリールまでを通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加装置と、
を有する連続焼鈍装置。
That is, the present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A pay-off reel for dispensing the cold-rolled steel sheet from the cold-rolled coil;
An annealing furnace in which the cold-rolled steel sheet is passed through and continuously annealed, wherein a heating zone, a soaking zone, and a cooling zone are positioned from the upstream side in the sheet passing direction, and the heating zone and the soaking zone include a reducing zone containing hydrogen. an annealing furnace for annealing the cold-rolled steel sheet in a cold-rolled atmosphere and cooling the cold-rolled steel sheet in the cooling zone;
a downstream facility for continuously threading the cold-rolled steel sheet discharged from the annealing furnace;
a tension reel for winding the cold-rolled steel sheet being passed through the downstream facility;
With respect to the cold-rolled steel sheet being passed from the cooling zone to the tension reel, the vibration frequency of the cold-rolled steel sheet is 100 Hz or more and 100000 Hz or less, and the maximum amplitude of the cold-rolled steel sheet is 10 nm or more and 500 μm or less. A vibration adding device that adds vibration so that
continuous annealing equipment.
 [2]前記振動付加装置は、前記冷却帯に設けられる、上記[1]に記載の連続焼鈍装置。 [2] The continuous annealing apparatus according to [1] above, wherein the vibration adding device is provided in the cooling zone.
 [3]前記振動付加装置は、前記下流設備を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[1]又は[2]に記載の連続焼鈍装置。 [3] The continuous annealing apparatus according to [1] or [2] above, wherein the vibration applying device is provided at a position where vibration can be applied to the cold-rolled steel sheet being passed through the downstream facility.
 [4]前記冷延鋼板に対する振動の付加時間が1秒以上となるように、前記振動付加装置の配置と、前記冷延鋼板の通板速度が設定された、上記[1]~[3]のいずれか一項に記載の連続焼鈍装置。 [4] The above [1] to [3], wherein the arrangement of the vibration adding device and the threading speed of the cold-rolled steel sheet are set so that the time of applying vibration to the cold-rolled steel sheet is 1 second or longer. The continuous annealing apparatus according to any one of 1.
 [5]前記振動付加装置は、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記冷延鋼板に与える外力により前記冷延鋼板が振動するように構成される、上記[1]~[4]のいずれか一項に記載の連続焼鈍装置。 [5] The vibration adding device has an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween, and the cold-rolled steel sheet is vibrated by an external force applied to the cold-rolled steel sheet by the electromagnet. The continuous annealing apparatus according to any one of [1] to [4] above.
 [6]前記振動付加装置は、前記冷延鋼板に接触する振動子を有し、前記振動子によって前記冷延鋼板が振動するように構成される、上記[1]~[4]のいずれか一項に記載の連続焼鈍装置。 [6] Any one of [1] to [4] above, wherein the vibration adding device has a vibrator that contacts the cold-rolled steel sheet, and is configured to vibrate the cold-rolled steel sheet by the vibrator. The continuous annealing apparatus according to item 1.
 [7]上記[1]に記載の連続焼鈍装置と、
 前記下流設備として、前記焼鈍炉の通板方向下流に位置し、前記冷延鋼板を浸漬させて、前記冷延鋼板に溶融亜鉛めっきを施す溶融亜鉛めっき浴と、
を有する連続溶融亜鉛めっき装置。
[7] The continuous annealing apparatus according to [1] above;
a hot-dip galvanizing bath, which is positioned downstream of the annealing furnace in the direction of sheet feeding as the downstream equipment, in which the cold-rolled steel sheet is immersed and in which the cold-rolled steel sheet is hot-dip galvanized;
Continuous hot-dip galvanizing equipment with
 [8]前記振動付加装置は、前記溶融亜鉛めっき浴より上流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[7]に記載の連続溶融亜鉛めっき装置。 [8] The continuous hot-dip galvanizing apparatus according to [7] above, wherein the vibration applying device is provided upstream from the hot-dip galvanizing bath at a position capable of applying vibration to the cold-rolled steel sheet that is being passed.
 [9]前記振動付加装置は、前記溶融亜鉛めっき浴より下流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[7]又は[8]に記載の連続溶融亜鉛めっき装置。 [9] The continuous molten zinc according to [7] or [8] above, wherein the vibration applying device is provided at a position capable of applying vibration to the cold-rolled steel sheet being passed downstream from the hot-dip galvanizing bath. Plating equipment.
 [10]前記下流設備として、前記溶融亜鉛めっき浴の通板方向下流に位置し、前記冷延鋼板を通板させて、前記溶融亜鉛めっきを加熱合金化する合金化炉を有する、上記[7]に記載の連続溶融亜鉛めっき装置。 [10] The above [7], wherein, as the downstream equipment, an alloying furnace is located downstream of the hot-dip galvanizing bath in the sheet passing direction, passes the cold-rolled steel sheet, and heats and alloys the hot-dip galvanized steel. ] Continuous hot-dip galvanizing apparatus according to .
 [11]前記振動付加装置は、前記溶融亜鉛めっき浴より上流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[10]に記載の連続溶融亜鉛めっき装置。 [11] The continuous hot-dip galvanizing apparatus according to [10] above, wherein the vibration applying device is provided at a position where vibration can be applied to the cold-rolled steel sheet that is being passed upstream from the hot-dip galvanizing bath.
 [12]前記振動付加装置は、前記溶融亜鉛めっき浴より下流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[10]又は[11]に記載の連続溶融亜鉛めっき装置。 [12] The continuous molten zinc according to [10] or [11] above, wherein the vibration applying device is provided at a position capable of applying vibration to the cold-rolled steel sheet being passed downstream from the hot-dip galvanizing bath. Plating equipment.
 [13]前記冷延鋼板に対する振動の付加時間が1秒以上となるように、前記振動付加装置の配置と、前記冷延鋼板の通板速度が設定された、上記[7]~[12]のいずれか一項に記載の連続溶融亜鉛めっき装置。 [13] The above [7] to [12], wherein the arrangement of the vibration applying device and the threading speed of the cold-rolled steel sheet are set so that the time of applying vibration to the cold-rolled steel sheet is 1 second or longer. Continuous hot dip galvanizing apparatus according to any one of.
 [14]前記振動付加装置は、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記冷延鋼板に与える外力により前記冷延鋼板が振動するように構成される、上記[7]~[13]のいずれか一項に記載の連続溶融亜鉛めっき装置。 [14] The vibration adding device has an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween, and the cold-rolled steel sheet is vibrated by an external force applied to the cold-rolled steel sheet by the electromagnet. The continuous hot dip galvanizing apparatus according to any one of [7] to [13] above.
 [15]前記振動付加装置は、前記冷延鋼板に接触する振動子を有し、前記振動子によって前記冷延鋼板が振動するように構成される、上記[7]~[13]のいずれか一項に記載の連続溶融亜鉛めっき装置。 [15] Any one of [7] to [13] above, wherein the vibration adding device has a vibrator that contacts the cold-rolled steel sheet, and is configured to vibrate the cold-rolled steel sheet by the vibrator. The continuous hot-dip galvanizing apparatus according to item 1.
 [16](A)ペイオフリールにより冷延コイルから冷延鋼板を払い出す工程と、
 (B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する焼鈍炉内に、前記冷延鋼板を通板させて、(B-1)前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、(B-2)前記冷却帯では前記冷延鋼板を冷却する、連続焼鈍を行う工程と、
 (C)前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる工程と、
 (D)テンションリールにより前記冷延鋼板を巻き取って、製品コイルとする工程と、
をこの順に有し、
 工程(B-2)以降、かつ、工程(D)より前において、通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加工程を含む鋼板の製造方法。
[16] (A) a step of paying out the cold-rolled steel sheet from the cold-rolled coil by a pay-off reel;
(B) The cold-rolled steel sheet is passed through an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are positioned from the upstream side in the sheet passing direction, and (B-1) in the heating zone and the soaking zone, A step of performing continuous annealing, in which the cold-rolled steel sheet is annealed in a reducing atmosphere containing hydrogen, and (B-2) the cold-rolled steel sheet is cooled in the cooling zone;
(C) a step of continuously threading the cold-rolled steel sheet discharged from the annealing furnace;
(D) winding the cold-rolled steel sheet with a tension reel to form a product coil;
in that order, and
After the step (B-2) and before the step (D), the vibration frequency of the cold-rolled steel sheet being passed is 100 Hz or more and 100000 Hz or less, and the cold-rolled A method for manufacturing a steel sheet, including a vibration adding step of adding vibration so that the maximum amplitude of the steel sheet is 10 nm or more and 500 μm or less.
 [17]前記振動付加工程は、工程(B-2)にて行われる、上記[16]に記載の鋼板の製造方法。 [17] The method for manufacturing a steel sheet according to [16] above, wherein the vibration applying step is performed in step (B-2).
 [18]前記振動付加工程は、工程(C)にて行われる、上記[16]又は[17]に記載の鋼板の製造方法。 [18] The method for manufacturing a steel sheet according to [16] or [17] above, wherein the vibration applying step is performed in step (C).
 [19]工程(C)は、(C-1)前記焼鈍炉の通板方向下流に位置する溶融亜鉛めっき浴に前記冷延鋼板を浸漬させて、前記冷延鋼板に溶融亜鉛めっきを施す工程を含む、上記[16]に記載の鋼板の製造方法。 [19] The step (C) is (C-1) a step of immersing the cold-rolled steel sheet in a hot-dip galvanizing bath located downstream of the annealing furnace in the sheet running direction to apply hot-dip galvanization to the cold-rolled steel sheet. The method for manufacturing a steel plate according to [16] above, comprising:
 [20]前記振動付加工程は、工程(C-1)より前に行われる、上記[19]に記載の鋼板の製造方法。 [20] The method for manufacturing a steel sheet according to [19] above, wherein the vibration applying step is performed before step (C-1).
 [21]前記振動付加工程は、工程(C-1)より後に行われる、上記[19]又は[20]に記載の鋼板の製造方法。 [21] The method for manufacturing a steel sheet according to [19] or [20] above, wherein the vibration applying step is performed after step (C-1).
 [22]前記工程(C)は、前記工程(C-1)に続き、(C-2)前記溶融亜鉛めっき浴の通板方向下流に位置する合金化炉に前記冷延鋼板を通板させて、前記溶融亜鉛めっきを加熱合金化する工程を含む、上記[19]に記載の鋼板の製造方法。 [22] The step (C) includes, following the step (C-1), (C-2) passing the cold-rolled steel sheet through an alloying furnace located downstream of the hot dip galvanizing bath in the sheet passing direction. The method for manufacturing the steel sheet according to [19] above, comprising the step of heating and alloying the hot-dip galvanizing.
 [23]前記振動付加工程は、工程(C-1)より前に行われる、上記[22]に記載の鋼板の製造方法。 [23] The method for manufacturing a steel sheet according to [22] above, wherein the vibration applying step is performed before step (C-1).
 [24]前記振動付加工程は、工程(C-1)より後に行われる、上記[22]又は[23]に記載の鋼板の製造方法。 [24] The steel sheet manufacturing method according to [22] or [23] above, wherein the vibration applying step is performed after step (C-1).
 [25]前記振動付加工程において、前記冷延鋼板に対する振動の付加時間を1秒以上とする、上記[16]~[24]のいずれか一項に記載の鋼板の製造方法。 [25] The steel sheet manufacturing method according to any one of the above [16] to [24], wherein in the vibration applying step, the time of applying vibration to the cold-rolled steel sheet is set to 1 second or longer.
 [26]前記振動付加工程では、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石が前記冷延鋼板に与える外力により、前記冷延鋼板が振動する、上記[16]~[25]のいずれか一項に記載の鋼板の製造方法。 [26] In the vibration applying step, the cold-rolled steel sheet is vibrated by an external force applied to the cold-rolled steel sheet by an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween. 25].
 [27]前記振動付加工程では、前記冷延鋼板に接触する振動子によって、前記冷延鋼板が振動する、上記[16]~[25]のいずれか一項に記載の鋼板の製造方法。 [27] The steel sheet manufacturing method according to any one of [16] to [25] above, wherein in the vibration adding step, the cold-rolled steel sheet is vibrated by a vibrator that contacts the cold-rolled steel sheet.
 [28]前記冷延鋼板が、590MPa以上の引張強さを有する高強度鋼板である、上記[16]~[27]のいずれか一項に記載の鋼板の製造方法。 [28] The method for producing a steel sheet according to any one of [16] to [27] above, wherein the cold-rolled steel sheet is a high-strength steel sheet having a tensile strength of 590 MPa or more.
 [29]前記冷延鋼板は、質量%で、
  C :0.030~0.800%、
  Si:0.01~3.00%、
  Mn:0.01~10.00%、
  P :0.001~0.100%、
  S :0.0001~0.0200%、
  N :0.0005~0.0100%、及び
  Al:0.001~2.000%を含み、
  残部がFe及び不可避的不純物からなる成分組成を有する、上記[16]~[28]のいずれか一項に記載の鋼板の製造方法。
[29] The cold-rolled steel sheet, in mass%,
C: 0.030 to 0.800%,
Si: 0.01 to 3.00%,
Mn: 0.01 to 10.00%,
P: 0.001 to 0.100%,
S: 0.0001 to 0.0200%,
N: 0.0005 to 0.0100%, and Al: 0.001 to 2.000%,
The method for producing the steel sheet according to any one of [16] to [28] above, wherein the balance is Fe and unavoidable impurities.
 [30]前記成分組成が、さらに、質量%で、
  Ti:0.200%以下、
  Nb:0.200%以下、
  V :0.500%以下、
  W :0.500%以下、
  B :0.0050%以下、
  Ni:1.000%以下、
  Cr:1.000%以下、
  Mo:1.000%以下、
  Cu:1.000%以下、
  Sn:0.200%以下、
  Sb:0.200%以下、
  Ta:0.100%以下、
  Ca:0.0050%以下、
  Mg:0.0050%以下、
  Zr:0.1000%以下、及び
  REM:0.0050%以下
からなる群から選ばれる少なくとも一種の元素を含有する、上記[29]に記載の鋼板の製造方法。
[30] The component composition further contains, in % by mass,
Ti: 0.200% or less,
Nb: 0.200% or less,
V: 0.500% or less,
W: 0.500% or less,
B: 0.0050% or less,
Ni: 1.000% or less,
Cr: 1.000% or less,
Mo: 1.000% or less,
Cu: 1.000% or less,
Sn: 0.200% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel sheet according to [29] above, containing at least one element selected from the group consisting of Zr: 0.1000% or less and REM: 0.0050% or less.
 [31]前記冷延鋼板は、質量%で、
  C :0.001~0.400%、
  Si:0.01~2.00%、
  Mn:0.01~5.00%、
  P :0.001~0.100%、
  S :0.0001~0.0200%、
  Cr:9.0~28.0%、
  Ni:0.01~40.0%、
  N :0.0005~0.500%、及び
  Al:0.001~3.000%を含み、
  残部がFe及び不可避的不純物からなる成分組成を有するステンレス鋼板である、上記[16]~[27]のいずれか一項に記載の鋼板の製造方法。
[31] The cold-rolled steel sheet contains, by mass%,
C: 0.001 to 0.400%,
Si: 0.01 to 2.00%,
Mn: 0.01 to 5.00%,
P: 0.001 to 0.100%,
S: 0.0001 to 0.0200%,
Cr: 9.0 to 28.0%,
Ni: 0.01 to 40.0%,
N: 0.0005 to 0.500%, and Al: 0.001 to 3.000%,
The method for producing the steel sheet according to any one of [16] to [27] above, wherein the steel sheet is a stainless steel sheet having a chemical composition in which the balance is Fe and unavoidable impurities.
 [32]前記成分組成が、さらに、質量%で、
  Ti:0.500%以下、
  Nb:0.500%以下、
  V :0.500%以下、
  W :2.000%以下、
  B :0.0050%以下、
  Mo:2.000%以下、
  Cu:3.000%以下、
  Sn:0.500%以下、
  Sb:0.200%以下、
  Ta:0.100%以下、
  Ca:0.0050%以下、
  Mg:0.0050%以下、
  Zr:0.1000%以下、及び
  REM:0.0050%以下
からなる群から選ばれる少なくとも一種の元素を含有する、上記[31]に記載の鋼板の製造方法。
[32] The component composition further comprises, in % by mass,
Ti: 0.500% or less,
Nb: 0.500% or less,
V: 0.500% or less,
W: 2.000% or less,
B: 0.0050% or less,
Mo: 2.000% or less,
Cu: 3.000% or less,
Sn: 0.500% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel sheet according to [31] above, containing at least one element selected from the group consisting of Zr: 0.1000% or less and REM: 0.0050% or less.
 [33]前記製品コイルは、0.50質量ppm以下の拡散性水素量を有する、上記[16]~[32]のいずれか一項に記載の鋼板の製造方法。 [33] The steel sheet manufacturing method according to any one of [16] to [32] above, wherein the product coil has a diffusible hydrogen content of 0.50 ppm by mass or less.
 本発明の連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法によれば、生産効率を損なうことなく、機械的特性を変化させることなく、耐水素脆化特性に優れた鋼板を製造することができる。 According to the continuous annealing apparatus, the continuous hot dip galvanizing apparatus, and the steel sheet manufacturing method of the present invention, a steel sheet having excellent hydrogen embrittlement resistance can be manufactured without impairing production efficiency and without changing mechanical properties. be able to.
本発明の一実施形態による連続焼鈍装置100の模式図である。1 is a schematic diagram of a continuous annealing apparatus 100 according to one embodiment of the present invention; FIG. 本発明の一実施形態による連続溶融亜鉛めっき装置200の模式図である。1 is a schematic diagram of a continuous hot dip galvanizing apparatus 200 according to one embodiment of the present invention; FIG. 本発明の他の実施形態による連続溶融亜鉛めっき装置300の模式図である。FIG. 3 is a schematic diagram of a continuous hot-dip galvanizing apparatus 300 according to another embodiment of the present invention; 本発明の各実施形態で用いる振動付加装置60の構成を示す模式図である。1 is a schematic diagram showing the configuration of a vibration adding device 60 used in each embodiment of the present invention; FIG. (A)及び(B)は、本発明の各実施形態において、通板中の冷延鋼板Sに対する振動付加装置60の電磁石63の設置態様の例を模式的に示した図である。(A) and (B) are diagrams schematically showing an example of an installation mode of an electromagnet 63 of a vibration adding device 60 with respect to a cold-rolled steel sheet S being threaded in each embodiment of the present invention. (A)及び(B)は、本発明の各実施形態において、電磁石63からの磁場の発生態様を模式的に示した図である。(A) and (B) are diagrams schematically showing how a magnetic field is generated from an electromagnet 63 in each embodiment of the present invention. 本発明の各実施形態で用いる振動付加装置70の構成を示す模式図である。1 is a schematic diagram showing the configuration of a vibration adding device 70 used in each embodiment of the present invention; FIG. 通板中の冷延鋼板Sに対する振動付加装置70の振動子72の設置態様の例を模式的に示した図である。FIG. 4 is a diagram schematically showing an example of an installation mode of a vibrator 72 of a vibration adding device 70 with respect to a cold-rolled steel sheet S being threaded. (A)及び(B)は、冷却帯26内に振動付加装置60又は70を設置する場合の、冷却ノズル26Aと振動付加装置60又は70との位置関係の例を示す模式図である。(A) and (B) are schematic diagrams showing an example of the positional relationship between the cooling nozzle 26A and the vibration adding device 60 or 70 when the vibration adding device 60 or 70 is installed in the cooling zone 26. FIG.
 本発明の一実施形態は、連続焼鈍装置(Continuous Annealing Line:CAL)に関するものであり、本発明の別の一実施形態は、連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)に関するものである。 One embodiment of the present invention relates to a continuous annealing line (CAL), and another embodiment of the present invention relates to a continuous hot-dip galvanizing line (CGL). is.
 本発明の一実施形態による鋼板の製造方法は、連続焼鈍装置(Continuous Annealing Line:CAL)又は連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)により実現される。 A steel sheet manufacturing method according to one embodiment of the present invention is realized by a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL).
 図1を参照して、本発明の第一の実施形態による連続焼鈍装置(CAL)100は、冷延コイルCから冷延鋼板Sを払い出すペイオフリール10と、冷延鋼板Sを通板させて連続焼鈍する焼鈍炉20と、焼鈍炉20から排出された冷延鋼板Sを引き続き通板させる下流設備30と、下流設備30を通板中の冷延鋼板Sを巻き取って、製品コイルPとするテンションリール50と、を有する。焼鈍炉20では、通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置し、加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、冷却帯26では冷延鋼板Sを冷却する。なお、CAL100の焼鈍炉20は、冷却帯26の下流に過時効処理帯28を有することが好ましいが、必須ではない。過時効処理帯28では、冷延鋼板Sに過時効処理が施される。この実施形態では、CAL100により冷延焼鈍鋼板(CR)の製品コイルが製造される。 Referring to FIG. 1, a continuous annealing apparatus (CAL) 100 according to the first embodiment of the present invention includes a pay-off reel 10 for dispensing cold-rolled steel sheet S from a cold-rolled coil C, and a cold-rolled steel sheet S for threading. An annealing furnace 20 for continuous annealing, a downstream facility 30 for continuously threading the cold-rolled steel sheet S discharged from the annealing furnace 20, and the cold-rolled steel sheet S being threaded in the downstream facility 30 is wound up to produce a product coil P and a tension reel 50. In the annealing furnace 20, a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet passing direction. In the heating zone 22 and the soaking zone 24, the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen. , the cold-rolled steel sheet S is cooled in the cooling zone 26 . The annealing furnace 20 of CAL100 preferably has an overaging treatment zone 28 downstream of the cooling zone 26, but this is not essential. In the overaging zone 28, the cold-rolled steel sheet S is overaged. In this embodiment, CAL 100 produces product coils of cold-rolled and annealed steel sheets (CR).
 図1を参照して、連続焼鈍装置(CAL)100により実現される第一の実施形態による鋼板の製造方法は、(A)ペイオフリール10により冷延コイルCから冷延鋼板(鋼帯)Sを払い出す工程と、(B)通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置する焼鈍炉20内に、冷延鋼板Sを通板させて、(B-1)加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、(B-2)冷却帯26では冷延鋼板Sを冷却する、連続焼鈍を行う工程と、(C)焼鈍炉20から排出された冷延鋼板Sを引き続き通板させる工程と、(D)テンションリール50により冷延鋼板Sを巻き取って、製品コイルPとする工程と、をこの順に有する。なお、CAL100の焼鈍炉20による連続焼鈍工程(B)では、(B-3)冷却帯26の下流に任意に位置する過時効処理帯28で冷延鋼板Sに過時効処理を施すことが好ましいが、この工程は必須ではない。この実施形態は、CAL100により冷延焼鈍鋼板(CR)の製品コイルを製造する方法である。 Referring to FIG. 1, the steel sheet manufacturing method according to the first embodiment realized by a continuous annealing apparatus (CAL) 100 includes (A) a cold-rolled steel sheet (steel strip) S from a cold-rolled coil C by a pay-off reel 10; (B) Passing the cold-rolled steel sheet S through the annealing furnace 20 in which the heating zone 22, the soaking zone 24, and the cooling zone 26 are located from the upstream side in the sheet passing direction, (B-1 ) annealing the cold-rolled steel sheet S in a reducing atmosphere containing hydrogen in the heating zone 22 and the soaking zone 24, and (B-2) cooling the cold-rolled steel sheet S in the cooling zone 26, performing continuous annealing; C) a step of continuously threading the cold-rolled steel sheet S discharged from the annealing furnace 20; In the continuous annealing step (B) in the annealing furnace 20 of CAL100, (B-3) it is preferable to subject the cold-rolled steel sheet S to an overaging treatment in an overaging treatment zone 28 arbitrarily located downstream of the cooling zone 26. However, this step is not essential. This embodiment is a method of manufacturing a product coil of cold-rolled and annealed steel sheet (CR) by CAL100.
 図2を参照して、本発明の第二の実施形態による連続溶融亜鉛めっき装置(CGL)200は、冷延コイルCから冷延鋼板Sを払い出すペイオフリール10と、冷延鋼板Sを通板させて連続焼鈍する焼鈍炉20と、焼鈍炉20から排出された冷延鋼板Sを引き続き通板させる下流設備30と、下流設備30を通板中の冷延鋼板Sを巻き取って、製品コイルPとするテンションリール50と、を有する。焼鈍炉20では、通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置し、加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、冷却帯26では冷延鋼板Sを冷却する。そして、CGL200は、下流設備30として、焼鈍炉20の通板方向下流に位置し、冷延鋼板Sを浸漬させて、冷延鋼板Sに溶融亜鉛めっきを施す溶融亜鉛めっき浴31と、溶融亜鉛めっき浴31の通板方向下流に位置し、冷延鋼板Sを通板させて、溶融亜鉛めっきを加熱合金化する合金化炉33と、をさらに有する。この実施形態では、CGL200により、亜鉛めっき層が合金化された合金化溶融亜鉛めっき鋼板(GA)の製品コイルが製造される。なお、合金化炉33に鋼板Sを通過させるのみで加熱合金化を行わない場合には、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)の製品コイルが製造される。 Referring to FIG. 2, a continuous hot-dip galvanizing apparatus (CGL) 200 according to a second embodiment of the present invention includes a pay-off reel 10 for dispensing a cold-rolled steel sheet S from a cold-rolled coil C, and a cold-rolled steel sheet S An annealing furnace 20 for continuously annealing a sheet, a downstream facility 30 for continuously threading the cold-rolled steel sheet S discharged from the annealing furnace 20, and the cold-rolled steel sheet S being threaded in the downstream facility 30 is wound up to produce a product. and a tension reel 50 as a coil P. In the annealing furnace 20, a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet passing direction. In the heating zone 22 and the soaking zone 24, the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen. , the cold-rolled steel sheet S is cooled in the cooling zone 26 . The CGL 200 is positioned downstream of the annealing furnace 20 in the direction of sheet passing as a downstream facility 30, and immerses the cold-rolled steel sheet S in a hot-dip galvanizing bath 31 for hot-dip galvanizing the cold-rolled steel sheet S; It further has an alloying furnace 33 which is located downstream of the plating bath 31 in the sheet passing direction, passes the cold-rolled steel sheet S, and heats and alloys the hot-dip galvanized steel sheet. In this embodiment, the CGL 200 produces a product coil of alloyed hot-dip galvanized steel sheet (GA) in which the galvanized layer is alloyed. Note that when the steel sheet S is only passed through the alloying furnace 33 without heat alloying, a product coil of a hot-dip galvanized steel sheet (GI) in which the galvanized layer is not alloyed is manufactured.
 図2を参照して、連続溶融亜鉛めっき装置(CGL)200により実現される第二の実施形態による鋼板の製造方法は、(A)ペイオフリール10により冷延コイルCから冷延鋼板(鋼帯)Sを払い出す工程と、(B)通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置する焼鈍炉20内に、冷延鋼板Sを通板させて、(B-1)加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、(B-2)冷却帯26では冷延鋼板Sを冷却する、連続焼鈍を行う工程と、(C)焼鈍炉20から排出された冷延鋼板Sを引き続き通板させる工程と、(D)テンションリール50により冷延鋼板Sを巻き取って、製品コイルPとする工程と、をこの順に有する。そして、工程(C)は、(C-1)焼鈍炉20の通板方向下流に位置する溶融亜鉛めっき浴31に冷延鋼板Sを浸漬させて、冷延鋼板Sに溶融亜鉛めっきを施す工程と、引き続き、(C-2)溶融亜鉛めっき浴31の通板方向下流に位置する合金化炉33に冷延鋼板Sを通板させて、溶融亜鉛めっきを加熱合金化する工程を含む。この実施形態は、CGL200により、亜鉛めっき層が合金化された合金化溶融亜鉛めっき鋼板(GA)の製品コイルを製造する方法である。 Referring to FIG. 2, the steel sheet manufacturing method according to the second embodiment realized by a continuous hot dip galvanizing apparatus (CGL) 200 includes (A) a cold-rolled steel sheet (steel strip) from a cold-rolled coil C by a payoff reel 10; (B) passing the cold-rolled steel sheet S through an annealing furnace 20 in which a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet passing direction; -1) A step of continuously annealing the cold-rolled steel sheet S in a reducing atmosphere containing hydrogen in the heating zone 22 and the soaking zone 24, and (B-2) cooling the cold-rolled steel sheet S in the cooling zone 26; , (C) a step of continuously threading the cold-rolled steel sheet S discharged from the annealing furnace 20, and (D) a step of winding the cold-rolled steel sheet S by the tension reel 50 to form a product coil P, in this order. have. Then, the step (C) is (C-1) a step of immersing the cold-rolled steel sheet S in a hot-dip galvanizing bath 31 located downstream of the annealing furnace 20 in the sheet running direction to apply hot-dip galvanization to the cold-rolled steel sheet S. Then, (C-2) the cold-rolled steel sheet S is passed through an alloying furnace 33 located downstream of the hot-dip galvanizing bath 31 in the sheet-passing direction to heat-alloy the hot-dip galvanized steel. This embodiment is a method of manufacturing a product coil of an alloyed hot-dip galvanized steel sheet (GA) in which a galvanized layer is alloyed by CGL200.
 図3を参照して、本発明の第三の実施形態による連続溶融亜鉛めっき装置(CGL)300は、合金化炉33を有しないこと以外はCGL200と同じ構成を有する。この実施形態では、CGL300により、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)の製品コイルが製造される。 With reference to FIG. 3, a continuous hot dip galvanizing apparatus (CGL) 300 according to the third embodiment of the present invention has the same configuration as the CGL 200 except that it does not have an alloying furnace 33. In this embodiment, the CGL 300 produces product coils of hot-dip galvanized steel sheets (GI) in which the galvanized layer is unalloyed.
 すなわち、工程(C-1)を行い、工程(C-2)を行わない第三の実施形態による鋼板の製造方法は、例えば、合金化炉33を有しないCGL300により実現され、また、CGL200の合金化炉33に鋼板Sを通過させるのみで加熱合金化を行わない方法でも実現される。この実施形態は、CGL200又はCGL300により、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)の製品コイルを製造する方法である。 That is, the steel sheet manufacturing method according to the third embodiment in which the step (C-1) is performed and the step (C-2) is not performed is realized by, for example, the CGL 300 without the alloying furnace 33, and the CGL 200 It can also be realized by a method in which the steel plate S is passed through the alloying furnace 33 without heat alloying. This embodiment is a method of manufacturing a product coil of a hot-dip galvanized steel sheet (GI) in which the galvanized layer is not alloyed by CGL200 or CGL300.
 上記第一の実施形態によるCAL、並びに第二及び第三の実施形態によるCGLにおける、各構成を詳細に説明する。また、上記第一、第二、及び第三の実施形態による鋼板の製造方法における各工程を詳細に説明する。 Each configuration of the CAL according to the first embodiment and the CGL according to the second and third embodiments will be described in detail. Further, each step in the steel sheet manufacturing method according to the first, second, and third embodiments will be described in detail.
 [ペイオフリール、及びペイオフリールから焼鈍炉までの設備]
 [工程(A)]
 図1~3を参照して、ペイオフリール10は、冷延コイルCから冷延鋼板Sを払い出す。すなわち、工程(A)では、ペイオフリール10により冷延コイルCから冷延鋼板Sを払い出す。払い出された冷延鋼板Sは、溶接機11、クリーニング設備12、及び入側ルーパー13を通過し、焼鈍炉20へと供給される。ただし、ペイオフリール10と焼鈍炉20との間の上流設備は、これら溶接機11、クリーニング設備12、及び入側ルーパー13に限定されることはなく、公知の又は任意の装置であってよい。
[Pay-off reel and equipment from pay-off reel to annealing furnace]
[Step (A)]
1 to 3, a payoff reel 10 pays out a cold-rolled steel sheet S from a cold-rolled coil C. As shown in FIG. That is, in step (A), the cold-rolled steel sheet S is paid out from the cold-rolled coil C by the pay-off reel 10 . The discharged cold-rolled steel sheet S passes through the welding machine 11 , the cleaning equipment 12 and the entrance looper 13 and is supplied to the annealing furnace 20 . However, the upstream equipment between the payoff reel 10 and the annealing furnace 20 is not limited to the welding machine 11, the cleaning equipment 12, and the entrance looper 13, and may be known or arbitrary equipment.
 [焼鈍炉]
 [工程(B)]
 図1~3を参照して、焼鈍炉20は、冷延鋼板Sを内部に通板させて連続焼鈍する。焼鈍炉20では、通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置し、加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、冷却帯26では冷延鋼板Sを冷却する。すなわち、工程(B)では、通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置する焼鈍炉20内に、冷延鋼板Sを通板させて連続焼鈍を行う。冷却帯26は、複数の冷却帯から構成されてもよい。また、加熱帯22の通板方向上流側に予熱帯があってもよい。なお、図1に示すCAL100の焼鈍炉20は、冷却帯26の下流に過時効処理帯28を有することが好ましいが、必須ではない。図1~3では、各帯はいずれも縦型炉として図示したが、これに限定されず、横型炉でもよい。縦型炉の場合、隣り合う帯は、それぞれの帯の上部同士または下部同士を接続するスロート(絞り部)を介して連通する。
[Annealing furnace]
[Step (B)]
1 to 3, an annealing furnace 20 continuously anneals a cold-rolled steel sheet S through which it passes. In the annealing furnace 20, a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet passing direction. In the heating zone 22 and the soaking zone 24, the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen. , the cold-rolled steel sheet S is cooled in the cooling zone 26 . That is, in step (B), the cold-rolled steel sheet S is passed through an annealing furnace 20 in which a heating zone 22, a soaking zone 24, and a cooling zone 26 are positioned from the upstream side in the sheet-passing direction, and continuous annealing is performed. The cooling zone 26 may be composed of multiple cooling zones. Further, a preheating zone may be provided on the upstream side of the heating zone 22 in the sheet threading direction. The annealing furnace 20 of the CAL 100 shown in FIG. 1 preferably has an overaging treatment zone 28 downstream of the cooling zone 26, but this is not essential. In FIGS. 1 to 3, each belt is illustrated as a vertical furnace, but it is not limited to this, and may be a horizontal furnace. In the case of a vertical furnace, adjacent strips communicate through throats (throttles) connecting the upper parts or the lower parts of the respective strips.
 (加熱帯)
 加熱帯22では、バーナーを用いて、冷延鋼板Sを直接加熱することや、ラジアントチューブ(RT)又は電気ヒーターを用いて、冷延鋼板Sを間接加熱することができる。また、誘導加熱、ロール加熱、電気抵抗加熱、直接通電加熱、ソルトバス加熱、エレクトロンビーム加熱等での加熱も可能である。加熱帯22の内部の平均温度は500~800℃とすることが好ましい。加熱帯22には、均熱帯24からのガスが流れ込むと同時に、別途還元性ガスが供給される。還元性ガスとしては、通常H-N混合ガスが用いられ、例えばH:1~35体積%、残部がN及びArの一方又は両方並びに不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。
(heating zone)
In the heating zone 22, the cold-rolled steel sheet S can be directly heated using a burner, or indirectly heated using a radiant tube (RT) or an electric heater. Heating by induction heating, roll heating, electric resistance heating, direct electric heating, salt bath heating, electron beam heating, etc. is also possible. The average temperature inside the heating zone 22 is preferably 500-800.degree. At the same time as the gas from the soaking zone 24 flows into the heating zone 22, a reducing gas is separately supplied. As the reducing gas, an H 2 -N 2 mixed gas is usually used, for example, H 2 : 1 to 35% by volume, the balance being one or both of N 2 and Ar and inevitable impurities (dew point : about -60°C).
 (均熱帯)
 均熱帯24では、ラジアントチューブ(RT)を用いて、冷延鋼板Sを間接加熱することができる。均熱帯24の内部の平均温度は600~950℃とすることが好ましい。均熱帯24には還元性ガスが供給される。還元性ガスとしては、通常H-N混合ガスが用いられ、例えばH:1~35体積%、残部がN及びArの一方又は両方並びに不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。
(soaking zone)
In the soaking zone 24, the cold-rolled steel sheet S can be indirectly heated using a radiant tube (RT). The average temperature inside the soaking zone 24 is preferably 600 to 950°C. A reducing gas is supplied to the soaking zone 24 . As the reducing gas, an H 2 -N 2 mixed gas is usually used, for example, H 2 : 1 to 35% by volume, the balance being one or both of N 2 and Ar and inevitable impurities (dew point : about -60°C).
 (冷却帯)
 冷却帯26では、ガス、ガスと水の混合、及び水のいずれかによって冷延鋼板Sが冷却される。冷延鋼板Sは、焼鈍炉20を出る段階で、CALでは100~400℃程度、CGLでは470~530℃程度にまで冷却される。図8(A),(B)に示すように、冷却帯26には、鋼板搬送路に沿って複数の冷却ノズル26Aが設けられる。冷却ノズル26Aは、例えば特開2010-185101号公報に記載されるような、鋼板幅よりも長い円管であり、円管の延在方向が鋼板の幅方向と平行になるように設置される。円管には、鋼板と対向する部位に、円管の延在方向に沿って所定の間隔で複数の貫通穴が設けられ、円管内の水が当該貫通穴から鋼板に向かって噴射される。冷却ノズルは、鋼板の表裏に対向するように一対に設けられ、さらに一対の冷却ノズルが鋼板搬送路に沿って所定間隔で複数対(例えば5~10対)配置されて、1つの冷却ゾーンを構成する。そして、当該冷却ゾーンは鋼板搬送路に沿って3~6つ程度配置することが好ましい。
(cooling zone)
In the cooling zone 26, the cold-rolled steel sheet S is cooled by either gas, a mixture of gas and water, or water. The cold-rolled steel sheet S is cooled to about 100 to 400° C. for CAL and to about 470 to 530° C. for CGL at the stage of leaving the annealing furnace 20 . As shown in FIGS. 8A and 8B, the cooling zone 26 is provided with a plurality of cooling nozzles 26A along the steel sheet conveying path. The cooling nozzle 26A is, for example, a circular pipe longer than the width of the steel plate, as described in Japanese Unexamined Patent Application Publication No. 2010-185101, and is installed so that the extending direction of the circular pipe is parallel to the width direction of the steel plate. . The circular pipe is provided with a plurality of through-holes at a predetermined interval along the extending direction of the circular pipe at a portion facing the steel plate, and the water inside the circular pipe is jetted from the through-holes toward the steel plate. A pair of cooling nozzles are provided so as to face the front and back of the steel plate, and a plurality of pairs (for example, 5 to 10 pairs) of cooling nozzles are arranged at predetermined intervals along the steel plate conveying path to form one cooling zone. Constitute. It is preferable to arrange about 3 to 6 cooling zones along the steel plate conveying path.
 (過時効処理帯)
 図1を参照して、CAL100において、過時効処理帯28では、冷却帯26を出た冷延鋼板Sが等温保持、再加熱、炉冷、及び放冷の少なくとも一つの処理に供され、冷延鋼板Sは、焼鈍炉20を出る段階で、100~400℃程度にまで冷却される。
(Overaging zone)
Referring to FIG. 1, in CAL 100, in overaging treatment zone 28, cold-rolled steel sheet S exiting cooling zone 26 is subjected to at least one treatment of isothermal holding, reheating, furnace cooling, and air cooling. The rolled steel sheet S is cooled to about 100 to 400° C. at the stage of leaving the annealing furnace 20 .
 [下流設備]
 [工程(C)]
 図1~3を参照して、工程(C)では、焼鈍炉20から排出された冷延鋼板Sを下流設備30に引き続き通板させる。図1を参照して、CGL100は、下流設備30として出側ルーパー35及び調質圧延機36を有する。図2を参照して、CGL200は、下流設備30として、溶融亜鉛めっき浴31、ガスワイピング装置32、合金化炉33、冷却装置34、出側ルーパー35、及び調質圧延機36を有する。図3を参照して、CGL300は、下流設備30として、溶融亜鉛めっき浴31、ガスワイピング装置32、冷却装置34、出側ルーパー35、及び調質圧延機36を有する。ただし、下流設備30はこれらに限定されることはなく、公知の又は任意の装置であってよい。例えば、下流設備30としては、テンションレベラー、化成処理設備、表面調整設備、オイリング設備、及び検査設備を挙げることができる。
[Downstream equipment]
[Step (C)]
1 to 3, in step (C), the cold-rolled steel sheet S discharged from the annealing furnace 20 is continuously passed through the downstream facility 30. As shown in FIG. Referring to FIG. 1 , CGL 100 has a delivery side looper 35 and a temper rolling mill 36 as downstream equipment 30 . Referring to FIG. 2 , CGL 200 has, as downstream equipment 30 , hot dip galvanizing bath 31 , gas wiping device 32 , alloying furnace 33 , cooling device 34 , exit looper 35 , and temper rolling mill 36 . Referring to FIG. 3 , CGL 300 has, as downstream equipment 30 , hot dip galvanizing bath 31 , gas wiping device 32 , cooling device 34 , delivery side looper 35 , and temper rolling mill 36 . However, the downstream equipment 30 is not limited to these, and may be known or arbitrary equipment. For example, the downstream equipment 30 can include tension levelers, chemical conversion equipment, surface conditioning equipment, oiling equipment, and inspection equipment.
 (溶融亜鉛めっき浴)
 (工程(C-1))
 図2,3を参照して、溶融亜鉛めっき浴31は、焼鈍炉20の通板方向下流に位置し、冷延鋼板Sを浸漬させて、冷延鋼板Sに溶融亜鉛めっきを施す。すなわち、工程(C-1)では、焼鈍炉20の通板方向下流に位置する溶融亜鉛めっき浴31に冷延鋼板Sを浸漬させて、冷延鋼板Sに溶融亜鉛めっきを施す。焼鈍炉の最下流の帯(図2,3では冷却帯26)と連結したスナウト29は、冷延鋼板Sが通過する空間を区画する、通板方向に垂直な断面が矩形状の部材であり、その先端が溶融亜鉛めっき浴31に浸漬しており、以って焼鈍炉20と溶融亜鉛めっき浴31とが接続されている。溶融亜鉛めっきは定法に従って行えばよい。
(hot-dip galvanizing bath)
(Step (C-1))
2 and 3, the hot-dip galvanizing bath 31 is located downstream of the annealing furnace 20 in the direction of sheet feeding, immerses the cold-rolled steel sheet S, and hot-dip galvanizes the cold-rolled steel sheet S. As shown in FIG. That is, in the step (C-1), the cold-rolled steel sheet S is immersed in a hot-dip galvanizing bath 31 located downstream of the annealing furnace 20 in the sheet-threading direction, and the cold-rolled steel sheet S is hot-dip galvanized. The snout 29 connected to the most downstream zone (cooling zone 26 in FIGS. 2 and 3) of the annealing furnace is a member having a rectangular cross section perpendicular to the sheet passing direction and defining a space through which the cold-rolled steel sheet S passes. , the tip of which is immersed in the hot dip galvanizing bath 31 , thereby connecting the annealing furnace 20 and the hot dip galvanizing bath 31 . Hot-dip galvanizing may be performed according to a standard method.
 溶融亜鉛めっき浴31から引き上げられる冷延鋼板Sを挟んで配置した一対のガスワイピング装置32から、冷延鋼板Sにガスを吹き付けて、冷延鋼板Sの両面の溶融亜鉛の付着量を調整することができる。 A pair of gas wiping devices 32 arranged to sandwich the cold-rolled steel sheet S pulled up from the hot-dip galvanizing bath 31 blow gas onto the cold-rolled steel sheet S to adjust the adhesion amount of molten zinc on both sides of the cold-rolled steel sheet S. be able to.
 (合金化炉)
 (工程(C-2))
 図2を参照して、合金化炉33は、溶融亜鉛めっき浴31及びガスワイピング装置32の通板方向下流に位置し、冷延鋼板Sを通板させて、溶融亜鉛めっきを加熱合金化する。すなわち、工程(C-2)では、溶融亜鉛めっき浴31及びガスワイピング装置32の通板方向下流に位置する合金化炉33に冷延鋼板Sを通板させて、溶融亜鉛めっきを加熱合金化する。合金化処理は定法に従って行えばよい。合金化炉33における加熱手段は特に限定されず、例えば、高温のガスによる加熱や誘導加熱が挙げられる。ただし、合金化炉33は、CGLにおける任意の設備であり、合金化工程は、CGLを用いた鋼板の製造方法における任意の工程である。
(alloying furnace)
(Step (C-2))
Referring to FIG. 2, the alloying furnace 33 is located downstream of the hot dip galvanizing bath 31 and the gas wiping device 32 in the sheet passing direction, passes the cold rolled steel sheet S, and heats and alloys the hot dip galvanized. . That is, in the step (C-2), the cold-rolled steel sheet S is passed through an alloying furnace 33 located downstream of the hot dip galvanizing bath 31 and the gas wiping device 32 in the sheet passing direction, and the hot dip galvanized is heated and alloyed. do. The alloying treatment may be performed according to a standard method. The heating means in the alloying furnace 33 is not particularly limited, and examples thereof include heating with high-temperature gas and induction heating. However, the alloying furnace 33 is optional equipment in the CGL, and the alloying process is an optional process in the steel sheet manufacturing method using the CGL.
 (冷却装置)
 図2,3を参照して、冷却装置34は、ガスワイピング装置32及び合金化炉33の通板方向下流に位置する。冷却装置34に冷延鋼板Sを通板させて、冷延鋼板Sを冷却することができる。冷却装置34は、冷延鋼板Sを水冷、空冷、ガス冷却、ミスト冷却等で冷却する。
(Cooling system)
2 and 3, the cooling device 34 is located downstream of the gas wiping device 32 and the alloying furnace 33 in the sheet passing direction. The cold-rolled steel sheet S can be cooled by passing the cold-rolled steel sheet S through the cooling device 34 . The cooling device 34 cools the cold-rolled steel sheet S by water cooling, air cooling, gas cooling, mist cooling, or the like.
 [テンションリール]
 [工程(D)]
 図1~3を参照して、下流設備30を通過した冷延鋼板Sは、最終的に、巻取り装置としてのテンションリール50により巻き取られて、製品コイルPとなる。
[Tension reel]
[Step (D)]
1 to 3, the cold-rolled steel sheet S that has passed through the downstream facility 30 is finally wound up by a tension reel 50 as a winding device to form a product coil P. As shown in FIG.
 [振動付加装置及び振動付加工程]
 上記第一の実施形態のCAL100、第二の実施形態のCGL200、及び第三の実施形態のCGL300は、冷却帯26からテンションリール50までを通板中の冷延鋼板Sに対して振動を付加する振動付加装置60又は70を有することが肝要である。すなわち、上記第一、第二、及び第三の実施形態による鋼板の製造方法は、工程(B-2)以降、かつ、工程(D)より前において、通板中の冷延鋼板Sに対して振動を付加する振動付加工程を含むことが肝要である。しかも、振動付加装置60又は70が冷延鋼板Sに付加する振動は、冷延鋼板Sの振動の周波数が100Hz以上100000Hz以下となり、かつ、冷延鋼板Sの最大振幅が10nm以上500μm以下となるものであることが肝要である。これにより、焼鈍で冷延鋼板S中に含有された水素を十分に効率良く低減させることができ、耐水素脆化特性に優れた鋼板を製造することができる。また、振動付加は、CAL100、CGL200又はCGL300による鋼板の製造過程(インライン)に組み込まれるため、生産効率を損なうことがない。また、加熱による水素の脱離ではなく、振動付加による水素の脱離であるため、鋼板の機械的特性を変化させる懸念もない。
[Vibration adding device and vibration adding process]
The CAL 100 of the first embodiment, the CGL 200 of the second embodiment, and the CGL 300 of the third embodiment add vibration to the cold-rolled steel sheet S being threaded from the cooling band 26 to the tension reel 50. It is essential to have a vibration adding device 60 or 70 that That is, in the steel sheet manufacturing methods according to the first, second, and third embodiments, after the step (B-2) and before the step (D), the cold-rolled steel sheet S being threaded is It is essential to include a vibration adding step of adding vibrations at the bottom. Moreover, the vibration applied to the cold-rolled steel sheet S by the vibration adding device 60 or 70 has a vibration frequency of 100 Hz or more and 100000 Hz or less, and a maximum amplitude of the cold-rolled steel sheet S of 10 nm or more and 500 μm or less. It is essential to be something. As a result, the hydrogen contained in the cold-rolled steel sheet S can be sufficiently and efficiently reduced by annealing, and a steel sheet having excellent resistance to hydrogen embrittlement can be produced. Moreover, since vibration application is incorporated into the steel plate manufacturing process (in-line) by CAL100, CGL200 or CGL300, production efficiency is not impaired. In addition, since hydrogen is desorbed not by heating but by applying vibration, there is no fear of changing the mechanical properties of the steel sheet.
 (振動付加装置60)
 本発明の各実施形態は、図4に示すような振動付加装置60をCAL100、CGL200又はCGL300に設置することにより実現でき、振動付加工程は、当該振動付加装置60を用いて通板中の冷延鋼板Sに振動を付加する。図4を参照して、振動付加装置60は、制御器61と、増幅器62と、電磁石63と、振動検出器64と、電源65とを備える。図6(A),(B)を参照して、振動付加装置60は、磁石63Aと、この磁石63Aを巻回するコイル63Bとを含む電磁石63を有し、電磁石63は、冷延鋼板Sの表面に離間して対向する磁極面63A1を有する。振動付加装置60は、電磁石63が冷延鋼板Sに与える外力(引力)により冷延鋼板Sが振動するように構成される。
(Vibration adding device 60)
Each embodiment of the present invention can be realized by installing a vibration adding device 60 as shown in FIG. Vibration is added to the rolled steel sheet S. Referring to FIG. 4 , vibration adding device 60 includes controller 61 , amplifier 62 , electromagnet 63 , vibration detector 64 and power supply 65 . 6A and 6B, vibration adding device 60 has electromagnet 63 including magnet 63A and coil 63B winding magnet 63A. has a magnetic pole face 63A1 spacedly opposed to the surface of the . The vibration adding device 60 is configured to vibrate the cold-rolled steel sheet S by an external force (attractive force) applied to the cold-rolled steel sheet S by the electromagnet 63 .
 電磁石63は、冷延鋼板Sの表面に離間して対向する磁極面63A1を有する限り、その形状及び設置態様は限定されない。これにより、図6(A),(B)に示すように、磁力線の方向が冷延鋼板Sに対して垂直になり、冷延鋼板Sに引力を働かせることができる。電磁石の形状及び設置態様として、例えば、図5(A),(B)を挙げることができる。 As long as the electromagnet 63 has a magnetic pole face 63A1 that faces the surface of the cold-rolled steel sheet S with a gap therebetween, its shape and installation mode are not limited. As a result, as shown in FIGS. 6A and 6B, the direction of the magnetic lines of force becomes perpendicular to the cold-rolled steel sheet S, and an attractive force can be exerted on the cold-rolled steel sheet S. Examples of the shape and installation mode of the electromagnet are shown in FIGS. 5A and 5B.
 図5(A)では、直方体形状の電磁石63が、冷延鋼板Sの表面と所定の間隔をあけて、鋼板板幅方向に沿って延在しており、これにより、冷延鋼板Sの表面の幅方向に均一に外力(引力)を加えることができ、幅方向に均一な振動を実現できる。そして、このような電磁石63を通板方向に沿って複数配置することによって、冷延鋼板Sに振動を付加する時間を十分に確保することができる。図5(A)に示すように、電磁石63は、磁石63Aと、その周囲に巻回されたコイル63Bとを有し、コイル63Bの軸方向は冷延鋼板Sの板厚方向と一致させる。この場合、コイル63Bに流れる電流の向きに応じて、図6(A)のように、冷延鋼板Sと対向する磁極面63A1がN極になるか、又は、図6(B)のように、冷延鋼板Sと対向する磁極面63A1がS極となる。 In FIG. 5A, the rectangular parallelepiped electromagnet 63 extends along the width direction of the steel sheet with a predetermined gap from the surface of the cold-rolled steel sheet S. An external force (attractive force) can be applied uniformly in the width direction of the , and uniform vibration in the width direction can be realized. By arranging a plurality of such electromagnets 63 along the sheet passing direction, it is possible to secure sufficient time for applying vibration to the cold-rolled steel sheet S. As shown in FIG. 5A, the electromagnet 63 has a magnet 63A and a coil 63B wound therearound. In this case, depending on the direction of the current flowing through the coil 63B, as shown in FIG. , the magnetic pole surface 63A1 facing the cold-rolled steel sheet S becomes the S pole.
 図5(B)では、複数の円柱形状の電磁石63を、その底部の磁極面が冷延鋼板Sの表面に離間して対向するように、鋼板の幅方向に沿って所定の間隔で配置しており、これにより、冷延鋼板Sの表面の幅方向に均一に外力(引力)を加えることができ、幅方向に均一な振動を実現できる。そして、このような円柱形状の電磁石63の列を通板方向に沿って複数配置することによって、冷延鋼板Sに振動を付加する時間を十分に確保することができる。図5(B)に示すように、各々の電磁石63は、円柱状の磁石と、その周囲に巻回されたコイルとを有し、コイルの軸方向は冷延鋼板Sの板厚方向と一致させる。この場合、コイルに流れる電流の向きに応じて、図6(A)のように、冷延鋼板Sと対向する磁極面63A1がN極になるか、又は、図6(B)のように、冷延鋼板Sと対向する磁極面63A1がS極となる。 In FIG. 5B, a plurality of columnar electromagnets 63 are arranged at predetermined intervals along the width direction of the steel sheet S so that the magnetic pole faces at the bottom face the surface of the cold-rolled steel sheet S with a space therebetween. As a result, an external force (attractive force) can be uniformly applied to the surface of the cold-rolled steel sheet S in the width direction, and uniform vibration in the width direction can be realized. By arranging a plurality of rows of such columnar electromagnets 63 along the sheet-threading direction, it is possible to ensure sufficient time for applying vibration to the cold-rolled steel sheet S. As shown in FIG. 5B, each electromagnet 63 has a cylindrical magnet and a coil wound around it, and the axial direction of the coil coincides with the thickness direction of the cold-rolled steel sheet S. Let In this case, depending on the direction of the current flowing through the coil, the magnetic pole surface 63A1 facing the cold-rolled steel sheet S becomes the N pole as shown in FIG. The magnetic pole surface 63A1 facing the cold-rolled steel sheet S becomes the S pole.
 図6(A)及び図6(B)の場合、電磁石63に電流を流すことで、冷延鋼板Sには外力(引力)が働く。電磁石63に流す電流は、直流のパルス電流か、交流の連続電流とする。電磁石63に直流のパルス電流を流す場合、冷延鋼板Sに間欠的に引力が働くことで、冷延鋼板Sが振動する。電磁石に交流の連続電流を流す場合、電流の向きが変わるたびに、冷延鋼板Sと対向する磁極面63A1がN極とS極とで切り替わることになるが、常に、冷延鋼板Sには外力(引力)が働く。交流の場合、電流値の経時変化に応じて冷延鋼板Sに働く外力(引力)の大きさも変化するため、冷延鋼板Sが振動する。 In the case of FIGS. 6A and 6B, an external force (attractive force) acts on the cold-rolled steel sheet S by applying a current to the electromagnet 63 . The current supplied to the electromagnet 63 is a direct current pulse current or an alternating current continuous current. When a DC pulse current is applied to the electromagnet 63, the cold-rolled steel sheet S vibrates due to intermittent attractive force acting on the cold-rolled steel sheet S. When a continuous alternating current is passed through the electromagnet, the magnetic pole surface 63A1 facing the cold-rolled steel sheet S switches between the N pole and the S pole each time the direction of the current changes. An external force (attractive force) acts. In the case of alternating current, since the magnitude of the external force (attractive force) acting on the cold-rolled steel sheet S also changes according to the change in the current value over time, the cold-rolled steel sheet S vibrates.
 なお、電磁石63は、冷延鋼板Sの片方の表面に対向するように設ければ十分であるが、表裏両面に対向するように設けてもよい。ただし、その場合には、片面側の電磁石が他面側の電磁石と同じ高さ位置にないように、高さ位置をずらすことが好ましい。 It is sufficient to provide the electromagnet 63 so as to face one surface of the cold-rolled steel sheet S, but it may be provided so as to face both the front and back surfaces. However, in that case, it is preferable to shift the height position so that the electromagnet on one side is not at the same height position as the electromagnet on the other side.
 図4に示す振動検出器64は、冷延鋼板Sの表面と所定の間隔をあけて配置されたレーザー変位計又はレーザードップラー振動計であり、冷延鋼板Sの振動の周波数及び振幅を測定することができる。冷延鋼板Sの電磁石63と同じ高さ位置に振動検出器64を配置することで、振動検出器64で冷延鋼板Sの振動の最大振幅を測定することができる。振動検出器64により検出された周波数及び最大振幅は、制御器61に出力される。制御器61は、振動検出器64から出力された周波数及び最大振幅の値を受け取り、設定値と比較し、その偏差にPID演算などを行って、冷延鋼板Sを所定の周波数及び最大振幅で振動させるように、電磁石63の周波数(直流のパルス電流の周波数又は交流の連続電流の周波数)及び電流値を決定し、また、増幅器62の増幅率を考慮して増幅器62に与える電流値を決定し、電源65に指令値を与える。電源65は、電磁石63のコイルに電流を流すための電源であり、制御器61から入力される指令値を受け取り、増幅器62に所定の周波数及び電流値の電流を与える。増幅器62は、電源65から与えられた電流値を所定の増幅率で増幅して、電磁石63に指令値を与える。その結果、電磁石63には所定の周波数及び電流値の電流が流れ、冷延鋼板Sを所定の周波数及び最大振幅で振動させることができる。 The vibration detector 64 shown in FIG. 4 is a laser displacement meter or a laser Doppler vibrometer arranged at a predetermined distance from the surface of the cold-rolled steel sheet S, and measures the frequency and amplitude of the vibration of the cold-rolled steel sheet S. be able to. By disposing the vibration detector 64 at the same height position as the electromagnet 63 of the cold-rolled steel sheet S, the vibration detector 64 can measure the maximum amplitude of the vibration of the cold-rolled steel sheet S. The frequency and maximum amplitude detected by vibration detector 64 are output to controller 61 . The controller 61 receives the values of the frequency and maximum amplitude output from the vibration detector 64, compares them with the set values, performs PID calculation on the deviation, etc., and controls the cold-rolled steel sheet S at a predetermined frequency and maximum amplitude. The frequency of the electromagnet 63 (the frequency of the DC pulse current or the frequency of the continuous AC current) and the current value are determined so as to oscillate, and the current value to be given to the amplifier 62 is determined in consideration of the amplification factor of the amplifier 62. and gives a command value to the power supply 65 . The power supply 65 is a power supply for supplying current to the coil of the electromagnet 63, receives a command value input from the controller 61, and provides the amplifier 62 with current having a predetermined frequency and current value. The amplifier 62 amplifies the current value given from the power supply 65 with a predetermined amplification factor and gives a command value to the electromagnet 63 . As a result, a current with a predetermined frequency and current value flows through the electromagnet 63, and the cold-rolled steel sheet S can be vibrated at a predetermined frequency and maximum amplitude.
 (振動付加装置70)
 本発明の各実施形態は、図7Aに示すような振動付加装置70をCAL100、CGL200又はCGL300に設置することにより実現でき、振動付加工程は、当該振動付加装置70を用いて通板中の冷延鋼板Sに振動を付加する。図7Aを参照して、振動付加装置70は、制御器71と、振動子72と、振動検出器73とを備える。振動付加装置70は、冷延鋼板Sに接触する振動子72を有し、この振動子72によって冷延鋼板Sが振動するように構成される。
(Vibration adding device 70)
Each embodiment of the present invention can be realized by installing a vibration adding device 70 as shown in FIG. Vibration is added to the rolled steel sheet S. Referring to FIG. 7A, vibration adding device 70 includes controller 71 , vibrator 72 , and vibration detector 73 . The vibration adding device 70 has a vibrator 72 that contacts the cold-rolled steel sheet S, and is configured to vibrate the cold-rolled steel sheet S with the vibrator 72 .
 振動子72は、一般的な圧電素子であれば特に限定されず、その形状及び設置態様も限定されないが、例えば、図7Bに示すように、板幅方向を長手とする平板状の振動子72を冷延鋼板Sに面接触させることで、冷延鋼板Sを振動させることができる。 The vibrator 72 is not particularly limited as long as it is a general piezoelectric element, and its shape and installation mode are also not limited. For example, as shown in FIG. is brought into surface contact with the cold-rolled steel sheet S, the cold-rolled steel sheet S can be vibrated.
 なお、振動子72は、冷延鋼板Sの片方の表面に接するように設ければ十分であるが、表裏両面に接するように設けてもよい。ただし、その場合には、片面側の振動子が他面側の振動子と同じ高さ位置にないように、高さ位置をずらすことが好ましい。 It is sufficient to provide the vibrator 72 so as to be in contact with one surface of the cold-rolled steel sheet S, but it may be provided so as to be in contact with both the front and back surfaces. However, in that case, it is preferable to shift the height position so that the vibrator on one side is not at the same height position as the vibrator on the other side.
 図7Aに示す振動検出器73は、冷延鋼板Sの表面と所定の間隔をあけて配置されたレーザー変位計又はレーザードップラー振動計であり、冷延鋼板Sの振動の周波数及び振幅を測定することができる。冷延鋼板Sの振動子72と同じ高さ位置に振動検出器73を配置することで、振動検出器73で冷延鋼板Sの振動の最大振幅を測定することができる。振動検出器73により検出された周波数及び最大振幅は、制御器71に出力される。制御器71は、振動検出器73から出力された周波数及び最大振幅の値を受け取り、設定値と比較し、その偏差にPID演算などを行って、冷延鋼板Sを所定の周波数及び最大振幅で振動させるように、振動子72に流れる直流パルス電流の周波数及び電流値を決定し、図示しない電源を制御して振動子72に所定の周波数及び電流値の直流パルス電流を与える。これにより、振動子72は所定の周波数及び振幅で振動し、その結果、冷延鋼板Sを所定の周波数及び最大振幅で振動させることができる。 The vibration detector 73 shown in FIG. 7A is a laser displacement meter or a laser Doppler vibrometer arranged at a predetermined distance from the surface of the cold-rolled steel sheet S, and measures the frequency and amplitude of the vibration of the cold-rolled steel sheet S. be able to. By arranging the vibration detector 73 at the same height position as the vibrator 72 of the cold-rolled steel sheet S, the maximum amplitude of vibration of the cold-rolled steel sheet S can be measured by the vibration detector 73 . The frequency and maximum amplitude detected by vibration detector 73 are output to controller 71 . The controller 71 receives the values of the frequency and maximum amplitude output from the vibration detector 73, compares them with the set values, performs PID calculation on the deviation, etc., and controls the cold-rolled steel sheet S at a predetermined frequency and maximum amplitude. The frequency and current value of the DC pulse current flowing through the vibrator 72 are determined so as to vibrate the vibrator 72, and a power source (not shown) is controlled to give the vibrator 72 a DC pulse current of a predetermined frequency and current value. Thereby, the vibrator 72 vibrates at a predetermined frequency and amplitude, and as a result, the cold-rolled steel sheet S can be vibrated at a predetermined frequency and maximum amplitude.
 第一、第二、及び第三の実施形態において、振動付加装置60又は70の位置は、冷却帯26からテンションリール50までを通板中の冷延鋼板Sに対して振動を付加することができる限り限定されない。 In the first, second, and third embodiments, the position of the vibration applying device 60 or 70 is such that vibration can be applied to the cold-rolled steel sheet S being threaded from the cooling band 26 to the tension reel 50. as unrestricted as possible.
 図1を参照して、CAL100で冷延焼鈍鋼板(CR)の製品コイルを製造する第一の実施形態において、振動付加装置60又は70の好適な位置、すなわち振動付加工程の好適な実施タイミングを説明する。一例として、振動付加装置60又は70を冷却帯26に設けることができる。この場合、振動付加工程は、工程(B-2)にて行うことができる。具体的には、鋼板搬送路に沿って複数配置されている冷却ゾーンの間や、各冷却ゾーンで鋼板搬送路に沿って隣接する冷却ノズルの間に、図4に示す電磁石63や、図7A,Bに示す振動子72を設置することができる。図8(A),(B)に、冷却帯26内に振動付加装置60又は70を設置する場合の、冷却ノズル26Aと振動付加装置60又は70との位置関係の例を示す。なお、振動付加装置60又は70の全体が冷却帯26の内部に位置する必要はなく、少なくとも電磁石63又は振動子72が冷却帯26の内部に位置すればよい。 Referring to FIG. 1, in the first embodiment of manufacturing cold-rolled and annealed steel sheet (CR) product coils with CAL100, a suitable position of the vibration applying device 60 or 70, that is, a suitable execution timing of the vibration applying process is explain. As an example, a vibration applicator 60 or 70 may be provided on the cooling zone 26 . In this case, the vibration application step can be performed in step (B-2). Specifically, the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. , B can be installed. 8A and 8B show examples of the positional relationship between the cooling nozzle 26A and the vibration adding device 60 or 70 when the vibration adding device 60 or 70 is installed in the cooling zone 26. FIG. It should be noted that the entire vibration adding device 60 or 70 does not have to be positioned inside the cooling zone 26 , and at least the electromagnet 63 or the vibrator 72 may be positioned inside the cooling zone 26 .
 他の例として、振動付加装置60又は70を、下流設備30を通板中の冷延鋼板Sに振動を付加可能な位置に設けることができる。この場合、振動付加工程は、工程(C)にて行うことができる。具体的には、(i)過時効処理帯28と出側ルーパー35との間、(ii)出側ルーパー35内、(iii)出側ルーパー35と調質圧延機36との間、(iv)調質圧延機36とテンションリール50との間、の少なくとも1つに振動付加装置60又は70を設けることができる。 As another example, the vibration applying device 60 or 70 can be provided at a position where vibration can be applied to the cold-rolled steel sheet S being passed through the downstream facility 30 . In this case, the vibration application step can be performed in step (C). Specifically, (i) between the overaging treatment zone 28 and the delivery side looper 35, (ii) within the delivery side looper 35, (iii) between the delivery side looper 35 and the temper rolling mill 36, (iv) ) A vibration adding device 60 or 70 can be provided at least one between the temper rolling mill 36 and the tension reel 50 .
 振動付加装置60又は70は、冷却帯26と、下流設備30を通板中の冷延鋼板Sに振動を付加可能な位置との両方に設けてもよい。すなわち、振動付加工程は、工程(B-2)及び工程(C)の両方で行ってもよい。また、振動付加装置60又は70を過時効処理帯28に設けて、振動付加工程を過時効処理中に行ってもよい。 The vibration applying device 60 or 70 may be provided both in the cooling zone 26 and in a position where vibration can be applied to the cold-rolled steel sheet S being passed through the downstream equipment 30 . That is, the vibration application step may be performed in both step (B-2) and step (C). Moreover, the vibration applying device 60 or 70 may be provided in the overaging treatment zone 28 to perform the vibration applying process during the overaging treatment.
 次に、図2を参照して、CGL200で合金化溶融亜鉛めっき鋼板(GA)の製品を製造する第二の実施形態において、振動付加装置60又は70の好適な位置、すなわち振動付加工程の好適な実施タイミングを説明する。一例として、振動付加装置60又は70を、溶融亜鉛めっき浴31より上流を通板中の冷延鋼板Sに振動を付加可能な第一の位置に設けることができる。この場合、振動付加工程は、工程(C-1)より前に行うことができる。具体的には、振動付加装置60又は70を冷却帯26に設けることができる。より具体的には、鋼板搬送路に沿って複数配置されている冷却ゾーンの間や、各冷却ゾーンで鋼板搬送路に沿って隣接する冷却ノズルの間に、図4に示す電磁石63や、図7A,Bに示す振動子72を設置することができる。本実施形態でも、図8(A),(B)に示す例が当てはまる。また、振動付加装置60又は70の全体が冷却帯26の内部に位置する必要はなく、少なくとも電磁石63又は振動子72が冷却帯26の内部に位置すればよい。また、スナウト29内に振動付加装置60又は70の少なくとも電磁石63又は振動子72を設置することもできる。 Next, referring to FIG. 2, in the second embodiment of manufacturing a product of galvannealed steel sheet (GA) with CGL200, the preferred position of the vibration applying device 60 or 70, that is, the preferred position of the vibration applying process I will explain the implementation timing. As an example, the vibration applying device 60 or 70 can be provided upstream from the hot-dip galvanizing bath 31 at a first position where vibration can be applied to the cold-rolled steel sheet S being passed. In this case, the vibration application step can be performed before step (C-1). Specifically, a vibration adding device 60 or 70 may be provided in the cooling zone 26 . More specifically, the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. A vibrator 72 shown in 7A and 7B can be installed. The examples shown in FIGS. 8A and 8B also apply to this embodiment. Further, the entire vibration adding device 60 or 70 does not need to be positioned inside the cooling zone 26 , and at least the electromagnet 63 or the vibrator 72 may be positioned inside the cooling zone 26 . Also, at least the electromagnet 63 or vibrator 72 of the vibration adding device 60 or 70 can be installed in the snout 29 .
 他の例として、振動付加装置60又は70を、溶融亜鉛めっき浴31より下流を通板中の冷延鋼板Sに振動を付加可能な第二の位置に設けることができる。この場合、振動付加工程は、工程(C-1)より後に行うことができる。具体的には、(i)溶融亜鉛めっき浴31とガスワイピング装置32との間、(ii)ガスワイピング装置32と合金化炉33との間、(iii)合金化炉33内、(iv)合金化炉33と冷却装置34との間の空冷ゾーン、(v)冷却装置34と出側ルーパー35との間、(vi)出側ルーパー35内、(vii)出側ルーパー35と調質圧延機36との間、(viii)調質圧延機36とテンションリール50との間、の少なくとも1つに振動付加装置60又は70を設けることができる。特に、(iv)の空冷ゾーンに振動付加装置60又は70を設けることが好ましい。 As another example, the vibration applying device 60 or 70 can be provided downstream from the hot dip galvanizing bath 31 at a second position where vibration can be applied to the cold-rolled steel sheet S being passed. In this case, the vibration applying step can be performed after the step (C-1). Specifically, (i) between the hot dip galvanizing bath 31 and the gas wiping device 32, (ii) between the gas wiping device 32 and the alloying furnace 33, (iii) inside the alloying furnace 33, and (iv) Air cooling zone between the alloying furnace 33 and the cooling device 34, (v) between the cooling device 34 and the delivery side looper 35, (vi) within the delivery side looper 35, (vii) the delivery side looper 35 and temper rolling (viii) between the temper mill 36 and the tension reel 50. In particular, it is preferable to provide the vibration adding device 60 or 70 in the air cooling zone (iv).
 鋼板中から水素をより十分に脱離させる観点から、振動付加装置60又は70は、第二の位置よりも、第一の位置に設ける方が好ましい。すなわち、振動付加工程は、工程(C-1)より後に行うよりも、工程(C-1)より前に行うことが好ましい。ただし、振動付加装置60又は70は、第一の位置及び第二の位置の両方に設けてもよい。すなわち、振動付加工程は、工程(C-1)の前後両方で行ってもよい。 From the viewpoint of desorbing hydrogen from the steel sheet more sufficiently, the vibration applying device 60 or 70 is preferably provided at the first position rather than at the second position. That is, the vibration application step is preferably performed before step (C-1) rather than after step (C-1). However, the vibration adding device 60 or 70 may be provided at both the first position and the second position. That is, the vibration applying step may be performed both before and after the step (C-1).
 次に、図3を参照して、CGL300で溶融亜鉛めっき鋼板(GI)の製品を製造する第三の実施形態において、振動付加装置60又は70の好適な位置、すなわち振動付加工程の好適な実施タイミングを説明する。一例として、振動付加装置60又は70を、溶融亜鉛めっき浴31より上流を通板中の冷延鋼板Sに振動を付加可能な第一の位置に設けることができる。この場合、振動付加工程は、工程(C-1)より前に行うことができる。具体的には、振動付加装置60又は70を冷却帯26に設けることができる。より具体的には、鋼板搬送路に沿って複数配置されている冷却ゾーンの間や、各冷却ゾーンで鋼板搬送路に沿って隣接する冷却ノズルの間に、図4に示す電磁石63や、図7A,Bに示す振動子72を設置することができる。本実施形態でも、図8(A),(B)に示す例が当てはまる。また、振動付加装置60又は70の全体が冷却帯26の内部に位置する必要はなく、少なくとも電磁石63又は振動子72が冷却帯26の内部に位置すればよい。また、スナウト29内に振動付加装置60又は70の少なくとも電磁石63又は振動子72を設置することもできる。 Next, referring to FIG. 3, in the third embodiment of manufacturing a hot-dip galvanized steel sheet (GI) product with CGL300, the preferred position of the vibration adding device 60 or 70, that is, the preferred execution of the vibration adding process Explain timing. As an example, the vibration applying device 60 or 70 can be provided upstream from the hot-dip galvanizing bath 31 at a first position where vibration can be applied to the cold-rolled steel sheet S being passed. In this case, the vibration application step can be performed before step (C-1). Specifically, a vibration adding device 60 or 70 may be provided in the cooling zone 26 . More specifically, the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. A vibrator 72 shown in 7A and 7B can be installed. The examples shown in FIGS. 8A and 8B also apply to this embodiment. Further, the entire vibration adding device 60 or 70 does not need to be positioned inside the cooling zone 26 , and at least the electromagnet 63 or the vibrator 72 may be positioned inside the cooling zone 26 . Also, at least the electromagnet 63 or vibrator 72 of the vibration adding device 60 or 70 can be installed in the snout 29 .
 他の例として、振動付加装置60又は70を、溶融亜鉛めっき浴31より下流を通板中の冷延鋼板Sに振動を付加可能な第二の位置に設けることができる。この場合、振動付加工程は、工程(C-1)より後に行うことができる。具体的には、(i)溶融亜鉛めっき浴31とガスワイピング装置32との間、(ii)ガスワイピング装置32と冷却装置34との間の空冷ゾーン、(iii)冷却装置34と出側ルーパー35との間、(iv)出側ルーパー35内、(v)出側ルーパー35と調質圧延機36との間、(vi)調質圧延機36とテンションリール50との間、の少なくとも1つに振動付加装置60又は70を設けることができる。特に、(ii)の空冷ゾーンに振動付加装置60又は70を設けることが好ましい。 As another example, the vibration applying device 60 or 70 can be provided downstream from the hot dip galvanizing bath 31 at a second position where vibration can be applied to the cold-rolled steel sheet S being passed. In this case, the vibration applying step can be performed after the step (C-1). Specifically, (i) between the hot dip galvanizing bath 31 and the gas wiping device 32, (ii) an air cooling zone between the gas wiping device 32 and the cooling device 34, and (iii) the cooling device 34 and the outlet looper 35, (iv) inside the delivery side looper 35, (v) between the delivery side looper 35 and the temper mill 36, and (vi) between the temper mill 36 and the tension reel 50. A vibration adding device 60 or 70 can be provided. In particular, it is preferable to provide the vibration adding device 60 or 70 in the air cooling zone (ii).
 鋼板中から水素をより十分に脱離させる観点から、振動付加装置60又は70は、第二の位置よりも、第一の位置に設ける方が好ましい。すなわち、振動付加工程は、工程(C-1)より後に行うよりも、工程(C-1)より前に行うことが好ましい。ただし、振動付加装置60又は70は、第一の位置及び第二の位置の両方に設けてもよい。すなわち、振動付加工程は、工程(C-1)の前後両方で行ってもよい。 From the viewpoint of desorbing hydrogen from the steel sheet more sufficiently, the vibration applying device 60 or 70 is preferably provided at the first position rather than at the second position. That is, the vibration application step is preferably performed before step (C-1) rather than after step (C-1). However, the vibration adding device 60 or 70 may be provided at both the first position and the second position. That is, the vibration applying step may be performed both before and after the step (C-1).
 (振動の周波数)
 水素の拡散を促進する観点から、冷延鋼板Sの振動の周波数は100Hz以上であることが肝要である。当該周波数が100Hz未満の場合、冷延鋼板S中に含有された水素を脱離させる効果は得られない。この観点から、当該周波数は100Hz以上とし、好ましくは500Hz以上とし、より好ましくは1000Hz以上とする。なお、冷延鋼板Sは、その通板過程で自ずと振動したり、例えばガスワイピング装置32からガスを受けて振動したりする。しかし、これらの振動において、冷延鋼板Sの振動の周波数は高々20Hz程度であり、この場合、冷延鋼板S中に含有された水素を脱離させる効果は得られない。他方で、当該周波数が過多の場合、鋼板内で格子間隔を膨張させておく十分な時間を確保できず、やはり水素を脱離する効果を得ることができない。この観点から、当該周波数は、100000Hz以下とすることが肝要であり、好ましくは80000Hz以下とし、より好ましくは50000Hz以下とする。冷延鋼板Sの振動の周波数は、図4に示した振動検出器64又は図7Aに示した振動検出器73により測定することができる。また、冷延鋼板Sの振動の周波数は、図4に示す振動付加装置60の場合、直流のパルス電流の周波数又は交流の連続電流の周波数を制御することによって調整することができ、図7A,Bに示す振動付加装置70の場合、振動子72の振動周波数を制御することによって調整することができる。
(Frequency of vibration)
From the viewpoint of promoting the diffusion of hydrogen, it is essential that the vibration frequency of the cold-rolled steel sheet S is 100 Hz or higher. If the frequency is less than 100 Hz, the effect of desorbing hydrogen contained in the cold-rolled steel sheet S cannot be obtained. From this point of view, the frequency is 100 Hz or higher, preferably 500 Hz or higher, and more preferably 1000 Hz or higher. The cold-rolled steel sheet S naturally vibrates during the sheet threading process, or vibrates by receiving gas from the gas wiping device 32, for example. However, in these vibrations, the vibration frequency of the cold-rolled steel sheet S is at most about 20 Hz, and in this case, the effect of desorbing hydrogen contained in the cold-rolled steel sheet S cannot be obtained. On the other hand, if the frequency is too high, it is not possible to ensure sufficient time for expanding the lattice spacing in the steel sheet, and the effect of desorbing hydrogen cannot be obtained. From this point of view, it is essential that the frequency be 100,000 Hz or less, preferably 80,000 Hz or less, and more preferably 50,000 Hz or less. The vibration frequency of the cold-rolled steel sheet S can be measured by the vibration detector 64 shown in FIG. 4 or the vibration detector 73 shown in FIG. 7A. In addition, in the case of the vibration adding device 60 shown in FIG. 4, the vibration frequency of the cold-rolled steel sheet S can be adjusted by controlling the frequency of the DC pulse current or the frequency of the AC continuous current. In the case of the vibration applying device 70 shown in B, it can be adjusted by controlling the vibration frequency of the vibrator 72 .
 (振動の最大振幅)
 冷延鋼板Sの最大振幅が10nm未満の場合、鋼板表面の格子間隔が十分に拡張せず、水素拡散の促進が不十分のため、冷延鋼板S中に含有された水素を脱離させる効果は得られない。よって、冷延鋼板Sの最大振幅は10nm以上とすることが肝要であり、好ましくは100nm以上とし、より好ましくは500nm以上とする。また、冷延鋼板Sの最大振幅が500μm超えの場合、鋼板表面におけるひずみが大きくなり、塑性変形を生じ、結果として水素をトラップしてしまうため、冷延鋼板S中に含有された水素を脱離させる効果は得られない。この観点から、冷延鋼板Sの最大振幅は500μm以下とすることが肝要であり、好ましくは400μm以下とし、より好ましくは300μm以下とする。なお、冷延鋼板Sは、その通板過程で自ずと振動したり、例えばガスワイピング装置32からガスを受けて振動したりする。しかし、これらの振動において、冷延鋼板Sの最大振幅は少なくとも0.5mm超えとなるため、冷延鋼板S中に含有された水素を脱離させる効果は得られない。冷延鋼板Sの最大振幅は、図4に示した振動検出器64又は図7Aに示した振動検出器73により測定することができる。また、冷延鋼板Sの最大振幅は、図4に示す振動付加装置60の場合、電磁石63に流す電流量を制御することによって調整することができ、図7A,Bに示す振動付加装置70の場合、振動子72の振動の振幅を制御することによって調整することができる。
(maximum amplitude of vibration)
When the maximum amplitude of the cold-rolled steel sheet S is less than 10 nm, the lattice spacing on the surface of the steel sheet is not sufficiently expanded, and the promotion of hydrogen diffusion is insufficient, so the effect of desorbing hydrogen contained in the cold-rolled steel sheet S. is not obtained. Therefore, it is essential that the maximum amplitude of the cold-rolled steel sheet S is 10 nm or more, preferably 100 nm or more, and more preferably 500 nm or more. In addition, when the maximum amplitude of the cold-rolled steel sheet S exceeds 500 μm, the strain on the steel sheet surface increases, plastic deformation occurs, and as a result hydrogen is trapped, so hydrogen contained in the cold-rolled steel sheet S is removed. No separation effect is obtained. From this point of view, it is essential that the maximum amplitude of the cold-rolled steel sheet S is 500 μm or less, preferably 400 μm or less, and more preferably 300 μm or less. The cold-rolled steel sheet S naturally vibrates during the sheet threading process, or vibrates by receiving gas from the gas wiping device 32, for example. However, in these vibrations, since the maximum amplitude of the cold-rolled steel sheet S exceeds at least 0.5 mm, the effect of desorbing hydrogen contained in the cold-rolled steel sheet S cannot be obtained. The maximum amplitude of the cold-rolled steel sheet S can be measured by the vibration detector 64 shown in FIG. 4 or the vibration detector 73 shown in FIG. 7A. Further, the maximum amplitude of the cold-rolled steel sheet S can be adjusted by controlling the amount of current flowing through the electromagnet 63 in the case of the vibration adding device 60 shown in FIG. can be adjusted by controlling the amplitude of the vibration of the vibrator 72 .
 (振動付加時間)
 冷延鋼板Sから水素をより十分に低減させる観点から、振動付加工程において、冷延鋼板Sに対する振動の付加時間は1秒以上とすることが好ましく、5秒以上とすることがより好ましく、10秒以上とすることがさらに好ましい。他方、生産性を阻害しない観点から、冷延鋼板Sに対する振動の付加時間は3600秒以下とすることが好ましく、1800秒以下とすることがより好ましく、900秒以下とすることがさらに好ましい。本明細書において、「冷延鋼板Sに対する振動の付加時間」とは、冷延鋼板Sの表面の各位置に振動が付加される時間を意味し、各位置が複数の振動付加装置60又は70からの振動を付与される場合には、その積算時間を意味する。図6(A),(B)を参照して、振動付加装置60を用いる場合には、冷延鋼板Sの表面のうち電磁石63と対向する部分は振動しているとみなすことができる。よって、冷延鋼板Sの各部位が電磁石63と対向している時間の積算を振動付加時間とすることができる。図7A,Bに示す振動付加装置70を用いる場合は、冷延鋼板Sの各部位が振動子72と接触している時間の積算を振動付加時間とすることができる。振動付加時間は、冷延鋼板Sの通板速度と、振動付加装置60又は70の位置(例えば、図4に示す電磁石63の通板方向に沿った数や、図7A,Bに示す振動子72の通板方向に沿った数)とによって調整することができる。
(Vibration addition time)
From the viewpoint of sufficiently reducing hydrogen from the cold-rolled steel sheet S, in the vibration adding step, the vibration application time to the cold-rolled steel sheet S is preferably 1 second or longer, more preferably 5 seconds or longer. Seconds or longer is more preferable. On the other hand, from the viewpoint of not inhibiting productivity, the duration of vibration applied to the cold-rolled steel sheet S is preferably 3600 seconds or less, more preferably 1800 seconds or less, and even more preferably 900 seconds or less. In this specification, the term “vibration application time to the cold-rolled steel sheet S” means the time during which vibration is applied to each position on the surface of the cold-rolled steel sheet S, and each position is provided with a plurality of vibration applying devices 60 or 70 . When vibration is given from , it means the accumulated time. With reference to FIGS. 6A and 6B, when vibration applying device 60 is used, it can be considered that the portion of the surface of cold-rolled steel sheet S facing electromagnet 63 is vibrating. Therefore, the sum of the times during which each part of the cold-rolled steel sheet S faces the electromagnet 63 can be used as the vibration addition time. When the vibration adding device 70 shown in FIGS. 7A and 7B is used, the cumulative time during which each part of the cold-rolled steel sheet S is in contact with the vibrator 72 can be used as the vibration adding time. The vibration application time depends on the threading speed of the cold-rolled steel sheet S and the position of the vibration applying device 60 or 70 (for example, the number of electromagnets 63 shown in FIG. 72 along the threading direction).
 [冷延鋼板]
 本実施形態において、CAL100、CGL200及びCGL300に供給される冷延鋼板Sは特に限定されない。冷延鋼板Sは、板厚6mm未満であることが好ましく、例えば、590MPa以上の引張強さを有する高強度鋼板や、ステンレス鋼板を挙げることができる。
[Cold-rolled steel sheet]
In this embodiment, the cold-rolled steel sheet S supplied to CAL100, CGL200 and CGL300 is not particularly limited. The cold-rolled steel sheet S preferably has a thickness of less than 6 mm, and includes, for example, a high-strength steel sheet having a tensile strength of 590 MPa or more and a stainless steel sheet.
 [冷延鋼板の成分組成:高強度鋼板]
 冷延鋼板Sが高強度鋼板である場合の成分組成について説明する。以下、「質量%」は単に「%」と記す。
[Component composition of cold-rolled steel sheet: high-strength steel sheet]
The chemical composition when the cold-rolled steel sheet S is a high-strength steel sheet will be described. Hereinafter, "% by mass" is simply referred to as "%".
 C:0.030~0.800%
 Cは、鋼板の強度を上昇させる効果を有する。この効果を得る観点から、C量は0.030%以上とし、好ましくは0.080%以上とする。しかし、C量が過剰の場合、鋼板中の水素量によらず鋼板が著しく脆化する。よって、C量は0.800%以下とし、好ましくは0.500%以下とする。
C: 0.030-0.800%
C has the effect of increasing the strength of the steel sheet. From the viewpoint of obtaining this effect, the amount of C should be 0.030% or more, preferably 0.080% or more. However, when the amount of C is excessive, the steel sheet becomes significantly embrittled regardless of the amount of hydrogen in the steel sheet. Therefore, the amount of C should be 0.800% or less, preferably 0.500% or less.
 Si:0.01~3.00%
 Siは、鋼板の強度を上昇させる効果を有する。この効果を得る観点から、Si量は0.01%以上とし、好ましくは0.10%以上とする。しかし、Si量が過剰の場合、鋼板が脆化して延性が低下したり、赤スケールなどが発生して表面性状が劣化したり、めっき品質が低下する。よって、Si量は3.00%以下とし、好ましくは2.50%以下とする。
Si: 0.01-3.00%
Si has the effect of increasing the strength of the steel sheet. From the viewpoint of obtaining this effect, the amount of Si should be 0.01% or more, preferably 0.10% or more. However, when the amount of Si is excessive, the steel sheet becomes embrittled and the ductility is lowered, red scales are generated, the surface properties are deteriorated, and the plating quality is lowered. Therefore, the Si content is 3.00% or less, preferably 2.50% or less.
 Mn:0.01~10.00%
 Mnは、固溶強化により鋼板の強度を上昇させる効果を有する。この効果を得る観点から、Mn量は0.01%以上とし、好ましくは0.5%以上とする。しかし、Mn量が過剰の場合、Mnの偏析に起因して鋼組織にムラが生じやすくなり、ムラを起点とした水素脆性が顕在化する場合がある。よって、Mn量は10.00%以下とし、好ましくは8.00%以下とする。
Mn: 0.01-10.00%
Mn has the effect of increasing the strength of the steel sheet through solid-solution strengthening. From the viewpoint of obtaining this effect, the amount of Mn should be 0.01% or more, preferably 0.5% or more. However, when the amount of Mn is excessive, unevenness tends to occur in the steel structure due to the segregation of Mn, and hydrogen embrittlement starting from the unevenness may occur. Therefore, the Mn content is set to 10.00% or less, preferably 8.00% or less.
 P:0.001~0.100%
 Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。こうした効果を得る観点から、P量は0.001%以上とし、好ましくは0.003%以上とする。しかし、P量が過剰の場合、溶接性が劣化し、亜鉛めっきを合金化する場合には、合金化速度が低下して、亜鉛めっきの品質を損なう。よって、P量は0.100%以下とし、好ましくは0.050%以下とする。
P: 0.001 to 0.100%
P is an element that has a solid-solution strengthening action and can be added according to the desired strength. From the viewpoint of obtaining such effects, the amount of P should be 0.001% or more, preferably 0.003% or more. However, when the amount of P is excessive, the weldability deteriorates, and when the zinc plating is alloyed, the alloying speed decreases and the quality of the zinc plating deteriorates. Therefore, the P content is set to 0.100% or less, preferably 0.050% or less.
 S:0.0001~0.0200%
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させる。そのため、S量は0.0200%以下とし、好ましくは0.0100%以下とし、より好ましくは0.0050%以下とする。一方、生産技術上の制約から、S量は0.0001%以上とする。
S: 0.0001 to 0.0200%
S segregates at grain boundaries to embrittle the steel during hot working, and also exists as sulfides to reduce local deformability. Therefore, the S content is 0.0200% or less, preferably 0.0100% or less, more preferably 0.0050% or less. On the other hand, the amount of S is set to 0.0001% or more due to production technology restrictions.
 N:0.0005~0.0100%
 Nは、鋼の耐時効性を劣化させる元素である。そのため、N量は0.0100%以下とし、好ましくは0.0070%以下とする。N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上とし、好ましくは0.0010%以上とする。
N: 0.0005 to 0.0100%
N is an element that deteriorates the aging resistance of steel. Therefore, the N content is set to 0.0100% or less, preferably 0.0070% or less. The smaller the amount of N, the better, but due to production technology restrictions, the amount of N is set to 0.0005% or more, preferably 0.0010% or more.
 Al:0.001~2.000%
 Alは、脱酸剤として作用し、鋼の清浄度に有効な元素である。この効果を得る観点から、Al量は0.001%以上とし、好ましくは0.010%以上とする。しかし、Al量が過剰の場合、連続鋳造時に鋼片割れが発生する可能性がある。よって、Al量は2.000%以下とし、好ましくは1.200%以下とする。
Al: 0.001-2.000%
Al acts as a deoxidizing agent and is an element effective for the cleanliness of steel. From the viewpoint of obtaining this effect, the amount of Al should be 0.001% or more, preferably 0.010% or more. However, if the amount of Al is excessive, there is a possibility that cracks will occur during continuous casting. Therefore, the Al content is set to 2.000% or less, preferably 1.200% or less.
 上記成分以外の残部は、Fe及び不可避的不純物である。ただし、任意で以下から選ばれる少なくとも1種の元素を含んでもよい。 The balance other than the above components is Fe and unavoidable impurities. However, it may optionally contain at least one element selected from the following.
 Ti:0.200%以下
 Tiは、鋼の析出強化やフェライト結晶粒の成長抑制による細粒強化にて、鋼板の強度上昇に寄与する。よって、Tiを添加する場合、Ti量は0.005%以上とすることが好ましく、0.010%以上とすることがよりこのましい。しかし、Ti量が過剰の場合、炭窒化物が多量に析出し、成形性が低下する場合がある。よって、Tiを添加する場合、Ti量を0.200%以下とし、好ましくは0.100%以下とする。
Ti: 0.200% or less Ti contributes to an increase in the strength of the steel sheet by precipitation strengthening of the steel and fine grain strengthening by suppressing the growth of ferrite crystal grains. Therefore, when adding Ti, the amount of Ti is preferably 0.005% or more, more preferably 0.010% or more. However, if the amount of Ti is excessive, a large amount of carbonitrides may be precipitated and formability may deteriorate. Therefore, when adding Ti, the amount of Ti should be 0.200% or less, preferably 0.100% or less.
 Nb:0.200%以下、V:0.500%以下、W:0.500%以下
 Nb、V、及びWは、鋼の析出強化に有効である。よって、Nb、V、及びWを添加する場合、各元素の含有量は0.005%以上とすることが好ましく、0.010%以上とすることがより好ましい。しかし、各含有量が過剰の場合、炭窒化物が多量に析出し、成形性が低下する場合がある。よって、Nbを添加する場合、Nb量は0.200%以下とし、好ましくは0.100%以下とする。V及びWを添加する場合、各元素の含有量は0.500%以下とし、好ましくは0.300%以下とする。
Nb: 0.200% or less, V: 0.500% or less, W: 0.500% or less Nb, V, and W are effective for precipitation strengthening of steel. Therefore, when Nb, V, and W are added, the content of each element is preferably 0.005% or more, more preferably 0.010% or more. However, if each content is excessive, a large amount of carbonitrides may be precipitated and formability may be lowered. Therefore, when Nb is added, the amount of Nb should be 0.200% or less, preferably 0.100% or less. When V and W are added, the content of each element should be 0.500% or less, preferably 0.300% or less.
 B:0.0050%以下
 Bは、粒界の強化や鋼板の高強度化に有効である。よって、Bを添加する場合、B量は0.0003%以上とすることが好ましい。しかし、B量が過剰の場合、成形性が低下する場合がある。よって、Bを添加する場合、B量は0.0050%以下とし、好ましくは0.0030%以下とする。
B: 0.0050% or less B is effective for strengthening grain boundaries and increasing the strength of steel sheets. Therefore, when adding B, the amount of B is preferably 0.0003% or more. However, when the amount of B is excessive, moldability may deteriorate. Therefore, when adding B, the amount of B should be 0.0050% or less, preferably 0.0030% or less.
 Ni:1.000%以下
 Niは、固溶強化により鋼の強度を上昇させる元素である。よって、Niを添加する場合、Ni量は0.005%以上とすることが好ましい。しかし、Ni量が過剰の場合、硬質なマルテンサイトの面積率が過大となり、引張試験時に、マルテンサイトの結晶粒界でのマイクロボイドが増加し、さらに、亀裂の伝播が進行してしまい、延性が低下する場合がある。よって、Niを添加する場合、Ni量は1.000%以下とする。
Ni: 1.000% or less Ni is an element that increases the strength of steel through solid-solution strengthening. Therefore, when Ni is added, the amount of Ni is preferably 0.005% or more. However, when the amount of Ni is excessive, the area ratio of hard martensite becomes excessive, and microvoids at grain boundaries of martensite increase during tensile tests, furthermore, propagation of cracks progresses, resulting in ductility. may decrease. Therefore, when Ni is added, the amount of Ni should be 1.000% or less.
 Cr:1.000%以下、Mo:1.000%以下
 Cr及びMoは、強度と成形性のバランスを向上させる作用を有する。よって、Cr及びMoを添加する場合、各元素の含有量は0.005%以上とすることが好ましい。しかし、各含有量が過剰の場合、硬質なマルテンサイトの面積率が過大となり、引張試験時に、マルテンサイトの結晶粒界でのマイクロボイドが増加し、さらに、亀裂の伝播が進行してしまい、延性が低下する場合がある。よって、Cr及びMoを添加する場合、各元素の含有量は1.000%以下とする。
Cr: 1.000% or less, Mo: 1.000% or less Cr and Mo have the effect of improving the balance between strength and formability. Therefore, when Cr and Mo are added, the content of each element is preferably 0.005% or more. However, if each content is excessive, the area ratio of hard martensite becomes excessive, and microvoids at grain boundaries of martensite increase during tensile tests, and crack propagation progresses. Ductility may decrease. Therefore, when Cr and Mo are added, the content of each element should be 1.000% or less.
 Cu:1.000%以下
 Cuは、鋼の強化に有効な元素である。よって、Cuを添加する場合、Cu量は0.005%以上とすることが好ましい。しかし、Cu量が過剰の場合、硬質なマルテンサイトの面積率が過大となり、引張試験時に、焼戻しマルテンサイトの結晶粒界でのマイクロボイドが増加し、さらに、亀裂の伝播が進行してしまい、延性が低下する場合がある。よって、Cuを添加する場合、Cu量は1.000%以下とする。
Cu: 1.000% or less Cu is an element effective in strengthening steel. Therefore, when adding Cu, the amount of Cu is preferably 0.005% or more. However, when the amount of Cu is excessive, the area ratio of hard martensite becomes excessive, and microvoids at grain boundaries of tempered martensite increase during a tensile test, and crack propagation progresses. Ductility may decrease. Therefore, when adding Cu, the amount of Cu is set to 1.000% or less.
 Sn:0.200%以下、Sb:0.200%以下
 Sn及びSbは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の領域の脱炭を抑制することや、強度や材質安定性の確保に有効である。よって、Sn及びSbを添加する場合、各元素の含有量は0.002%以上とすることが好ましい。しかし、各含有量が過剰の場合、靭性が低下する場合がある。よって、Sn及びSbを添加する場合、各元素の含有量は0.200%以下とする。
Sn: 0.200% or less, Sb: 0.200% or less Sn and Sb suppress decarburization of a region of about several tens of μm in the surface layer of the steel sheet caused by nitridation or oxidation of the steel sheet surface, and improve strength and material stability. It is effective in securing the sex. Therefore, when Sn and Sb are added, the content of each element is preferably 0.002% or more. However, if each content is excessive, the toughness may decrease. Therefore, when Sn and Sb are added, the content of each element should be 0.200% or less.
 Ta:0.100%以下
 Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して高強度化に寄与する。加えて、Nb炭化物やNb炭窒化物に一部固溶し、(Nb、Ta)(C、N)のような複合析出物を生成することで、析出物の粗大化を著しく抑制し、析出強化による強度への寄与を安定化させる効果があると考えられる。よって、Taを添加する場合、Ta量は0.001%以上とすることが好ましい。しかし、Taを過剰に添加しても析出物安定化効果が飽和する場合がある上、合金コストも増加する。よって、Taを添加する場合、Ta量は0.100%以下とする。
Ta: 0.100% or less Ta, like Ti and Nb, forms alloy carbides and alloy carbonitrides and contributes to high strength. In addition, by partially forming a solid solution in Nb carbides and Nb carbonitrides and generating composite precipitates such as (Nb, Ta) (C, N), the coarsening of the precipitates is remarkably suppressed, and the precipitation is reduced. It is considered that there is an effect of stabilizing the contribution of strengthening to strength. Therefore, when adding Ta, the amount of Ta is preferably 0.001% or more. However, even if Ta is added excessively, the effect of stabilizing precipitates may be saturated, and the cost of the alloy increases. Therefore, when adding Ta, the amount of Ta should be 0.100% or less.
 Ca:0.0050%以下、Mg:0.0050%以下、Zr:0.1000%以下、REM(Rare Earth Metal):0.0050%以下
 Ca、Mg、Zr及びREMは、硫化物の形状を球状化し、成形性への硫化物の悪影響を改善するために有効な元素である。これらの元素を添加する場合には、各元素の含有量は0.0005%以上とすることが好ましい。しかし、各含有量が過剰の場合、介在物等が増加し、表面及び内部欠陥が発生する場合がある。よって、これらの元素を添加する場合、各元素の含有量は0.0050%以下とする。
Ca: 0.0050% or less, Mg: 0.0050% or less, Zr: 0.1000% or less, REM (Rare Earth Metal): 0.0050% or less Ca, Mg, Zr and REM have the shape of sulfides. It is an effective element for spheroidizing and ameliorating the adverse effects of sulfides on formability. When these elements are added, the content of each element is preferably 0.0005% or more. However, if each content is excessive, inclusions and the like increase, and surface and internal defects may occur. Therefore, when these elements are added, the content of each element should be 0.0050% or less.
 [冷延鋼板の成分組成:ステンレス鋼板]
 冷延鋼板Sがステンレス鋼板である場合の成分組成について説明する。以下、「質量%」は単に「%」と記す。
[Component composition of cold-rolled steel sheet: stainless steel sheet]
The chemical composition when the cold-rolled steel sheet S is a stainless steel sheet will be described. Hereinafter, "% by mass" is simply referred to as "%".
 C:0.001~0.400%
 Cは、ステンレス鋼において高強度を得るために欠かせない元素である。しかし、鋼製造における焼戻し時にCrと結合して炭化物として析出し、これが鋼の耐食性及び靭性を劣化させる。C量が0.001%未満では十分な強度が得られず、0.400%を超えると前記劣化が顕著になる。このため、C量は0.001~0.400%とする。
C: 0.001 to 0.400%
C is an essential element for obtaining high strength in stainless steel. However, it combines with Cr during tempering in steel production and precipitates as carbides, which deteriorate the corrosion resistance and toughness of the steel. If the amount of C is less than 0.001%, sufficient strength cannot be obtained, and if it exceeds 0.400%, the above deterioration becomes remarkable. Therefore, the amount of C is set to 0.001 to 0.400%.
 Si:0.01~2.00%
 Siは、脱酸剤として有用な元素である。この効果を得る観点から、Si量は0.01%以上にする。しかし、Si量が過剰の場合、鋼中に固溶したSiは鋼の加工性を低下させる。よって、Siは2.00%以下とする。
Si: 0.01-2.00%
Si is an element useful as a deoxidizing agent. From the viewpoint of obtaining this effect, the amount of Si is made 0.01% or more. However, when the amount of Si is excessive, the Si dissolved in the steel reduces the workability of the steel. Therefore, Si should be 2.00% or less.
 Mn:0.01~5.00%
 Mnは、鋼の強度を高める効果を有する。この効果を得る観点から、Mn量は0.01%以上とする。しかし、Mn量が過剰の場合、鋼の加工性が低下する。よって、Mn量は5.00%以下とする。
Mn: 0.01-5.00%
Mn has the effect of increasing the strength of steel. From the viewpoint of obtaining this effect, the amount of Mn is set to 0.01% or more. However, when the amount of Mn is excessive, the workability of the steel deteriorates. Therefore, the Mn content is set to 5.00% or less.
 P:0.001~0.100%
 Pは、粒界偏析による粒界破壊を助長する元素である。このため、P量は低い方が望ましく、0.100%以下とし、好ましくは0.030%以下とし、より好ましくは0.020%以下とする。一方、生産技術上の制約からP量0.001%以上とする。
P: 0.001 to 0.100%
P is an element that promotes intergranular fracture due to intergranular segregation. Therefore, the lower the P content is, the more preferably it is 0.100% or less, preferably 0.030% or less, and more preferably 0.020% or less. On the other hand, the amount of P is set to 0.001% or more due to restrictions on production technology.
 S:0.0001~0.0200%
 Sは、MnSなどの硫化物系介在物として存在して、延性や耐食性等を低下させる。このため、S量は低い方が望ましく、0.0200%以下とし、好ましくは0.0100%以下とし、より好ましくは0.0050%以下とする。一方、生産技術上の制約からS量は0.0001%以上とする。
S: 0.0001 to 0.0200%
S exists as sulfide-based inclusions such as MnS and lowers ductility, corrosion resistance, and the like. Therefore, the lower the S content is, the more preferably it is 0.0200% or less, preferably 0.0100% or less, and more preferably 0.0050% or less. On the other hand, the amount of S is set to 0.0001% or more due to production technology restrictions.
 Cr:9.0~28.0%
 Crはステンレス鋼を構成する基本的な元素で、しかも耐食性を発現する重要な元素である。180℃以上の苛酷な環境における耐食性を考慮した場合、Cr量が9.0%未満では十分な耐食性が得られず、28.0%を超えると効果は飽和し経済性の点で問題が生じる。このため、Cr量は9.0~28.0%とする。
Cr: 9.0-28.0%
Cr is a basic element that constitutes stainless steel, and is an important element that develops corrosion resistance. When considering corrosion resistance in a severe environment of 180°C or higher, if the Cr content is less than 9.0%, sufficient corrosion resistance cannot be obtained, and if it exceeds 28.0%, the effect is saturated and economic problems arise. . Therefore, the Cr content is set to 9.0 to 28.0%.
 Ni:0.01~40.0%
 Niはステンレス鋼の耐食性を向上させる元素である。Ni量が0.01%未満ではその効果が十分に発揮されない。一方、Ni量が過剰の場合、成形性を劣化させる他、応力腐食割れが生じやすくなる。このため、Ni量は0.01~40.0%とする。
Ni: 0.01-40.0%
Ni is an element that improves the corrosion resistance of stainless steel. If the amount of Ni is less than 0.01%, the effect is not sufficiently exhibited. On the other hand, if the amount of Ni is excessive, the formability is deteriorated and stress corrosion cracking is likely to occur. Therefore, the Ni content is set to 0.01 to 40.0%.
 N:0.0005~0.500%
 Nはステンレス鋼の耐食性向上に有害な元素である。そのため、N量は0.500%以下とし、好ましくは0.200%以下とする。N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上とする。
N: 0.0005 to 0.500%
N is an element harmful to improving the corrosion resistance of stainless steel. Therefore, the N content is set to 0.500% or less, preferably 0.200% or less. The smaller the amount of N, the better, but due to production technology restrictions, the amount of N is set to 0.0005% or more.
 Al:0.001~3.000%
 Alは、脱酸剤として作用する他、酸化スケールの剥離を抑制する効果がある。これらの効果を得る観点から、Al量は0.001%以上とする。しかし、Al量が過剰の場合、伸びの低下及び表面品質の劣化が起きる。よって、Al量は3.000%以下とする。
Al: 0.001-3.000%
In addition to acting as a deoxidizing agent, Al has the effect of suppressing the peeling of oxide scale. From the viewpoint of obtaining these effects, the amount of Al is made 0.001% or more. However, when the amount of Al is excessive, a decrease in elongation and deterioration of surface quality occur. Therefore, the Al content is set to 3.000% or less.
 上記成分以外の残部は、Fe及び不可避的不純物である。ただし、任意で以下から選ばれる少なくとも1種の元素を含んでもよい。 The balance other than the above components is Fe and unavoidable impurities. However, it may optionally contain at least one element selected from the following.
 Ti:0.500%以下
 Tiは、C、N、及びSと結合して耐食性、耐粒界腐食性、及び深絞り性を向上させる。ただし、Ti量が0.500%超えの場合、固溶Tiにより靭性が劣化する。よって、Tiを添加する場合、Ti量は0.500%以下とする。
Ti: 0.500% or less Ti combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. However, when the amount of Ti exceeds 0.500%, the toughness deteriorates due to dissolved Ti. Therefore, when adding Ti, the amount of Ti shall be 0.500% or less.
 Nb:0.500%以下
 Nbは、Tiと同様に、C、N、及びSと結合して耐食性、耐粒界腐食性、及び深絞り性を向上させる。また、加工性の向上や高温強度の向上に加え、隙間腐食の抑制や再不働態化を促進させる。ただし、過度の添加は硬質化をもたらし成形性を劣化させる。よって、Nbを添加する場合、Nb量は0.500%以下とする。
Nb: 0.500% or less Nb, like Ti, combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. In addition to improving workability and high-temperature strength, it suppresses crevice corrosion and promotes re-passivation. However, excessive addition causes hardening and deteriorates moldability. Therefore, when Nb is added, the amount of Nb should be 0.500% or less.
 V:0.500%以下
 Vは、隙間腐食を抑制させる。しかし、過度の添加は成形性を劣化させる。よって、Vを添加する場合、V量は0.500%以下とする。
V: 0.500% or less V suppresses crevice corrosion. However, excessive addition deteriorates moldability. Therefore, when adding V, the amount of V should be 0.500% or less.
 W:2.000%以下
 Wは、耐食性と高温強度の向上に寄与する。ただし、過度の添加は、鋼板製造時の靭性劣化やコスト増に繋がる。よって、Wを添加する場合、W量は2.000%以下とする。
W: 2.000% or less W contributes to improvement of corrosion resistance and high-temperature strength. However, excessive addition leads to deterioration of toughness and cost increase during steel sheet production. Therefore, when adding W, the amount of W shall be 2.000% or less.
 B:0.0050%以下
 Bは、粒界に偏析することで製品の二次加工性を向上させる。ただし、過度の添加は加工性、耐食性の低下をもたらす。よって、Bを添加する場合、B量は0.0050%以下とする。
B: 0.0050% or less B segregates at grain boundaries to improve secondary workability of products. However, excessive addition results in deterioration of workability and corrosion resistance. Therefore, when adding B, the amount of B shall be 0.0050% or less.
 Mo:2.000%以下
 Moは耐食性を向上させ、特に隙間腐食を抑制する元素である。ただし、過度の添加は成形性を劣化させる。よって、Moを添加する場合、Mo量は2.000%以下とする。
Mo: 2.000% or less Mo is an element that improves corrosion resistance and particularly suppresses crevice corrosion. However, excessive addition deteriorates moldability. Therefore, when adding Mo, the amount of Mo shall be 2.000% or less.
 Cu:3.000%以下
 Cuは、NiやMn同様、オーステナイト安定化元素であり、相変態による結晶粒の微細化に有効である。また、隙間腐食の抑制や再不動態化を促進させる。ただし、過度の添加は靭性及び成形性を劣化させる。よって、Cuを添加する場合、Cu量は3.000%以下とする。
Cu: 3.000% or less Cu, like Ni and Mn, is an austenite-stabilizing element and is effective in refining crystal grains by phase transformation. It also promotes suppression of crevice corrosion and re-passivation. However, excessive addition degrades toughness and formability. Therefore, when adding Cu, the amount of Cu is 3.000% or less.
 Sn:0.500%以下
 Snは、耐食性と高温強度の向上に寄与する。ただし、過度の添加は鋼板製造時のスラブ割れを生じさせるおそれがある。よって、Snを添加する場合、Sn量は0.500%以下とする。
Sn: 0.500% or less Sn contributes to improvement in corrosion resistance and high-temperature strength. However, excessive addition may cause slab cracking during steel sheet production. Therefore, when Sn is added, the amount of Sn should be 0.500% or less.
 Sb:0.200%以下
 Sbは、粒界に偏析して高温強度を上げる作用を有する。ただし、過度の添加はSb偏析により溶接時に割れが生じるおそれがある。よって、Sbを添加する場合、Sb量は0.200%以下とする。
Sb: 0.200% or less Sb segregates at grain boundaries to increase high-temperature strength. However, excessive addition may cause cracks during welding due to Sb segregation. Therefore, when Sb is added, the amount of Sb should be 0.200% or less.
 Ta:0.100%以下
 Taは、CやNと結合して靭性の向上に寄与する。ただし、過度の添加により、その効果は飽和し、製造コストの増加につながる。よって、Taを添加する場合、Ta量は0.100%以下とした。
Ta: 0.100% or less Ta combines with C and N and contributes to the improvement of toughness. However, excessive addition saturates the effect, leading to an increase in production costs. Therefore, when Ta is added, the amount of Ta is set to 0.100% or less.
 Ca:0.0050%以下、Mg:0.0050%以下、Zr:0.1000%以下、REM(Rare Earth Metal):0.0050%以下
 Ca、Mg、Zr及びREMは、硫化物の形状を球状化し、成形性への硫化物の悪影響を改善するために有効な元素である。これらの元素を添加する場合には、各元素の含有量は0.0005%以上とすることが好ましい。しかし、各含有量が過剰の場合、介在物等が増加し、表面及び内部欠陥が発生する場合がある。よって、これらの元素を添加する場合、各元素の含有量は0.0050%以下とする。
Ca: 0.0050% or less, Mg: 0.0050% or less, Zr: 0.1000% or less, REM (Rare Earth Metal): 0.0050% or less Ca, Mg, Zr and REM have the shape of sulfides. It is an effective element for spheroidizing and ameliorating the adverse effects of sulfides on formability. When these elements are added, the content of each element is preferably 0.0005% or more. However, if each content is excessive, inclusions and the like increase, and surface and internal defects may occur. Therefore, when these elements are added, the content of each element should be 0.0050% or less.
 [拡散性水素量]
 本実施形態において、良好な曲げ性を確保するためには、製品コイルの拡散性水素量は0.50質量ppm以下とすることが好ましく、0.30質量ppm以下とすることがより好ましく、0.20質量ppm以下とすることがさらに好ましい。なお、製品コイルの拡散性水素量の下限は特に規定しないが、生産技術上の制約から、製品コイルの拡散性水素量は0.01質量ppm以上となりうる。
[Diffusible hydrogen amount]
In the present embodiment, in order to ensure good bendability, the amount of diffusible hydrogen in the product coil is preferably 0.50 mass ppm or less, more preferably 0.30 mass ppm or less, and 0 .20 mass ppm or less is more preferable. Although the lower limit of the amount of diffusible hydrogen in the product coil is not specified, the amount of diffusible hydrogen in the product coil can be 0.01 ppm by mass or more due to production technology restrictions.
 ここで、製品コイルの拡散性水素量の測定方法は、以下のとおりである。製品コイルから、長さが30mm、幅が5mmの試験片を採取する。溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板の製品コイルの場合、試験片の溶融亜鉛めっき層又は合金化溶融亜鉛めっき層を研削又はアルカリにより除去する。その後、試験片から放出される水素量を昇温脱離分析法(Thermal Desorption Spectrometry:TDS)によって測定する。具体的には、試験片を室温から300℃まで昇温速度200℃/hで連続加熱した後、室温まで冷却し、室温から210℃までに試験片から放出された積算水素量を測定して、製品コイルの拡散性水素量とする。 Here, the method for measuring the amount of diffusible hydrogen in the product coil is as follows. A test piece with a length of 30 mm and a width of 5 mm is taken from the product coil. In the case of product coils of hot-dip galvanized steel sheets or alloyed hot-dip galvanized steel sheets, the hot-dip galvanized layer or alloyed hot-dip galvanized layer of the test piece is removed by grinding or alkali. After that, the amount of hydrogen released from the test piece is measured by thermal desorption spectrometry (TDS). Specifically, the test piece was continuously heated from room temperature to 300°C at a temperature increase rate of 200°C/h, then cooled to room temperature, and the cumulative amount of hydrogen released from the test piece from room temperature to 210°C was measured. , the amount of diffusible hydrogen in the product coil.
 表1に示す元素を有し、残部がFe及び不可避的不純物からなる成分組成を有する鋼を転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを熱間圧延及び冷間圧延して、冷延コイルを得た。表2に示すように、一部の水準では、図1に示すCALによって冷延焼鈍鋼板(CR)の製品コイルを製造し、別の水準では、図2に示すCGLによって加熱合金化を行わず、溶融亜鉛めっき鋼板(GI)の製品コイルを製造し、残りの水準では、図2に示すCGLによって合金化溶融亜鉛めっき鋼板(GA)の製品コイルを製造した。 A steel having a chemical composition with the elements shown in Table 1 and the balance being Fe and unavoidable impurities was melted in a converter and made into a slab by a continuous casting method. The obtained slab was hot rolled and cold rolled to obtain a cold rolled coil. As shown in Table 2, some levels produced product coils of cold-rolled annealed steel sheets (CR) by CAL shown in FIG. 1, and other levels produced CGL shown in FIG. , produced product coils of hot-dip galvanized steel sheets (GI), and in the remaining levels, produced product coils of alloyed hot-dip galvanized steel sheets (GA) by CGL shown in FIG.
 各水準にて、図4~6に示すような電磁方式の振動付加装置を用いて、通板中の冷延鋼板に対して、表2に示す最大振幅、周波数、及び振動付加時間の条件で振動を付加した。表2の「振動付加箇所」は、CAL又はCGLにおける振動付加工程を行った領域、すなわち振動付加装置を設置した場所を示す。
 「(B-2)」は、CAL及びCGLにおいて、冷却帯に振動付加装置を設置し、工程(B-2)の冷却帯で振動付加工程を行ったことを意味する。
 「(C)」は、CALにおいて、下流設備を通板中の冷延鋼板に振動を付加可能な位置に振動付加装置を設置したことを意味し、冷却帯より下流かつテンションリールより上流の位置、具体的には、(i)過時効処理帯28と出側ルーパー35との間、(ii)出側ルーパー35内、(iii)出側ルーパー35と調質圧延機36との間、(iv)調質圧延機36とテンションリール50との間、の少なくとも1箇所に振動付加装置を設置したことを意味する。すなわち、「(C)」は、CALにおいて、工程(C)、具体的には、上記(i)~(iv)の少なくとも1箇所にて振動付加工程を行ったことを意味する。
 「(C-1)前」は、CGLにおいて、冷却帯より下流で溶融亜鉛めっき浴よりも上流の位置、具体的には、スナウト29に振動付加装置を設置し、工程(B-2)より後かつ工程(C-1)より前に振動付加工程を行ったことを意味する。
 「(C-1)後」は、CGLにおいて、溶融亜鉛めっき浴より下流かつテンションリールより上流の位置、具体的には、(i)溶融亜鉛めっき浴31とガスワイピング装置32との間、(ii)ガスワイピング装置32と合金化炉33との間、(iii)合金化炉33内、(iv)合金化炉33と冷却装置34との間の空冷ゾーン、(v)冷却装置34と出側ルーパー35との間、(vi)出側ルーパー35内、(vii)出側ルーパー35と調質圧延機36との間、(viii)調質圧延機36とテンションリール50との間、の少なくとも1箇所に振動付加装置を設置し、工程(C-1)より後に、具体的には、上記(i)~(viii)の少なくとも1箇所にて振動付加工程を行ったことを意味する。
At each level, using an electromagnetic type vibration adding device as shown in FIGS. Added vibration. The "vibration application location" in Table 2 indicates the area where the vibration application process was performed in CAL or CGL, that is, the location where the vibration application device was installed.
"(B-2)" means that in CAL and CGL, a vibration adding device was installed in the cooling zone and the vibration adding step was performed in the cooling zone of step (B-2).
"(C)" means that in CAL, the vibration applying device is installed at a position where vibration can be applied to the cold-rolled steel sheet being passed through the downstream equipment, and is positioned downstream from the cooling zone and upstream from the tension reel. Specifically, (i) between the overaging treatment zone 28 and the delivery side looper 35, (ii) within the delivery side looper 35, (iii) between the delivery side looper 35 and the temper rolling mill 36, ( iv) It means that at least one vibration adding device is installed between the temper rolling mill 36 and the tension reel 50 . That is, "(C)" means that in CAL, the step (C), specifically, at least one of the above (i) to (iv) was subjected to the vibration applying step.
"(C-1) Before" is a position downstream of the cooling zone and upstream of the hot dip galvanizing bath in the CGL, specifically, a vibration adding device is installed in the snout 29, and from the step (B-2) It means that the vibration applying step was performed after the step (C-1) and before the step (C-1).
"(C-1) After" is a position downstream of the hot dip galvanizing bath and upstream of the tension reel in the CGL, specifically, (i) between the hot dip galvanizing bath 31 and the gas wiping device 32, ( ii) between the gas wiping device 32 and the alloying furnace 33; (iii) within the alloying furnace 33; (iv) an air cooling zone between the alloying furnace 33 and the cooling device 34; (vi) inside the delivery side looper 35; (vii) between the delivery side looper 35 and the temper mill 36; (viii) between the temper mill 36 and the tension reel 50. It means that a vibration applying device is installed in at least one place, and the vibration applying step is performed in at least one of the above (i) to (viii) after the step (C-1).
 各水準で得られた製品コイルから鋼板のサンプルを採取し、以下のとおり、引張特性及び耐水素脆化特性について評価を行い、その結果を表2に示した。 Steel sheet samples were taken from the product coils obtained at each level, and the tensile properties and hydrogen embrittlement resistance properties were evaluated as follows. The results are shown in Table 2.
 引張試験は、引張方向が鋼板の圧延方向と直角となるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、TS(引張強さ)とEL(全伸び)を測定した。 The tensile test was performed in accordance with JIS Z 2241 (2011) using a JIS No. 5 test piece that was sampled so that the tensile direction was perpendicular to the rolling direction of the steel plate, and TS (tensile strength) and EL (total elongation) was measured.
 耐水素脆化特性は上記の引張試験から次のように評価した。上記で測定した振動付加後の鋼板におけるELを、同一鋼板の鋼中水素量が0.00質量ppmのときのEL’で除した値が0.70以上のとき、耐水素脆化特性が良好と判定した。なお、EL’は、同一鋼板を大気中に長時間放置することで内部の鋼中水素を低減させ、その後、TDSにより鋼中水素量が0.00質量ppmになったことを確認してから、引張試験を行うことで測定した。  The resistance to hydrogen embrittlement was evaluated as follows from the above tensile test. Good hydrogen embrittlement resistance when the value obtained by dividing the EL of the steel sheet after vibration addition measured above by the EL' when the amount of hydrogen in the steel of the same steel sheet is 0.00 mass ppm is 0.70 or more. I judged. In addition, EL' is obtained by leaving the same steel plate in the atmosphere for a long time to reduce the hydrogen in the steel inside, and then confirming that the amount of hydrogen in the steel was 0.00 ppm by mass by TDS. , was measured by performing a tensile test.
 各水準で得られた製品コイルの拡散性水素量を、既述の方法で測定し、結果を表2に示した。 The amount of diffusible hydrogen in the product coil obtained at each level was measured by the method described above, and the results are shown in Table 2.
 本発明例では、所定の周波数及び最大振幅の条件下で振動付加工程を行ったため、耐水素脆化特性に優れる鋼板を製造できた。 In the present invention example, the vibration application process was performed under the conditions of a predetermined frequency and maximum amplitude, so a steel sheet with excellent resistance to hydrogen embrittlement was produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
 本発明の連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法によれば、生産効率を損なうことなく、機械的特性を変化させることなく、耐水素脆化特性に優れた鋼板を製造することができる。 According to the continuous annealing apparatus, the continuous hot dip galvanizing apparatus, and the steel sheet manufacturing method of the present invention, a steel sheet having excellent hydrogen embrittlement resistance can be manufactured without impairing production efficiency and without changing mechanical properties. be able to.
 100 連続焼鈍装置
 200 連続溶融亜鉛めっき装置
 300 連続溶融亜鉛めっき装置
  10 ペイオフリール
  11 溶接機
  12 クリーニング設備
  13 入側ルーパー
  20 焼鈍炉
  22  加熱帯
  24  均熱帯
  26  冷却帯
  26A  冷却ノズル
  28  過時効処理帯
  29  スナウト
  30 下流設備
  31  溶融亜鉛めっき浴
  32  ガスワイピング装置
  33  合金化炉
  34  冷却装置
  35  出側ルーパー
  36  調質圧延機
  50 テンションリール
  60 振動付加装置
  61  制御器
  62  増幅器
  63  電磁石
  63A  磁石
  63A1 磁極面
  63B  コイル
  64  振動検出器
  65  電源
  70 振動付加装置
  71  制御器
  72  振動子
  73  振動検出器
  C  冷延コイル
  S  冷延鋼板
  P  製品コイル
REFERENCE SIGNS LIST 100 continuous annealing device 200 continuous hot-dip galvanizing device 300 continuous hot-dip galvanizing device 10 payoff reel 11 welding machine 12 cleaning equipment 13 entrance looper 20 annealing furnace 22 heating zone 24 soaking zone 26 cooling zone 26A cooling nozzle 28 overaging treatment zone 29 Snout 30 Downstream equipment 31 Hot-dip galvanizing bath 32 Gas wiping device 33 Alloying furnace 34 Cooling device 35 Outgoing looper 36 Tempering rolling mill 50 Tension reel 60 Vibration adding device 61 Controller 62 Amplifier 63 Electromagnet 63A Magnet 63A1 Magnetic pole face 63B Coil 64 Vibration detector 65 Power supply 70 Vibration addition device 71 Controller 72 Vibrator 73 Vibration detector C Cold-rolled coil S Cold-rolled steel plate P Product coil

Claims (33)

  1.  冷延コイルから冷延鋼板を払い出すペイオフリールと、
     前記冷延鋼板を通板させて連続焼鈍する焼鈍炉であって、通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置し、前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、前記冷却帯では前記冷延鋼板を冷却する焼鈍炉と、
     前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる下流設備と、
     前記下流設備を通板中の前記冷延鋼板を巻き取るテンションリールと、
     前記冷却帯から前記テンションリールまでを通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加装置と、
    を有する連続焼鈍装置。
    a payoff reel for dispensing cold-rolled steel sheets from cold-rolled coils;
    An annealing furnace in which the cold-rolled steel sheet is passed through and continuously annealed, wherein a heating zone, a soaking zone, and a cooling zone are positioned from the upstream side in the sheet passing direction, and the heating zone and the soaking zone include a reducing zone containing hydrogen. an annealing furnace for annealing the cold-rolled steel sheet in a cold-rolled atmosphere and cooling the cold-rolled steel sheet in the cooling zone;
    a downstream facility for continuously threading the cold-rolled steel sheet discharged from the annealing furnace;
    a tension reel for winding the cold-rolled steel sheet being passed through the downstream facility;
    With respect to the cold-rolled steel sheet being passed from the cooling zone to the tension reel, the vibration frequency of the cold-rolled steel sheet is 100 Hz or more and 100000 Hz or less, and the maximum amplitude of the cold-rolled steel sheet is 10 nm or more and 500 μm or less. A vibration adding device that adds vibration so that
    continuous annealing equipment.
  2.  前記振動付加装置は、前記冷却帯に設けられる、請求項1に記載の連続焼鈍装置。 The continuous annealing apparatus according to claim 1, wherein the vibration adding device is provided in the cooling zone.
  3.  前記振動付加装置は、前記下流設備を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、請求項1又は2に記載の連続焼鈍装置。 The continuous annealing apparatus according to claim 1 or 2, wherein the vibration applying device is provided at a position where vibration can be applied to the cold-rolled steel sheet being passed through the downstream facility.
  4.  前記冷延鋼板に対する振動の付加時間が1秒以上となるように、前記振動付加装置の配置と、前記冷延鋼板の通板速度が設定された、請求項1~3のいずれか一項に記載の連続焼鈍装置。 4. The method according to any one of claims 1 to 3, wherein the arrangement of the vibration adding device and the threading speed of the cold-rolled steel sheet are set so that the vibration is applied to the cold-rolled steel sheet for 1 second or longer. A continuous annealing apparatus as described.
  5.  前記振動付加装置は、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記冷延鋼板に与える外力により前記冷延鋼板が振動するように構成される、請求項1~4のいずれか一項に記載の連続焼鈍装置。 The vibration adding device has an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween, and is configured to vibrate the cold-rolled steel sheet by an external force applied to the cold-rolled steel sheet by the electromagnet. , The continuous annealing apparatus according to any one of claims 1 to 4.
  6.  前記振動付加装置は、前記冷延鋼板に接触する振動子を有し、前記振動子によって前記冷延鋼板が振動するように構成される、請求項1~4のいずれか一項に記載の連続焼鈍装置。 The continuation according to any one of claims 1 to 4, wherein the vibration applying device has a vibrator that contacts the cold-rolled steel sheet, and is configured to vibrate the cold-rolled steel sheet by the vibrator. Annealing equipment.
  7.  請求項1に記載の連続焼鈍装置と、
     前記下流設備として、前記焼鈍炉の通板方向下流に位置し、前記冷延鋼板を浸漬させて、前記冷延鋼板に溶融亜鉛めっきを施す溶融亜鉛めっき浴と、
    を有する連続溶融亜鉛めっき装置。
    A continuous annealing apparatus according to claim 1;
    a hot-dip galvanizing bath, which is positioned downstream of the annealing furnace in the direction of sheet feeding as the downstream equipment, in which the cold-rolled steel sheet is immersed and in which the cold-rolled steel sheet is hot-dip galvanized;
    Continuous hot-dip galvanizing equipment with
  8.  前記振動付加装置は、前記溶融亜鉛めっき浴より上流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、請求項7に記載の連続溶融亜鉛めっき装置。 The continuous hot-dip galvanizing apparatus according to claim 7, wherein the vibration applying device is provided upstream from the hot-dip galvanizing bath at a position where vibration can be applied to the cold-rolled steel sheet being passed.
  9.  前記振動付加装置は、前記溶融亜鉛めっき浴より下流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、請求項7又は8に記載の連続溶融亜鉛めっき装置。 The continuous hot-dip galvanizing apparatus according to claim 7 or 8, wherein the vibration applying device is provided at a position where vibration can be applied to the cold-rolled steel sheet being passed downstream from the hot-dip galvanizing bath.
  10.  前記下流設備として、前記溶融亜鉛めっき浴の通板方向下流に位置し、前記冷延鋼板を通板させて、前記溶融亜鉛めっきを加熱合金化する合金化炉を有する、請求項7に記載の連続溶融亜鉛めっき装置。 8. The downstream equipment according to claim 7, which has an alloying furnace located downstream of the hot-dip galvanizing bath in the sheet-passing direction, passing the cold-rolled steel sheet, and heat-alloying the hot-dip galvanizing. Continuous hot-dip galvanizing equipment.
  11.  前記振動付加装置は、前記溶融亜鉛めっき浴より上流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、請求項10に記載の連続溶融亜鉛めっき装置。 11. The continuous hot-dip galvanizing apparatus according to claim 10, wherein said vibration applying device is provided upstream from said hot-dip galvanizing bath at a position capable of applying vibration to said cold-rolled steel sheet that is being passed.
  12.  前記振動付加装置は、前記溶融亜鉛めっき浴より下流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、請求項10又は11に記載の連続溶融亜鉛めっき装置。 The continuous hot-dip galvanizing apparatus according to claim 10 or 11, wherein the vibration applying device is provided at a position where vibration can be applied to the cold-rolled steel sheet being passed downstream from the hot-dip galvanizing bath.
  13.  前記冷延鋼板に対する振動の付加時間が1秒以上となるように、前記振動付加装置の配置と、前記冷延鋼板の通板速度が設定された、請求項7~12のいずれか一項に記載の連続溶融亜鉛めっき装置。 13. The method according to any one of claims 7 to 12, wherein the arrangement of the vibration adding device and the threading speed of the cold-rolled steel sheet are set so that the vibration is applied to the cold-rolled steel sheet for 1 second or longer. A continuous hot dip galvanizing apparatus as described.
  14.  前記振動付加装置は、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記冷延鋼板に与える外力により前記冷延鋼板が振動するように構成される、請求項7~13のいずれか一項に記載の連続溶融亜鉛めっき装置。 The vibration applying device has an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween, and is configured to vibrate the cold-rolled steel sheet by an external force applied to the cold-rolled steel sheet by the electromagnet. , The continuous hot-dip galvanizing apparatus according to any one of claims 7 to 13.
  15.  前記振動付加装置は、前記冷延鋼板に接触する振動子を有し、前記振動子によって前記冷延鋼板が振動するように構成される、請求項7~13のいずれか一項に記載の連続溶融亜鉛めっき装置。 The continuum according to any one of claims 7 to 13, wherein the vibration adding device has a vibrator that contacts the cold-rolled steel sheet, and is configured to vibrate the cold-rolled steel sheet by the vibrator. Hot-dip galvanizing equipment.
  16.  (A)ペイオフリールにより冷延コイルから冷延鋼板を払い出す工程と、
     (B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する焼鈍炉内に、前記冷延鋼板を通板させて、(B-1)前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、(B-2)前記冷却帯では前記冷延鋼板を冷却する、連続焼鈍を行う工程と、
     (C)前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる工程と、
     (D)テンションリールにより前記冷延鋼板を巻き取って、製品コイルとする工程と、
    をこの順に有し、
     工程(B-2)以降、かつ、工程(D)より前において、通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加工程を含む鋼板の製造方法。
    (A) a step of paying out the cold-rolled steel sheet from the cold-rolled coil with a pay-off reel;
    (B) The cold-rolled steel sheet is passed through an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are positioned from the upstream side in the sheet passing direction, and (B-1) in the heating zone and the soaking zone, A step of performing continuous annealing, in which the cold-rolled steel sheet is annealed in a reducing atmosphere containing hydrogen, and (B-2) the cold-rolled steel sheet is cooled in the cooling zone;
    (C) a step of continuously threading the cold-rolled steel sheet discharged from the annealing furnace;
    (D) winding the cold-rolled steel sheet with a tension reel to form a product coil;
    in that order, and
    After the step (B-2) and before the step (D), the vibration frequency of the cold-rolled steel sheet being passed is 100 Hz or more and 100000 Hz or less, and the cold-rolled A method of manufacturing a steel sheet, including a vibration adding step of adding vibration so that the maximum amplitude of the steel sheet is 10 nm or more and 500 μm or less.
  17.  前記振動付加工程は、工程(B-2)にて行われる、請求項16に記載の鋼板の製造方法。 The steel sheet manufacturing method according to claim 16, wherein the vibration applying step is performed in step (B-2).
  18.  前記振動付加工程は、工程(C)にて行われる、請求項16又は17に記載の鋼板の製造方法。 The steel sheet manufacturing method according to claim 16 or 17, wherein the vibration applying step is performed in step (C).
  19.  工程(C)は、(C-1)前記焼鈍炉の通板方向下流に位置する溶融亜鉛めっき浴に前記冷延鋼板を浸漬させて、前記冷延鋼板に溶融亜鉛めっきを施す工程を含む、請求項16に記載の鋼板の製造方法。 The step (C) includes (C-1) immersing the cold-rolled steel sheet in a hot-dip galvanizing bath located downstream of the annealing furnace in the sheet running direction to apply hot-dip galvanization to the cold-rolled steel sheet. A method for manufacturing a steel plate according to claim 16.
  20.  前記振動付加工程は、工程(C-1)より前に行われる、請求項19に記載の鋼板の製造方法。 The steel sheet manufacturing method according to claim 19, wherein the vibration applying step is performed before step (C-1).
  21.  前記振動付加工程は、工程(C-1)より後に行われる、請求項19又は20に記載の鋼板の製造方法。 The steel plate manufacturing method according to claim 19 or 20, wherein the vibration applying step is performed after step (C-1).
  22.  前記工程(C)は、前記工程(C-1)に続き、(C-2)前記溶融亜鉛めっき浴の通板方向下流に位置する合金化炉に前記冷延鋼板を通板させて、前記溶融亜鉛めっきを加熱合金化する工程を含む、請求項19に記載の鋼板の製造方法。 The step (C) includes, following the step (C-1), (C-2) passing the cold-rolled steel sheet through an alloying furnace located downstream of the hot-dip galvanizing bath in the sheet passing direction, and 20. The method for manufacturing the steel sheet according to claim 19, comprising the step of heat-alloying the hot-dip galvanization.
  23.  前記振動付加工程は、工程(C-1)より前に行われる、請求項22に記載の鋼板の製造方法。 The steel sheet manufacturing method according to claim 22, wherein the vibration applying step is performed before step (C-1).
  24.  前記振動付加工程は、工程(C-1)より後に行われる、請求項22又は23に記載の鋼板の製造方法。 The steel sheet manufacturing method according to claim 22 or 23, wherein the vibration applying step is performed after step (C-1).
  25.  前記振動付加工程において、前記冷延鋼板に対する振動の付加時間を1秒以上とする、請求項16~24のいずれか一項に記載の鋼板の製造方法。 The method for manufacturing the steel sheet according to any one of claims 16 to 24, wherein in the vibration adding step, the time of applying vibration to the cold-rolled steel sheet is 1 second or longer.
  26.  前記振動付加工程では、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石が前記冷延鋼板に与える外力により、前記冷延鋼板が振動する、請求項16~25のいずれか一項に記載の鋼板の製造方法。 26. The cold-rolled steel sheet according to any one of claims 16 to 25, wherein in the vibration adding step, the cold-rolled steel sheet is vibrated by an external force applied to the cold-rolled steel sheet by an electromagnet having a magnetic pole surface facing the surface of the cold-rolled steel sheet with a space therebetween. A method for manufacturing the steel plate according to the item.
  27.  前記振動付加工程では、前記冷延鋼板に接触する振動子によって、前記冷延鋼板が振動する、請求項16~25のいずれか一項に記載の鋼板の製造方法。 The steel sheet manufacturing method according to any one of claims 16 to 25, wherein in the vibration adding step, the cold-rolled steel sheet is vibrated by a vibrator that contacts the cold-rolled steel sheet.
  28.  前記冷延鋼板が、590MPa以上の引張強さを有する高強度鋼板である、請求項16~27のいずれか一項に記載の鋼板の製造方法。 The steel sheet manufacturing method according to any one of claims 16 to 27, wherein the cold-rolled steel sheet is a high-strength steel sheet having a tensile strength of 590 MPa or more.
  29.  前記冷延鋼板は、質量%で、
      C :0.030~0.800%、
      Si:0.01~3.00%、
      Mn:0.01~10.00%、
      P :0.001~0.100%、
      S :0.0001~0.0200%、
      N :0.0005~0.0100%、及び
      Al:0.001~2.000%を含み、
      残部がFe及び不可避的不純物からなる成分組成を有する、請求項16~28のいずれか一項に記載の鋼板の製造方法。
    The cold-rolled steel sheet is mass %,
    C: 0.030 to 0.800%,
    Si: 0.01 to 3.00%,
    Mn: 0.01 to 10.00%,
    P: 0.001 to 0.100%,
    S: 0.0001 to 0.0200%,
    N: 0.0005 to 0.0100%, and Al: 0.001 to 2.000%,
    The method for producing a steel sheet according to any one of claims 16 to 28, wherein the balance has a chemical composition consisting of Fe and unavoidable impurities.
  30.  前記成分組成が、さらに、質量%で、
      Ti:0.200%以下、
      Nb:0.200%以下、
      V :0.500%以下、
      W :0.500%以下、
      B :0.0050%以下、
      Ni:1.000%以下、
      Cr:1.000%以下、
      Mo:1.000%以下、
      Cu:1.000%以下、
      Sn:0.200%以下、
      Sb:0.200%以下、
      Ta:0.100%以下、
      Ca:0.0050%以下、
      Mg:0.0050%以下、
      Zr:0.1000%以下、及び
      REM:0.0050%以下
    からなる群から選ばれる少なくとも一種の元素を含有する、請求項29に記載の鋼板の製造方法。
    The component composition further, in mass %,
    Ti: 0.200% or less,
    Nb: 0.200% or less,
    V: 0.500% or less,
    W: 0.500% or less,
    B: 0.0050% or less,
    Ni: 1.000% or less,
    Cr: 1.000% or less,
    Mo: 1.000% or less,
    Cu: 1.000% or less,
    Sn: 0.200% or less,
    Sb: 0.200% or less,
    Ta: 0.100% or less,
    Ca: 0.0050% or less,
    Mg: 0.0050% or less,
    The method for producing a steel sheet according to claim 29, containing at least one element selected from the group consisting of Zr: 0.1000% or less and REM: 0.0050% or less.
  31.  前記冷延鋼板は、質量%で、
      C :0.001~0.400%、
      Si:0.01~2.00%、
      Mn:0.01~5.00%、
      P :0.001~0.100%、
      S :0.0001~0.0200%、
      Cr:9.0~28.0%、
      Ni:0.01~40.0%、
      N :0.0005~0.500%、及び
      Al:0.001~3.000%を含み、
      残部がFe及び不可避的不純物からなる成分組成を有するステンレス鋼板である、請求項16~27のいずれか一項に記載の鋼板の製造方法。
    The cold-rolled steel sheet is mass %,
    C: 0.001 to 0.400%,
    Si: 0.01 to 2.00%,
    Mn: 0.01 to 5.00%,
    P: 0.001 to 0.100%,
    S: 0.0001 to 0.0200%,
    Cr: 9.0 to 28.0%,
    Ni: 0.01 to 40.0%,
    N: 0.0005 to 0.500%, and Al: 0.001 to 3.000%,
    The method for producing a steel sheet according to any one of claims 16 to 27, wherein the stainless steel sheet has a chemical composition in which the balance is Fe and unavoidable impurities.
  32.  前記成分組成が、さらに、質量%で、
      Ti:0.500%以下、
      Nb:0.500%以下、
      V :0.500%以下、
      W :2.000%以下、
      B :0.0050%以下、
      Mo:2.000%以下、
      Cu:3.000%以下、
      Sn:0.500%以下、
      Sb:0.200%以下、
      Ta:0.100%以下、
      Ca:0.0050%以下、
      Mg:0.0050%以下、
      Zr:0.1000%以下、及び
      REM:0.0050%以下
    からなる群から選ばれる少なくとも一種の元素を含有する、請求項31に記載の鋼板の製造方法。
    The component composition further, in mass %,
    Ti: 0.500% or less,
    Nb: 0.500% or less,
    V: 0.500% or less,
    W: 2.000% or less,
    B: 0.0050% or less,
    Mo: 2.000% or less,
    Cu: 3.000% or less,
    Sn: 0.500% or less,
    Sb: 0.200% or less,
    Ta: 0.100% or less,
    Ca: 0.0050% or less,
    Mg: 0.0050% or less,
    The method for producing a steel sheet according to claim 31, containing at least one element selected from the group consisting of Zr: 0.1000% or less and REM: 0.0050% or less.
  33.  前記製品コイルは、0.50質量ppm以下の拡散性水素量を有する、請求項16~32のいずれか一項に記載の鋼板の製造方法。
     
    The steel sheet manufacturing method according to any one of claims 16 to 32, wherein the product coil has a diffusible hydrogen content of 0.50 ppm by mass or less.
PCT/JP2022/020579 2021-07-14 2022-05-17 Continuous annealing apparatus, continuous hot-dip galvanization apparatus, and steel sheet manufacturing method WO2023286440A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022555184A JP7388570B2 (en) 2021-07-14 2022-05-17 Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method
KR1020237045028A KR20240014501A (en) 2021-07-14 2022-05-17 Continuous annealing device and continuous hot dip galvanizing device, and manufacturing method of steel sheet
CN202280048053.3A CN117616138A (en) 2021-07-14 2022-05-17 Continuous annealing apparatus, continuous hot dip galvanization apparatus, and method for manufacturing steel sheet
EP22841787.9A EP4361295A1 (en) 2021-07-14 2022-05-17 Continuous annealing apparatus, continuous hot-dip galvanization apparatus, and steel sheet manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021116761 2021-07-14
JP2021-116761 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286440A1 true WO2023286440A1 (en) 2023-01-19

Family

ID=84919177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020579 WO2023286440A1 (en) 2021-07-14 2022-05-17 Continuous annealing apparatus, continuous hot-dip galvanization apparatus, and steel sheet manufacturing method

Country Status (5)

Country Link
EP (1) EP4361295A1 (en)
JP (1) JP7388570B2 (en)
KR (1) KR20240014501A (en)
CN (1) CN117616138A (en)
WO (1) WO2023286440A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181821A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Dehydrogenation device, system for manufacturing steel sheet, and method for manufacturing steel sheet
WO2023181820A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Continuous annealing apparatus, continuous hot dip galvanization apparatus, and method for producing steel sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665934A (en) * 1979-10-31 1981-06-04 Nippon Parkerizing Co Ltd Continuous annealing method for steel sheet strip
JPS62287019A (en) * 1986-06-05 1987-12-12 Nippon Steel Corp Method and apparatus for applying oscillation to traveling metallic sheet without contact
JP2004131794A (en) * 2002-10-10 2004-04-30 Nippon Steel Corp Method for dehydrogenation of steel sheet and method for manufacturing steel sheet using the same
JP2010185101A (en) 2009-02-12 2010-08-26 Jfe Steel Corp Gas-jet cooling device of continuous annealing furnace
WO2017145322A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Process for producing steel sheet and device for continuously annealing steel sheet
WO2019188642A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
JP2019173099A (en) * 2018-03-28 2019-10-10 日鉄日新製鋼株式会社 Stainless steel material
JP2020153003A (en) * 2019-03-22 2020-09-24 Jfeスチール株式会社 Method for manufacturing high strength hot-dip galvanized steel sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665934A (en) * 1979-10-31 1981-06-04 Nippon Parkerizing Co Ltd Continuous annealing method for steel sheet strip
JPS62287019A (en) * 1986-06-05 1987-12-12 Nippon Steel Corp Method and apparatus for applying oscillation to traveling metallic sheet without contact
JP2004131794A (en) * 2002-10-10 2004-04-30 Nippon Steel Corp Method for dehydrogenation of steel sheet and method for manufacturing steel sheet using the same
JP2010185101A (en) 2009-02-12 2010-08-26 Jfe Steel Corp Gas-jet cooling device of continuous annealing furnace
WO2017145322A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Process for producing steel sheet and device for continuously annealing steel sheet
JP2019173099A (en) * 2018-03-28 2019-10-10 日鉄日新製鋼株式会社 Stainless steel material
WO2019188642A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
JP2020153003A (en) * 2019-03-22 2020-09-24 Jfeスチール株式会社 Method for manufacturing high strength hot-dip galvanized steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181821A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Dehydrogenation device, system for manufacturing steel sheet, and method for manufacturing steel sheet
WO2023181820A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Continuous annealing apparatus, continuous hot dip galvanization apparatus, and method for producing steel sheet
JP7380965B1 (en) 2022-03-25 2023-11-15 Jfeスチール株式会社 Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method

Also Published As

Publication number Publication date
CN117616138A (en) 2024-02-27
JP7388570B2 (en) 2023-11-29
JPWO2023286440A1 (en) 2023-01-19
EP4361295A1 (en) 2024-05-01
KR20240014501A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP5029361B2 (en) Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them
WO2023286440A1 (en) Continuous annealing apparatus, continuous hot-dip galvanization apparatus, and steel sheet manufacturing method
JP5370104B2 (en) Manufacturing method of high strength steel plate having high tensile strength of 900 MPa or more excellent in hydrogen embrittlement resistance and high strength cold-rolled steel plate, manufacturing method of high strength galvanized steel plate
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
WO2018146828A1 (en) High strength galvanized steel sheet and production method therefor
JP7259974B2 (en) CONTINUOUS ANNEALING APPARATUS, CONTINUOUS DIP GALVANIZING APPARATUS, AND METHOD FOR MANUFACTURING STEEL SHEET
JP5391572B2 (en) Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet
WO2013099235A1 (en) High-strength thin steel sheet and process for manufacturing same
JPWO2016067623A1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
JP2006265583A (en) Hot rolled steel sheet for hot press, method for producing the same and method for producing hot press formed member
JP2011047034A (en) High-strength steel sheet, and process for production thereof
JP2008231493A (en) Method for producing hot-dip galvannealed steel sheet for spot-welding
JP2004256906A (en) High strength steel sheet with excellent stretch-flange formability and its manufacturing method
JP2010255113A (en) High strength hot dip galvanized steel sheet and method for producing the same
JP2010111891A (en) Cold rolled steel sheet, surface treated steel sheet, and method for producing the same
KR20200131331A (en) Alloyed hot-dip galvanized steel sheet, and method of manufacturing an alloyed hot-dip galvanized steel sheet
JP7168072B2 (en) High-strength steel plate and its manufacturing method
JP6323617B1 (en) High strength galvanized steel sheet and manufacturing method thereof
WO2023286441A1 (en) Dehydrogenation device, system for manufacturing steel sheet, and method for manufacturing steel sheet
JP7380965B1 (en) Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method
JP2009249732A (en) High-strength steel sheet having extremely excellent stretch flange formability, method for producing the same, and cast slab
JP7006857B1 (en) Dehydrogenation equipment, steel sheet manufacturing system, and steel sheet manufacturing method
JP7460032B2 (en) Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method
JP2021147654A (en) Method of reducing and removing metal oxide
JPH04365845A (en) Production of high-strength galvanized steel sheet having excellent hole expandability

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022555184

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237045028

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237045028

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/000684

Country of ref document: MX

Ref document number: 2401000187

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022841787

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022841787

Country of ref document: EP

Effective date: 20240123

NENP Non-entry into the national phase

Ref country code: DE