JP2009249732A - High-strength steel sheet having extremely excellent stretch flange formability, method for producing the same, and cast slab - Google Patents

High-strength steel sheet having extremely excellent stretch flange formability, method for producing the same, and cast slab Download PDF

Info

Publication number
JP2009249732A
JP2009249732A JP2008102850A JP2008102850A JP2009249732A JP 2009249732 A JP2009249732 A JP 2009249732A JP 2008102850 A JP2008102850 A JP 2008102850A JP 2008102850 A JP2008102850 A JP 2008102850A JP 2009249732 A JP2009249732 A JP 2009249732A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
strength
stretch flangeability
extremely excellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008102850A
Other languages
Japanese (ja)
Other versions
JP5407168B2 (en
Inventor
Masashi Azuma
昌史 東
Noriyuki Suzuki
規之 鈴木
Naoki Maruyama
直紀 丸山
Naoki Yoshinaga
直樹 吉永
Akinobu Murasato
映信 村里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008102850A priority Critical patent/JP5407168B2/en
Publication of JP2009249732A publication Critical patent/JP2009249732A/en
Application granted granted Critical
Publication of JP5407168B2 publication Critical patent/JP5407168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel sheet having extremely excellent stretch flange formability and suitable for automobiles, building materials, house appliances or the like. <P>SOLUTION: Disclosed is a high-strength steel sheet having a composition comprising, by mass, prescribed amounts of C, Si, Mn, P, S, Al, N and O, and the balance iron with inevitable impurities, and has a structure composed mainly of ferrite and bainite, and in which the number density of nonmetallic inclusions of &gt;5 &mu;m comprised in the steel sheet is &le;15 pieces/mm<SP>2</SP>, and the maximum tensile strength is &ge;540 MPa. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、自動車、建材、家電製品などに適する極めて優れた伸びフランジ性を有する高強度鋼板及びその製造方法に関する。   The present invention relates to a high-strength steel sheet having extremely excellent stretch flangeability suitable for automobiles, building materials, home appliances and the like, and a method for producing the same.

近年、自動車分野においては衝突時に乗員を保護するような機能の確保、及び、燃費向上を目的とした軽量化を両立させるために、高強度鋼板が適用されている。特に、衝突安全性確保に関しては、その安全意識の高まりに加え、法規制の強化から、これまで低強度の鋼板しか用いられてこなかったような複雑形状を有する部品へまで、高強度鋼板を適用しようとするニーズがある。しかしながら、材料の成形性は強度が上昇するのに伴って劣化するので、複雑形状を有する部材へ高強度鋼板を適用するにあたっては、成形性と高強度の両方を満足する鋼板を製造する必要がある。一口に、成形性と言っても、自動車部材のような複雑形状を有する部材に適用するに当たっては、例えば、延性、張り出し成形性、穴拡げ性等の異なる成形性を同時に具備することが求められる。   In recent years, high-strength steel sheets have been applied in the automobile field in order to achieve both a function for protecting passengers in the event of a collision and weight reduction for the purpose of improving fuel efficiency. In particular, with regard to ensuring collision safety, in addition to increasing safety awareness, high-strength steel sheets are applied from strengthening laws and regulations to parts with complex shapes that have only been used with low-strength steel sheets until now. There is a need to try. However, since the formability of the material deteriorates as the strength increases, it is necessary to manufacture a steel sheet that satisfies both formability and high strength when applying a high strength steel sheet to a member having a complex shape. is there. Even if it is said that the formability is a bit, when applying to a member having a complicated shape such as an automobile member, for example, it is required to simultaneously have different formability such as ductility, stretch formability, and hole expandability. .

特に、自動車用部材は、部材の接合にあたってスポット溶接等を行う必要があり、部材にフランジをつける場合が多い。フランジ部は、切断のままの端面を加工する場合が多く、切断による損傷の影響で特に破断しやすいことから、加工時にこのフランジ部で破断しないことが求められる。
伸びフランジ性は、切断のままの端面を加工することから、材料特性として伸びフランジ性が良好なことと同時に、シャー等の機械切断による端面の損傷が軽微なことが要求される。
伸びフランジ性向上に必要な材料特性は、非特許文献1で示されるように、均一伸びや穴拡げ性である。このことから、均一伸びと穴拡げ性の両方を具備することが求められる。
一方、シャーや打ち抜き端面には、切断の際に介在物を引きずったと考えられる損傷が多数存在し、これが起点となり、伸びフランジ成形時や穴拡げ試験時に割れが生じることが知られている(非特許文献1)。このことから、切断時の端面の損傷を抑制することも極めて重要になる。
In particular, a member for an automobile needs to be spot-welded or the like for joining the members, and the member is often provided with a flange. In many cases, the end face of the flange portion is cut as it is, and it is particularly easy to break due to the damage caused by cutting. Therefore, it is required that the flange portion does not break during the processing.
Since the stretch flangeability is obtained by processing the end face as it is cut, it is required that the stretch flangeability is good as a material characteristic, and at the same time, damage to the end face due to mechanical cutting of a shear or the like is slight.
As shown in Non-Patent Document 1, the material properties necessary for improving stretch flangeability are uniform stretch and hole expandability. For this reason, it is required to have both uniform elongation and hole expansibility.
On the other hand, there are many damages that are thought to have dragged inclusions at the time of cutting on the shears and punched end faces, and this is the starting point, and it is known that cracks occur during stretch flange molding and hole expansion tests (non- Patent Document 1). For this reason, it is also extremely important to suppress damage to the end face during cutting.

薄鋼板の成形性として重要な延性や張り出し成形性は、加工硬化指数(n値)と相関があることが知られており、n値が高い鋼板が成形性に優れる鋼板として知られている。例えば、延性や張り出し成形性に優れる鋼板として、鋼板組織がフェライト及びマルテンサイトから成るDP(Dual Phase)鋼板や、鋼板組織中に残留オーステナイトを含むTRIP(Transformation Induced Plasticity)鋼板がある(特許文献1、特許文献2)。一方、穴拡げ性に優れる鋼板としては、鋼板組織を析出強化したフェライト単相組織とした鋼板やベイナイト単相組織とした鋼板が知られている(特許文献3〜5、非特許文献1)。
DP鋼板は、延性に富むフェライトを主相とし、硬質組織であるマルテンサイトを鋼板組織中に分散させることで、優れた延性を得ている。また、軟質なフェライトは変形し易く、変形と共に多量の転位が導入され、硬化することから、n値も高い。しかしながら、鋼板組織を軟質なフェライトと硬質なマルテンサイトより成る組織とすると、両組織の変形能が異なることから、穴拡げ加工のような大加工を伴う成形においては、両組織の界面に微小なマイクロボイドが形成され、穴拡げ性が著しく劣化するという問題を有する。特に、引張最大強度540MPa以上のDP鋼板中に含まれるマルテンサイト体積率は比較的多く、フェライトとマルテンサイト界面も多く存在することから、界面に形成されたマイクロボイドは容易に連結し、亀裂形成、破断へと至る。このことから、DP鋼板の穴拡げ性は劣位であることが知られている(例えば、非特許文献3)。
It is known that ductility and stretch formability, which are important as formability of a thin steel sheet, are correlated with a work hardening index (n value), and a steel sheet having a high n value is known as a steel sheet having excellent formability. For example, as steel plates excellent in ductility and stretch formability, there are DP (Dual Phase) steel plates whose steel plate structure is composed of ferrite and martensite, and TRIP (Transformation Induced Plasticity) steel plates containing residual austenite in the steel plate structure (Patent Document 1). Patent Document 2). On the other hand, as a steel sheet excellent in hole expansibility, a steel sheet having a ferrite single phase structure in which the steel sheet structure is precipitation strengthened and a steel sheet having a bainite single phase structure are known (Patent Documents 3 to 5, Non-Patent Document 1).
The DP steel sheet has excellent ductility by having ferrite having high ductility as a main phase and dispersing martensite which is a hard structure in the steel sheet structure. Further, soft ferrite is easily deformed, and a large amount of dislocations are introduced and hardened together with the deformation, so that the n value is also high. However, if the steel sheet structure is composed of soft ferrite and hard martensite, the deformability of both structures is different, so in forming with large machining such as hole expansion, there is a minute amount at the interface between both structures. There is a problem that microvoids are formed and the hole expandability is significantly deteriorated. In particular, the DP steel sheet with a maximum tensile strength of 540 MPa or higher has a relatively high martensite volume fraction, and since there are many ferrite and martensite interfaces, the microvoids formed at the interface easily connect and crack formation occurs. To break. From this, it is known that the hole expansibility of DP steel sheet is inferior (for example, Non-Patent Document 3).

鋼板組織が、フェライト及び残留オーステナイトより成るTRIP鋼板においても同様に穴拡げ性は低い。これは、自動車部材の成形加工である穴拡げ加工や伸びフランジ加工が、打ち抜き、あるいは、機械切断後、加工を行うことに起因している。TRIP鋼板に含まれる残留オーステナイトは、加工を受けるとマルテンサイトへと変態する。例えば、延引張加工や張り出し加工であれば、残留オーステナイトがマルテンサイトへと変態することで、加工部を高強度化し、変形の集中を抑制することで、高い成形性を確保可能である。しかし、一旦、打ち抜きや切断等を行うと、端面近傍は加工を受けるため、鋼板組織中に含まれる残留オーステナイトがマルテンサイトへと変態してしまう。この結果、DP鋼板と類似の組織となり、穴拡げ性や伸びフランジ成形性は劣位となる。あるいは、打ち抜き加工そのものが大変形を伴う加工であることから、打ち抜き後に、フェライトと硬質組織(ここでは、残留オーステナイトが変態したマルテンサイト)界面に、マイクロボイドが存在し、穴拡げ性を劣化させていることが報告されている。
あるいは、粒界にセメンタイトやパーライト組織が存在する鋼板も、穴拡げ性は劣位である。これはフェライトとセメンタイトの境界が微小ボイド形成の起点となるためである。
その結果、特許文献3〜5及び非特許文献1に示されるように、穴拡げ性に優れた鋼板の開発は、鋼板の主相をベイナイトもしくは析出強化したフェライトの単相組織とし、かつ、粒界でのセメンタイト相の生成を抑えるため、Ti等の合金炭化物形成元素を多量に添加し、鋼中に含まれるCを合金炭化物とすることで、穴拡げ性に優れた高強度熱延鋼板が開発されてきた。
Similarly, in the TRIP steel plate whose steel plate structure is composed of ferrite and retained austenite, the hole expandability is low. This is because hole expansion processing and stretch flange processing, which are molding processes for automobile members, are performed after punching or mechanical cutting. The retained austenite contained in the TRIP steel sheet transforms into martensite when subjected to processing. For example, in the case of stretch-stretching or overhanging, it is possible to ensure high formability by increasing the strength of the processed portion and suppressing the concentration of deformation by transforming residual austenite into martensite. However, once punching, cutting, or the like is performed, the vicinity of the end face is subjected to processing, so that residual austenite contained in the steel sheet structure is transformed into martensite. As a result, the structure becomes similar to that of the DP steel sheet, and the hole expandability and stretch flange formability are inferior. Alternatively, since the punching process itself involves a large deformation, after punching, microvoids exist at the interface between ferrite and hard structure (here, martensite transformed with retained austenite), which deteriorates hole expandability. It has been reported that
Or the steel sheet in which a cementite and a pearlite structure exist in a grain boundary is also inferior in hole expansibility. This is because the boundary between ferrite and cementite is the starting point for microvoid formation.
As a result, as shown in Patent Documents 3 to 5 and Non-Patent Document 1, the development of a steel sheet excellent in hole expansibility has a single-phase structure of ferrite in which the main phase of the steel sheet is bainite or precipitation strengthened, and grains In order to suppress the formation of cementite phase at the boundary, by adding a large amount of alloy carbide forming elements such as Ti and making C contained in the alloy alloy carbide, a high strength hot-rolled steel sheet with excellent hole expandability can be obtained. Has been developed.

鋼板組織をベイナイト単相組織とする鋼板は、鋼板組織をベイナイト単相組織とするため、冷延鋼板の製造にあたっては、一旦、オーステナイト単相となる高温まで加熱せねばならず、生産性が悪い。また、ベイナイト組織は転位を多く含む組織であることから、加工性に乏しく、延性や張り出し性を必要とする部材へは適用し難いという欠点を有していた。
また、析出強化したフェライトの単相組織とした鋼板は、Ti、NbあるいはMo等の炭化物による析出強化を利用して鋼板を高強度化すると共に、セメンタイト等の形成を抑制することで、780MPa以上の高強度と、優れた穴拡げ性の両立が可能なものの、冷延及び焼鈍工程を経る冷延鋼板では、その析出強化が活用し難いという欠点を有する。即ち、析出強化は、フェライト中に、NbやTi等の合金炭化物が整合析出することで成し遂げられる。
冷延及び焼鈍を伴う冷延鋼板においては、フェライトは加工され、焼鈍時に、再結晶することから、熱延板段階で整合析出していたNbやTi析出物との方位関係が失われるため、その強化能が大幅に減少してしまい強度確保が難しい。また、NbやTiは、再結晶を大幅に遅延することが知られており、優れた延性確保のためには、高温焼鈍が必要となり生産性が悪い。また、熱延鋼板並みの延性が得られたとしても、析出強化鋼は、その延性や張り出し成形は、DP鋼板に比較し劣位であり、大きな張り出し性を必要とする部位への適用はできない。加えて、NbやTiなどの高価な合金炭化物形成元素を多量に添加せねばならず、コスト高を招くという問題も有している。
A steel sheet having a bainite single phase structure as a steel sheet structure has a bainite single phase structure. Therefore, in manufacturing a cold-rolled steel sheet, it must be heated to a high temperature at which it becomes an austenite single phase, resulting in poor productivity. . Further, since the bainite structure is a structure containing many dislocations, it has a drawback that it is difficult to apply to a member that requires poor workability and requires ductility and stretchability.
Moreover, the steel sheet having a precipitation-strengthened ferrite single-phase structure is 780 MPa or more by increasing the strength of the steel sheet by using precipitation strengthening by carbides such as Ti, Nb or Mo and suppressing the formation of cementite and the like. Although it is possible to achieve both high strength and excellent hole expansibility, a cold-rolled steel sheet that has undergone a cold-rolling and annealing process has the disadvantage that its precipitation strengthening is difficult to utilize. That is, precipitation strengthening is achieved by consistent precipitation of alloy carbides such as Nb and Ti in ferrite.
In cold-rolled steel sheets with cold rolling and annealing, since ferrite is processed and recrystallized at the time of annealing, the orientation relationship with Nb and Ti precipitates that were coherently precipitated at the hot-rolled sheet stage is lost. The strengthening ability is greatly reduced, and it is difficult to secure the strength. Nb and Ti are known to significantly delay recrystallization, and high temperature annealing is required to ensure excellent ductility, resulting in poor productivity. Moreover, even if ductility comparable to that of a hot-rolled steel sheet is obtained, the precipitation-strengthened steel is inferior in ductility and overhanging compared to DP steel sheets, and cannot be applied to parts that require a large overhang. In addition, a large amount of an expensive alloy carbide forming element such as Nb or Ti must be added, resulting in a problem of high cost.

これら欠点を克服し、延性と穴拡げ性確保を図った鋼板として、特許文献6及び7に記載の鋼板が知られている。これらは、鋼板組織を、一旦、フェライトとマルテンサイトよりなる複合組織とし、その後、マルテンサイトを焼き戻し軟質化することで、組織強化により得られる強度-延性バランスの向上と穴拡げ性の向上を同時に得ようとするものである。しかしながら、マルテンサイトの焼き戻しにより、硬質組織を軟化させたとしても、依然として、マルテンサイトは硬質であることから、穴拡げ性劣化を避けることが出来ない。加えて、マルテンサイトの軟化により、強度低下が生じることから、強度低下を補うためマルテンサイト体積率を増加させねばならず、硬質組織分率増加に伴う穴拡げ性の劣化が引き起こされるという問題を有していた(特許文献7)。
また、冷却終点温度が変動すると、マルテンサイト体積率がばらつくことから、材質がばらつき易いという問題を有していた。これら問題を解決する手段として、あるいは、十分なマルテンサイト体積率を確保するため、水槽等を用いて室温まで焼き入れることで、十分な量のマルテンサイト体積率の確保を行う場合があるが、水等を用いた冷却を行うと、鋼板の反りや切断後のキャンバー等の形状不良を生じ易い。これら形状不良の原因は、単なる板の変形のみに依るのではなく、冷却時の温度ムラに起因した残留応力を原因とする場合があり、板形状としては良好でも、切断後に反りやキャンバーといった形状不良を引き起こす場合がある。また、後工程で矯正しがたいという課題も有している。このことから、材質確保の点だけでなく、使い易さの観点でも課題がある。
このように、延性や張り出し成形性、あるいは、穴拡げ性の確保に必要な鋼板組織が極めて異なっていることから、これら特性を同時に具備することは、極めて難しい。
加えて、これら鋼板は、伸びや穴拡げ性といった材料特性向上に注意を払っているものの、シャーやポンチによる打ち抜きと言った機械加工による端面損傷や、これによる特性劣化に注意を払った研究ではない。
CAMP-ISIJ vol.13(2000),p399 CAMP-ISIJ vol.13(2000),p411 CAMP-ISIJ vol.13(2000),p391 特開昭53−22812号公報 特開平1−230715号公報 特開2003-321733号公報 特開2004−256906号公報 特開平11−279691号公報 特開昭63−293121号公報 特開昭57−137453号公報
As steel plates that have overcome these drawbacks and ensured ductility and hole expandability, steel plates described in Patent Documents 6 and 7 are known. These steel sheets have a composite structure consisting of ferrite and martensite, and then tempered and softened, thereby improving the strength-ductility balance and hole expansibility obtained by strengthening the structure. We are going to get it at the same time. However, even if the hard structure is softened by tempering the martensite, the martensite is still hard, so it is impossible to avoid deterioration of the hole expansibility. In addition, the softening of martensite causes a decrease in strength, so the martensite volume ratio must be increased to compensate for the decrease in strength, and this causes a problem that the hole expandability deteriorates as the hard tissue fraction increases. (Patent Document 7).
Further, when the cooling end point temperature fluctuates, the volume ratio of martensite varies. As a means to solve these problems, or in order to ensure a sufficient martensite volume fraction, by quenching to room temperature using a water tank or the like, a sufficient amount of martensite volume fraction may be ensured, When cooling is performed using water or the like, shape defects such as warpage of the steel sheet and camber after cutting are likely to occur. The cause of these shape defects is not simply due to deformation of the plate, but may be due to residual stress due to temperature unevenness during cooling. Even if the plate shape is good, the shape such as warp or camber after cutting May cause failure. Moreover, it has the subject that it is hard to correct in a post process. Therefore, there is a problem not only in securing the material but also in terms of ease of use.
As described above, since the steel sheet structures necessary for ensuring ductility, stretch formability, and hole expandability are very different, it is extremely difficult to simultaneously provide these characteristics.
In addition, these steel sheets pay attention to improving material properties such as elongation and hole expansibility, but in research that pays attention to end-face damage due to machining such as punching with shears and punches, and characteristic deterioration due to this, Absent.
CAMP-ISIJ vol. 13 (2000), p399 CAMP-ISIJ vol. 13 (2000), p411 CAMP-ISIJ vol. 13 (2000), p391 JP-A-53-22812 Japanese Patent Laid-Open No. 1-2230715 JP 2003-321733 A JP 2004-256906 A Japanese Patent Application Laid-Open No. 11-296991 JP-A-63-293121 JP 57-137453 A

上記したように、伸びフランジ性向上のためには、延性や穴拡げ性といった材料特性の向上に加え、切断した端面の性状の改善は必要不可欠である。
本発明は、延性や穴拡げ性と言った材料特性向上と同時に、切断後の端面損傷を抑制に考慮して行われたものであり、その目的は、DP鋼並み優れた延性と、単一組織並みの優れた穴拡げ性を持つと同時に、切断後の端面の損傷が極めて軽微な特徴を有する極めて優れた伸びフランジ性を有する高強度鋼板並びにその製造方法を提供することにある。
As described above, in order to improve stretch flangeability, in addition to improving material properties such as ductility and hole expandability, it is essential to improve the properties of the cut end face.
The present invention has been made in consideration of the improvement of material properties such as ductility and hole expansibility, as well as suppression of end face damage after cutting. An object of the present invention is to provide a high-strength steel sheet having an excellent hole expandability similar to that of a structure and at the same time having an extremely excellent stretch flangeability having a feature that damage of an end face after cutting is extremely slight, and a method for producing the same.

上記課題を解決することを目的とした本発明の要旨は以下の通りである。
(1)本発明は、 質量%で、C :0.05%〜0.20%、Si:0.3〜2.0%、Mn:1.3〜2.6%、P :0.001〜0.03%、S :0.0001〜0.01%、Al:0.10%未満、N :0.0005〜0.0100%、O:0.0005〜0.007%、を含有し、残部が鉄および不可避的不純物からなる組成を有し、鋼板組織が主としてフェライトとベイナイトからなり、鋼板中に含まれる5μm超の非金属介在物の個数密度が15個/mm以下であり、引張最大強さが540MPa以上であることを特徴とする極めて優れた伸びフランジ性を有する高強度鋼板。
(2)本発明は、さらに、質量%で、B:0.0001〜0.010%未満を含有することを特徴とする(1)に記載の極めて優れた伸びフランジ性を有する高強度鋼板。
(3)本発明は、さらに、質量%で、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%、Mo:0.01〜0.3%の1種または2種以上を含有することを特徴とする(1)または(2)に記載の極めて優れた伸びフランジ性を有する高強度鋼板。
The gist of the present invention aimed at solving the above problems is as follows.
(1) The present invention is based on mass%, C: 0.05% to 0.20%, Si: 0.3 to 2.0%, Mn: 1.3 to 2.6%, P: 0.001. -0.03%, S: 0.0001-0.01%, Al: less than 0.10%, N: 0.0005-0.0100%, O: 0.0005-0.007% The balance is composed of iron and inevitable impurities, the steel sheet structure is mainly composed of ferrite and bainite, and the number density of non-metallic inclusions exceeding 5 μm contained in the steel sheet is 15 pieces / mm 2 or less, A high-strength steel sheet having extremely excellent stretch flangeability, characterized by having a maximum tensile strength of 540 MPa or more.
(2) The present invention further includes B: 0.0001 to less than 0.010% by mass%, and the high-strength steel sheet having extremely excellent stretch flangeability as described in (1).
(3) The present invention further includes, in mass%, Cr: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cu: 0.01 to 1.0%, Mo: 0.00. The high-strength steel sheet having extremely excellent stretch flangeability as described in (1) or (2), comprising one or more of 01 to 0.3%.

(4)本発明は、さらに、質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001〜0.14%含有することを特徴とする(1)〜(3)のいずれかに記載の極めて優れた伸びフランジ性を有する高強度鋼板。
(5)本発明は、さらに、質量%で、Ca、Ce、Mg、REMの1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする(1)〜(4)のいずれかに記載の極めて優れた伸びフランジ性を有する高強度鋼板。
(6)本発明は、(1)〜(5)のいずれか1項に記載の高強度鋼板の表面に亜鉛系めっきを有することを特徴とする。
(4) The present invention further comprises 0.001 to 0.14% of Nb, Ti, or V in a total of 0.001 to 0.14% by mass%. A high-strength steel sheet having extremely excellent stretch flangeability as described in any of the above.
(5) The present invention further comprises, in mass%, 0.0001 to 0.5% of one or more of Ca, Ce, Mg, and REM in total (1) to ( 4) A high-strength steel sheet having extremely excellent stretch flangeability described in any one of 4).
(6) The present invention is characterized by having zinc-based plating on the surface of the high-strength steel sheet according to any one of (1) to (5).

(7)本発明は、(1)〜(5)のいずれか1項に記載の化学成分を有する鋳造スラブを鋳造するに当たって、溶鋼中にノズルを浸漬させ、Arガスを吹き込みつつ鋳造することを特徴とする極めて優れた伸びフランジ性を有する高強度鋼板の製造方法。
(8)本発明は、(7)に記載の手法で鋳造を行った鋳片中に含まれる5μm超の粗大酸化物の個数密度が15個/mm未満であることを特徴とする鋳造スラブ。
(9)本発明は、(8)に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、400〜670℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続焼鈍ラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で冷却し、450℃〜300℃の温度域で30秒以上保持することを特徴とする極めて優れた伸びフランジ性を有する高強度鋼板の製造方法。
(7) In casting the casting slab having the chemical component according to any one of (1) to (5), the present invention includes casting a nozzle in molten steel while blowing Ar gas. A method for producing a high-strength steel sheet having extremely excellent stretch flangeability as a feature.
(8) The present invention provides a cast slab characterized in that the number density of coarse oxides exceeding 5 μm contained in the slab cast by the method described in (7) is less than 15 / mm 2. .
(9) In the present invention, the cast slab described in (8) is directly or once cooled and then heated to 1050 ° C. or higher, and hot rolling is completed at the Ar 3 transformation point or higher, in a temperature range of 400 to 670 ° C. Winding, pickling, cold rolling with a rolling reduction of 40 to 70%, and passing through a continuous annealing line, annealing at a maximum heating temperature of 760 to 870 ° C, and then an average cooling rate between 630 and 570 ° C A method for producing a high-strength steel sheet having extremely excellent stretch flangeability, characterized by cooling at 3 ° C./second or more and holding at 450 ° C. to 300 ° C. for 30 seconds or more.

(10)本発明は、(8)に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、400〜670℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続溶融亜鉛めっきラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で(亜鉛めっき浴温度―40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、亜鉛めっき浴に浸漬前、あるいは、浸漬後の何れか一方、あるいは、両方で、(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持することを特徴とする極めて優れた伸びフランジ性を有する高強度溶融亜鉛めっき鋼板の製造方法。
(11)本発明は、(8)に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、400〜670℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続溶融亜鉛めっきラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で(亜鉛めっき浴温度―40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、必要に応じて460〜540℃の温度で合金化処理を施し、亜鉛めっき浴に浸漬前、浸漬後、あるいは、合金化処理後の何れか、あるいは、合その計で(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持することを特徴とする極めて優れた伸びフランジ性を有する高強度合金化溶融亜鉛めっき鋼板の製造方法。
(12)本発明は、(9)の方法で鋼板を製造したのち、亜鉛系の電気めっきを施すことを特徴とする(9)に記載の極めて優れた伸びフランジ性を有する高強度電気亜鉛系めっき鋼板の製造方法。
(10) In the present invention, the cast slab described in (8) is directly or once cooled, and then heated to 1050 ° C. or higher, and hot rolling is completed at the Ar3 transformation point or higher, in a temperature range of 400 to 670 ° C. Winding, pickling, cold rolling with a rolling reduction of 40-70%, passing through a continuous hot dip galvanizing line, annealing at a maximum heating temperature of 760-870 ° C, then averaging between 630 ° C-570 ° C After cooling to (zinc plating bath temperature -40) ° C to (zinc plating bath temperature +50) ° C at a cooling rate of 3 ° C / second or more, either before or after immersion in the zinc plating bath, or both The method for producing a high-strength hot-dip galvanized steel sheet having extremely excellent stretch flangeability, characterized by being held in a temperature range of (galvanizing bath temperature + 50) ° C. to 300 ° C. for 30 seconds or more.
(11) In the present invention, the cast slab described in (8) is directly or once cooled, and then heated to 1050 ° C. or higher, and hot rolling is completed at an Ar 3 transformation point or higher, in a temperature range of 400 to 670 ° C. Winding, pickling, cold rolling with a rolling reduction of 40-70%, passing through a continuous hot dip galvanizing line, annealing at a maximum heating temperature of 760-870 ° C, then averaging between 630 ° C-570 ° C After cooling to (zinc plating bath temperature −40) ° C. to (zinc plating bath temperature +50) ° C. at a cooling rate of 3 ° C./second or more, alloying treatment is performed at a temperature of 460 to 540 ° C. as necessary, and galvanization It is extremely characterized in that it is kept for 30 seconds or more in a temperature range of (zinc plating bath temperature +50) ° C. to 300 ° C. before or after immersion in the bath, after alloying treatment, or in total. High with excellent stretch flangeability Method of manufacturing a degree gold galvannealed steel sheet.
(12) The present invention is a high-strength electrozinc system having extremely excellent stretch flangeability as described in (9), wherein a steel sheet is produced by the method of (9) and then zinc-based electroplating is performed. Manufacturing method of plated steel sheet.

本発明によれば、鋼板成分、焼鈍条件を制御することにより、鋼板組織が主としてフェライトとベイナイトからなり、鋼板中に含まれる5μm超の非金属介在物の個数密度を15個/mm以下とした鋼板とすることができるようになり、それ故、引張り最大強度で540MPa以上の優れた延性と極めて優れた伸びフランジ性を有する高強度鋼板を安定して得ることができる。
即ち、C、Si、Mn、P、S、Al、N、Oの含有量を規定範囲とし、引張り最大強度で540MPa以上の優れた強度を発揮できると同時に、主としてフェライトとベイナイトからなり、鋼板中に含まれる5μm超の非金属介在物の個数密度を15個/mm以下とすることで極めて優れた伸びフランジ性を有する高強度鋼板を安定して提供することができる。
According to the present invention, by controlling the steel plate components and annealing conditions, the steel plate structure is mainly composed of ferrite and bainite, and the number density of non-metallic inclusions exceeding 5 μm contained in the steel plate is 15 pieces / mm 2 or less. Therefore, it is possible to stably obtain a high-strength steel plate having excellent ductility of 540 MPa or more in maximum tensile strength and extremely excellent stretch flangeability.
That is, the content of C, Si, Mn, P, S, Al, N, and O is within a specified range, and an excellent tensile strength of 540 MPa or more can be exhibited at the same time, and at the same time, mainly composed of ferrite and bainite, By making the number density of non-metallic inclusions exceeding 5 μm contained in 15 / mm 2 or less, it is possible to stably provide a high-strength steel sheet having extremely excellent stretch flangeability.

本発明の高強度鋼板の製造方法によれば、鋼板成分として、C、Si、Mn、P、S、Al、N、Oの含有量を規定範囲とし、主としてフェライトとベイナイトからなり、鋼板中に含まれる5μm超の非金属介在物の個数密度を15個/mm以下とした極めて優れた伸びフランジ性を有する高強度鋼板を製造するには、熱間圧延工程と冷間圧延工程を経た後、焼鈍時の条件として最高加熱温度を規定し、焼鈍後の630℃〜570℃間の冷却速度と450℃〜300℃間の温度域での保持条件を規定することにより目的の高強度鋼板を製造することができる。
また、本発明の高強度溶融亜鉛めっき鋼板の製造方法によれば、前述の条件に加え、Znめっき浴に浸漬する前後の少なくとも一方において、亜鉛めっき浴温度+50℃〜300℃の温度域での保持条件を規定することにより実現することができる。
According to the method for producing a high-strength steel sheet of the present invention, the content of C, Si, Mn, P, S, Al, N, and O as a steel sheet component is within a specified range, and is mainly composed of ferrite and bainite. To produce a high-strength steel sheet having extremely excellent stretch flangeability with the number density of non-metallic inclusions exceeding 5 μm included being 15 pieces / mm 2 or less, after undergoing a hot rolling process and a cold rolling process The maximum heating temperature is defined as a condition during annealing, and the desired high-strength steel sheet is defined by defining the cooling rate between 630 ° C. and 570 ° C. and the holding conditions in the temperature range between 450 ° C. and 300 ° C. after annealing. Can be manufactured.
Moreover, according to the manufacturing method of the high-strength hot-dip galvanized steel sheet of the present invention, in addition to the above-described conditions, at least one before and after being immersed in the Zn plating bath, in the temperature range of the galvanizing bath temperature + 50 ° C. to 300 ° C. This can be realized by defining the holding conditions.

また、本発明の高強度合金化溶融亜鉛めっき鋼板の製造方法によれば、前述の条件に加えて合金化処理を行うとともに、Znめっき浴に浸漬する前後の少なくとも一方において、亜鉛めっき浴温度+50℃〜300℃の温度域での保持条件を規定することにより実現することができる。   Moreover, according to the manufacturing method of the high-strength galvannealed steel sheet of the present invention, in addition to the above-described conditions, the alloying treatment is performed, and at least one before and after being immersed in the Zn plating bath, the galvanizing bath temperature +50 This can be realized by defining the holding conditions in the temperature range of from ° C to 300 ° C.

本発明者等は、伸びフランジ性に優れた鋼板を開発すべく鋭意検討を行った。その結果、従来、知見されているような鋼板組織の制御を行ったとしても、必ずしも、伸びフランジ性は向上しないこと、あるいは、従来、伸び等の劣化の原因となると言われている介在物サイズよりも遥かに小さな介在物が、端面の損傷を助長し、穴拡げ性を劣化させていることを突き止めた。この結果、5μm以上の介在物の個数密度を15個/mm以下とすることで、大幅な端面損傷の改善と伸びフランジ性向上が図られることを見出した。
以下に本発明を詳細に説明する。
まず、鋼板の組織の限定理由について述べる。
本発明者等は、鋭意検討を進めた結果、鋼板組織をフェライトとベイナイトやマルテンサイトなどの硬質組織よりなる組織とすると共に、ベイナイトやマルテンサイトなどの硬質組織とフェライトの硬度差を低減させつつ、介在物個数を低減することによる端面損傷を改善することで大幅な伸びフランジ性向上が可能なことを見出した。特に、端面損傷の改善による亀裂形成サイトの抑制と、硬質組織と軟質組織間の硬度差低減による亀裂伝播抑制を同時に行うことで、大幅な伸びフランジ性向上が達成可能なことを見出した。
The inventors of the present invention have intensively studied to develop a steel plate excellent in stretch flangeability. As a result, even if the steel sheet structure as conventionally known is controlled, the stretch flangeability is not necessarily improved, or the inclusion size that is conventionally said to cause deterioration such as elongation. It was found that much smaller inclusions promoted damage to the end face and deteriorated hole expansibility. As a result, it has been found that when the number density of inclusions of 5 μm or more is 15 pieces / mm 2 or less, significant end face damage improvement and stretch flangeability improvement can be achieved.
The present invention is described in detail below.
First, the reasons for limiting the structure of the steel sheet will be described.
As a result of diligent investigation, the present inventors have made the steel sheet structure a structure composed of a hard structure such as ferrite and bainite and martensite, while reducing the hardness difference between the hard structure such as bainite and martensite and ferrite. The present inventors have found that by improving the end face damage caused by reducing the number of inclusions, it is possible to significantly improve stretch flangeability. In particular, it has been found that a significant improvement in stretch flangeability can be achieved by simultaneously suppressing crack formation sites by improving end face damage and suppressing crack propagation by reducing the hardness difference between hard and soft structures.

まず、鋼番号Aの組成を有し、かつ、Ar吹き込みを行わなかった鋼番号A−4の鋼板において、切断後の端面を観察したところ、図1の端面組織写真に示すような多数のI型ディンプルと呼ばれる損傷が観察されると共に、端面損傷と介在物個数密度、穴拡げ率には明確な相関が得られることを知見した。特に、端面損傷と介在物個数密度の関係を調査したところ、延性劣化の原因となると言われている介在物サイズより、遥かに小さい5μm以上の介在物個数密度と最も良い相関が得られた。同時に、脱酸方法を制御することで、5μm以上の介在物個数を低減することで、顕著な穴拡げ性向上が見られた。このことから、5μm以上の介在物個数密度を低減することが望ましい。
ここで、5μm以上の介在物個数密度を15個/mm以下と限定したのは、5μm以上の介在物個数密度を15個/mm以下とすることで顕著な穴拡げ性の向上効果が見られたためである。5μm以上の介在物個数密度と穴拡げ性に相関が見られた原因としては、次のような原因によるものと考えられる。
例えば、10μmを超える介在物個数密度は、小さく、穴拡げ試験のような10mmφの穴を打ち抜く加工では、端面に介在物が存在する可能性が極めて少ない。この結果、多数の穴拡げ試験を行った場合の穴拡げ試験値のばらつきとしては、測定可能なものの少ない試験数で行う試験においては検出し難いものと推定される。
First, in the steel plate of steel number A-4 which has the composition of steel number A and was not blown with Ar, the end face after cutting was observed, and a large number of I as shown in the end face structure photograph of FIG. It was found that damage called mold dimples was observed, and that there was a clear correlation between the end face damage, inclusion number density, and hole expansion rate. In particular, the relationship between the end face damage and the number density of inclusions was investigated, and the best correlation was obtained with the inclusion number density of 5 μm or more, which is far smaller than the inclusion size, which is said to cause ductile deterioration. At the same time, by controlling the deoxidation method, a significant improvement in hole expansibility was observed by reducing the number of inclusions of 5 μm or more. For this reason, it is desirable to reduce the inclusion number density of 5 μm or more.
Here, the number density of inclusions of 5 μm or more is limited to 15 pieces / mm 2 or less. By making the number density of inclusions of 5 μm or more 15 pieces / mm 2 or less, there is a remarkable effect of improving hole expansibility. Because it was seen. The cause of the correlation between the inclusion number density of 5 μm or more and the hole expandability is considered to be as follows.
For example, the inclusion number density exceeding 10 μm is small, and in the process of punching a 10 mmφ hole such as a hole expansion test, there is very little possibility of inclusions on the end face. As a result, it is estimated that the variation in the hole expansion test value when a large number of hole expansion tests are performed is difficult to detect in a test performed with a small number of tests that can be measured.

また、5μm以下の介在物が悪影響を及ぼし難い原因としては、複合組織鋼板としての組織のサイズに原因があると考えられる。例えば、鋼板組織をフェライト及びマルテンサイトとするDP鋼において、硬質組織であるマルテンサイトのサイズは5μm以下と小さいことから、マルテンサイトそのものが介在物と同様の役割を果たすものと考えられる。このことから5μm以下の介在物個数密度と相関が得難かったものと考えられる。介在物の個数密度を15個/mm以下としたのは、顕著な穴拡げ性向上効果が見られたためであり、好ましくは9個/mm以下、更に好ましくは、6個/mm以下にすることが望ましい。 In addition, it is considered that the reason why inclusions of 5 μm or less are less likely to have an adverse effect is due to the size of the structure of the composite structure steel plate. For example, in DP steel having a steel sheet structure of ferrite and martensite, the size of martensite, which is a hard structure, is as small as 5 μm or less, so it is considered that martensite itself plays the same role as inclusions. From this, it is considered that it was difficult to obtain a correlation with the inclusion number density of 5 μm or less. The reason why the number density of inclusions was set to 15 pieces / mm 2 or less was that a remarkable effect of improving the hole expandability was observed, preferably 9 pieces / mm 2 or less, more preferably 6 pieces / mm 2 or less. It is desirable to make it.

ここで言う介在物とは、Al、SiO、マンガンシリケート等の酸化物やMnS等の硫化物を示す。特に、540MPa以上の高強度鋼板は、延性を高めるため、組織強化を活用する場合が多く、SiやMnを多く含む場合がある。この結果、これら元素を含まない軟鋼板に比較し、これら酸化物や硫化物が存在し易い。また、精錬の段階で酸素濃度が高い場合、鋳造時に溶鋼温度が低下する際に、これら酸化物が形成する場合があり、転炉にて酸化物の除去を行ったとしても、鋳造時に生成する酸化物の除去は難しいという問題を有していた。これら酸化物ができる機構は次のように考えられる。
溶鋼の温度が高いと、酸素の固溶限は高い。一方、低温になると固溶限は大きく低下する。その結果、鋳造段階で溶鋼中に固溶できなくなった酸素が大量に放出され、それら酸素は、Feよりも酸化しやすいSi、Mn、Alと結びつき、鋼中に酸化物を形成するものと考えられる。これら酸化物は、形成温度が低いため、転炉で形成する酸化物に比べ微細であり、除去も難しい。そこで、本発明では鋳造中に、溶鋼中にArガスを吹き込むことでこれら酸化物の除去を行った。
The inclusions mentioned here indicate oxides such as Al 2 O 3 , SiO 2 , manganese silicate, and sulfides such as MnS. In particular, a high-strength steel plate of 540 MPa or more often uses structural strengthening to increase ductility, and may contain a large amount of Si or Mn. As a result, these oxides and sulfides are likely to be present as compared with mild steel sheets not containing these elements. In addition, when the oxygen concentration is high at the refining stage, these oxides may be formed when the molten steel temperature decreases during casting, and even if the oxide is removed in the converter, it is produced during casting. There was a problem that it was difficult to remove the oxide. The mechanism by which these oxides are formed is considered as follows.
When the temperature of molten steel is high, the solid solubility limit of oxygen is high. On the other hand, the solid solubility limit greatly decreases at low temperatures. As a result, a large amount of oxygen that cannot be dissolved in the molten steel at the casting stage is released, and these oxygens are combined with Si, Mn, and Al, which are more easily oxidized than Fe, and form oxides in the steel. It is done. Since these oxides have a low formation temperature, they are finer than oxides formed in a converter and difficult to remove. Therefore, in the present invention, during the casting, these oxides were removed by blowing Ar gas into the molten steel.

介在物の個数密度の測定は、光学顕微鏡、SEM(走査型電子顕微鏡)等を用いて行うことが出来る。特に、介在物の組成と個数密度の測定を同時に行う場合は、SEMを用いた観察を行うことが望ましい。介在物の測定にあたって、鋼板圧延方向断面または圧延方向直角方向断面を腐食して、1000倍の光学顕微鏡観察及び1000〜100000倍の走査型電子顕微鏡により定量化が可能である。なお、熱間圧延及び冷間圧延を経た鋼板中に存在する介在物は、伸ばされたり、破砕されている場合が多く、圧延方向に伸びたり、点列状に並んでいる場合が多く、圧延方向に平行な方向から、あるいは、垂直な方向から観察した場合、分布形態や形状が異なる。また、穴拡げ試験時の亀裂は、介在物が伸びた方向である圧延方向に沿って入りやすいことから、圧延方向に垂直な面の介在物個数密度と相関を取る必要がある。そこで、本発明では、圧延方向垂直面の介在物個数密度の測定を行った。なお、個数密度の測定にあたっては、各30視野測定を行い定量化を行った。   The number density of inclusions can be measured using an optical microscope, SEM (scanning electron microscope) or the like. In particular, when the inclusion composition and number density are simultaneously measured, it is desirable to perform observation using an SEM. In the measurement of inclusions, the steel plate rolling direction cross section or the rolling direction perpendicular direction cross section is corroded, and can be quantified by observation with a 1000 times optical microscope and 1000 to 100000 times scanning electron microscope. In addition, the inclusions present in the steel sheet that has undergone hot rolling and cold rolling are often stretched or crushed, are often stretched in the rolling direction, or are often arranged in a dotted line. When observed from a direction parallel to the direction or from a direction perpendicular to the direction, the distribution form and shape are different. In addition, since cracks during the hole expansion test tend to enter along the rolling direction, which is the direction in which the inclusions extend, it is necessary to correlate the inclusion number density on the plane perpendicular to the rolling direction. Therefore, in the present invention, the inclusion number density on the vertical surface in the rolling direction was measured. In the measurement of the number density, each 30 visual fields were measured and quantified.

次に、鋼板の組織の限定理由について述べる。
鋼板組織をフェライトと硬質組織の複相組織とするのは、優れた延性を得るためである。軟質なフェライトは、延性に富むことから、優れた延性を得るためには必須である。加えて、適度な量の硬質組織を分散させることで、優れた延性を確保しながら、高強度化が可能である。優れた延性を確保するためには、フェライトを主相とする必要がある。また、残留オーステナイトを含んでも良い。残留オーステナイトは、変形時にマルテンサイトへと変態することで、加工部を硬化し、変形の集中を妨げる。その結果、特に優れた延性が得られる。
Next, the reason for limiting the structure of the steel sheet will be described.
The reason why the steel sheet structure is a multiphase structure of ferrite and hard structure is to obtain excellent ductility. Since soft ferrite is rich in ductility, it is essential to obtain excellent ductility. In addition, it is possible to increase the strength while ensuring excellent ductility by dispersing an appropriate amount of hard structure. In order to ensure excellent ductility, it is necessary to use ferrite as the main phase. Further, residual austenite may be included. Residual austenite is transformed into martensite at the time of deformation, thereby hardening the processed portion and hindering concentration of deformation. As a result, particularly excellent ductility can be obtained.

硬質組織は、ベイナイト組織を50%以上とすることが望ましい。
ベイナイト組織は、マルテンサイトに比較し、軟質であることが知られている。そこで、硬質組織を軟質なベイナイト組織とすることで、穴拡げ加工時のフェライト及び硬質組織界面へのマイクロボイド形成を抑制することが出来る。硬質組織におけるベイナイト組織を50%以上としたのは、硬質組織の体積率の50%未満であれば、マルテンサイトや残留オーステナイトが十分離れて分散しており、穴拡げ加工時に亀裂伝播のサイトにならないと考えられるためである。
また、硬質組織の体積率は、5%以上とすることが望ましい。これは、硬質組織の体積率が5%未満では、540MPa以上の強度確保が難しいためである。上限は特に定めることなく本発明の効果である優れた延性と穴拡げ性は具備されるが、590〜1080MPaの引張強度(TS)範囲であれば、延性と穴拡げ性あるいは、伸びフランジ性の両立を図るため体積率50%超のフェライトを含むことが望ましい。
The hard structure is desirably 50% or more of the bainite structure.
The bainite structure is known to be softer than martensite. Therefore, by forming the hard structure into a soft bainite structure, it is possible to suppress the formation of microvoids at the interface between the ferrite and the hard structure during the hole expanding process. The reason why the bainite structure in the hard structure is 50% or more is that if it is less than 50% of the volume ratio of the hard structure, martensite and retained austenite are sufficiently separated and dispersed at the site of crack propagation during hole expansion processing. It is because it is thought that it must not be.
The volume ratio of the hard tissue is desirably 5% or more. This is because it is difficult to ensure the strength of 540 MPa or more when the volume fraction of the hard tissue is less than 5%. The upper limit is not particularly defined, and excellent ductility and hole expandability, which are the effects of the present invention, are provided. However, if the tensile strength (TS) range is 590 to 1080 MPa, ductility and hole expandability, or stretch flangeability is achieved. In order to achieve both, it is desirable to include ferrite having a volume ratio of more than 50%.

また、鋼板組織としては、フェライト及びベイナイトの複合組織とすることを基本とするが、その他の硬質組織として、残留オーステナイト、マルテンサイト、セメンタイト及びパーライト等を含有しても良い。
上記ミクロ組織の各相、フェライト、パーライト、セメンタイト、マルテンサイト、ベイナイト、オーステナイトおよび残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延方向直角方向断面を腐食して、1000倍の光学顕微鏡観察及び1000〜100000倍の走査型および透過型電子顕微鏡により定量化が可能である。また、FESEM-EBSP法を用いた結晶方位解析や、マイクロビッカース硬度測定等の微小領域の硬度測定からも、組織の判別は可能である。
The steel sheet structure is basically a composite structure of ferrite and bainite, but may include residual austenite, martensite, cementite, pearlite, and the like as other hard structures.
Identification of each phase of the above microstructure, ferrite, pearlite, cementite, martensite, bainite, austenite and the remaining structure, observation of the existing position and measurement of the area ratio were disclosed in Nital reagent and Japanese Patent Application Laid-Open No. 59-219473. The steel plate rolling direction cross section or the rolling direction perpendicular cross section is corroded by the reagent, and quantification is possible with 1000 times optical microscope observation and 1000 to 100000 times scanning and transmission electron microscopes. The structure can also be discriminated from crystal orientation analysis using the FESEM-EBSP method and micro region hardness measurement such as micro Vickers hardness measurement.

本発明において、引張最大強さ(TS)を540MPa以上としたのは、この強度未満であれば、フェライト単相鋼に、固溶強化を用いた高強度化を図ることで、540MPa未満のTSと優れた延性及び穴拡げ性の両立を図ることが出来るためである。特に、540MPa以上のTS確保を考えた場合、優れた延性確保のためには、マルテンサイトや残留オーステナイトを用いた強化を行う必要があり、穴拡げ性の劣化が顕著となるためであり、このTS540MPa以上の鋼板において穴拡げ性の特性を向上させることが本発明において重要となる。
フェライトの結晶粒径については特に限定しないが、強度伸びバランスの観点から公称粒径で7μm以下であることが望ましい。
In the present invention, if the maximum tensile strength (TS) is set to 540 MPa or more, if it is less than this strength, it is possible to increase the strength of the ferrite single-phase steel by using solid solution strengthening to achieve a TS of less than 540 MPa. This is because both excellent ductility and hole expandability can be achieved. In particular, when considering securing TS of 540 MPa or more, in order to ensure excellent ductility, it is necessary to perform strengthening using martensite or retained austenite, and deterioration of hole expansibility becomes remarkable. In the present invention, it is important to improve the hole expandability characteristics in a steel plate of TS540 MPa or more.
The crystal grain size of ferrite is not particularly limited, but it is preferably 7 μm or less in terms of nominal grain size from the viewpoint of balance of strength elongation.

次に、本発明の成分限定理由について述べる。
C :0.05%〜0.20%
Cは、ベイナイトやマルテンサイトを用いた組織強化を行う場合、必須の元素である。Cが0.05%未満では、540MPa以上の強度確保が難しいことから、下限値を0.05%とした。一方、Cの含有量を0.20%以下とする理由は、Cが0.20%を超えると、硬質組織体積率が多くなりすぎてしまい、フェライト及び硬質組織界面も増えることから、マイクロボイドの連結が容易となり、穴拡げ性を劣化させるためである。また、フェライト組織分率が50%を下回りやすくなり、優れた延性確保も難しい。
大部分の硬質組織とフェライトの結晶方位差を9°以下としても、不可避的に存在する上記結晶方位関係を持たない硬質組織の体積率が多くなりすぎてしまい、界面での歪集中やマイクロボイド形成を抑制できず、穴拡げ値が劣位となるためである。
Si:0.3〜2.0%
Siは強化元素であるのに加え、セメンタイトに固溶しない事から、粒界での粗大セメンタイトの形成を抑制する。0.3%未満の添加では、固溶強化による強化が期待できない、あるいは、粒界への粗大セメンタイトの形成が抑制できないことから0.3%以上添加する必要がある。一方で、2.0%を越える添加は、残留オーステナイトを過度に増加せしめ、打ち抜きや切断後の穴拡げ性や伸びフランジ性を劣化させる。このことから上限は2.0%とする必要がある。加えて、Siの酸化物は、溶融亜鉛めっきとの濡れ性が悪いことから、不メッキの原因となる。そこで、溶融亜鉛めっき鋼板の製造にあたっては、炉内の酸素ポテンシャルを制御し、鋼板表面へのSi酸化物形成を抑制するなどが必要となる。
Next, the reasons for limiting the components of the present invention will be described.
C: 0.05% to 0.20%
C is an essential element when strengthening the structure using bainite or martensite. If C is less than 0.05%, it is difficult to ensure a strength of 540 MPa or more, so the lower limit was set to 0.05%. On the other hand, the reason why the content of C is 0.20% or less is that if C exceeds 0.20%, the volume fraction of the hard structure becomes too large, and the interface between the ferrite and the hard structure also increases. This is to facilitate the connection of the holes and deteriorate the hole expandability. Further, the ferrite structure fraction tends to be less than 50%, and it is difficult to ensure excellent ductility.
Even if the difference in crystal orientation between most hard structures and ferrite is 9 ° or less, the volume ratio of the hard structures that are unavoidably present and do not have the above crystal orientation relationship becomes too large, and strain concentration and microvoids at the interface are increased. This is because the formation cannot be suppressed and the hole expansion value is inferior.
Si: 0.3-2.0%
In addition to being a strengthening element, Si does not dissolve in cementite, so it suppresses the formation of coarse cementite at grain boundaries. If less than 0.3% is added, strengthening due to solid solution strengthening cannot be expected, or formation of coarse cementite at grain boundaries cannot be suppressed, so 0.3% or more needs to be added. On the other hand, addition exceeding 2.0% excessively increases the retained austenite, and deteriorates the hole expandability and stretch flangeability after punching or cutting. Therefore, the upper limit needs to be 2.0%. In addition, since the oxide of Si has poor wettability with hot dip galvanizing, it causes non-plating. Therefore, in manufacturing a hot-dip galvanized steel sheet, it is necessary to control the oxygen potential in the furnace and suppress the formation of Si oxide on the steel sheet surface.

Mn:1.3〜2.6%
Mnは、固溶強化元素であるのと同時に、オーステナイト安定化元素であることから、オーステナイトがパーライトへと変態するのを抑制する。1.3%未満ではパーライト変態の速度が速すぎてしまい、鋼板組織をフェライト及びベイナイトの複合組織とすることが出来ず、540MPa以上のTSが確保出来ない。また、穴拡げ性も劣る。このことから、下限値を1.3%以上とする。一方、Mnを多量に添加すると、P、Sとの共偏析を助長し、加工性の著しい劣化を招くことから、その上限を2.6%とした。
P:0.001〜0.03%
Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。0.03%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.03%以下に限定した。Pの下限値は特に定めないが、0.001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。
S:0.0001〜0.01%
Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.01%以下とした。Sの下限値は特に定めないが、0.0001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。また、SはMnと結びついて粗大なMnSを形成することから、穴拡げ性を低下させる。このことから、穴拡げ性向上のためには、出来るだけ少なくする必要がある。
Al:0.10%未満
Alは、フェライト形成を促進し、延性を向上させるので添加しても良い。また、脱酸材としても活用可能である。しかしながら、過剰な添加はAl系の粗大介在物の個数を増大させ、穴拡げ性の劣化や表面傷の原因になる。このことから、Al添加の上限を0.1%とした。下限は、特に限定しないが、0.0005%以下とするのは困難であるのでこれが実質的な下限である。
Mn: 1.3 to 2.6%
Since Mn is an austenite stabilizing element at the same time as a solid solution strengthening element, it suppresses the transformation of austenite to pearlite. If it is less than 1.3%, the rate of pearlite transformation is too high, and the steel sheet structure cannot be made a composite structure of ferrite and bainite, and a TS of 540 MPa or more cannot be secured. Moreover, the hole expansibility is also inferior. For this reason, the lower limit is set to 1.3% or more. On the other hand, when Mn is added in a large amount, co-segregation with P and S is promoted and workability is significantly deteriorated. Therefore, the upper limit is set to 2.6%.
P: 0.001 to 0.03%
P tends to segregate in the central part of the plate thickness of the steel sheet, causing the weld to become brittle. If it exceeds 0.03%, embrittlement of the weld becomes significant, so the appropriate range is limited to 0.03% or less. Although the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.001%.
S: 0.0001 to 0.01%
S adversely affects weldability and manufacturability during casting and hot rolling. Therefore, the upper limit is set to 0.01% or less. Although the lower limit of S is not particularly defined, it is preferable to set this value as the lower limit because it is economically disadvantageous to make it less than 0.0001%. In addition, since S is combined with Mn to form coarse MnS, the hole expandability is lowered. For this reason, it is necessary to reduce as much as possible in order to improve hole expansibility.
Al: less than 0.10% Al promotes ferrite formation and improves ductility, so it may be added. It can also be used as a deoxidizer. However, excessive addition increases the number of Al-based coarse inclusions, causing deterioration of hole expansibility and surface scratches. From this, the upper limit of Al addition was set to 0.1%. The lower limit is not particularly limited, but it is difficult to set the lower limit to 0.0005% or less, which is a practical lower limit.

N:0.0005〜0.01%
Nは、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させることから、添加量を抑える必要がある。これは、Nが0.01%を超えると、この傾向が顕著となることから、N含有量の範囲を0.01%以下とした。加えて、溶接時のブローホール発生の原因になることから少ない方が良い。下限は、特に定めることなく本発明の効果は発揮されるが、N含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くことから、これが実質的な下限である。
O:0.0005〜0.007%
Oは、酸化物を形成し、曲げ性や穴拡げ性を劣化させることから、添加量を抑える必要がある。特に、酸化物は介在物として存在する場合が多く、打抜き端面、あるいは、切断面に存在すると、端面に切り欠き状の傷や粗大なディンプルを形成することから、穴拡げ時や強加工時に、応力集中を招き、亀裂形成の起点となり大幅な穴拡げ性あるいは曲げ性の劣化をもたらす。これは、Oが0.007%を超えると、この傾向が顕著となることから、O含有量の上限を0.007%以下とした。0.0005%と未満とすることは、製鋼時の脱酸などに手間が掛かり、過度のコスト高を招き経済的に好ましくないことから、これを下限とした。ただし、Oを0.0005%未満としたとしても、本発明の効果である540MPa以上のTSと優れた延性を確保可能である。
B:0.0001〜0.010%
Bは、0.0001%以上の添加で粒界の強化や鋼材の強度化に有効であるが、その添加量が0.010%を超えると、その効果が飽和するばかりでなく、熱延時の製造製を低下させることから、その上限を0.010%とした。
Cr:0.01〜1.0%
Crは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため下限値を0.01%とした。1%超含有すると大幅なコスト高を招くことから上限を1%とした。
N: 0.0005 to 0.01%
N forms coarse nitrides and degrades bendability and hole expansibility, so it is necessary to suppress the addition amount. This is because when N exceeds 0.01%, this tendency becomes remarkable. Therefore, the range of N content is set to 0.01% or less. In addition, it is better to use less because it causes blowholes during welding. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, if the N content is less than 0.0005%, the manufacturing cost is significantly increased, and this is a substantial lower limit.
O: 0.0005 to 0.007%
O forms an oxide and degrades bendability and hole expansibility, so it is necessary to suppress the addition amount. In particular, oxides often exist as inclusions, and when they are present on the punched end surface or cut surface, they form notched scratches and coarse dimples on the end surface, so when expanding holes or during strong processing, It causes stress concentration and becomes the starting point of crack formation, resulting in a significant deterioration of hole expansibility or bendability. This is because this tendency becomes significant when O exceeds 0.007%, so the upper limit of the O content is set to 0.007% or less. If the content is less than 0.0005%, deoxidation at the time of steelmaking takes time, and excessive costs are increased, which is economically undesirable. However, even if O is less than 0.0005%, TS of 540 MPa or more, which is the effect of the present invention, and excellent ductility can be secured.
B: 0.0001 to 0.010%
B is effective for strengthening grain boundaries and strengthening steel by addition of 0.0001% or more, but when the addition amount exceeds 0.010%, the effect is not only saturated but also during hot rolling. The upper limit is set to 0.010% because manufacturing is reduced.
Cr: 0.01 to 1.0%
Cr is a strengthening element and is important for improving hardenability. However, if it is less than 0.01%, these effects cannot be obtained, so the lower limit was set to 0.01%. If the content exceeds 1%, a significant increase in cost is caused, so the upper limit was made 1%.

Ni:0.01〜1.0%
Niは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため下限値を0.01%とした。1%超含有すると大幅なコスト高を招くことから上限を1%とした。
Cu:0.01〜1.0%
Cuは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため下限値を0.01%とした。逆に、1%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため、上限値を1%とした。
Mo:0.01〜1.0%
Moは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため下限値を0.01%とした。1%超含有すると大幅なコスト高を招くことから上限は1%であるが、0.3%以下がより好ましい。
Nb:Nbは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.001%未満ではこれらの効果が得られないため、下限値を0.001%とした。0.14%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.14%とした。
Ti:Tiは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.001%未満ではこれらの効果が得られないため、下限値を0.001%とした。0.14%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.14%とした。
V:Vは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.001%未満ではこれらの効果が得られないため、下限値を0.001%とした。0.14%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.14%とした。
Ca、Ce、Mg、REMから選ばれる1種または2種以上を合計で0.0001〜0.5%添加できる。Ca、Ce、Mg、REMは脱酸に用いる元素であり、1種または2種以上を合計で0.0001%以上含有することで、脱酸後の酸化物サイズを低下可能であり、穴拡げ性向上に寄与する。
しかしながら、含有量が合計で0.5%を超えると、成形加工性の悪化の原因となる。そのため、含有量を合計で0.0001〜0.5%とした。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明において、REMやCeはミッシュメタルにて添加されることが多く、LaやCeの他にランタノイド系列の元素を複合で含有する場合がある。不可避不純物として、これらLaやCe以外のランタノイド系列の元素を含んだとしても本発明の効果は発揮される。ただし、金属LaやCeを添加したとしても本発明の効果は発揮される。
Ni: 0.01 to 1.0%
Ni is a strengthening element and is important for improving hardenability. However, if it is less than 0.01%, these effects cannot be obtained, so the lower limit was set to 0.01%. If the content exceeds 1%, a significant increase in cost is caused, so the upper limit was made 1%.
Cu: 0.01 to 1.0%
Cu is a strengthening element and is important for improving hardenability. However, if it is less than 0.01%, these effects cannot be obtained, so the lower limit was set to 0.01%. On the other hand, if the content exceeds 1%, the manufacturability at the time of production and hot rolling is adversely affected, so the upper limit was made 1%.
Mo: 0.01 to 1.0%
Mo is a strengthening element and is important for improving hardenability. However, if it is less than 0.01%, these effects cannot be obtained, so the lower limit was set to 0.01%. If the content exceeds 1%, the cost is significantly increased, so the upper limit is 1%, but 0.3% or less is more preferable.
Nb: Nb is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.001%, these effects cannot be obtained, so the lower limit was set to 0.001%. If the content exceeds 0.14%, the precipitation of carbonitride increases and the formability deteriorates, so the upper limit was made 0.14%.
Ti: Ti is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.001%, these effects cannot be obtained, so the lower limit was set to 0.001%. If the content exceeds 0.14%, the precipitation of carbonitride increases and the formability deteriorates, so the upper limit was made 0.14%.
V: V is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.001%, these effects cannot be obtained, so the lower limit was set to 0.001%. If the content exceeds 0.14%, the precipitation of carbonitride increases and the formability deteriorates, so the upper limit was made 0.14%.
One or two or more selected from Ca, Ce, Mg, and REM can be added in a total amount of 0.0001 to 0.5%. Ca, Ce, Mg, and REM are elements used for deoxidation. By containing one or more kinds in total of 0.0001% or more, the oxide size after deoxidation can be reduced, and the hole is expanded. Contributes to improved performance.
However, when the content exceeds 0.5% in total, it causes deterioration of molding processability. Therefore, the content is made 0.0001 to 0.5% in total. Note that REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series. In the present invention, REM and Ce are often added by misch metal and may contain a lanthanoid series element in combination with La and Ce. Even if these lanthanoid series elements other than La and Ce are included as inevitable impurities, the effect of the present invention is exhibited. However, the effects of the present invention are exhibited even when metal La or Ce is added.

次に、本発明鋼板の製造条件の限定理由について説明する。
介在物の個数密度低減するためには、鋳造時に溶鋼にArを吹き込みつつ鋳造する必要がある。介在物は、鋳造時に形成するもの、転炉での精錬の際に除去できなかったもののいずれの介在物除去にも効果がある。この際のArの吹き込み量は、2〜30 l/分とすることが望ましい。これは、吹き込み量が2 l/分未満では、介在物除去効果が小さく、吹き込み量が30 l/分を超えると、介在物除去効果が飽和するばかりか、経済上不利になると共に、過度のArの吹き込みは、鋳造時の溶鋼表面を不安定にし、鋳造を困難とするためである。また、吹き込みガスをArとしたのは、溶鋼と反応しない不活性ガスであるためである。NやOは、Feや添加した合金元素と反応し、窒化物や酸化物、即ち、介在物を形成することから好ましくない。一方、Heは、高価であることから経済上好ましくない。
Next, the reasons for limiting the production conditions of the steel sheet of the present invention will be described.
In order to reduce the number density of inclusions, it is necessary to perform casting while blowing Ar into the molten steel during casting. Inclusions are effective in removing both inclusions formed during casting and those that could not be removed during refining in a converter. The amount of Ar blown at this time is preferably 2 to 30 l / min. This is because the inclusion removal effect is small when the blowing rate is less than 2 l / min, and when the blowing rate exceeds 30 l / min, the inclusion removal effect is saturated, and it is economically disadvantageous. This is because Ar blowing makes the surface of the molten steel unstable during casting and makes casting difficult. The reason why the blowing gas is Ar is that it is an inert gas that does not react with molten steel. N and O are not preferable because they react with Fe and added alloy elements to form nitrides and oxides, that is, inclusions. On the other hand, He is not economically preferable because it is expensive.

以下に詳細な製造条件の限定理由に関して述べる。
熱延スラブ加熱温度は、1050℃以上にする必要がある。スラブ加熱温度が過度に低いと、仕上げ圧延温度がAr3変態点を下回ってしまいフェライト及びオーステナイトの二相域圧延となり、熱延板組織が不均一な混粒組織となり、冷延及び焼鈍工程を経たとしても不均一な組織は解消されず、延性や穴拡げ性に劣る。また、本発明に係る鋼板は、焼鈍後に540MPa以上の引張最大強度を確保するため、比較的多量の合金元素を添加していることから、仕上げ圧延時の強度も高くなりがちである。スラブ加熱温度の低下は、仕上げ圧延温度の低下を招き、更なる圧延荷重の増加を招き、圧延が困難となったり、圧延後の鋼板の形状不良を招く懸念があることから、スラブ加熱温度は、1050℃以上とする必要がある。スラブ加熱温度の上限は特に定めることなく、本発明の効果は発揮されるが、加熱温度を過度に高温にすることは、経済上好ましくないことから、加熱温度の上限は1300℃未満とすることが望ましい。
The reason for limiting the detailed manufacturing conditions will be described below.
The hot-rolled slab heating temperature needs to be 1050 ° C. or higher. If the slab heating temperature is excessively low, the finish rolling temperature falls below the Ar3 transformation point, resulting in a two-phase rolling of ferrite and austenite, and the hot rolled sheet structure becomes a heterogeneous mixed grain structure, which has undergone cold rolling and annealing processes. However, the non-uniform structure is not eliminated and the ductility and hole expansibility are poor. Moreover, since the steel plate which concerns on this invention ensures the tensile maximum strength of 540 Mpa or more after annealing, since the comparatively large amount of alloy elements are added, the intensity | strength at the time of finish rolling tends to become high. The decrease in the slab heating temperature causes a decrease in the finish rolling temperature, further increases the rolling load, and there is a concern that rolling may become difficult or the shape of the steel sheet after rolling may be poor. It is necessary to be 1050 ° C. or higher. The upper limit of the slab heating temperature is not particularly defined, and the effect of the present invention is exhibited. However, since it is economically undesirable to make the heating temperature too high, the upper limit of the heating temperature should be less than 1300 ° C. Is desirable.

仕上げ圧延温度は、Ar3変態点以上にする必要がある。仕上げ圧延温度がオーステナイト+フェライトの2相域になると、鋼板内の組織不均一性が大きくなり、焼鈍後の成形性が劣化するので、Ar3変態温度以上が望ましい。
なお、Ar3変態温度は合金組成に応じて次の式により計算し、把握することができる。
Ar3=901−325×C+33×Si−92×(Mn+Ni/2+Cr/2+Cu/2+Mo/2)
The finish rolling temperature needs to be higher than the Ar3 transformation point. When the finish rolling temperature is in the two-phase region of austenite + ferrite, the structure non-uniformity in the steel sheet increases, and the formability after annealing deteriorates. Therefore, the Ar3 transformation temperature or higher is desirable.
The Ar3 transformation temperature can be calculated and grasped by the following equation according to the alloy composition.
Ar3 = 901-325 × C + 33 × Si-92 × (Mn + Ni / 2 + Cr / 2 + Cu / 2 + Mo / 2)

一方、仕上げ温度の上限は特に定めることなく、本発明の効果は発揮されるが、仕上げ圧延温度を過度に高温とした場合、その温度を確保するため、スラブ加熱温度を過度に高温にせねばならない。このことから、仕上げ圧延温度の上限温度は、1000℃以下とすることが望ましい。
熱間圧延後の巻き取り温度は670℃以下にすることが好ましい。670℃を超えると熱延組織中に粗大なフェライトやパーライト組織が存在するため、焼鈍後の組織不均一性が大きくなり、最終製品の延性が劣化する。焼鈍後の組織を微細にして強度延性バランスを向上させる、更には、第二相を均一分散させ穴拡げ性を向上させる観点からは600℃以下で巻き取ることがより好ましい。また、670℃を超える温度で巻き取ることは、鋼板表面に形成する酸化物の厚さを過度に増大させるため、酸洗性が劣るので好ましくない。下限については特に定めることなく本発明の効果は発揮されるが、室温以下の温度で巻き取ることは技術的に難しいので、これが実質の下限となる。なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。
On the other hand, the upper limit of the finishing temperature is not particularly defined, and the effect of the present invention is exhibited. However, when the finishing rolling temperature is excessively high, the slab heating temperature must be excessively high in order to secure the temperature. . For this reason, the upper limit temperature of the finish rolling temperature is desirably 1000 ° C. or less.
The winding temperature after hot rolling is preferably 670 ° C. or lower. When the temperature exceeds 670 ° C., coarse ferrite and pearlite structures exist in the hot-rolled structure, so that the structure non-uniformity after annealing increases, and the ductility of the final product deteriorates. It is more preferable to wind up at 600 ° C. or less from the viewpoint of improving the strength ductility balance by making the microstructure after annealing fine, and further improving the hole expandability by uniformly dispersing the second phase. In addition, winding at a temperature exceeding 670 ° C. is not preferable because the thickness of the oxide formed on the steel sheet surface is excessively increased, and the pickling property is poor. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, since it is technically difficult to wind up at a temperature of room temperature or lower, this is the actual lower limit. Note that rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.

このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、最終製品の冷延高強度鋼板の化成性や、溶融亜鉛あるいは合金化溶融亜鉛めっき鋼板用の冷延鋼板の溶融めっき性向上のためには重要である。また、一回の酸洗を行っても良いし、複数回に分けて酸洗を行っても良い。   The hot-rolled steel sheet thus manufactured is pickled. Since pickling can remove oxides on the surface of steel sheets, it can improve the chemical conversion properties of cold-rolled high-strength steel sheets as final products, and improve the hot-plating properties of cold-rolled steel sheets for hot-dip galvanized or galvannealed steel sheets It is important for that. Moreover, pickling may be performed once, or pickling may be performed in a plurality of times.

酸洗した熱延鋼板を圧下率40〜70%で冷間圧延して、連続焼鈍ラインや連続溶融亜鉛めっきラインを通板する。圧下率が40%未満では、形状を平坦に保つことが困難である。また、最終製品の延性が劣悪となるのでこれを下限とする。一方、70%を越える冷延は、冷延荷重が大きくなりすぎてしまい冷延が困難となることから、これを上限とする。圧下率45〜65%がより好ましい範囲である。圧延パスの回数、各パス毎の圧下率については特に規定することなく本発明の効果は発揮される。
冷間圧延後、最高加熱温度760〜870℃の間で焼鈍する。760℃未満では、セメンタイトやパーライトからオーステナイトへの逆変態に過度の時間を要するためである。加えて、最高到達温度が、760℃未満では、セメンタイトやパーライトの一部がオーステナイトへと変態できず、焼鈍後も鋼板組織中に残存してしまう。このセメンタイトやパーライトは粗大であることから、穴拡げ性の劣化を引き起こすことから好ましくない。あるいは、オーステナイトが変態して出来たベイナイトやマルテンサイト、あるいは、オーステナイトそのものが加工時にマルテンサイトへと変態することで、540MPa以上の強度を達成可能であることから、セメンタイトやパーライトの一部がオーステナイトへと変態しないと、硬質組織が少なくなりすぎてしまい540MPa以上の強度を確保することが出来ない。このことから、最高加熱温度の下限は760℃とする必要がある。一方、過度に加熱温度を上げることは、経済上好ましくない。このことから加熱温度の上限を870℃とすることが望ましい。
The pickled hot-rolled steel sheet is cold-rolled at a rolling reduction of 40 to 70% and passed through a continuous annealing line or a continuous hot-dip galvanizing line. If the rolling reduction is less than 40%, it is difficult to keep the shape flat. Moreover, since the ductility of the final product becomes poor, this is the lower limit. On the other hand, cold rolling exceeding 70% makes the cold rolling difficult because the cold rolling load becomes too large. A rolling reduction of 45 to 65% is a more preferable range. The effect of the present invention is exhibited without particularly specifying the number of rolling passes and the rolling reduction for each pass.
After cold rolling, annealing is performed at a maximum heating temperature of 760 to 870 ° C. This is because if the temperature is lower than 760 ° C., an excessive time is required for reverse transformation from cementite or pearlite to austenite. In addition, when the maximum attainable temperature is less than 760 ° C., part of cementite and pearlite cannot be transformed into austenite and remain in the steel sheet structure even after annealing. Since this cementite and pearlite are coarse, it is not preferable because it causes deterioration of hole expansibility. Alternatively, bainite and martensite formed by transformation of austenite, or austenite itself can be transformed into martensite during processing, so that a strength of 540 MPa or more can be achieved. If it does not transform into, the hard structure becomes too small and it is not possible to secure a strength of 540 MPa or more. Therefore, the lower limit of the maximum heating temperature needs to be 760 ° C. On the other hand, it is economically undesirable to raise the heating temperature excessively. Therefore, it is desirable that the upper limit of the heating temperature is 870 ° C.

本発明では、630℃〜570℃間を平均冷却速度3℃/秒以上で冷却する必要がある。冷却速度が小さすぎると、冷却過程にてオーステナイトがパーライト組織へと変態することから、540MPa以上の強度に必要な量の硬質組織を確保できない。冷却速度を大きくしたとしても、材質上なんら問題はないが、過度に冷却速度を上げる事は、製造コスト高を招くこととなるので、上限を200℃/秒とすることが好ましい。冷却方法については、ロール冷却、空冷、水冷およびこれらを併用したいずれの方法でも構わない。
本発明では、引き続き450℃〜300℃の温度域で30秒以上保持する必要がある。これは、オーステナイトを、ベイナイトへと変態させるためである。450℃超の温度域にて保持を行うと、粗大なセメンタイトが粒界に析出するため、穴拡げ性が大幅に劣化する。このことから上限温度を450℃とする。一方、保持温度が300℃未満では、ベイナイト変態がほとんど起こらず、オーステナイトはその後の冷却過程にて、マルテンサイトへと変態することとなる。その結果、フェライト及びベイナイトよりなる組織とすることが出来ず、穴拡げ性が大幅に劣化する。このことから300℃が下限の温度である。
In the present invention, it is necessary to cool between 630 ° C. and 570 ° C. at an average cooling rate of 3 ° C./second or more. If the cooling rate is too low, austenite transforms into a pearlite structure during the cooling process, and thus a hard structure of an amount necessary for a strength of 540 MPa or more cannot be secured. Even if the cooling rate is increased, there is no problem in terms of the material. However, excessively increasing the cooling rate leads to an increase in manufacturing cost, so the upper limit is preferably set to 200 ° C./second. The cooling method may be roll cooling, air cooling, water cooling, or any combination of these methods.
In the present invention, it is necessary to keep the temperature in the temperature range of 450 ° C. to 300 ° C. for 30 seconds or longer. This is because austenite is transformed into bainite. When holding in a temperature range higher than 450 ° C., coarse cementite precipitates at the grain boundaries, so that the hole expandability is greatly deteriorated. Therefore, the upper limit temperature is set to 450 ° C. On the other hand, when the holding temperature is less than 300 ° C., bainite transformation hardly occurs, and austenite is transformed into martensite in the subsequent cooling process. As a result, the structure cannot be made of ferrite and bainite, and the hole expandability is greatly deteriorated. Therefore, 300 ° C. is the lower limit temperature.

保持時間が450℃〜300℃の温度域で30秒未満では、ベイナイト組織が形成したとしても、その体積率は、十分でなく、残ったオーステナイトが引き続き行われる冷却過程でマルテンサイトへと変態することから、穴拡げ性に劣る。このことから滞留時間の下限は30秒以上とする。滞留時間の上限は特に定めることなく、本発明の効果を得ることが出来るが、滞留時間の増加は、有限の長さを有する設備での熱処理を考えた場合、通板速度を落とした操業を意味することから、経済性が悪く好ましくない。
なお、保持とは等温保持のみさすのではなく、450〜300℃の温度域で滞留させることを意味する。即ち、一旦、300℃に冷却した後、450℃まで加熱しても良いし、450℃に冷却後300℃まで冷却しても良い。
熱処理後には、表面粗度の制御、板形状制御、あるいは、降伏点伸びの抑制のためには、スキンパス圧延を行うことが望ましい。その際のスキンパス圧延の圧下率は、0.1〜1.5%の範囲が好ましい。スキンパス圧延率は、0.1%未満では効果が小さく、制御も困難であることから、これが下限となる。1.5%超えると生産性が著しく低下するのでこれを上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。
When the holding time is 450 ° C. to 300 ° C. for less than 30 seconds, even if a bainite structure is formed, the volume ratio is not sufficient, and the remaining austenite is transformed into martensite in the subsequent cooling process. Therefore, it is inferior to hole expansibility. For this reason, the lower limit of the residence time is 30 seconds or more. The upper limit of the residence time is not particularly defined, and the effect of the present invention can be obtained. However, the increase in residence time can be achieved by lowering the plate passing speed when considering heat treatment in a facility having a finite length. This means that it is not preferable because it is not economical.
In addition, holding does not only mean isothermal holding, but means retaining in a temperature range of 450 to 300 ° C. That is, after cooling to 300 ° C., it may be heated to 450 ° C., or may be cooled to 450 ° C. and then cooled to 300 ° C.
After the heat treatment, it is desirable to perform skin pass rolling in order to control surface roughness, plate shape control, or suppression of yield point elongation. The reduction ratio of the skin pass rolling at that time is preferably in the range of 0.1 to 1.5%. If the skin pass rolling rate is less than 0.1%, the effect is small and control is difficult, so this is the lower limit. If it exceeds 1.5%, the productivity is remarkably lowered, so this is the upper limit. The skin pass may be performed inline or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.

冷延後に溶融亜鉛めっきラインを通板する場合の最高加熱温度も、連続焼鈍ラインを通板する場合と同様の理由により、760〜870℃とする。焼鈍後の冷却に関しても、連続焼鈍ラインを通板する場合と同様の理由により、630℃と570℃間を3℃/秒以上で冷却する必要がある。
めっき浴浸漬板温度は、溶融亜鉛めっき浴温度より40℃低い温度から溶融亜鉛めっき浴温度より50℃高い温度までの温度範囲とすることが望ましい。浴浸漬板温度が溶融亜鉛めっき浴温度−40)℃を下回ると、めっき浴浸漬進入時の抜熱が大きく、溶融亜鉛の一部が凝固してしまいめっき外観を劣化させる場合があることから、下限を(溶融亜鉛めっき浴温度−40)℃とする。ただし、浸漬前の板温度が(溶融亜鉛めっき浴温度−40)℃を下回っても、めっき浴浸漬前に再加熱を行い、板温度を(溶融亜鉛めっき浴温度−40)℃以上としてめっき浴に浸漬させても良い。また、めっき浴浸漬温度が(溶融亜鉛めっき浴温度+50)℃を超えると、めっき浴温度上昇に伴う操業上の問題を誘発する。また、めっき浴は、純亜鉛に加え、Fe、Al、Mg、Mn、Si、Crなどを含有しても構わない。
また、めっき層の合金化を行う場合には、460℃以上で行う。合金化処理温度が460℃未満であると合金化の進行が遅く、生産性が悪い。上限は特に限定しないが、600℃を超えると、炭化物が形成し硬質組織(マルテンサイト、ベイナイト、残留オーステナイト)体積率を減少させ、540MPa以上の強度確保が難しくなるので、これが実質的な上限である。
The maximum heating temperature when passing through the hot dip galvanizing line after cold rolling is set to 760 to 870 ° C. for the same reason as when passing through the continuous annealing line. Regarding the cooling after annealing, it is necessary to cool between 630 ° C. and 570 ° C. at 3 ° C./second or more for the same reason as when the continuous annealing line is passed through.
The plating bath immersion plate temperature is preferably in a temperature range from a temperature 40 ° C. lower than the hot dip galvanizing bath temperature to a temperature 50 ° C. higher than the hot dip galvanizing bath temperature. If the bath immersion plate temperature is lower than the hot dip galvanizing bath temperature −40) ° C., the heat removal at the time of immersion in the plating bath is large, and part of the molten zinc may solidify and deteriorate the plating appearance. The lower limit is (hot dip galvanizing bath temperature −40) ° C. However, even if the plate temperature before immersion is lower than (hot dip galvanizing bath temperature −40) ° C., reheating is performed before immersion in the plating bath, and the plate temperature is set to (hot dip galvanizing bath temperature −40) ° C. or higher. It may be immersed in. On the other hand, if the plating bath immersion temperature exceeds (hot dip galvanizing bath temperature + 50) ° C., operational problems accompanying the rise of the plating bath temperature are induced. Further, the plating bath may contain Fe, Al, Mg, Mn, Si, Cr, etc. in addition to pure zinc.
Moreover, when alloying a plating layer, it carries out at 460 degreeC or more. When the alloying treatment temperature is less than 460 ° C., the progress of alloying is slow and the productivity is poor. The upper limit is not particularly limited, but if it exceeds 600 ° C., carbide is formed and the volume ratio of hard structure (martensite, bainite, retained austenite) is reduced, and it becomes difficult to ensure the strength of 540 MPa or more. is there.

めっき浴浸漬前、あるいは、浸漬後のいずれか一方、あるいは、両方で、(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持する付加的な熱処理を行う必要がある。熱処理温度の上限を(亜鉛めっき浴温度+50)℃としたのは、この温度以上では、セメンタイトやパーライトの形成が顕著となり、硬質組織の体積率を減じることから、540MPa以上の強度確保が困難となるためである。一方、300℃未満では、ベイナイト変態の進行が遅すぎてしまい、組織をフェライト及びベイナイトよりなる組織とすることが出来ない。このことから下限は、300℃以上とする。
保持時間は30秒以上とする必要がある。保持時間が30秒未満では、ベイナイト組織が形成したとしても、その体積率は、十分でなく、残ったオーステナイトが引き続き行われる冷却過程でマルテンサイトへと変態することから、穴拡げ性に劣る。このことから滞留時間の下限は30秒以上とする。滞留時間の上限は特に定めることなく、本発明の効果を得ることが出来るが、滞留時間の増加は、有限の長さを有する設備での熱処理を考えた場合、通板速度を落とした操業を意味することから、経済性が悪く好ましくない。保持時間とは、単に等温保持のみを意味するのではなく、この温度域での滞留を意味し、この温度域での除冷や加熱も含まれる。
It is necessary to perform an additional heat treatment for 30 seconds or more in the temperature range of (zinc plating bath temperature + 50) ° C. to 300 ° C. either before or after immersion in the plating bath, or after immersion. The upper limit of the heat treatment temperature is set to (zinc plating bath temperature +50) ° C. Above this temperature, the formation of cementite and pearlite becomes remarkable, and the volume fraction of the hard tissue is reduced, so it is difficult to ensure the strength of 540 MPa or more. It is to become. On the other hand, if it is less than 300 ° C., the progress of bainite transformation is too slow, and the structure cannot be made of ferrite and bainite. Therefore, the lower limit is set to 300 ° C. or higher.
The holding time needs to be 30 seconds or more. When the holding time is less than 30 seconds, even if a bainite structure is formed, the volume ratio is not sufficient, and the remaining austenite is transformed into martensite in the subsequent cooling process, and therefore the hole expandability is poor. For this reason, the lower limit of the residence time is 30 seconds or more. The upper limit of the residence time is not particularly defined, and the effect of the present invention can be obtained. However, the increase in residence time can be achieved by lowering the plate passing speed when considering heat treatment in a facility having a finite length. This means that it is not preferable because it is not economical. The holding time does not simply mean isothermal holding, but means residence in this temperature range, and includes cooling and heating in this temperature range.

また、(亜鉛めっき浴温度+50)℃〜300℃の温度範囲での30秒以上の付加的な熱処理も、めっき浴浸漬前、あるいは、浸漬後の何れか一方、あるいは、両方で行っても構わない。これは体積率5%以上の硬質組織を確保できるのであれば、いずれの条件で付加的な熱処理を行ったとしても、本発明の効果である540MPa以上の強度と、優れた延性並びに穴拡げ性が得られるためである。
熱処理後には、表面粗度の制御、板形状制御、あるいは、降伏点伸びの抑制のためには、スキンパス圧延を行うことが望ましい。その際のスキンパス圧延の圧下率は、0.1〜1.5%の範囲が好ましい。スキンパス圧延率は、0.1%未満では効果が小さく、制御も困難であることから、これが下限となる。1.5%超えると生産性が著しく低下するのでこれを上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。
また、めっき密着性をさらに向上させるために、焼鈍前に鋼板に、Ni、Cu、Co、Feの単独あるいは複数より成るめっきを施しても本発明を逸脱するものではない。
Further, the additional heat treatment for 30 seconds or more in the temperature range of (zinc plating bath temperature + 50) ° C. to 300 ° C. may be performed either before or after immersion in the plating bath, or both. Absent. As long as a hard structure having a volume ratio of 5% or more can be secured, even if an additional heat treatment is performed under any conditions, the strength of 540 MPa or more, which is the effect of the present invention, and excellent ductility and hole expansibility. Is obtained.
After the heat treatment, it is desirable to perform skin pass rolling in order to control surface roughness, plate shape control, or suppression of yield point elongation. The reduction ratio of the skin pass rolling at that time is preferably in the range of 0.1 to 1.5%. If the skin pass rolling rate is less than 0.1%, the effect is small and control is difficult, so this is the lower limit. If it exceeds 1.5%, the productivity is remarkably lowered, so this is the upper limit. The skin pass may be performed inline or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.
Further, in order to further improve the plating adhesion, the present invention does not depart from the present invention even if the steel plate is plated with Ni, Cu, Co, or Fe alone or before the annealing.

さらには、めっき前の焼鈍については、「脱脂酸洗後、非酸化雰囲気にて加熱し、H及びNを含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、めっき浴に侵漬」というゼンジマー法、「焼鈍時の雰囲気を調節し、最初、鋼板表面を酸化させた後、その後還元することによりめっき前の清浄化を行った後にめっき浴に侵漬」という全還元炉方式、あるいは、「鋼板を脱脂酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に侵漬」というフラックス法等があるが、いずれの条件で処理を行ったとしても本発明の効果は発揮できる。また、めっき前の焼鈍の手法によらず、加熱中の露点を―20℃以上とすることで、めっきの濡れ性やめっきの合金化の際の合金化反応に有利に働く。
なお、本冷延鋼板を電気めっきしても鋼板の有する引張強度、延性及び穴拡げ性を何ら損なうことはない。すなわち、本発明鋼板は電気めっき用素材としても好適である。有機皮膜や上層めっきを行ったとしても、本発明の効果は得られる。
また、本発明の成形性と穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板の素材は、通常の製鉄工程である精錬、製鋼、鋳造、熱延、冷延工程を経て製造されることを原則とするが、その一部あるいは全部を省略して製造されるものでも、本発明に係わる条件を満足する限り、本発明の効果を得ることができる。
Further, regarding annealing before plating, “after degreasing pickling, heating in a non-oxidizing atmosphere, annealing in a reducing atmosphere containing H 2 and N 2 , cooling to near the plating bath temperature, and invading the plating bath. Zenjimer method called “Kizuke”, an all-reduction furnace method called “immersion in the plating bath after adjusting the atmosphere during annealing, first oxidizing the steel plate surface, and then reducing it before cleaning by plating” Alternatively, there is a flux method such as “after degreasing and pickling a steel plate, and then fluxing it with ammonium chloride and soaking it in a plating bath”, etc. The effect of can be demonstrated. Regardless of the annealing method prior to plating, the dew point during heating is set to −20 ° C. or higher, which advantageously works on the wettability of the plating and the alloying reaction at the time of plating alloying.
In addition, even if this cold-rolled steel sheet is electroplated, the tensile strength, ductility, and hole expandability of the steel sheet are not impaired at all. That is, the steel sheet of the present invention is also suitable as a material for electroplating. Even if an organic film or upper layer plating is performed, the effect of the present invention can be obtained.
In addition, the material of the high strength and high ductility hot dip galvanized steel sheet excellent in formability and hole expansibility of the present invention is manufactured through refining, steel making, casting, hot rolling, and cold rolling processes that are normal iron making processes. However, even if it is manufactured by omitting part or all of it, the effects of the present invention can be obtained as long as the conditions according to the present invention are satisfied.

「実施例1」
次に、本発明を実施例により詳細に説明する。
表1に示す各種成分を有する各スラブを製造する場合、鋳造時の溶鋼にArガスを表2、表3に示す吹き込み量にて吹き込み、鋳造するとともに、得られた各スラブについて、1200℃に加熱し、仕上げ熱延温度900℃にて熱間圧延を行い、水冷帯にて水冷の後、表2、表3に示す温度で巻き取り処理を行った。熱延板を酸洗した後、厚み3mmの熱延板を1.2mmまで冷間圧延を行い、冷延板とした。
Example 1
Next, the present invention will be described in detail with reference to examples.
When each slab having various components shown in Table 1 is manufactured, Ar gas is blown into the molten steel at the time of casting in the blowing amounts shown in Tables 2 and 3 and cast, and each obtained slab is heated to 1200 ° C. Heating was performed, hot rolling was performed at a finish hot rolling temperature of 900 ° C., and water-cooling was performed in a water-cooling zone, followed by winding processing at temperatures shown in Tables 2 and 3. After pickling the hot-rolled sheet, the hot-rolled sheet having a thickness of 3 mm was cold-rolled to 1.2 mm to obtain a cold-rolled sheet.

Figure 2009249732
Figure 2009249732

Figure 2009249732
Figure 2009249732

Figure 2009249732
Figure 2009249732

「実施例2」
これらの冷延板に表2、表3に示す条件で焼鈍熱処理を行い、焼鈍設備により焼鈍を行った。炉内雰囲気は、COとH2を複合した気体を燃焼させ発生したH2O、CO2を導入する装置を取り付け、露点を−40℃としたH2を10体積%含むN2ガスを導入し、表2、表3で示す条件で焼鈍を行った。
また、めっき鋼板に関しては、連続溶融亜鉛めっき設備により焼鈍とめっきを行った。焼鈍条件並びに炉内雰囲気は、めっき性を確保するため、COとH2を複合した気体を燃焼させ発生したH2O、CO2を導入する装置を取り付け、露点を−10℃としたH2を10体積%含むN2ガスを導入し、表2、表3で示す条件で焼鈍を行った。特に、Siを多く含む鋼番号B、E、Fにおいて、上記、炉内雰囲気制御を行わないと、不めっきや合金化の遅延を生じ易いことから、Si含有量が高い鋼に溶融めっき、及び、合金化処理を行う場合、雰囲気(酸素ポテンシャル)制御を行う必要がある。その後、一部の鋼板については、480〜540℃の温度範囲にて合金化処理を行った。めっき鋼板の溶融亜鉛めっきの目付け量としては、両面とも約50g/m2とした。最後に、得られた鋼板について0.4%の圧下率でスキンパス圧延を行った。
"Example 2"
These cold-rolled sheets were subjected to annealing heat treatment under the conditions shown in Tables 2 and 3, and were annealed by annealing equipment. The furnace atmosphere is equipped with a device that introduces H 2 O and CO 2 generated by burning a gas that is a composite of CO and H 2, and N 2 gas containing 10% by volume of H 2 with a dew point of −40 ° C. is introduced. Then, annealing was performed under the conditions shown in Tables 2 and 3.
Moreover, about the plated steel plate, it annealed and plated with the continuous hot dip galvanization equipment. Annealing conditions and the furnace atmosphere in order to secure the plating properties, CO and H 2 of H 2 O generated by burning gas in complex, a device for introducing CO 2 mounting, H 2 that the dew point and -10 ° C. N 2 gas containing 10 vol% was introduced, and annealing was performed under the conditions shown in Tables 2 and 3. In particular, in steel numbers B, E, and F containing a large amount of Si, if the above furnace atmosphere control is not performed, non-plating and alloying are likely to be delayed. When the alloying process is performed, it is necessary to control the atmosphere (oxygen potential). Then, about some steel plates, the alloying process was performed in the temperature range of 480-540 degreeC. The basis weight of the hot dip galvanizing of the plated steel sheet was about 50 g / m 2 on both sides. Finally, skin pass rolling was performed on the obtained steel sheet at a rolling reduction of 0.4%.

「実施例3」
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板について、引張試験を行い、降伏応力(YS)、引張最大応力(TS)、全伸び(El)を測定した。その結果を表4、表5に示す。
"Example 3"
The obtained cold-rolled steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet were subjected to a tensile test, and yield stress (YS), maximum tensile stress (TS), and total elongation (El) were measured. The results are shown in Tables 4 and 5.

Figure 2009249732
Figure 2009249732

Figure 2009249732
Figure 2009249732

なお、本鋼板は、フェライトと硬質組織より成る複合組織鋼板であり、降伏点伸びが出現しない場合が多い。このことから、降伏応力は0.2%オフセット法により測定した。TS×Elが、16000(MPa×%)以上となるものを強度-延性バランスが良好な高強度鋼板とした。
穴拡げ率(λ)は、直径10mmの円形穴を、クリアランスが12.5%となる条件にて打ち抜き、かえりがダイ側となるようにし、60°円錐ポンチにて成形し、評価した。各条件とも、5回の穴拡げ試験を実施し、その平均値を穴拡げ率とした。TS×λが、40000(MPa×%)以上となるものを、強度-穴拡げ性バランスが良好な高強度鋼板とした。
この良好な強度-延性バランス、並びに、良好な強度-穴拡げ性バランスを同時に具備するものを、穴拡げ性と延性のバランスが優れた高強度鋼板とした。
In addition, this steel plate is a composite structure steel plate which consists of a ferrite and a hard structure, and yield point elongation does not appear in many cases. From this, the yield stress was measured by the 0.2% offset method. A steel sheet having a TS × El of 16000 (MPa ×%) or more was defined as a high-strength steel sheet having a good strength-ductility balance.
The hole expansion rate (λ) was evaluated by punching a circular hole having a diameter of 10 mm under the condition that the clearance was 12.5%, forming the burr on the die side, and molding with a 60 ° conical punch. Under each condition, five hole expansion tests were performed, and the average value was defined as the hole expansion ratio. A steel sheet having a TS × λ of 40000 (MPa ×%) or more was defined as a high-strength steel sheet having a good strength-hole expansibility balance.
A steel sheet having this good strength-ductility balance and a good strength-hole expansibility balance at the same time was used as a high-strength steel sheet having an excellent balance of hole expansibility and ductility.

また、介在物個数密度と、打ち抜き後の端面損傷の関係を調査するため、打ち抜き後の端面の観察を行い端面の評点付けを行った。介在物個数密度が多いと、打ち抜き時に介在物を引きずったと思われるI型ディンプルと呼ばれる板厚方向に伸びた傷(図1の金属組織写真参照)が多い。そこで、板厚方向に存在するI型ディンプルの個数密度を調査した。ただし、介在物は、圧延方向に伸びたり、点列状に配列していることから、観察面によって破面の形状が異なる。そこで、穴拡げ試験の際に、打ち抜き亀裂起因での亀裂が最も形成し易い、圧延方向に垂直な面を観察した。
打ち抜き端面の損傷は、上記のようにして調査し、以下の評点付けを行った。
○:個数密度15個/mm以下
△:個数密度15〜20個/mm以上
×:個数密度20個/mm以上
なお、表4と表5に示す如く介在物個数密度、圧延方向垂直な断面の損傷、穴拡げ値には、相関があった。
In order to investigate the relationship between the inclusion number density and end face damage after punching, the end face after punching was observed and the end face was scored. When the inclusion number density is high, there are many scratches (refer to the metal structure photograph in FIG. 1) extending in the thickness direction called I-type dimples, which are thought to have dragged inclusions during punching. Therefore, the number density of I-type dimples existing in the plate thickness direction was investigated. However, since the inclusions extend in the rolling direction or are arranged in a dot sequence, the shape of the fracture surface varies depending on the observation surface. Therefore, during the hole expansion test, a surface perpendicular to the rolling direction in which cracks due to punching cracks were most easily formed was observed.
The damage on the punched end face was investigated as described above, and the following rating was made.
○: Number density 15 pieces / mm 2 or less Δ: Number density 15 to 20 pieces / mm 2 or more ×: Number density 20 pieces / mm 2 or more In addition, as shown in Tables 4 and 5, the inclusion number density, vertical in the rolling direction There was a correlation between the cross-sectional damage and the hole expansion value.

表4または表5に示す鋼番号A−1〜3、5、7、9、11、12B-1、4、5、C−1、3、D−1、3、5、E−1、2、F−1、G−1、H−1、I−1、4、5の試料は、鋼板の化学的成分が本発明で規定する範囲内にあり、かつ、製造条件も本発明で規定する範囲内にある。
この結果、鋼板組織が主としてフェライトとベイナイトからなり、鋼板中に含まれる5μm超の非金属介在物の個数密度が15個/mm以下であり、引張最大強さが540MPa以上である優れた伸びフランジ性を有する高強度鋼板を提供することができる。
一方、表4または表5に示す鋼番号A−4、10、13、B−2、C−2、D−2、4、6、E−3、F−2、G−2、H−2、I−2、6、J−1の試料は、鋳造時のArガス吹き込みを行わなかった試料であるが、いずれの試料も介在物個数密度が15個/mmを超えて大きく、破断面損傷の結果×か△となった。
表4または表5に示す鋼番号A−8の試料は熱延巻取温度が720℃であり、高すぎる例、焼鈍温度も低すぎる例であるが、TS・Elの値が低くなった。
表4または表5に示す鋼番号A−15の試料は、630〜570℃間平均冷却速度が0.4℃/sと低い試料であるが、TS・EIの値が小さくなった。
表4または表5に示す鋼番号A−6、B−3、E−4、G−3、H−3、I−3の試料は、いずれも熱処理温度が低い試料であるが、TS・λの値が低くなった。
Steel numbers A-1 to 3, 5, 7, 9, 11, 12B-1, 4, 5, C-1, 3, D-1, 3, 5, E-1, 2 shown in Table 4 or Table 5. , F-1, G-1, H-1, I-1, 4, and 5 are within the range defined by the present invention for the chemical components of the steel sheet, and the production conditions are also defined by the present invention. Is in range.
As a result, the steel sheet structure is mainly composed of ferrite and bainite, the number density of non-metallic inclusions exceeding 5 μm contained in the steel sheet is 15 pieces / mm 2 or less, and the tensile elongation is 540 MPa or more. A high-strength steel plate having flangeability can be provided.
On the other hand, steel numbers A-4, 10, 13, B-2, C-2, D-2, 4, 6, E-3, F-2, G-2, H-2 shown in Table 4 or Table 5 , I-2, 6, and J-1 were samples in which Ar gas was not blown during casting, but each sample had a large inclusion number density of more than 15 pieces / mm 2 , As a result of the damage, X or Δ.
The sample of steel number A-8 shown in Table 4 or Table 5 has a hot rolling coiling temperature of 720 ° C. and is an example that is too high and an annealing temperature that is too low, but the value of TS · El was low.
The sample of steel number A-15 shown in Table 4 or Table 5 was a sample having a low average cooling rate between 630 and 570 ° C. of 0.4 ° C./s, but the value of TS · EI was small.
The samples of steel numbers A-6, B-3, E-4, G-3, H-3, and I-3 shown in Table 4 or Table 5 are all samples having a low heat treatment temperature, but TS · λ The value of became low.

表4または表5に示す鋼番号K−1の試料は、Cが多すぎる試料であり、TSが低下し、鋼番号L−1〜3はMnが多い試料であるが、いずれもEIの値が低下した。
以上のことから本願発明に従う試料であれば、鋼板組織が主としてフェライトとベイナイトからなり、鋼板中に含まれる5μm超の非金属介在物の個数密度が15個/mm以下であり、引張最大強さが540MPa以上であり、EIの値に優れ、TS・EIの値に優れ、TS・λの値にも優れた伸びフランジ性に極めて優れた高強度鋼板を提供できることが判明した。
The steel number K-1 sample shown in Table 4 or Table 5 is a sample having too much C, TS is lowered, and steel numbers L-1 to L-3 are samples having a lot of Mn. Decreased.
From the above, in the sample according to the present invention, the steel sheet structure is mainly composed of ferrite and bainite, the number density of non-metallic inclusions exceeding 5 μm contained in the steel sheet is 15 pieces / mm 2 or less, and the maximum tensile strength is It was found that a high-strength steel sheet having an excellent EI value, an excellent TS / EI value, and an excellent TS / λ value and excellent stretch flangeability can be provided.

本発明は、自動車用の構造用部材、補強用部材、足廻り用部材に好適な引張り最大強度540MPa以上であり、優れた伸びフランジ性を同時に具備する極めて成形性の優れた鋼板を安価に提供するものであり、この鋼板は例えば自動車用の構造部材や、補強用部材、足回り用部材などに用いて好適なことから、自動車の軽量化に大きく貢献することが期待でき、産業上の効果は極めて高い。   The present invention provides an inexpensive steel sheet having a maximum tensile strength of 540 MPa or more suitable for structural members, reinforcing members, and suspension members for automobiles, and having excellent stretch flangeability at the same time. This steel sheet is suitable for use in, for example, structural members for automobiles, reinforcing members, suspension members, and the like, so it can be expected to make a significant contribution to the weight reduction of automobiles. Is extremely expensive.

図1は鋼板の破断面においてI型ディンプルと称される多数の損傷部分が生じた組織を示す金属組織写真。FIG. 1 is a metallographic photograph showing a structure in which a number of damaged portions called I-type dimples are formed on a fracture surface of a steel sheet.

Claims (12)

質量%で、
C :0.05%〜0.20%、
Si:0.3〜2.0%、
Mn:1.3〜2.6%、
P :0.001〜0.03%、
S :0.0001〜0.01%、
Al:0.10%未満、
N :0.0005〜0.0100%、
O:0.0005〜0.007%、
を含有し、残部が鉄および不可避的不純物からなる組成を有し、鋼板組織が主としてフェライトとベイナイトからなり、鋼板中に含まれる5μm超の非金属介在物の個数密度が15個/mm以下であり、引張最大強さが540MPa以上であることを特徴とする極めて優れた伸びフランジ性を有する高強度鋼板。
% By mass
C: 0.05% to 0.20%,
Si: 0.3 to 2.0%,
Mn: 1.3-2.6%,
P: 0.001 to 0.03%,
S: 0.0001 to 0.01%
Al: less than 0.10%,
N: 0.0005 to 0.0100%,
O: 0.0005 to 0.007%,
In which the balance is composed of iron and inevitable impurities, the steel sheet structure is mainly composed of ferrite and bainite, and the number density of non-metallic inclusions exceeding 5 μm contained in the steel sheet is 15 pieces / mm 2 or less. A high-strength steel sheet having extremely excellent stretch flangeability, characterized in that the maximum tensile strength is 540 MPa or more.
さらに、質量%で、
B:0.0001〜0.010%未満、
を含有することを特徴とする請求項1に記載の極めて優れた伸びフランジ性を有する高強度鋼板。
Furthermore, in mass%,
B: 0.0001 to less than 0.010%,
The high-strength steel sheet having extremely excellent stretch flangeability according to claim 1, comprising:
さらに、質量%で、
Cr:0.01〜1.0%、
Ni:0.01〜1.0%、
Cu:0.01〜1.0%、
Mo:0.01〜1.0%
の1種または2種以上を含有することを特徴とする請求項1または2に記載の極めて優れた伸びフランジ性を有する高強度鋼板。
Furthermore, in mass%,
Cr: 0.01 to 1.0%,
Ni: 0.01 to 1.0%,
Cu: 0.01 to 1.0%,
Mo: 0.01 to 1.0%
The high-strength steel sheet having extremely excellent stretch flangeability according to claim 1 or 2, characterized by containing one or more of the following.
さらに、質量%で、
Nb、Ti、Vの1種または2種以上を合計で0.001〜0.14%含有することを特徴とする請求項1〜3のいずれか1項に記載の極めて優れた伸びフランジ性を有する高強度鋼板。
Furthermore, in mass%,
The extremely excellent stretch flangeability according to any one of claims 1 to 3, characterized by containing 0.001 to 0.14% of one or more of Nb, Ti, and V in total. Has high strength steel plate.
さらに、質量%で、Ca、Ce、Mg、REMの1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする請求項1〜4のいずれか1項に記載の極めて優れた伸びフランジ性を有する高強度鋼板。   Furthermore, 0.0001-0.5% of 1 type or 2 types in total of Ca, Ce, Mg, and REM is contained by mass%, The any one of Claims 1-4 characterized by the above-mentioned. High strength steel plate with extremely excellent stretch flangeability. 請求項1〜5のいずれか1項に記載の高強度鋼板の表面に亜鉛系めっきを有することを特徴とする極めて優れた伸びフランジ性を有する高強度鋼板。   A high-strength steel sheet having extremely excellent stretch flangeability, characterized by having zinc-based plating on the surface of the high-strength steel sheet according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の化学成分を有する鋳造スラブを鋳造するに当たって、溶鋼中にノズルを浸漬させ、Arガスを吹き込みつつ鋳造することを特徴とする極めて優れた伸びフランジ性を有する高強度鋼板の製造方法。   In casting a cast slab having the chemical component according to any one of claims 1 to 5, an extremely excellent stretch flangeability characterized by casting a nozzle in molten steel and blowing Ar gas. A method for producing a high-strength steel sheet having 請求項7に記載の鋳造を行った鋳片中に含まれる5μm超の粗大酸化物の個数密度が15個/mm未満であることを特徴とする鋳造スラブ。 A cast slab characterized in that the number density of coarse oxides exceeding 5 μm contained in the cast slab subjected to casting according to claim 7 is less than 15 pieces / mm 2 . 請求項8に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、400〜670℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続焼鈍ラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で冷却し、450℃〜300℃の温度域で30秒以上保持することを特徴とする極めて優れた伸びフランジ性を有する高強度鋼板の製造方法。   The cast slab according to claim 8 is directly or once cooled and then heated to 1050 ° C or higher, completes the hot rolling at the Ar3 transformation point or higher, wound in a temperature range of 400 to 670 ° C, and pickled. When cold rolling with a rolling reduction of 40 to 70% and passing through a continuous annealing line, after annealing at a maximum heating temperature of 760 to 870 ° C, cooling between 630 ° C and 570 ° C at an average cooling rate of 3 ° C / second or more And a method for producing a high-strength steel sheet having extremely excellent stretch flangeability, characterized by holding in a temperature range of 450 ° C. to 300 ° C. for 30 seconds or longer. 請求項8に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、400〜670℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続溶融亜鉛めっきラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で(亜鉛めっき浴温度―40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、亜鉛めっき浴に浸漬前、あるいは、浸漬後の何れか一方、あるいは、両方で、(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持することを特徴とする極めて優れた伸びフランジ性を有する高強度溶融亜鉛めっき鋼板の製造方法。   The cast slab according to claim 8 is directly or once cooled and then heated to 1050 ° C or higher, completes the hot rolling at the Ar3 transformation point or higher, wound in a temperature range of 400 to 670 ° C, and pickled. When cold rolling with a rolling reduction of 40 to 70% and passing through a continuous hot dip galvanizing line, after annealing at a maximum heating temperature of 760 to 870 ° C, an average cooling rate of 630 ° C to 570 ° C is 3 ° C / second or more. (Zinc plating bath temperature−40) ° C. to (Zinc plating bath temperature + 50) ° C., and before or after immersion in the zinc plating bath, or both, +50) A method for producing a high-strength hot-dip galvanized steel sheet having extremely excellent stretch flangeability, characterized by holding for 30 seconds or more in a temperature range of from ° C to 300 ° C. 請求項8に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、400〜670℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続溶融亜鉛めっきラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で(亜鉛めっき浴温度―40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、必要に応じて460〜540℃の温度で合金化処理を施し、亜鉛めっき浴に浸漬前、浸漬後、あるいは、合金化処理後の何れか、あるいは、合計で(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持することを特徴とする極めて優れた伸びフランジ性を有する高強度合金化溶融亜鉛めっき鋼板の製造方法。   The cast slab according to claim 8 is directly or once cooled and then heated to 1050 ° C or higher, completes the hot rolling at the Ar3 transformation point or higher, wound in a temperature range of 400 to 670 ° C, and pickled. When cold rolling with a rolling reduction of 40 to 70% and passing through a continuous hot dip galvanizing line, after annealing at a maximum heating temperature of 760 to 870 ° C, an average cooling rate of 630 ° C to 570 ° C is 3 ° C / second or more. After cooling to (Zinc plating bath temperature -40) ° C to (Zinc plating bath temperature +50) ° C, alloying treatment is performed at a temperature of 460 to 540 ° C as necessary, before and after immersion in the galvanizing bath. Or, after alloying treatment, or in total (zinc plating bath temperature +50) high temperature having excellent stretch flangeability characterized by holding in a temperature range of 30 ° C. to 300 ° C. for 30 seconds or more Alloyed hot dip zinc Method of manufacturing a can steel sheet. 請求項9に記載の方法で鋼板を製造したのち、亜鉛系の電気めっきを施すことを特徴とする請求項9に記載の極めて優れた伸びフランジ性を有する高強度電気亜鉛系めっき鋼板の製造方法。   The method for producing a high strength electrogalvanized steel sheet having extremely excellent stretch flangeability according to claim 9, wherein the steel sheet is produced by the method according to claim 9 and then zinc-based electroplating is performed. .
JP2008102850A 2008-04-10 2008-04-10 Method for producing high-strength steel sheet and method for producing high-strength electrogalvanized steel sheet Active JP5407168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102850A JP5407168B2 (en) 2008-04-10 2008-04-10 Method for producing high-strength steel sheet and method for producing high-strength electrogalvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102850A JP5407168B2 (en) 2008-04-10 2008-04-10 Method for producing high-strength steel sheet and method for producing high-strength electrogalvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2009249732A true JP2009249732A (en) 2009-10-29
JP5407168B2 JP5407168B2 (en) 2014-02-05

Family

ID=41310698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102850A Active JP5407168B2 (en) 2008-04-10 2008-04-10 Method for producing high-strength steel sheet and method for producing high-strength electrogalvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5407168B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172230A (en) * 2011-02-23 2012-09-10 Jfe Steel Corp Method for manufacturing high-tensile-strength hot-dip galvanized steel sheet
US9234253B2 (en) 2009-12-10 2016-01-12 Thyssenkrupp Steel Europe Ag Method for producing a flat steel product which can be readily formed, flat steel product and method for producing a component from such a flat steel product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240011113A1 (en) 2020-10-16 2024-01-11 Nippon Steel Corporation Steel sheet for hot stamping, method for manufacturing the same, hot stamped component, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316627A (en) * 1994-05-31 1995-12-05 Kawasaki Steel Corp Method for removing inclusion in molten metal
JP2002212674A (en) * 2001-01-19 2002-07-31 Nippon Steel Corp High strength cold rolled steel sheet having excellent hole expandability and ductility and production method therefor
JP2002363694A (en) * 2001-06-07 2002-12-18 Kobe Steel Ltd Superhigh strength cold rolled steel sheet having excellent bending workability
JP2004256906A (en) * 2003-02-28 2004-09-16 Nippon Steel Corp High strength steel sheet with excellent stretch-flange formability and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316627A (en) * 1994-05-31 1995-12-05 Kawasaki Steel Corp Method for removing inclusion in molten metal
JP2002212674A (en) * 2001-01-19 2002-07-31 Nippon Steel Corp High strength cold rolled steel sheet having excellent hole expandability and ductility and production method therefor
JP2002363694A (en) * 2001-06-07 2002-12-18 Kobe Steel Ltd Superhigh strength cold rolled steel sheet having excellent bending workability
JP2004256906A (en) * 2003-02-28 2004-09-16 Nippon Steel Corp High strength steel sheet with excellent stretch-flange formability and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234253B2 (en) 2009-12-10 2016-01-12 Thyssenkrupp Steel Europe Ag Method for producing a flat steel product which can be readily formed, flat steel product and method for producing a component from such a flat steel product
JP2012172230A (en) * 2011-02-23 2012-09-10 Jfe Steel Corp Method for manufacturing high-tensile-strength hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP5407168B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4659134B2 (en) High-strength steel sheet and galvanized steel sheet with excellent balance between hole expansibility and ductility and excellent fatigue durability, and methods for producing these steel sheets
JP5136182B2 (en) High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same
JP4964494B2 (en) High-strength steel sheet excellent in hole expansibility and formability and method for producing the same
JP5114747B2 (en) Manufacturing method of high-strength steel sheet with extremely good balance between hole expansibility and ductility and manufacturing method of galvanized steel sheet
JP4700764B2 (en) High-strength cold-rolled steel sheet excellent in formability and weldability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP4781836B2 (en) Ultra-high strength steel sheet excellent in hydrogen embrittlement resistance, its manufacturing method, manufacturing method of ultra-high strength hot-dip galvanized steel sheet, and manufacturing method of ultra-high-strength galvannealed steel sheet
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP5370104B2 (en) Manufacturing method of high strength steel plate having high tensile strength of 900 MPa or more excellent in hydrogen embrittlement resistance and high strength cold-rolled steel plate, manufacturing method of high strength galvanized steel plate
JP5412746B2 (en) High strength steel plate with good weldability and stretch flangeability
JP5720208B2 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet
JP4926814B2 (en) High strength steel plate with controlled yield point elongation and its manufacturing method
JP2007231373A (en) High-strength steel sheet having excellent hydrogen brittleness resistance in weld zone and its production method
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
JP2015151576A (en) HIGH STRENGTH STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 1300 MPa OR MORE AND EXCELLENT IN MOLDABILITY, HIGH STRENGTH GALVANIZED STEEL SHEET, HIGH STRENGTH ALLOY GALVANIZED STEEL SHEET AND MANUFACTURING METHOD THEREFOR
JP2005264323A (en) High strength steel sheet having excellent deep drawability and stretch flange formability and its production method
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP6683291B2 (en) Steel plate and method for manufacturing steel plate
JP5407168B2 (en) Method for producing high-strength steel sheet and method for producing high-strength electrogalvanized steel sheet
JP6032173B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having a maximum tensile strength of 980 MPa and excellent delayed fracture resistance
JP2003231944A (en) Steel thin-sheet for press and manufacturing method therefor
JP2003293082A (en) Thin steel sheet having excellent local ductility and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R151 Written notification of patent or utility model registration

Ref document number: 5407168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350