JP7388570B2 - Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method - Google Patents

Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method Download PDF

Info

Publication number
JP7388570B2
JP7388570B2 JP2022555184A JP2022555184A JP7388570B2 JP 7388570 B2 JP7388570 B2 JP 7388570B2 JP 2022555184 A JP2022555184 A JP 2022555184A JP 2022555184 A JP2022555184 A JP 2022555184A JP 7388570 B2 JP7388570 B2 JP 7388570B2
Authority
JP
Japan
Prior art keywords
rolled steel
steel sheet
cold
less
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022555184A
Other languages
Japanese (ja)
Other versions
JPWO2023286440A1 (en
JPWO2023286440A5 (en
Inventor
秀和 南
一輝 遠藤
勇樹 田路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2023286440A1 publication Critical patent/JPWO2023286440A1/ja
Publication of JPWO2023286440A5 publication Critical patent/JPWO2023286440A5/ja
Application granted granted Critical
Publication of JP7388570B2 publication Critical patent/JP7388570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/005Furnaces in which the charge is moving up or down
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法に関する。本発明は、特に、自動車、家電製品、及び建材等の分野で好適に使用され、鋼中に内在する水素量の少ない耐水素脆化特性に優れた鋼板を製造するための連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法に関する。 The present invention relates to a continuous annealing apparatus, a continuous hot-dip galvanizing apparatus, and a method for manufacturing steel sheets. The present invention is particularly directed to a continuous annealing apparatus and a continuous annealing apparatus for producing a steel plate having a small amount of hydrogen inherent in the steel and having excellent hydrogen embrittlement resistance, which is suitably used in the fields of automobiles, home appliances, and building materials. The present invention relates to a hot-dip galvanizing apparatus and a method for manufacturing steel sheets.

例えば、連続焼鈍装置及び連続溶融亜鉛めっき装置で、それぞれ焼鈍鋼板及び溶融亜鉛めっき鋼板を製造する際には、水素を含む還元性雰囲気下で鋼板の焼鈍が行われるため、この焼鈍時に鋼板中に水素が侵入する。鋼板に内在する水素は、鋼板の延性、曲げ性、伸びフランジ性などの成形性を低下させる。また、鋼板に内在する水素は、鋼板を脆化させ、遅れ破壊を引き起こし得る。そのため、鋼板中の水素量を低減させる処理が必要となる。 For example, when manufacturing annealed steel sheets and hot-dip galvanized steel sheets using continuous annealing equipment and continuous hot-dip galvanizing equipment, respectively, the steel sheets are annealed in a reducing atmosphere containing hydrogen. Hydrogen enters. Hydrogen inherent in a steel sheet reduces formability such as ductility, bendability, stretch flangeability, etc. of the steel sheet. Further, hydrogen inherent in the steel plate may cause the steel plate to become brittle and cause delayed fracture. Therefore, a treatment is required to reduce the amount of hydrogen in the steel sheet.

例えば、連続焼鈍装置及び連続溶融亜鉛めっき装置で製造後の製品コイルを室温下で放置することで、鋼中の水素量を低減することができる。しかし、室温においては、水素が鋼板の内部から表面に移動して、表面から脱離するのに時間がかかるため、鋼中の水素量を十分に低減するには、数週間以上の放置を要する。そのため、このような脱水素処理に要するスペースと時間が、製造工程上の問題となる。 For example, the amount of hydrogen in the steel can be reduced by leaving a product coil manufactured in a continuous annealing device and a continuous hot-dip galvanizing device at room temperature. However, at room temperature, it takes time for hydrogen to move from the inside of the steel sheet to the surface and desorb from the surface, so it takes several weeks or more to sufficiently reduce the amount of hydrogen in the steel. . Therefore, the space and time required for such dehydrogenation treatment pose problems in the manufacturing process.

また、特許文献1には、焼鈍後の鋼板、溶融亜鉛めっき鋼板、又は合金化溶融亜鉛めっき鋼板を、50℃以上300℃以下の温度域内で1800秒以上43200秒以下保持することによって、鋼中水素量を低減させる方法が開示されている。 Further, Patent Document 1 discloses that a steel sheet, a hot-dip galvanized steel sheet, or an alloyed hot-dip galvanized steel sheet after annealing is held in a temperature range of 50° C. or more and 300° C. or less for 1800 seconds or more and 43200 seconds or less. A method of reducing the amount of hydrogen is disclosed.

国際公開第2019/188642号International Publication No. 2019/188642

しかしながら、特許文献1においては、加熱による組織変化に起因した降伏強度の上昇や焼戻し脆化といった機械的特性の変化が懸念される。 However, in Patent Document 1, there are concerns about changes in mechanical properties such as an increase in yield strength and temper embrittlement due to structural changes due to heating.

そこで本発明は、上記課題に鑑み、生産効率を損なうことなく、機械的特性を変化させることなく、耐水素脆化特性に優れた鋼板を製造することが可能な連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention provides a continuous annealing apparatus and a continuous hot-dip galvanizing system that can produce steel sheets with excellent hydrogen embrittlement resistance without impairing production efficiency or changing mechanical properties. The purpose of the present invention is to provide an apparatus and a method for manufacturing steel sheets.

本発明者らは、上記課題を解決するべく、鋭意研究を重ねたところ、以下のことを見出した。すなわち、連続焼鈍装置(Continuous Annealing Line:CAL)又は連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)において、水素を含む還元性雰囲気で鋼板を焼鈍した後に、焼鈍温度から室温までの冷却過程で、引き続き通板中の鋼板に所定の振動数及び最大振幅の振動を付加することによって、鋼板中の水素を十分に効率良く低減させることができることが分かった。具体的には、鋼板を高い周波数かつ小さい最大振幅で微振動させることによって、鋼板中の水素を十分に効率良く低減させることができることが分かった。これは、以下のメカニズムによるものと推測される。鋼板を強制的に微振動させることで、鋼板にくり返し曲げ変形が与えられる。その結果、鋼板の厚み中心部に比べて表面の格子間隔が拡張する。鋼板中の水素は、格子間隔が広くポテンシャルエネルギーの低い鋼板表面に向かって拡散し、当該表面から脱離する。 The present inventors have conducted extensive research to solve the above problems and have discovered the following. That is, in a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL), a steel plate is annealed in a reducing atmosphere containing hydrogen, and then cooled from the annealing temperature to room temperature. During the process, it was found that by applying vibrations of a predetermined frequency and maximum amplitude to the steel sheet during subsequent threading, it was possible to reduce hydrogen in the steel sheet with sufficient efficiency. Specifically, it has been found that hydrogen in the steel plate can be sufficiently and efficiently reduced by slightly vibrating the steel plate at a high frequency and a small maximum amplitude. This is presumed to be due to the following mechanism. By forcibly vibrating the steel plate, the steel plate is repeatedly subjected to bending deformation. As a result, the lattice spacing on the surface is expanded compared to the center of the thickness of the steel plate. Hydrogen in the steel sheet diffuses toward the surface of the steel sheet, which has a wide lattice spacing and low potential energy, and is desorbed from the surface.

すなわち、本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1]冷延コイルから冷延鋼板を払い出すペイオフリールと、
前記冷延鋼板を通板させて連続焼鈍する焼鈍炉であって、通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置し、前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、前記冷却帯では前記冷延鋼板を冷却する焼鈍炉と、
前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる下流設備と、
前記下流設備を通板中の前記冷延鋼板を巻き取るテンションリールと、
前記冷却帯から前記テンションリールまでを通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加装置と、を有する連続焼鈍装置。
That is, the present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A payoff reel for discharging cold-rolled steel sheets from cold-rolled coils,
The annealing furnace continuously anneales the cold-rolled steel sheet by passing the sheet through the sheet, in which a heating zone, a soaking zone, and a cooling zone are located from the upstream side in the sheet passing direction, and in the heating zone and the soaking zone, reduction containing hydrogen is formed. an annealing furnace for annealing the cold-rolled steel sheet in a neutral atmosphere and cooling the cold-rolled steel sheet in the cooling zone;
downstream equipment that continues to pass the cold rolled steel sheet discharged from the annealing furnace;
a tension reel that winds up the cold-rolled steel sheet that is being passed through the downstream equipment;
With respect to the cold-rolled steel sheet being passed from the cooling zone to the tension reel, the vibration frequency of the cold-rolled steel sheet is 100 Hz or more and 100,000 Hz or less, and the maximum amplitude of the cold-rolled steel sheet is 10 nm or more and 500 μm or less. A continuous annealing device having a vibration adding device that adds vibration so that

[2]前記振動付加装置は、前記冷却帯に設けられる、上記[1]に記載の連続焼鈍装置。 [2] The continuous annealing device according to [1] above, wherein the vibration applying device is provided in the cooling zone.

[3]前記振動付加装置は、前記下流設備を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[1]又は[2]に記載の連続焼鈍装置。 [3] The continuous annealing apparatus according to [1] or [2], wherein the vibration applying device is provided at a position where it can apply vibration to the cold rolled steel sheet being passed through the downstream equipment.

[4]前記冷延鋼板に対する振動の付加時間が1秒以上となるように、前記振動付加装置の配置と、前記冷延鋼板の通板速度が設定された、上記[1]~[3]のいずれか一項に記載の連続焼鈍装置。 [4] [1] to [3] above, wherein the arrangement of the vibration applying device and the threading speed of the cold rolled steel sheet are set so that the vibration is applied to the cold rolled steel sheet for a period of 1 second or more. The continuous annealing device according to any one of the above.

[5]前記振動付加装置は、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記冷延鋼板に与える外力により前記冷延鋼板が振動するように構成される、上記[1]~[4]のいずれか一項に記載の連続焼鈍装置。 [5] The vibration applying device includes an electromagnet having a magnetic pole face spaced apart from and facing the surface of the cold rolled steel sheet, so that the cold rolled steel sheet vibrates due to an external force applied by the electromagnet to the cold rolled steel sheet. The continuous annealing apparatus according to any one of [1] to [4] above.

[6]前記振動付加装置は、前記冷延鋼板に接触する振動子を有し、前記振動子によって前記冷延鋼板が振動するように構成される、上記[1]~[4]のいずれか一項に記載の連続焼鈍装置。 [6] Any one of [1] to [4] above, wherein the vibration applying device has a vibrator that contacts the cold-rolled steel sheet, and is configured so that the cold-rolled steel sheet vibrates with the vibrator. The continuous annealing device according to item 1.

[7]上記[1]に記載の連続焼鈍装置と、
前記下流設備として、前記焼鈍炉の通板方向下流に位置し、前記冷延鋼板を浸漬させて、前記冷延鋼板に溶融亜鉛めっきを施す溶融亜鉛めっき浴と、
を有する連続溶融亜鉛めっき装置。
[7] The continuous annealing apparatus according to [1] above,
As the downstream equipment, a hot-dip galvanizing bath is located downstream of the annealing furnace in the sheet passing direction and immerses the cold-rolled steel sheet to apply hot-dip galvanization to the cold-rolled steel sheet;
Continuous hot dip galvanizing equipment.

[8]前記振動付加装置は、前記溶融亜鉛めっき浴より上流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[7]に記載の連続溶融亜鉛めっき装置。 [8] The continuous hot-dip galvanizing apparatus according to [7], wherein the vibration applying device is provided upstream of the hot-dip galvanizing bath at a position where it can apply vibrations to the cold-rolled steel sheet being passed through.

[9]前記振動付加装置は、前記溶融亜鉛めっき浴より下流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[7]又は[8]に記載の連続溶融亜鉛めっき装置。 [9] The continuous hot-dip galvanizing device according to [7] or [8] above, wherein the vibration applying device is provided at a position where it can apply vibration to the cold-rolled steel sheet being passed downstream from the hot-dip galvanizing bath. Plating equipment.

[10]前記下流設備として、前記溶融亜鉛めっき浴の通板方向下流に位置し、前記冷延鋼板を通板させて、前記溶融亜鉛めっきを加熱合金化する合金化炉を有する、上記[7]に記載の連続溶融亜鉛めっき装置。 [10] The downstream equipment includes an alloying furnace that is located downstream of the hot-dip galvanizing bath in the sheet-threading direction and heat-alloys the hot-dip galvanized steel sheet by passing the cold-rolled steel sheet through the hot-dip galvanizing bath. ] Continuous hot-dip galvanizing equipment.

[11]前記振動付加装置は、前記溶融亜鉛めっき浴より上流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[10]に記載の連続溶融亜鉛めっき装置。 [11] The continuous hot-dip galvanizing apparatus according to [10], wherein the vibration applying device is provided at a position upstream of the hot-dip galvanizing bath and capable of applying vibration to the cold-rolled steel sheet being passed through.

[12]前記振動付加装置は、前記溶融亜鉛めっき浴より下流を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、上記[10]又は[11]に記載の連続溶融亜鉛めっき装置。 [12] The continuous hot-dip galvanizing device according to [10] or [11] above, wherein the vibration applying device is provided at a position where it can apply vibration to the cold-rolled steel sheet being passed downstream from the hot-dip galvanizing bath. Plating equipment.

[13]前記冷延鋼板に対する振動の付加時間が1秒以上となるように、前記振動付加装置の配置と、前記冷延鋼板の通板速度が設定された、上記[7]~[12]のいずれか一項に記載の連続溶融亜鉛めっき装置。 [13] The above-mentioned [7] to [12], wherein the arrangement of the vibration applying device and the threading speed of the cold rolled steel sheet are set so that the vibration is applied to the cold rolled steel sheet for a period of 1 second or more. Continuous hot-dip galvanizing equipment according to any one of the above.

[14]前記振動付加装置は、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記冷延鋼板に与える外力により前記冷延鋼板が振動するように構成される、上記[7]~[13]のいずれか一項に記載の連続溶融亜鉛めっき装置。 [14] The vibration applying device includes an electromagnet having a magnetic pole face spaced apart from and facing the surface of the cold rolled steel sheet, so that the cold rolled steel sheet vibrates due to an external force applied to the cold rolled steel sheet by the electromagnet. The continuous hot-dip galvanizing apparatus according to any one of [7] to [13] above.

[15]前記振動付加装置は、前記冷延鋼板に接触する振動子を有し、前記振動子によって前記冷延鋼板が振動するように構成される、上記[7]~[13]のいずれか一項に記載の連続溶融亜鉛めっき装置。 [15] Any one of [7] to [13] above, wherein the vibration applying device has a vibrator that contacts the cold-rolled steel sheet, and is configured so that the cold-rolled steel sheet vibrates with the vibrator. Continuous hot-dip galvanizing equipment according to item 1.

[16](A)ペイオフリールにより冷延コイルから冷延鋼板を払い出す工程と、
(B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する焼鈍炉内に、前記冷延鋼板を通板させて、(B-1)前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、(B-2)前記冷却帯では前記冷延鋼板を冷却する、連続焼鈍を行う工程と、
(C)前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる工程と、
(D)テンションリールにより前記冷延鋼板を巻き取って、製品コイルとする工程と、をこの順に有し、
工程(B-2)以降、かつ、工程(D)より前において、通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加工程を含む鋼板の製造方法。
[16] (A) A step of paying out the cold rolled steel sheet from the cold rolled coil using a payoff reel,
(B) The cold rolled steel sheet is passed through an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are located from the upstream side in the sheet passing direction, and (B-1) In the heating zone and the soaking zone, Annealing the cold rolled steel sheet in a reducing atmosphere containing hydrogen, (B-2) cooling the cold rolled steel sheet in the cooling zone, performing continuous annealing;
(C) a step of continuously passing the cold rolled steel sheet discharged from the annealing furnace;
(D) winding up the cold rolled steel sheet with a tension reel to form a product coil, in this order;
After step (B-2) and before step (D), with respect to the cold rolled steel sheet being passed, the vibration frequency of the cold rolled steel sheet becomes 100 Hz or more and 100000 Hz or less, and A method for manufacturing a steel plate, including a vibration adding step of applying vibration so that the maximum amplitude of the steel plate is 10 nm or more and 500 μm or less.

[17]前記振動付加工程は、工程(B-2)にて行われる、上記[16]に記載の鋼板の製造方法。 [17] The method for producing a steel plate according to [16] above, wherein the vibration applying step is performed in step (B-2).

[18]前記振動付加工程は、工程(C)にて行われる、上記[16]又は[17]に記載の鋼板の製造方法。 [18] The method for manufacturing a steel plate according to [16] or [17] above, wherein the vibration applying step is performed in step (C).

[19]工程(C)は、(C-1)前記焼鈍炉の通板方向下流に位置する溶融亜鉛めっき浴に前記冷延鋼板を浸漬させて、前記冷延鋼板に溶融亜鉛めっきを施す工程を含む、上記[16]に記載の鋼板の製造方法。 [19] Step (C) is (C-1) a step of immersing the cold rolled steel sheet in a hot dip galvanizing bath located downstream of the annealing furnace in the sheet passing direction to apply hot dip galvanization to the cold rolled steel sheet. The method for producing a steel plate according to [16] above, comprising:

[20]前記振動付加工程は、工程(C-1)より前に行われる、上記[19]に記載の鋼板の製造方法。 [20] The method for producing a steel plate according to [19] above, wherein the vibration application step is performed before step (C-1).

[21]前記振動付加工程は、工程(C-1)より後に行われる、上記[19]又は[20]に記載の鋼板の製造方法。 [21] The method for manufacturing a steel plate according to [19] or [20] above, wherein the vibration applying step is performed after step (C-1).

[22]前記工程(C)は、前記工程(C-1)に続き、(C-2)前記溶融亜鉛めっき浴の通板方向下流に位置する合金化炉に前記冷延鋼板を通板させて、前記溶融亜鉛めっきを加熱合金化する工程を含む、上記[19]に記載の鋼板の製造方法。 [22] The step (C) is subsequent to the step (C-1) and includes (C-2) passing the cold rolled steel sheet through an alloying furnace located downstream of the hot dip galvanizing bath in the sheet passing direction. The method for producing a steel sheet according to [19] above, which includes the step of heating and alloying the hot-dip galvanizing.

[23]前記振動付加工程は、工程(C-1)より前に行われる、上記[22]に記載の鋼板の製造方法。 [23] The method for manufacturing a steel plate according to [22] above, wherein the vibration application step is performed before step (C-1).

[24]前記振動付加工程は、工程(C-1)より後に行われる、上記[22]又は[23]に記載の鋼板の製造方法。 [24] The method for manufacturing a steel plate according to [22] or [23] above, wherein the vibration applying step is performed after step (C-1).

[25]前記振動付加工程において、前記冷延鋼板に対する振動の付加時間を1秒以上とする、上記[16]~[24]のいずれか一項に記載の鋼板の製造方法。 [25] The method for producing a steel plate according to any one of [16] to [24] above, wherein in the vibration application step, the vibration is applied to the cold rolled steel plate for 1 second or more.

[26]前記振動付加工程では、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石が前記冷延鋼板に与える外力により、前記冷延鋼板が振動する、上記[16]~[25]のいずれか一項に記載の鋼板の製造方法。 [26] In the vibration adding step, the cold-rolled steel sheet is vibrated by an external force applied to the cold-rolled steel sheet by an electromagnet having magnetic pole surfaces spaced apart from and facing the surface of the cold-rolled steel sheet. 25].The method for manufacturing a steel plate according to any one of [25].

[27]前記振動付加工程では、前記冷延鋼板に接触する振動子によって、前記冷延鋼板が振動する、上記[16]~[25]のいずれか一項に記載の鋼板の製造方法。 [27] The method for producing a steel plate according to any one of [16] to [25] above, wherein in the vibration adding step, the cold rolled steel plate is vibrated by a vibrator that is in contact with the cold rolled steel plate.

[28]前記冷延鋼板が、590MPa以上の引張強さを有する高強度鋼板である、上記[16]~[27]のいずれか一項に記載の鋼板の製造方法。 [28] The method for producing a steel plate according to any one of [16] to [27] above, wherein the cold-rolled steel plate is a high-strength steel plate having a tensile strength of 590 MPa or more.

[29]前記冷延鋼板は、質量%で、
C :0.030~0.800%、
Si:0.01~3.00%、
Mn:0.01~10.00%、
P :0.001~0.100%、
S :0.0001~0.0200%、
N :0.0005~0.0100%、及び
Al:0.001~2.000%を含み、
残部がFe及び不可避的不純物からなる成分組成を有する、上記[16]~[28]のいずれか一項に記載の鋼板の製造方法。
[29] The cold-rolled steel sheet contains, in mass%,
C: 0.030-0.800%,
Si: 0.01-3.00%,
Mn: 0.01-10.00%,
P: 0.001-0.100%,
S: 0.0001-0.0200%,
N: 0.0005 to 0.0100%, and Al: 0.001 to 2.000%,
The method for producing a steel plate according to any one of [16] to [28] above, having a composition in which the remainder consists of Fe and unavoidable impurities.

[30]前記成分組成が、さらに、質量%で、
Ti:0.200%以下、
Nb:0.200%以下、
V :0.500%以下、
W :0.500%以下、
B :0.0050%以下、
Ni:1.000%以下、
Cr:1.000%以下、
Mo:1.000%以下、
Cu:1.000%以下、
Sn:0.200%以下、
Sb:0.200%以下、
Ta:0.100%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Zr:0.1000%以下、及び
REM:0.0050%以下
からなる群から選ばれる少なくとも一種の元素を含有する、上記[29]に記載の鋼板の製造方法。
[30] The component composition further comprises, in mass%,
Ti: 0.200% or less,
Nb: 0.200% or less,
V: 0.500% or less,
W: 0.500% or less,
B: 0.0050% or less,
Ni: 1.000% or less,
Cr: 1.000% or less,
Mo: 1.000% or less,
Cu: 1.000% or less,
Sn: 0.200% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel sheet according to [29] above, containing at least one element selected from the group consisting of Zr: 0.1000% or less, and REM: 0.0050% or less.

[31]前記冷延鋼板は、質量%で、
C :0.001~0.400%、
Si:0.01~2.00%、
Mn:0.01~5.00%、
P :0.001~0.100%、
S :0.0001~0.0200%、
Cr:9.0~28.0%、
Ni:0.01~40.0%、
N :0.0005~0.500%、及び
Al:0.001~3.000%を含み、
残部がFe及び不可避的不純物からなる成分組成を有するステンレス鋼板である、上記[16]~[27]のいずれか一項に記載の鋼板の製造方法。
[31] The cold rolled steel sheet has a mass percentage of
C: 0.001-0.400%,
Si: 0.01-2.00%,
Mn: 0.01 to 5.00%,
P: 0.001-0.100%,
S: 0.0001-0.0200%,
Cr: 9.0-28.0%,
Ni: 0.01 to 40.0%,
N: 0.0005 to 0.500%, and Al: 0.001 to 3.000%,
The method for producing a steel plate according to any one of [16] to [27] above, which is a stainless steel plate having a composition in which the remainder is Fe and unavoidable impurities.

[32]前記成分組成が、さらに、質量%で、
Ti:0.500%以下、
Nb:0.500%以下、
V :0.500%以下、
W :2.000%以下、
B :0.0050%以下、
Mo:2.000%以下、
Cu:3.000%以下、
Sn:0.500%以下、
Sb:0.200%以下、
Ta:0.100%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Zr:0.1000%以下、及び
REM:0.0050%以下
からなる群から選ばれる少なくとも一種の元素を含有する、上記[31]に記載の鋼板の製造方法。
[32] The component composition further comprises, in mass%,
Ti: 0.500% or less,
Nb: 0.500% or less,
V: 0.500% or less,
W: 2.000% or less,
B: 0.0050% or less,
Mo: 2.000% or less,
Cu: 3.000% or less,
Sn: 0.500% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel plate according to [31] above, containing at least one element selected from the group consisting of Zr: 0.1000% or less, and REM: 0.0050% or less.

[33]前記製品コイルは、0.50質量ppm以下の拡散性水素量を有する、上記[16]~[32]のいずれか一項に記載の鋼板の製造方法。 [33] The method for producing a steel plate according to any one of [16] to [32] above, wherein the product coil has a diffusible hydrogen amount of 0.50 mass ppm or less.

本発明の連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法によれば、生産効率を損なうことなく、機械的特性を変化させることなく、耐水素脆化特性に優れた鋼板を製造することができる。 According to the continuous annealing apparatus, continuous hot-dip galvanizing apparatus, and steel sheet manufacturing method of the present invention, steel sheets with excellent hydrogen embrittlement resistance can be manufactured without impairing production efficiency or changing mechanical properties. be able to.

本発明の一実施形態による連続焼鈍装置100の模式図である。1 is a schematic diagram of a continuous annealing apparatus 100 according to an embodiment of the present invention. 本発明の一実施形態による連続溶融亜鉛めっき装置200の模式図である。1 is a schematic diagram of a continuous hot-dip galvanizing apparatus 200 according to an embodiment of the present invention. 本発明の他の実施形態による連続溶融亜鉛めっき装置300の模式図である。FIG. 3 is a schematic diagram of a continuous hot-dip galvanizing apparatus 300 according to another embodiment of the present invention. 本発明の各実施形態で用いる振動付加装置60の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a vibration adding device 60 used in each embodiment of the present invention. (A)及び(B)は、本発明の各実施形態において、通板中の冷延鋼板Sに対する振動付加装置60の電磁石63の設置態様の例を模式的に示した図である。(A) and (B) are diagrams schematically showing an example of an installation mode of an electromagnet 63 of a vibration applying device 60 for a cold-rolled steel sheet S during sheet passing in each embodiment of the present invention. (A)及び(B)は、本発明の各実施形態において、電磁石63からの磁場の発生態様を模式的に示した図である。(A) and (B) are diagrams schematically showing how a magnetic field is generated from an electromagnet 63 in each embodiment of the present invention. 本発明の各実施形態で用いる振動付加装置70の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a vibration adding device 70 used in each embodiment of the present invention. 通板中の冷延鋼板Sに対する振動付加装置70の振動子72の設置態様の例を模式的に示した図である。FIG. 3 is a diagram schematically showing an example of how a vibrator 72 of a vibration applying device 70 is installed on a cold rolled steel sheet S during sheet passing. (A)及び(B)は、冷却帯26内に振動付加装置60又は70を設置する場合の、冷却ノズル26Aと振動付加装置60又は70との位置関係の例を示す模式図である。(A) and (B) are schematic diagrams showing an example of the positional relationship between the cooling nozzle 26A and the vibration applying device 60 or 70 when the vibration applying device 60 or 70 is installed in the cooling zone 26.

本発明の一実施形態は、連続焼鈍装置(Continuous Annealing Line:CAL)に関するものであり、本発明の別の一実施形態は、連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)に関するものである。 One embodiment of the present invention relates to a continuous annealing apparatus (Continuous Annealing Line: CAL), and another embodiment of the present invention relates to a continuous hot-dip galvanizing line (CGL). It is.

本発明の一実施形態による鋼板の製造方法は、連続焼鈍装置(Continuous Annealing Line:CAL)又は連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)により実現される。 A method for manufacturing a steel sheet according to an embodiment of the present invention is realized by a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL).

図1を参照して、本発明の第一の実施形態による連続焼鈍装置(CAL)100は、冷延コイルCから冷延鋼板Sを払い出すペイオフリール10と、冷延鋼板Sを通板させて連続焼鈍する焼鈍炉20と、焼鈍炉20から排出された冷延鋼板Sを引き続き通板させる下流設備30と、下流設備30を通板中の冷延鋼板Sを巻き取って、製品コイルPとするテンションリール50と、を有する。焼鈍炉20では、通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置し、加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、冷却帯26では冷延鋼板Sを冷却する。なお、CAL100の焼鈍炉20は、冷却帯26の下流に過時効処理帯28を有することが好ましいが、必須ではない。過時効処理帯28では、冷延鋼板Sに過時効処理が施される。この実施形態では、CAL100により冷延焼鈍鋼板(CR)の製品コイルが製造される。 Referring to FIG. 1, a continuous annealing apparatus (CAL) 100 according to a first embodiment of the present invention includes a payoff reel 10 for discharging a cold-rolled steel sheet S from a cold-rolled coil C, and a payoff reel 10 for discharging a cold-rolled steel sheet S from a cold-rolled coil C; an annealing furnace 20 for continuous annealing; a downstream facility 30 for continuously passing the cold rolled steel sheet S discharged from the annealing furnace 20; and a tension reel 50. In the annealing furnace 20, a heating zone 22, a soaking zone 24, and a cooling zone 26 are located from the upstream side in the sheet passing direction, and in the heating zone 22 and soaking zone 24, the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen. , the cold rolled steel sheet S is cooled in the cooling zone 26. Note that, although it is preferable that the annealing furnace 20 of the CAL 100 has an overaging treatment zone 28 downstream of the cooling zone 26, it is not essential. In the overaging treatment zone 28, the cold rolled steel sheet S is subjected to an overaging treatment. In this embodiment, a product coil of cold rolled annealed steel plate (CR) is manufactured by CAL 100.

図1を参照して、連続焼鈍装置(CAL)100により実現される第一の実施形態による鋼板の製造方法は、(A)ペイオフリール10により冷延コイルCから冷延鋼板(鋼帯)Sを払い出す工程と、(B)通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置する焼鈍炉20内に、冷延鋼板Sを通板させて、(B-1)加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、(B-2)冷却帯26では冷延鋼板Sを冷却する、連続焼鈍を行う工程と、(C)焼鈍炉20から排出された冷延鋼板Sを引き続き通板させる工程と、(D)テンションリール50により冷延鋼板Sを巻き取って、製品コイルPとする工程と、をこの順に有する。なお、CAL100の焼鈍炉20による連続焼鈍工程(B)では、(B-3)冷却帯26の下流に任意に位置する過時効処理帯28で冷延鋼板Sに過時効処理を施すことが好ましいが、この工程は必須ではない。この実施形態は、CAL100により冷延焼鈍鋼板(CR)の製品コイルを製造する方法である。 Referring to FIG. 1, the method of manufacturing a steel plate according to the first embodiment realized by a continuous annealing apparatus (CAL) 100 is as follows: (A) A cold rolled steel plate (steel strip) (B-1 ) In the heating zone 22 and the soaking zone 24, the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen, and (B-2) in the cooling zone 26, the cold rolled steel sheet S is cooled, performing continuous annealing; C) A step of continuously passing the cold rolled steel sheet S discharged from the annealing furnace 20, and (D) A step of winding up the cold rolled steel sheet S using the tension reel 50 to form a product coil P, in this order. In addition, in the continuous annealing process (B) using the annealing furnace 20 of CAL100, it is preferable to perform an overaging treatment on the cold rolled steel sheet S in an overaging treatment zone 28 arbitrarily located downstream of the cooling zone 26 (B-3). However, this step is not essential. This embodiment is a method for manufacturing a product coil of cold rolled annealed steel plate (CR) using CAL100.

図2を参照して、本発明の第二の実施形態による連続溶融亜鉛めっき装置(CGL)200は、冷延コイルCから冷延鋼板Sを払い出すペイオフリール10と、冷延鋼板Sを通板させて連続焼鈍する焼鈍炉20と、焼鈍炉20から排出された冷延鋼板Sを引き続き通板させる下流設備30と、下流設備30を通板中の冷延鋼板Sを巻き取って、製品コイルPとするテンションリール50と、を有する。焼鈍炉20では、通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置し、加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、冷却帯26では冷延鋼板Sを冷却する。そして、CGL200は、下流設備30として、焼鈍炉20の通板方向下流に位置し、冷延鋼板Sを浸漬させて、冷延鋼板Sに溶融亜鉛めっきを施す溶融亜鉛めっき浴31と、溶融亜鉛めっき浴31の通板方向下流に位置し、冷延鋼板Sを通板させて、溶融亜鉛めっきを加熱合金化する合金化炉33と、をさらに有する。この実施形態では、CGL200により、亜鉛めっき層が合金化された合金化溶融亜鉛めっき鋼板(GA)の製品コイルが製造される。なお、合金化炉33に鋼板Sを通過させるのみで加熱合金化を行わない場合には、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)の製品コイルが製造される。 Referring to FIG. 2, a continuous hot-dip galvanizing apparatus (CGL) 200 according to a second embodiment of the present invention includes a payoff reel 10 for discharging a cold-rolled steel sheet S from a cold-rolled coil C; An annealing furnace 20 that continuously anneales the sheet, a downstream facility 30 that continues to pass the cold-rolled steel sheet S discharged from the annealing furnace 20, and a downstream facility 30 that winds up the cold-rolled steel sheet S being passed through the annealing furnace 20 to form a product. The tension reel 50 has a coil P. In the annealing furnace 20, a heating zone 22, a soaking zone 24, and a cooling zone 26 are located from the upstream side in the sheet passing direction, and in the heating zone 22 and soaking zone 24, the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen. , the cold rolled steel sheet S is cooled in the cooling zone 26. The CGL 200 is located downstream of the annealing furnace 20 in the sheet passing direction as a downstream facility 30, and has a hot-dip galvanizing bath 31 in which the cold-rolled steel sheet S is immersed to apply hot-dip galvanization to the cold-rolled steel sheet S; It further includes an alloying furnace 33, which is located downstream of the plating bath 31 in the sheet passing direction, and heats and alloys the hot-dip galvanizing by passing the cold-rolled steel sheet S therethrough. In this embodiment, the CGL 200 produces a product coil of alloyed hot-dip galvanized steel (GA) with an alloyed galvanized layer. In addition, when the steel sheet S is only passed through the alloying furnace 33 and is not heated and alloyed, a product coil of a hot-dip galvanized steel sheet (GI) in which the galvanized layer is not alloyed is manufactured.

図2を参照して、連続溶融亜鉛めっき装置(CGL)200により実現される第二の実施形態による鋼板の製造方法は、(A)ペイオフリール10により冷延コイルCから冷延鋼板(鋼帯)Sを払い出す工程と、(B)通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置する焼鈍炉20内に、冷延鋼板Sを通板させて、(B-1)加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、(B-2)冷却帯26では冷延鋼板Sを冷却する、連続焼鈍を行う工程と、(C)焼鈍炉20から排出された冷延鋼板Sを引き続き通板させる工程と、(D)テンションリール50により冷延鋼板Sを巻き取って、製品コイルPとする工程と、をこの順に有する。そして、工程(C)は、(C-1)焼鈍炉20の通板方向下流に位置する溶融亜鉛めっき浴31に冷延鋼板Sを浸漬させて、冷延鋼板Sに溶融亜鉛めっきを施す工程と、引き続き、(C-2)溶融亜鉛めっき浴31の通板方向下流に位置する合金化炉33に冷延鋼板Sを通板させて、溶融亜鉛めっきを加熱合金化する工程を含む。この実施形態は、CGL200により、亜鉛めっき層が合金化された合金化溶融亜鉛めっき鋼板(GA)の製品コイルを製造する方法である。 Referring to FIG. 2, a method for manufacturing a steel sheet according to a second embodiment realized by a continuous hot-dip galvanizing apparatus (CGL) 200 includes (A) a method of manufacturing a cold-rolled steel sheet (steel strip) from a cold-rolled coil C using a payoff reel 10; ) A step of discharging the S, and (B) passing the cold rolled steel sheet S into the annealing furnace 20 in which the heating zone 22, the soaking zone 24, and the cooling zone 26 are located from the upstream side in the sheet passing direction. -1) In the heating zone 22 and the soaking zone 24, the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen, and (B-2) in the cooling zone 26, the cold rolled steel sheet S is cooled, performing continuous annealing. , (C) a step of continuously passing the cold rolled steel sheet S discharged from the annealing furnace 20, and (D) a step of winding up the cold rolled steel sheet S with the tension reel 50 to form a product coil P, in this order. have Then, step (C) is (C-1) a step of immersing the cold rolled steel sheet S in the hot dip galvanizing bath 31 located downstream of the annealing furnace 20 in the sheet passing direction to apply hot dip galvanization to the cold rolled steel sheet S. and (C-2) passing the cold-rolled steel sheet S through the alloying furnace 33 located downstream of the hot-dip galvanizing bath 31 in the sheet-threading direction, and heating and alloying the hot-dip galvanizing. This embodiment is a method for manufacturing a product coil of an alloyed hot-dip galvanized steel sheet (GA) in which a galvanized layer is alloyed using CGL200.

図3を参照して、本発明の第三の実施形態による連続溶融亜鉛めっき装置(CGL)300は、合金化炉33を有しないこと以外はCGL200と同じ構成を有する。この実施形態では、CGL300により、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)の製品コイルが製造される。 Referring to FIG. 3, a continuous hot-dip galvanizing apparatus (CGL) 300 according to a third embodiment of the present invention has the same configuration as CGL 200 except that it does not include an alloying furnace 33. In this embodiment, the CGL 300 produces a product coil of hot-dip galvanized steel (GI) in which the galvanized layer is not alloyed.

すなわち、工程(C-1)を行い、工程(C-2)を行わない第三の実施形態による鋼板の製造方法は、例えば、合金化炉33を有しないCGL300により実現され、また、CGL200の合金化炉33に鋼板Sを通過させるのみで加熱合金化を行わない方法でも実現される。この実施形態は、CGL200又はCGL300により、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)の製品コイルを製造する方法である。 That is, the method for manufacturing a steel plate according to the third embodiment in which step (C-1) is performed and step (C-2) is not performed is realized, for example, by CGL300 without the alloying furnace 33, and also by CGL200. This can also be achieved by simply passing the steel plate S through the alloying furnace 33 without performing heating and alloying. This embodiment is a method for manufacturing a product coil of hot-dip galvanized steel sheet (GI) in which the galvanized layer is not alloyed using CGL200 or CGL300.

上記第一の実施形態によるCAL、並びに第二及び第三の実施形態によるCGLにおける、各構成を詳細に説明する。また、上記第一、第二、及び第三の実施形態による鋼板の製造方法における各工程を詳細に説明する。 Each configuration of the CAL according to the first embodiment and the CGL according to the second and third embodiments will be described in detail. Further, each step in the method for manufacturing a steel plate according to the first, second, and third embodiments will be explained in detail.

[ペイオフリール、及びペイオフリールから焼鈍炉までの設備]
[工程(A)]
図1~3を参照して、ペイオフリール10は、冷延コイルCから冷延鋼板Sを払い出す。すなわち、工程(A)では、ペイオフリール10により冷延コイルCから冷延鋼板Sを払い出す。払い出された冷延鋼板Sは、溶接機11、クリーニング設備12、及び入側ルーパー13を通過し、焼鈍炉20へと供給される。ただし、ペイオフリール10と焼鈍炉20との間の上流設備は、これら溶接機11、クリーニング設備12、及び入側ルーパー13に限定されることはなく、公知の又は任意の装置であってよい。
[Payoff reel and equipment from payoff reel to annealing furnace]
[Step (A)]
Referring to FIGS. 1 to 3, a payoff reel 10 pays out a cold rolled steel sheet S from a cold rolled coil C. That is, in step (A), the cold rolled steel sheet S is paid out from the cold rolled coil C by the payoff reel 10. The discharged cold rolled steel sheet S passes through the welding machine 11, the cleaning equipment 12, and the entrance looper 13, and is supplied to the annealing furnace 20. However, the upstream equipment between the payoff reel 10 and the annealing furnace 20 is not limited to the welding machine 11, the cleaning equipment 12, and the entrance looper 13, and may be any known or arbitrary equipment.

[焼鈍炉]
[工程(B)]
図1~3を参照して、焼鈍炉20は、冷延鋼板Sを内部に通板させて連続焼鈍する。焼鈍炉20では、通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置し、加熱帯22及び均熱帯24では、水素を含む還元性雰囲気で冷延鋼板Sを焼鈍し、冷却帯26では冷延鋼板Sを冷却する。すなわち、工程(B)では、通板方向上流側から加熱帯22、均熱帯24、及び冷却帯26が位置する焼鈍炉20内に、冷延鋼板Sを通板させて連続焼鈍を行う。冷却帯26は、複数の冷却帯から構成されてもよい。また、加熱帯22の通板方向上流側に予熱帯があってもよい。なお、図1に示すCAL100の焼鈍炉20は、冷却帯26の下流に過時効処理帯28を有することが好ましいが、必須ではない。図1~3では、各帯はいずれも縦型炉として図示したが、これに限定されず、横型炉でもよい。縦型炉の場合、隣り合う帯は、それぞれの帯の上部同士または下部同士を接続するスロート(絞り部)を介して連通する。
[Annealing furnace]
[Process (B)]
Referring to FIGS. 1 to 3, an annealing furnace 20 continuously anneals a cold-rolled steel sheet S by passing it therethrough. In the annealing furnace 20, a heating zone 22, a soaking zone 24, and a cooling zone 26 are located from the upstream side in the sheet passing direction, and in the heating zone 22 and soaking zone 24, the cold rolled steel sheet S is annealed in a reducing atmosphere containing hydrogen. , the cold rolled steel sheet S is cooled in the cooling zone 26. That is, in step (B), continuous annealing is performed by passing the cold rolled steel sheet S through the annealing furnace 20 in which the heating zone 22, soaking zone 24, and cooling zone 26 are located from the upstream side in the sheet passing direction. Cooling zone 26 may be composed of a plurality of cooling zones. Further, a preheating zone may be provided on the upstream side of the heating zone 22 in the sheet passing direction. Although it is preferable that the annealing furnace 20 of the CAL 100 shown in FIG. 1 has an overaging treatment zone 28 downstream of the cooling zone 26, it is not essential. In FIGS. 1 to 3, each zone is illustrated as a vertical furnace, but the present invention is not limited to this, and a horizontal furnace may be used. In the case of a vertical furnace, adjacent bands communicate through throats (throttles) that connect the tops or bottoms of each band.

(加熱帯)
加熱帯22では、バーナーを用いて、冷延鋼板Sを直接加熱することや、ラジアントチューブ(RT)又は電気ヒーターを用いて、冷延鋼板Sを間接加熱することができる。また、誘導加熱、ロール加熱、電気抵抗加熱、直接通電加熱、ソルトバス加熱、エレクトロンビーム加熱等での加熱も可能である。加熱帯22の内部の平均温度は500~800℃とすることが好ましい。加熱帯22には、均熱帯24からのガスが流れ込むと同時に、別途還元性ガスが供給される。還元性ガスとしては、通常H-N混合ガスが用いられ、例えばH:1~35体積%、残部がN及びArの一方又は両方並びに不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。
(heating zone)
In the heating zone 22, the cold rolled steel sheet S can be directly heated using a burner, or the cold rolled steel sheet S can be indirectly heated using a radiant tube (RT) or an electric heater. Further, heating by induction heating, roll heating, electric resistance heating, direct current heating, salt bath heating, electron beam heating, etc. is also possible. The average temperature inside the heating zone 22 is preferably 500 to 800°C. At the same time that the gas from the soaking zone 24 flows into the heating zone 22, reducing gas is separately supplied. As the reducing gas, a H 2 -N 2 mixed gas is usually used, for example, a gas having a composition of 1 to 35% by volume of H 2 and the balance consisting of one or both of N 2 and Ar and unavoidable impurities (with a low dew point). : about -60℃).

(均熱帯)
均熱帯24では、ラジアントチューブ(RT)を用いて、冷延鋼板Sを間接加熱することができる。均熱帯24の内部の平均温度は600~950℃とすることが好ましい。均熱帯24には還元性ガスが供給される。還元性ガスとしては、通常H-N混合ガスが用いられ、例えばH:1~35体積%、残部がN及びArの一方又は両方並びに不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。
(soaking zone)
In the soaking zone 24, the cold rolled steel sheet S can be indirectly heated using a radiant tube (RT). The average temperature inside the soaking zone 24 is preferably 600 to 950°C. A reducing gas is supplied to the soaking zone 24. As the reducing gas, a H 2 -N 2 mixed gas is usually used, for example, a gas having a composition of 1 to 35% by volume of H 2 and the balance consisting of one or both of N 2 and Ar and unavoidable impurities (with a low dew point). : about -60℃).

(冷却帯)
冷却帯26では、ガス、ガスと水の混合、及び水のいずれかによって冷延鋼板Sが冷却される。冷延鋼板Sは、焼鈍炉20を出る段階で、CALでは100~400℃程度、CGLでは470~530℃程度にまで冷却される。図8(A),(B)に示すように、冷却帯26には、鋼板搬送路に沿って複数の冷却ノズル26Aが設けられる。冷却ノズル26Aは、例えば特開2010-185101号公報に記載されるような、鋼板幅よりも長い円管であり、円管の延在方向が鋼板の幅方向と平行になるように設置される。円管には、鋼板と対向する部位に、円管の延在方向に沿って所定の間隔で複数の貫通穴が設けられ、円管内の水が当該貫通穴から鋼板に向かって噴射される。冷却ノズルは、鋼板の表裏に対向するように一対に設けられ、さらに一対の冷却ノズルが鋼板搬送路に沿って所定間隔で複数対(例えば5~10対)配置されて、1つの冷却ゾーンを構成する。そして、当該冷却ゾーンは鋼板搬送路に沿って3~6つ程度配置することが好ましい。
(cooling zone)
In the cooling zone 26, the cold rolled steel sheet S is cooled by either gas, a mixture of gas and water, or water. When the cold rolled steel sheet S leaves the annealing furnace 20, it is cooled to about 100 to 400°C in CAL and to about 470 to 530°C in CGL. As shown in FIGS. 8(A) and 8(B), a plurality of cooling nozzles 26A are provided in the cooling zone 26 along the steel plate conveyance path. The cooling nozzle 26A is a circular tube that is longer than the width of the steel plate, as described in, for example, Japanese Patent Application Publication No. 2010-185101, and is installed so that the extending direction of the circular tube is parallel to the width direction of the steel plate. . The circular tube is provided with a plurality of through holes at predetermined intervals along the extending direction of the circular tube at a portion facing the steel plate, and water in the circular tube is injected toward the steel plate from the through holes. The cooling nozzles are provided in pairs to face each other on the front and back sides of the steel plate, and a plurality of pairs (for example, 5 to 10 pairs) of the cooling nozzles are arranged at predetermined intervals along the steel plate conveyance path to form one cooling zone. Configure. It is preferable that about 3 to 6 cooling zones be arranged along the steel plate conveyance path.

(過時効処理帯)
図1を参照して、CAL100において、過時効処理帯28では、冷却帯26を出た冷延鋼板Sが等温保持、再加熱、炉冷、及び放冷の少なくとも一つの処理に供され、冷延鋼板Sは、焼鈍炉20を出る段階で、100~400℃程度にまで冷却される。
(Overaging treatment zone)
Referring to FIG. 1, in CAL 100, in overaging treatment zone 28, cold rolled steel sheet S leaving cooling zone 26 is subjected to at least one of isothermal holding, reheating, furnace cooling, and natural cooling. When the rolled steel sheet S leaves the annealing furnace 20, it is cooled to about 100 to 400°C.

[下流設備]
[工程(C)]
図1~3を参照して、工程(C)では、焼鈍炉20から排出された冷延鋼板Sを下流設備30に引き続き通板させる。図1を参照して、CGL100は、下流設備30として出側ルーパー35及び調質圧延機36を有する。図2を参照して、CGL200は、下流設備30として、溶融亜鉛めっき浴31、ガスワイピング装置32、合金化炉33、冷却装置34、出側ルーパー35、及び調質圧延機36を有する。図3を参照して、CGL300は、下流設備30として、溶融亜鉛めっき浴31、ガスワイピング装置32、冷却装置34、出側ルーパー35、及び調質圧延機36を有する。ただし、下流設備30はこれらに限定されることはなく、公知の又は任意の装置であってよい。例えば、下流設備30としては、テンションレベラー、化成処理設備、表面調整設備、オイリング設備、及び検査設備を挙げることができる。
[Downstream equipment]
[Step (C)]
Referring to FIGS. 1 to 3, in step (C), the cold rolled steel sheet S discharged from the annealing furnace 20 is continuously passed through the downstream equipment 30. Referring to FIG. 1, the CGL 100 includes an outlet looper 35 and a temper rolling mill 36 as downstream equipment 30. Referring to FIG. 2, the CGL 200 includes a hot dip galvanizing bath 31, a gas wiping device 32, an alloying furnace 33, a cooling device 34, an exit looper 35, and a temper rolling mill 36 as downstream equipment 30. Referring to FIG. 3, the CGL 300 includes a hot dip galvanizing bath 31, a gas wiping device 32, a cooling device 34, an exit looper 35, and a temper rolling mill 36 as downstream equipment 30. However, the downstream equipment 30 is not limited to these, and may be any known or arbitrary equipment. For example, the downstream equipment 30 can include a tension leveler, chemical conversion equipment, surface conditioning equipment, oiling equipment, and inspection equipment.

(溶融亜鉛めっき浴)
(工程(C-1))
図2,3を参照して、溶融亜鉛めっき浴31は、焼鈍炉20の通板方向下流に位置し、冷延鋼板Sを浸漬させて、冷延鋼板Sに溶融亜鉛めっきを施す。すなわち、工程(C-1)では、焼鈍炉20の通板方向下流に位置する溶融亜鉛めっき浴31に冷延鋼板Sを浸漬させて、冷延鋼板Sに溶融亜鉛めっきを施す。焼鈍炉の最下流の帯(図2,3では冷却帯26)と連結したスナウト29は、冷延鋼板Sが通過する空間を区画する、通板方向に垂直な断面が矩形状の部材であり、その先端が溶融亜鉛めっき浴31に浸漬しており、以って焼鈍炉20と溶融亜鉛めっき浴31とが接続されている。溶融亜鉛めっきは定法に従って行えばよい。
(Hot-dip galvanizing bath)
(Step (C-1))
Referring to FIGS. 2 and 3, hot-dip galvanizing bath 31 is located downstream of annealing furnace 20 in the sheet passing direction, and immerses cold-rolled steel sheet S to apply hot-dip galvanization to cold-rolled steel sheet S. That is, in step (C-1), the cold-rolled steel sheet S is immersed in the hot-dip galvanizing bath 31 located downstream of the annealing furnace 20 in the sheet-threading direction to apply hot-dip galvanization to the cold-rolled steel sheet S. The snout 29 connected to the most downstream zone of the annealing furnace (the cooling zone 26 in FIGS. 2 and 3) is a member having a rectangular cross section perpendicular to the sheet threading direction and partitions a space through which the cold rolled steel sheet S passes. , the tip thereof is immersed in the hot-dip galvanizing bath 31, so that the annealing furnace 20 and the hot-dip galvanizing bath 31 are connected. Hot-dip galvanizing may be performed according to a standard method.

溶融亜鉛めっき浴31から引き上げられる冷延鋼板Sを挟んで配置した一対のガスワイピング装置32から、冷延鋼板Sにガスを吹き付けて、冷延鋼板Sの両面の溶融亜鉛の付着量を調整することができる。 Gas is blown onto the cold rolled steel sheet S from a pair of gas wiping devices 32 arranged to sandwich the cold rolled steel sheet S pulled up from the hot dip galvanizing bath 31 to adjust the amount of molten zinc deposited on both sides of the cold rolled steel sheet S. be able to.

(合金化炉)
(工程(C-2))
図2を参照して、合金化炉33は、溶融亜鉛めっき浴31及びガスワイピング装置32の通板方向下流に位置し、冷延鋼板Sを通板させて、溶融亜鉛めっきを加熱合金化する。すなわち、工程(C-2)では、溶融亜鉛めっき浴31及びガスワイピング装置32の通板方向下流に位置する合金化炉33に冷延鋼板Sを通板させて、溶融亜鉛めっきを加熱合金化する。合金化処理は定法に従って行えばよい。合金化炉33における加熱手段は特に限定されず、例えば、高温のガスによる加熱や誘導加熱が挙げられる。ただし、合金化炉33は、CGLにおける任意の設備であり、合金化工程は、CGLを用いた鋼板の製造方法における任意の工程である。
(alloying furnace)
(Step (C-2))
Referring to FIG. 2, the alloying furnace 33 is located downstream of the hot dip galvanizing bath 31 and the gas wiping device 32 in the sheet passing direction, passes the cold rolled steel sheet S, and heats and alloys the hot dip galvanizing. . That is, in step (C-2), the cold rolled steel sheet S is passed through the alloying furnace 33 located downstream of the hot dip galvanizing bath 31 and the gas wiping device 32 in the sheet passing direction, and the hot dip galvanizing is heated and alloyed. do. Alloying treatment may be performed according to a conventional method. The heating means in the alloying furnace 33 is not particularly limited, and examples thereof include heating with high temperature gas and induction heating. However, the alloying furnace 33 is an optional facility in the CGL, and the alloying process is an optional step in the method for manufacturing a steel plate using the CGL.

(冷却装置)
図2,3を参照して、冷却装置34は、ガスワイピング装置32及び合金化炉33の通板方向下流に位置する。冷却装置34に冷延鋼板Sを通板させて、冷延鋼板Sを冷却することができる。冷却装置34は、冷延鋼板Sを水冷、空冷、ガス冷却、ミスト冷却等で冷却する。
(Cooling system)
Referring to FIGS. 2 and 3, the cooling device 34 is located downstream of the gas wiping device 32 and the alloying furnace 33 in the sheet passing direction. The cold-rolled steel sheet S can be cooled by passing the cold-rolled steel sheet S through the cooling device 34. The cooling device 34 cools the cold rolled steel sheet S by water cooling, air cooling, gas cooling, mist cooling, or the like.

[テンションリール]
[工程(D)]
図1~3を参照して、下流設備30を通過した冷延鋼板Sは、最終的に、巻取り装置としてのテンションリール50により巻き取られて、製品コイルPとなる。
[Tension reel]
[Step (D)]
Referring to FIGS. 1 to 3, the cold rolled steel sheet S that has passed through the downstream equipment 30 is finally wound up by a tension reel 50 as a winding device to become a product coil P.

[振動付加装置及び振動付加工程]
上記第一の実施形態のCAL100、第二の実施形態のCGL200、及び第三の実施形態のCGL300は、冷却帯26からテンションリール50までを通板中の冷延鋼板Sに対して振動を付加する振動付加装置60又は70を有することが肝要である。すなわち、上記第一、第二、及び第三の実施形態による鋼板の製造方法は、工程(B-2)以降、かつ、工程(D)より前において、通板中の冷延鋼板Sに対して振動を付加する振動付加工程を含むことが肝要である。しかも、振動付加装置60又は70が冷延鋼板Sに付加する振動は、冷延鋼板Sの振動の周波数が100Hz以上100000Hz以下となり、かつ、冷延鋼板Sの最大振幅が10nm以上500μm以下となるものであることが肝要である。これにより、焼鈍で冷延鋼板S中に含有された水素を十分に効率良く低減させることができ、耐水素脆化特性に優れた鋼板を製造することができる。また、振動付加は、CAL100、CGL200又はCGL300による鋼板の製造過程(インライン)に組み込まれるため、生産効率を損なうことがない。また、加熱による水素の脱離ではなく、振動付加による水素の脱離であるため、鋼板の機械的特性を変化させる懸念もない。
[Vibration adding device and vibration adding process]
The CAL 100 of the first embodiment, the CGL 200 of the second embodiment, and the CGL 300 of the third embodiment apply vibration to the cold rolled steel sheet S that is being passed from the cooling zone 26 to the tension reel 50. It is important to have a vibration applying device 60 or 70 that does this. That is, in the method for manufacturing a steel sheet according to the first, second, and third embodiments, after step (B-2) and before step (D), the cold rolled steel sheet S is It is important to include a vibration adding step in which vibrations are added by applying vibrations. Moreover, the vibration applied to the cold-rolled steel sheet S by the vibration adding device 60 or 70 has a frequency of vibration of the cold-rolled steel sheet S of 100 Hz or more and 100,000 Hz or less, and a maximum amplitude of 10 nm or more and 500 μm or less. It is important that it is a thing. Thereby, the hydrogen contained in the cold-rolled steel sheet S during annealing can be sufficiently and efficiently reduced, and a steel sheet with excellent hydrogen embrittlement resistance can be manufactured. Further, since the vibration addition is incorporated into the manufacturing process (inline) of the steel plate using CAL100, CGL200, or CGL300, production efficiency is not impaired. Furthermore, since hydrogen is desorbed not by heating but by adding vibration, there is no concern that the mechanical properties of the steel sheet will change.

(振動付加装置60)
本発明の各実施形態は、図4に示すような振動付加装置60をCAL100、CGL200又はCGL300に設置することにより実現でき、振動付加工程は、当該振動付加装置60を用いて通板中の冷延鋼板Sに振動を付加する。図4を参照して、振動付加装置60は、制御器61と、増幅器62と、電磁石63と、振動検出器64と、電源65とを備える。図6(A),(B)を参照して、振動付加装置60は、磁石63Aと、この磁石63Aを巻回するコイル63Bとを含む電磁石63を有し、電磁石63は、冷延鋼板Sの表面に離間して対向する磁極面63A1を有する。振動付加装置60は、電磁石63が冷延鋼板Sに与える外力(引力)により冷延鋼板Sが振動するように構成される。
(Vibration adding device 60)
Each embodiment of the present invention can be realized by installing a vibration applying device 60 as shown in FIG. Vibration is applied to the rolled steel plate S. Referring to FIG. 4, vibration adding device 60 includes a controller 61, an amplifier 62, an electromagnet 63, a vibration detector 64, and a power source 65. Referring to FIGS. 6(A) and 6(B), the vibration adding device 60 has an electromagnet 63 including a magnet 63A and a coil 63B wound around the magnet 63A, and the electromagnet 63 includes a cold rolled steel sheet S It has a magnetic pole face 63A1 spaced apart from and facing the surface of the magnetic pole face 63A1. The vibration adding device 60 is configured to cause the cold rolled steel sheet S to vibrate due to external force (gravitational force) applied to the cold rolled steel sheet S by the electromagnet 63.

電磁石63は、冷延鋼板Sの表面に離間して対向する磁極面63A1を有する限り、その形状及び設置態様は限定されない。これにより、図6(A),(B)に示すように、磁力線の方向が冷延鋼板Sに対して垂直になり、冷延鋼板Sに引力を働かせることができる。電磁石の形状及び設置態様として、例えば、図5(A),(B)を挙げることができる。 As long as the electromagnet 63 has a magnetic pole surface 63A1 spaced apart from and facing the surface of the cold-rolled steel sheet S, its shape and installation mode are not limited. Thereby, as shown in FIGS. 6A and 6B, the direction of the magnetic lines of force becomes perpendicular to the cold-rolled steel sheet S, and an attractive force can be exerted on the cold-rolled steel sheet S. Examples of the shape and installation mode of the electromagnet are shown in FIGS. 5(A) and 5(B).

図5(A)では、直方体形状の電磁石63が、冷延鋼板Sの表面と所定の間隔をあけて、鋼板板幅方向に沿って延在しており、これにより、冷延鋼板Sの表面の幅方向に均一に外力(引力)を加えることができ、幅方向に均一な振動を実現できる。そして、このような電磁石63を通板方向に沿って複数配置することによって、冷延鋼板Sに振動を付加する時間を十分に確保することができる。図5(A)に示すように、電磁石63は、磁石63Aと、その周囲に巻回されたコイル63Bとを有し、コイル63Bの軸方向は冷延鋼板Sの板厚方向と一致させる。この場合、コイル63Bに流れる電流の向きに応じて、図6(A)のように、冷延鋼板Sと対向する磁極面63A1がN極になるか、又は、図6(B)のように、冷延鋼板Sと対向する磁極面63A1がS極となる。 In FIG. 5(A), a rectangular parallelepiped-shaped electromagnet 63 extends along the width direction of the steel plate at a predetermined distance from the surface of the cold-rolled steel plate S. It is possible to apply an external force (attractive force) uniformly in the width direction, and achieve uniform vibration in the width direction. By arranging a plurality of such electromagnets 63 along the sheet passing direction, it is possible to sufficiently secure time for applying vibration to the cold rolled steel sheet S. As shown in FIG. 5A, the electromagnet 63 includes a magnet 63A and a coil 63B wound around the magnet 63A, and the axial direction of the coil 63B is made to coincide with the thickness direction of the cold rolled steel sheet S. In this case, depending on the direction of the current flowing through the coil 63B, the magnetic pole surface 63A1 facing the cold rolled steel sheet S becomes the north pole as shown in FIG. , the magnetic pole surface 63A1 facing the cold rolled steel plate S becomes the S pole.

図5(B)では、複数の円柱形状の電磁石63を、その底部の磁極面が冷延鋼板Sの表面に離間して対向するように、鋼板の幅方向に沿って所定の間隔で配置しており、これにより、冷延鋼板Sの表面の幅方向に均一に外力(引力)を加えることができ、幅方向に均一な振動を実現できる。そして、このような円柱形状の電磁石63の列を通板方向に沿って複数配置することによって、冷延鋼板Sに振動を付加する時間を十分に確保することができる。図5(B)に示すように、各々の電磁石63は、円柱状の磁石と、その周囲に巻回されたコイルとを有し、コイルの軸方向は冷延鋼板Sの板厚方向と一致させる。この場合、コイルに流れる電流の向きに応じて、図6(A)のように、冷延鋼板Sと対向する磁極面63A1がN極になるか、又は、図6(B)のように、冷延鋼板Sと対向する磁極面63A1がS極となる。 In FIG. 5(B), a plurality of cylindrical electromagnets 63 are arranged at predetermined intervals along the width direction of the steel plate so that the magnetic pole faces at the bottom face the surface of the cold-rolled steel plate S at a distance. As a result, an external force (attractive force) can be uniformly applied to the surface of the cold-rolled steel sheet S in the width direction, and uniform vibration can be realized in the width direction. By arranging a plurality of rows of such cylindrical electromagnets 63 along the sheet passing direction, sufficient time for applying vibration to the cold rolled steel sheet S can be ensured. As shown in FIG. 5(B), each electromagnet 63 has a cylindrical magnet and a coil wound around the cylindrical magnet, and the axial direction of the coil coincides with the thickness direction of the cold rolled steel sheet S. let In this case, depending on the direction of the current flowing through the coil, the magnetic pole surface 63A1 facing the cold-rolled steel sheet S becomes the north pole, as shown in FIG. 6(A), or The magnetic pole surface 63A1 facing the cold rolled steel plate S becomes the S pole.

図6(A)及び図6(B)の場合、電磁石63に電流を流すことで、冷延鋼板Sには外力(引力)が働く。電磁石63に流す電流は、直流のパルス電流か、交流の連続電流とする。電磁石63に直流のパルス電流を流す場合、冷延鋼板Sに間欠的に引力が働くことで、冷延鋼板Sが振動する。電磁石に交流の連続電流を流す場合、電流の向きが変わるたびに、冷延鋼板Sと対向する磁極面63A1がN極とS極とで切り替わることになるが、常に、冷延鋼板Sには外力(引力)が働く。交流の場合、電流値の経時変化に応じて冷延鋼板Sに働く外力(引力)の大きさも変化するため、冷延鋼板Sが振動する。 In the case of FIGS. 6A and 6B, an external force (attractive force) acts on the cold rolled steel sheet S by passing a current through the electromagnet 63. The current flowing through the electromagnet 63 is a direct current pulse current or an alternating current continuous current. When a direct current pulse current is passed through the electromagnet 63, an attractive force acts on the cold rolled steel sheet S intermittently, causing the cold rolled steel sheet S to vibrate. When a continuous alternating current is passed through the electromagnet, each time the direction of the current changes, the magnetic pole surface 63A1 facing the cold rolled steel sheet S switches between the N pole and the S pole. External force (gravitational force) acts. In the case of alternating current, the magnitude of the external force (gravitational force) acting on the cold-rolled steel sheet S changes according to the change in current value over time, so the cold-rolled steel sheet S vibrates.

なお、電磁石63は、冷延鋼板Sの片方の表面に対向するように設ければ十分であるが、表裏両面に対向するように設けてもよい。ただし、その場合には、片面側の電磁石が他面側の電磁石と同じ高さ位置にないように、高さ位置をずらすことが好ましい。 It is sufficient that the electromagnet 63 is provided so as to face one surface of the cold rolled steel sheet S, but it may be provided so as to face both the front and back surfaces. However, in that case, it is preferable to shift the height position so that the electromagnet on one side is not at the same height position as the electromagnet on the other side.

図4に示す振動検出器64は、冷延鋼板Sの表面と所定の間隔をあけて配置されたレーザー変位計又はレーザードップラー振動計であり、冷延鋼板Sの振動の周波数及び振幅を測定することができる。冷延鋼板Sの電磁石63と同じ高さ位置に振動検出器64を配置することで、振動検出器64で冷延鋼板Sの振動の最大振幅を測定することができる。振動検出器64により検出された周波数及び最大振幅は、制御器61に出力される。制御器61は、振動検出器64から出力された周波数及び最大振幅の値を受け取り、設定値と比較し、その偏差にPID演算などを行って、冷延鋼板Sを所定の周波数及び最大振幅で振動させるように、電磁石63の周波数(直流のパルス電流の周波数又は交流の連続電流の周波数)及び電流値を決定し、また、増幅器62の増幅率を考慮して増幅器62に与える電流値を決定し、電源65に指令値を与える。電源65は、電磁石63のコイルに電流を流すための電源であり、制御器61から入力される指令値を受け取り、増幅器62に所定の周波数及び電流値の電流を与える。増幅器62は、電源65から与えられた電流値を所定の増幅率で増幅して、電磁石63に指令値を与える。その結果、電磁石63には所定の周波数及び電流値の電流が流れ、冷延鋼板Sを所定の周波数及び最大振幅で振動させることができる。 The vibration detector 64 shown in FIG. 4 is a laser displacement meter or a laser Doppler vibrometer placed at a predetermined distance from the surface of the cold-rolled steel sheet S, and measures the frequency and amplitude of vibration of the cold-rolled steel sheet S. be able to. By arranging the vibration detector 64 at the same height position as the electromagnet 63 of the cold-rolled steel sheet S, the maximum amplitude of vibration of the cold-rolled steel sheet S can be measured by the vibration detector 64. The frequency and maximum amplitude detected by the vibration detector 64 are output to the controller 61. The controller 61 receives the frequency and maximum amplitude values output from the vibration detector 64, compares them with set values, performs PID calculation etc. on the deviation, and controls the cold rolled steel sheet S at a predetermined frequency and maximum amplitude. The frequency (direct current pulse current frequency or alternating current continuous current frequency) and current value of the electromagnet 63 are determined so as to vibrate, and the current value given to the amplifier 62 is determined in consideration of the amplification factor of the amplifier 62. Then, a command value is given to the power supply 65. The power supply 65 is a power supply for passing a current through the coil of the electromagnet 63, receives a command value input from the controller 61, and supplies a current of a predetermined frequency and current value to the amplifier 62. The amplifier 62 amplifies the current value given from the power supply 65 by a predetermined amplification factor, and gives a command value to the electromagnet 63. As a result, a current with a predetermined frequency and current value flows through the electromagnet 63, and the cold rolled steel sheet S can be vibrated with a predetermined frequency and maximum amplitude.

(振動付加装置70)
本発明の各実施形態は、図7Aに示すような振動付加装置70をCAL100、CGL200又はCGL300に設置することにより実現でき、振動付加工程は、当該振動付加装置70を用いて通板中の冷延鋼板Sに振動を付加する。図7Aを参照して、振動付加装置70は、制御器71と、振動子72と、振動検出器73とを備える。振動付加装置70は、冷延鋼板Sに接触する振動子72を有し、この振動子72によって冷延鋼板Sが振動するように構成される。
(Vibration adding device 70)
Each embodiment of the present invention can be realized by installing a vibration applying device 70 as shown in FIG. Vibration is applied to the rolled steel plate S. Referring to FIG. 7A, vibration adding device 70 includes a controller 71, a vibrator 72, and a vibration detector 73. The vibration applying device 70 has a vibrator 72 that contacts the cold rolled steel sheet S, and is configured so that the cold rolled steel sheet S is vibrated by the vibrator 72.

振動子72は、一般的な圧電素子であれば特に限定されず、その形状及び設置態様も限定されないが、例えば、図7Bに示すように、板幅方向を長手とする平板状の振動子72を冷延鋼板Sに面接触させることで、冷延鋼板Sを振動させることができる。 The vibrator 72 is not particularly limited as long as it is a general piezoelectric element, and its shape and installation manner are also not limited. For example, as shown in FIG. By making surface contact with the cold-rolled steel plate S, the cold-rolled steel plate S can be vibrated.

なお、振動子72は、冷延鋼板Sの片方の表面に接するように設ければ十分であるが、表裏両面に接するように設けてもよい。ただし、その場合には、片面側の振動子が他面側の振動子と同じ高さ位置にないように、高さ位置をずらすことが好ましい。 It is sufficient that the vibrator 72 is provided in contact with one surface of the cold-rolled steel sheet S, but it may be provided in contact with both the front and back surfaces. However, in that case, it is preferable to shift the height position so that the vibrator on one side is not at the same height position as the vibrator on the other side.

図7Aに示す振動検出器73は、冷延鋼板Sの表面と所定の間隔をあけて配置されたレーザー変位計又はレーザードップラー振動計であり、冷延鋼板Sの振動の周波数及び振幅を測定することができる。冷延鋼板Sの振動子72と同じ高さ位置に振動検出器73を配置することで、振動検出器73で冷延鋼板Sの振動の最大振幅を測定することができる。振動検出器73により検出された周波数及び最大振幅は、制御器71に出力される。制御器71は、振動検出器73から出力された周波数及び最大振幅の値を受け取り、設定値と比較し、その偏差にPID演算などを行って、冷延鋼板Sを所定の周波数及び最大振幅で振動させるように、振動子72に流れる直流パルス電流の周波数及び電流値を決定し、図示しない電源を制御して振動子72に所定の周波数及び電流値の直流パルス電流を与える。これにより、振動子72は所定の周波数及び振幅で振動し、その結果、冷延鋼板Sを所定の周波数及び最大振幅で振動させることができる。 The vibration detector 73 shown in FIG. 7A is a laser displacement meter or a laser Doppler vibrometer placed at a predetermined distance from the surface of the cold-rolled steel sheet S, and measures the frequency and amplitude of vibration of the cold-rolled steel sheet S. be able to. By arranging the vibration detector 73 at the same height position as the vibrator 72 of the cold-rolled steel sheet S, the maximum amplitude of vibration of the cold-rolled steel sheet S can be measured by the vibration detector 73. The frequency and maximum amplitude detected by the vibration detector 73 are output to the controller 71. The controller 71 receives the frequency and maximum amplitude values output from the vibration detector 73, compares them with set values, performs PID calculation etc. on the deviation, and controls the cold rolled steel sheet S at a predetermined frequency and maximum amplitude. The frequency and current value of the DC pulse current flowing through the vibrator 72 are determined so as to cause the vibrator 72 to vibrate, and a power supply (not shown) is controlled to provide the vibrator 72 with a DC pulse current having a predetermined frequency and current value. Thereby, the vibrator 72 vibrates at a predetermined frequency and amplitude, and as a result, the cold rolled steel sheet S can be vibrated at a predetermined frequency and maximum amplitude.

第一、第二、及び第三の実施形態において、振動付加装置60又は70の位置は、冷却帯26からテンションリール50までを通板中の冷延鋼板Sに対して振動を付加することができる限り限定されない。 In the first, second, and third embodiments, the position of the vibration applying device 60 or 70 is such that it can apply vibration to the cold rolled steel sheet S that is being passed from the cooling zone 26 to the tension reel 50. Be as unrestricted as possible.

図1を参照して、CAL100で冷延焼鈍鋼板(CR)の製品コイルを製造する第一の実施形態において、振動付加装置60又は70の好適な位置、すなわち振動付加工程の好適な実施タイミングを説明する。一例として、振動付加装置60又は70を冷却帯26に設けることができる。この場合、振動付加工程は、工程(B-2)にて行うことができる。具体的には、鋼板搬送路に沿って複数配置されている冷却ゾーンの間や、各冷却ゾーンで鋼板搬送路に沿って隣接する冷却ノズルの間に、図4に示す電磁石63や、図7A,Bに示す振動子72を設置することができる。図8(A),(B)に、冷却帯26内に振動付加装置60又は70を設置する場合の、冷却ノズル26Aと振動付加装置60又は70との位置関係の例を示す。なお、振動付加装置60又は70の全体が冷却帯26の内部に位置する必要はなく、少なくとも電磁石63又は振動子72が冷却帯26の内部に位置すればよい。 Referring to FIG. 1, in the first embodiment of manufacturing a product coil of cold-rolled annealed steel plate (CR) using CAL100, a suitable position of the vibration applying device 60 or 70, that is, a suitable implementation timing of the vibration applying process is shown. explain. As an example, a vibration applying device 60 or 70 can be provided in the cooling zone 26. In this case, the vibration adding step can be performed in step (B-2). Specifically, the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. , B can be installed. 8A and 8B show an example of the positional relationship between the cooling nozzle 26A and the vibration applying device 60 or 70 when the vibration applying device 60 or 70 is installed in the cooling zone 26. Note that the entire vibration applying device 60 or 70 does not need to be located inside the cooling zone 26, and at least the electromagnet 63 or the vibrator 72 may be located inside the cooling zone 26.

他の例として、振動付加装置60又は70を、下流設備30を通板中の冷延鋼板Sに振動を付加可能な位置に設けることができる。この場合、振動付加工程は、工程(C)にて行うことができる。具体的には、(i)過時効処理帯28と出側ルーパー35との間、(ii)出側ルーパー35内、(iii)出側ルーパー35と調質圧延機36との間、(iv)調質圧延機36とテンションリール50との間、の少なくとも1つに振動付加装置60又は70を設けることができる。 As another example, the vibration applying device 60 or 70 can be provided at a position where it can apply vibration to the cold rolled steel sheet S being passed through the downstream equipment 30. In this case, the vibration adding step can be performed in step (C). Specifically, (i) between the overaging treatment zone 28 and the exit looper 35, (ii) within the exit looper 35, (iii) between the exit looper 35 and the temper rolling mill 36, (iv) ) A vibration applying device 60 or 70 can be provided between at least one of the temper rolling mill 36 and the tension reel 50.

振動付加装置60又は70は、冷却帯26と、下流設備30を通板中の冷延鋼板Sに振動を付加可能な位置との両方に設けてもよい。すなわち、振動付加工程は、工程(B-2)及び工程(C)の両方で行ってもよい。また、振動付加装置60又は70を過時効処理帯28に設けて、振動付加工程を過時効処理中に行ってもよい。 The vibration applying device 60 or 70 may be provided both in the cooling zone 26 and at a position where the downstream equipment 30 can apply vibration to the cold rolled steel sheet S being passed through. That is, the vibration adding step may be performed in both step (B-2) and step (C). Further, the vibration applying device 60 or 70 may be provided in the overaging treatment zone 28 and the vibration applying step may be performed during the overaging treatment.

次に、図2を参照して、CGL200で合金化溶融亜鉛めっき鋼板(GA)の製品を製造する第二の実施形態において、振動付加装置60又は70の好適な位置、すなわち振動付加工程の好適な実施タイミングを説明する。一例として、振動付加装置60又は70を、溶融亜鉛めっき浴31より上流を通板中の冷延鋼板Sに振動を付加可能な第一の位置に設けることができる。この場合、振動付加工程は、工程(C-1)より前に行うことができる。具体的には、振動付加装置60又は70を冷却帯26に設けることができる。より具体的には、鋼板搬送路に沿って複数配置されている冷却ゾーンの間や、各冷却ゾーンで鋼板搬送路に沿って隣接する冷却ノズルの間に、図4に示す電磁石63や、図7A,Bに示す振動子72を設置することができる。本実施形態でも、図8(A),(B)に示す例が当てはまる。また、振動付加装置60又は70の全体が冷却帯26の内部に位置する必要はなく、少なくとも電磁石63又は振動子72が冷却帯26の内部に位置すればよい。また、スナウト29内に振動付加装置60又は70の少なくとも電磁石63又は振動子72を設置することもできる。 Next, with reference to FIG. 2, in the second embodiment of manufacturing an alloyed galvanized steel sheet (GA) product using the CGL 200, the preferred position of the vibration applying device 60 or 70, that is, the suitable position of the vibration applying process. The implementation timing will be explained. As an example, the vibration applying device 60 or 70 can be provided at a first position upstream of the hot-dip galvanizing bath 31 at a position where it can apply vibration to the cold rolled steel sheet S being passed. In this case, the vibration adding step can be performed before step (C-1). Specifically, a vibration applying device 60 or 70 can be provided in the cooling zone 26. More specifically, the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. A vibrator 72 shown in 7A and 7B can be installed. The examples shown in FIGS. 8(A) and 8(B) also apply to this embodiment. Further, the entire vibration applying device 60 or 70 does not need to be located inside the cooling zone 26, and at least the electromagnet 63 or the vibrator 72 may be located inside the cooling zone 26. Further, at least the electromagnet 63 or the vibrator 72 of the vibration adding device 60 or 70 can be installed inside the snout 29.

他の例として、振動付加装置60又は70を、溶融亜鉛めっき浴31より下流を通板中の冷延鋼板Sに振動を付加可能な第二の位置に設けることができる。この場合、振動付加工程は、工程(C-1)より後に行うことができる。具体的には、(i)溶融亜鉛めっき浴31とガスワイピング装置32との間、(ii)ガスワイピング装置32と合金化炉33との間、(iii)合金化炉33内、(iv)合金化炉33と冷却装置34との間の空冷ゾーン、(v)冷却装置34と出側ルーパー35との間、(vi)出側ルーパー35内、(vii)出側ルーパー35と調質圧延機36との間、(viii)調質圧延機36とテンションリール50との間、の少なくとも1つに振動付加装置60又は70を設けることができる。特に、(iv)の空冷ゾーンに振動付加装置60又は70を設けることが好ましい。 As another example, the vibration applying device 60 or 70 can be provided at a second position where it can apply vibration to the cold rolled steel sheet S being passed downstream from the hot dip galvanizing bath 31. In this case, the vibration adding step can be performed after step (C-1). Specifically, (i) between the hot dip galvanizing bath 31 and the gas wiping device 32, (ii) between the gas wiping device 32 and the alloying furnace 33, (iii) inside the alloying furnace 33, (iv) An air cooling zone between the alloying furnace 33 and the cooling device 34, (v) between the cooling device 34 and the exit looper 35, (vi) inside the exit looper 35, (vii) between the exit looper 35 and temper rolling. A vibration applying device 60 or 70 can be provided at least one of (viii) between the temper rolling mill 36 and the tension reel 50. In particular, it is preferable to provide the vibration applying device 60 or 70 in the air cooling zone (iv).

鋼板中から水素をより十分に脱離させる観点から、振動付加装置60又は70は、第二の位置よりも、第一の位置に設ける方が好ましい。すなわち、振動付加工程は、工程(C-1)より後に行うよりも、工程(C-1)より前に行うことが好ましい。ただし、振動付加装置60又は70は、第一の位置及び第二の位置の両方に設けてもよい。すなわち、振動付加工程は、工程(C-1)の前後両方で行ってもよい。 From the viewpoint of more fully desorbing hydrogen from the steel sheet, it is preferable that the vibration applying device 60 or 70 be provided at the first position rather than the second position. That is, the vibration adding step is preferably performed before step (C-1) rather than after step (C-1). However, the vibration applying device 60 or 70 may be provided at both the first position and the second position. That is, the vibration adding step may be performed both before and after step (C-1).

次に、図3を参照して、CGL300で溶融亜鉛めっき鋼板(GI)の製品を製造する第三の実施形態において、振動付加装置60又は70の好適な位置、すなわち振動付加工程の好適な実施タイミングを説明する。一例として、振動付加装置60又は70を、溶融亜鉛めっき浴31より上流を通板中の冷延鋼板Sに振動を付加可能な第一の位置に設けることができる。この場合、振動付加工程は、工程(C-1)より前に行うことができる。具体的には、振動付加装置60又は70を冷却帯26に設けることができる。より具体的には、鋼板搬送路に沿って複数配置されている冷却ゾーンの間や、各冷却ゾーンで鋼板搬送路に沿って隣接する冷却ノズルの間に、図4に示す電磁石63や、図7A,Bに示す振動子72を設置することができる。本実施形態でも、図8(A),(B)に示す例が当てはまる。また、振動付加装置60又は70の全体が冷却帯26の内部に位置する必要はなく、少なくとも電磁石63又は振動子72が冷却帯26の内部に位置すればよい。また、スナウト29内に振動付加装置60又は70の少なくとも電磁石63又は振動子72を設置することもできる。 Next, with reference to FIG. 3, in a third embodiment of manufacturing a hot-dip galvanized steel sheet (GI) product using a CGL 300, the preferred position of the vibration applying device 60 or 70, that is, the preferred implementation of the vibration applying process. Explain the timing. As an example, the vibration applying device 60 or 70 can be provided at a first position upstream of the hot-dip galvanizing bath 31 at a position where it can apply vibration to the cold rolled steel sheet S being passed. In this case, the vibration adding step can be performed before step (C-1). Specifically, a vibration applying device 60 or 70 can be provided in the cooling zone 26. More specifically, the electromagnet 63 shown in FIG. 4 or the electromagnet 63 shown in FIG. A vibrator 72 shown in 7A and 7B can be installed. The examples shown in FIGS. 8(A) and 8(B) also apply to this embodiment. Further, the entire vibration applying device 60 or 70 does not need to be located inside the cooling zone 26, and at least the electromagnet 63 or the vibrator 72 may be located inside the cooling zone 26. Further, at least the electromagnet 63 or the vibrator 72 of the vibration adding device 60 or 70 can be installed inside the snout 29.

他の例として、振動付加装置60又は70を、溶融亜鉛めっき浴31より下流を通板中の冷延鋼板Sに振動を付加可能な第二の位置に設けることができる。この場合、振動付加工程は、工程(C-1)より後に行うことができる。具体的には、(i)溶融亜鉛めっき浴31とガスワイピング装置32との間、(ii)ガスワイピング装置32と冷却装置34との間の空冷ゾーン、(iii)冷却装置34と出側ルーパー35との間、(iv)出側ルーパー35内、(v)出側ルーパー35と調質圧延機36との間、(vi)調質圧延機36とテンションリール50との間、の少なくとも1つに振動付加装置60又は70を設けることができる。特に、(ii)の空冷ゾーンに振動付加装置60又は70を設けることが好ましい。 As another example, the vibration applying device 60 or 70 can be provided at a second position where it can apply vibration to the cold rolled steel sheet S being passed downstream from the hot dip galvanizing bath 31. In this case, the vibration adding step can be performed after step (C-1). Specifically, (i) an air cooling zone between the hot dip galvanizing bath 31 and the gas wiping device 32, (ii) an air cooling zone between the gas wiping device 32 and the cooling device 34, and (iii) a cooling device 34 and the outlet looper. 35, (iv) inside the exit looper 35, (v) between the exit looper 35 and the temper rolling mill 36, and (vi) between the temper rolling mill 36 and the tension reel 50. A vibration applying device 60 or 70 can be provided. In particular, it is preferable to provide the vibration applying device 60 or 70 in the air cooling zone (ii).

鋼板中から水素をより十分に脱離させる観点から、振動付加装置60又は70は、第二の位置よりも、第一の位置に設ける方が好ましい。すなわち、振動付加工程は、工程(C-1)より後に行うよりも、工程(C-1)より前に行うことが好ましい。ただし、振動付加装置60又は70は、第一の位置及び第二の位置の両方に設けてもよい。すなわち、振動付加工程は、工程(C-1)の前後両方で行ってもよい。 From the viewpoint of more fully desorbing hydrogen from the steel sheet, it is preferable that the vibration applying device 60 or 70 be provided at the first position rather than the second position. That is, the vibration adding step is preferably performed before step (C-1) rather than after step (C-1). However, the vibration applying device 60 or 70 may be provided at both the first position and the second position. That is, the vibration adding step may be performed both before and after step (C-1).

(振動の周波数)
水素の拡散を促進する観点から、冷延鋼板Sの振動の周波数は100Hz以上であることが肝要である。当該周波数が100Hz未満の場合、冷延鋼板S中に含有された水素を脱離させる効果は得られない。この観点から、当該周波数は100Hz以上とし、好ましくは500Hz以上とし、より好ましくは1000Hz以上とする。なお、冷延鋼板Sは、その通板過程で自ずと振動したり、例えばガスワイピング装置32からガスを受けて振動したりする。しかし、これらの振動において、冷延鋼板Sの振動の周波数は高々20Hz程度であり、この場合、冷延鋼板S中に含有された水素を脱離させる効果は得られない。他方で、当該周波数が過多の場合、鋼板内で格子間隔を膨張させておく十分な時間を確保できず、やはり水素を脱離する効果を得ることができない。この観点から、当該周波数は、100000Hz以下とすることが肝要であり、好ましくは80000Hz以下とし、より好ましくは50000Hz以下とする。冷延鋼板Sの振動の周波数は、図4に示した振動検出器64又は図7Aに示した振動検出器73により測定することができる。また、冷延鋼板Sの振動の周波数は、図4に示す振動付加装置60の場合、直流のパルス電流の周波数又は交流の連続電流の周波数を制御することによって調整することができ、図7A,Bに示す振動付加装置70の場合、振動子72の振動周波数を制御することによって調整することができる。
(frequency of vibration)
From the viewpoint of promoting hydrogen diffusion, it is important that the vibration frequency of the cold rolled steel sheet S is 100 Hz or more. When the frequency is less than 100 Hz, the effect of desorbing hydrogen contained in the cold rolled steel sheet S cannot be obtained. From this point of view, the frequency is 100 Hz or more, preferably 500 Hz or more, and more preferably 1000 Hz or more. The cold-rolled steel sheet S vibrates by itself during the threading process, or vibrates when it receives gas from the gas wiping device 32, for example. However, in these vibrations, the frequency of vibration of the cold-rolled steel sheet S is about 20 Hz at most, and in this case, the effect of desorbing hydrogen contained in the cold-rolled steel sheet S cannot be obtained. On the other hand, if the frequency is too high, sufficient time for expanding the lattice spacing within the steel sheet cannot be secured, and the effect of desorbing hydrogen cannot be obtained. From this point of view, it is important that the frequency be 100,000 Hz or less, preferably 80,000 Hz or less, and more preferably 50,000 Hz or less. The frequency of vibration of the cold rolled steel sheet S can be measured by the vibration detector 64 shown in FIG. 4 or the vibration detector 73 shown in FIG. 7A. Further, in the case of the vibration adding device 60 shown in FIG. 4, the frequency of vibration of the cold-rolled steel sheet S can be adjusted by controlling the frequency of the DC pulse current or the frequency of the AC continuous current; In the case of the vibration adding device 70 shown in B, adjustment can be made by controlling the vibration frequency of the vibrator 72.

(振動の最大振幅)
冷延鋼板Sの最大振幅が10nm未満の場合、鋼板表面の格子間隔が十分に拡張せず、水素拡散の促進が不十分のため、冷延鋼板S中に含有された水素を脱離させる効果は得られない。よって、冷延鋼板Sの最大振幅は10nm以上とすることが肝要であり、好ましくは100nm以上とし、より好ましくは500nm以上とする。また、冷延鋼板Sの最大振幅が500μm超えの場合、鋼板表面におけるひずみが大きくなり、塑性変形を生じ、結果として水素をトラップしてしまうため、冷延鋼板S中に含有された水素を脱離させる効果は得られない。この観点から、冷延鋼板Sの最大振幅は500μm以下とすることが肝要であり、好ましくは400μm以下とし、より好ましくは300μm以下とする。なお、冷延鋼板Sは、その通板過程で自ずと振動したり、例えばガスワイピング装置32からガスを受けて振動したりする。しかし、これらの振動において、冷延鋼板Sの最大振幅は少なくとも0.5mm超えとなるため、冷延鋼板S中に含有された水素を脱離させる効果は得られない。冷延鋼板Sの最大振幅は、図4に示した振動検出器64又は図7Aに示した振動検出器73により測定することができる。また、冷延鋼板Sの最大振幅は、図4に示す振動付加装置60の場合、電磁石63に流す電流量を制御することによって調整することができ、図7A,Bに示す振動付加装置70の場合、振動子72の振動の振幅を制御することによって調整することができる。
(Maximum amplitude of vibration)
When the maximum amplitude of the cold-rolled steel sheet S is less than 10 nm, the lattice spacing on the surface of the steel sheet is not sufficiently expanded and hydrogen diffusion is insufficiently promoted, so that the effect of desorbing hydrogen contained in the cold-rolled steel sheet S is cannot be obtained. Therefore, it is important that the maximum amplitude of the cold rolled steel sheet S is 10 nm or more, preferably 100 nm or more, and more preferably 500 nm or more. Furthermore, if the maximum amplitude of the cold-rolled steel sheet S exceeds 500 μm, the strain on the surface of the steel sheet increases, causing plastic deformation and trapping hydrogen as a result. You cannot get the effect of letting go. From this point of view, it is important that the maximum amplitude of the cold rolled steel sheet S is 500 μm or less, preferably 400 μm or less, and more preferably 300 μm or less. The cold-rolled steel sheet S vibrates by itself during the threading process, or vibrates when it receives gas from the gas wiping device 32, for example. However, in these vibrations, the maximum amplitude of the cold-rolled steel sheet S exceeds at least 0.5 mm, so that the effect of desorbing hydrogen contained in the cold-rolled steel sheet S cannot be obtained. The maximum amplitude of the cold rolled steel sheet S can be measured by the vibration detector 64 shown in FIG. 4 or the vibration detector 73 shown in FIG. 7A. Further, the maximum amplitude of the cold rolled steel sheet S can be adjusted by controlling the amount of current flowing through the electromagnet 63 in the case of the vibration adding device 60 shown in FIG. 4, and in the case of the vibration adding device 70 shown in FIGS. In this case, it can be adjusted by controlling the amplitude of the vibration of the vibrator 72.

(振動付加時間)
冷延鋼板Sから水素をより十分に低減させる観点から、振動付加工程において、冷延鋼板Sに対する振動の付加時間は1秒以上とすることが好ましく、5秒以上とすることがより好ましく、10秒以上とすることがさらに好ましい。他方、生産性を阻害しない観点から、冷延鋼板Sに対する振動の付加時間は3600秒以下とすることが好ましく、1800秒以下とすることがより好ましく、900秒以下とすることがさらに好ましい。本明細書において、「冷延鋼板Sに対する振動の付加時間」とは、冷延鋼板Sの表面の各位置に振動が付加される時間を意味し、各位置が複数の振動付加装置60又は70からの振動を付与される場合には、その積算時間を意味する。図6(A),(B)を参照して、振動付加装置60を用いる場合には、冷延鋼板Sの表面のうち電磁石63と対向する部分は振動しているとみなすことができる。よって、冷延鋼板Sの各部位が電磁石63と対向している時間の積算を振動付加時間とすることができる。図7A,Bに示す振動付加装置70を用いる場合は、冷延鋼板Sの各部位が振動子72と接触している時間の積算を振動付加時間とすることができる。振動付加時間は、冷延鋼板Sの通板速度と、振動付加装置60又は70の位置(例えば、図4に示す電磁石63の通板方向に沿った数や、図7A,Bに示す振動子72の通板方向に沿った数)とによって調整することができる。
(Vibration addition time)
From the viewpoint of more sufficiently reducing hydrogen from the cold rolled steel sheet S, in the vibration application step, the vibration application time to the cold rolled steel sheet S is preferably 1 second or more, more preferably 5 seconds or more, and 10 seconds or more. It is more preferable to set it to more than a second. On the other hand, from the viewpoint of not inhibiting productivity, the time for applying vibration to the cold rolled steel sheet S is preferably 3600 seconds or less, more preferably 1800 seconds or less, and even more preferably 900 seconds or less. In this specification, "time for which vibration is applied to the cold-rolled steel sheet S" means a time during which vibration is applied to each position on the surface of the cold-rolled steel sheet S, and each position is connected to a plurality of vibration applying devices 60 or 70. When vibrations are applied from , it means the cumulative time. Referring to FIGS. 6(A) and 6(B), when using the vibration adding device 60, it can be considered that the portion of the surface of the cold rolled steel sheet S that faces the electromagnet 63 is vibrating. Therefore, the cumulative amount of time that each part of the cold rolled steel sheet S faces the electromagnet 63 can be set as the vibration addition time. When using the vibration applying device 70 shown in FIGS. 7A and 7B, the vibration applying time can be the sum of the times during which each part of the cold rolled steel sheet S is in contact with the vibrator 72. The vibration application time depends on the passing speed of the cold rolled steel sheet S and the position of the vibration applying device 60 or 70 (for example, the number of electromagnets 63 along the threading direction shown in FIG. 4 or the vibrator shown in FIGS. 7A and 7B). 72 (number along the sheet passing direction).

[冷延鋼板]
本実施形態において、CAL100、CGL200及びCGL300に供給される冷延鋼板Sは特に限定されない。冷延鋼板Sは、板厚6mm未満であることが好ましく、例えば、590MPa以上の引張強さを有する高強度鋼板や、ステンレス鋼板を挙げることができる。
[Cold rolled steel sheet]
In this embodiment, the cold rolled steel sheets S supplied to CAL100, CGL200, and CGL300 are not particularly limited. The cold-rolled steel plate S preferably has a thickness of less than 6 mm, and includes, for example, a high-strength steel plate having a tensile strength of 590 MPa or more and a stainless steel plate.

[冷延鋼板の成分組成:高強度鋼板]
冷延鋼板Sが高強度鋼板である場合の成分組成について説明する。以下、「質量%」は単に「%」と記す。
[Composition of cold-rolled steel sheet: high-strength steel sheet]
The composition when the cold-rolled steel sheet S is a high-strength steel sheet will be explained. Hereinafter, "mass %" is simply written as "%".

C:0.030~0.800%
Cは、鋼板の強度を上昇させる効果を有する。この効果を得る観点から、C量は0.030%以上とし、好ましくは0.080%以上とする。しかし、C量が過剰の場合、鋼板中の水素量によらず鋼板が著しく脆化する。よって、C量は0.800%以下とし、好ましくは0.500%以下とする。
C: 0.030-0.800%
C has the effect of increasing the strength of the steel plate. From the viewpoint of obtaining this effect, the amount of C is set to 0.030% or more, preferably 0.080% or more. However, when the amount of C is excessive, the steel sheet becomes extremely brittle regardless of the amount of hydrogen in the steel sheet. Therefore, the amount of C should be 0.800% or less, preferably 0.500% or less.

Si:0.01~3.00%
Siは、鋼板の強度を上昇させる効果を有する。この効果を得る観点から、Si量は0.01%以上とし、好ましくは0.10%以上とする。しかし、Si量が過剰の場合、鋼板が脆化して延性が低下したり、赤スケールなどが発生して表面性状が劣化したり、めっき品質が低下する。よって、Si量は3.00%以下とし、好ましくは2.50%以下とする。
Si: 0.01-3.00%
Si has the effect of increasing the strength of the steel plate. From the viewpoint of obtaining this effect, the amount of Si is set to 0.01% or more, preferably 0.10% or more. However, when the amount of Si is excessive, the steel plate becomes brittle and its ductility decreases, red scale etc. occur and the surface quality deteriorates, and the plating quality deteriorates. Therefore, the amount of Si should be 3.00% or less, preferably 2.50% or less.

Mn:0.01~10.00%
Mnは、固溶強化により鋼板の強度を上昇させる効果を有する。この効果を得る観点から、Mn量は0.01%以上とし、好ましくは0.5%以上とする。しかし、Mn量が過剰の場合、Mnの偏析に起因して鋼組織にムラが生じやすくなり、ムラを起点とした水素脆性が顕在化する場合がある。よって、Mn量は10.00%以下とし、好ましくは8.00%以下とする。
Mn: 0.01-10.00%
Mn has the effect of increasing the strength of the steel plate through solid solution strengthening. From the viewpoint of obtaining this effect, the amount of Mn is set to 0.01% or more, preferably 0.5% or more. However, when the amount of Mn is excessive, unevenness tends to occur in the steel structure due to segregation of Mn, and hydrogen embrittlement originating from the unevenness may become apparent. Therefore, the Mn content should be 10.00% or less, preferably 8.00% or less.

P:0.001~0.100%
Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。こうした効果を得る観点から、P量は0.001%以上とし、好ましくは0.003%以上とする。しかし、P量が過剰の場合、溶接性が劣化し、亜鉛めっきを合金化する場合には、合金化速度が低下して、亜鉛めっきの品質を損なう。よって、P量は0.100%以下とし、好ましくは0.050%以下とする。
P:0.001~0.100%
P is an element that has a solid solution strengthening effect and can be added depending on the desired strength. From the viewpoint of obtaining such effects, the amount of P is set to 0.001% or more, preferably 0.003% or more. However, when the amount of P is excessive, weldability deteriorates, and when alloying zinc plating, the alloying speed decreases, impairing the quality of the zinc plating. Therefore, the amount of P should be 0.100% or less, preferably 0.050% or less.

S:0.0001~0.0200%
Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させる。そのため、S量は0.0200%以下とし、好ましくは0.0100%以下とし、より好ましくは0.0050%以下とする。一方、生産技術上の制約から、S量は0.0001%以上とする。
S: 0.0001-0.0200%
S segregates at grain boundaries and makes the steel brittle during hot working, and also exists as a sulfide and reduces local deformability. Therefore, the amount of S is set to 0.0200% or less, preferably 0.0100% or less, and more preferably 0.0050% or less. On the other hand, due to production technology constraints, the S content is set to 0.0001% or more.

N:0.0005~0.0100%
Nは、鋼の耐時効性を劣化させる元素である。そのため、N量は0.0100%以下とし、好ましくは0.0070%以下とする。N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上とし、好ましくは0.0010%以上とする。
N: 0.0005-0.0100%
N is an element that deteriorates the aging resistance of steel. Therefore, the amount of N is set to 0.0100% or less, preferably 0.0070% or less. The smaller the amount of N, the more preferable it is, but due to constraints on production technology, the amount of N is set to 0.0005% or more, preferably 0.0010% or more.

Al:0.001~2.000%
Alは、脱酸剤として作用し、鋼の清浄度に有効な元素である。この効果を得る観点から、Al量は0.001%以上とし、好ましくは0.010%以上とする。しかし、Al量が過剰の場合、連続鋳造時に鋼片割れが発生する可能性がある。よって、Al量は2.000%以下とし、好ましくは1.200%以下とする。
Al: 0.001-2.000%
Al acts as a deoxidizing agent and is an element effective in improving the cleanliness of steel. From the viewpoint of obtaining this effect, the amount of Al is set to 0.001% or more, preferably 0.010% or more. However, if the amount of Al is excessive, cracks may occur during continuous casting. Therefore, the amount of Al should be 2.000% or less, preferably 1.200% or less.

上記成分以外の残部は、Fe及び不可避的不純物である。ただし、任意で以下から選ばれる少なくとも1種の元素を含んでもよい。 The remainder other than the above components is Fe and inevitable impurities. However, it may optionally contain at least one element selected from the following.

Ti:0.200%以下
Tiは、鋼の析出強化やフェライト結晶粒の成長抑制による細粒強化にて、鋼板の強度上昇に寄与する。よって、Tiを添加する場合、Ti量は0.005%以上とすることが好ましく、0.010%以上とすることがよりこのましい。しかし、Ti量が過剰の場合、炭窒化物が多量に析出し、成形性が低下する場合がある。よって、Tiを添加する場合、Ti量を0.200%以下とし、好ましくは0.100%以下とする。
Ti: 0.200% or less Ti contributes to increasing the strength of the steel sheet through precipitation strengthening of the steel and fine grain strengthening by suppressing the growth of ferrite crystal grains. Therefore, when adding Ti, the amount of Ti is preferably 0.005% or more, more preferably 0.010% or more. However, when the amount of Ti is excessive, a large amount of carbonitrides may precipitate, leading to a decrease in formability. Therefore, when adding Ti, the amount of Ti should be 0.200% or less, preferably 0.100% or less.

Nb:0.200%以下、V:0.500%以下、W:0.500%以下
Nb、V、及びWは、鋼の析出強化に有効である。よって、Nb、V、及びWを添加する場合、各元素の含有量は0.005%以上とすることが好ましく、0.010%以上とすることがより好ましい。しかし、各含有量が過剰の場合、炭窒化物が多量に析出し、成形性が低下する場合がある。よって、Nbを添加する場合、Nb量は0.200%以下とし、好ましくは0.100%以下とする。V及びWを添加する場合、各元素の含有量は0.500%以下とし、好ましくは0.300%以下とする。
Nb: 0.200% or less, V: 0.500% or less, W: 0.500% or less Nb, V, and W are effective for precipitation strengthening of steel. Therefore, when adding Nb, V, and W, the content of each element is preferably 0.005% or more, more preferably 0.010% or more. However, if each content is excessive, a large amount of carbonitrides may precipitate and formability may deteriorate. Therefore, when adding Nb, the amount of Nb should be 0.200% or less, preferably 0.100% or less. When V and W are added, the content of each element is 0.500% or less, preferably 0.300% or less.

B:0.0050%以下
Bは、粒界の強化や鋼板の高強度化に有効である。よって、Bを添加する場合、B量は0.0003%以上とすることが好ましい。しかし、B量が過剰の場合、成形性が低下する場合がある。よって、Bを添加する場合、B量は0.0050%以下とし、好ましくは0.0030%以下とする。
B: 0.0050% or less B is effective in strengthening grain boundaries and increasing the strength of steel sheets. Therefore, when adding B, the amount of B is preferably 0.0003% or more. However, when the amount of B is excessive, moldability may deteriorate. Therefore, when adding B, the amount of B should be 0.0050% or less, preferably 0.0030% or less.

Ni:1.000%以下
Niは、固溶強化により鋼の強度を上昇させる元素である。よって、Niを添加する場合、Ni量は0.005%以上とすることが好ましい。しかし、Ni量が過剰の場合、硬質なマルテンサイトの面積率が過大となり、引張試験時に、マルテンサイトの結晶粒界でのマイクロボイドが増加し、さらに、亀裂の伝播が進行してしまい、延性が低下する場合がある。よって、Niを添加する場合、Ni量は1.000%以下とする。
Ni: 1.000% or less Ni is an element that increases the strength of steel through solid solution strengthening. Therefore, when adding Ni, the amount of Ni is preferably 0.005% or more. However, when the amount of Ni is excessive, the area ratio of hard martensite becomes excessive, which increases the number of microvoids at the grain boundaries of martensite during a tensile test, and further propagates cracks, resulting in ductile may decrease. Therefore, when adding Ni, the amount of Ni should be 1.000% or less.

Cr:1.000%以下、Mo:1.000%以下
Cr及びMoは、強度と成形性のバランスを向上させる作用を有する。よって、Cr及びMoを添加する場合、各元素の含有量は0.005%以上とすることが好ましい。しかし、各含有量が過剰の場合、硬質なマルテンサイトの面積率が過大となり、引張試験時に、マルテンサイトの結晶粒界でのマイクロボイドが増加し、さらに、亀裂の伝播が進行してしまい、延性が低下する場合がある。よって、Cr及びMoを添加する場合、各元素の含有量は1.000%以下とする。
Cr: 1.000% or less, Mo: 1.000% or less Cr and Mo have the effect of improving the balance between strength and formability. Therefore, when adding Cr and Mo, the content of each element is preferably 0.005% or more. However, if each content is excessive, the area ratio of hard martensite becomes excessive, and during the tensile test, microvoids at grain boundaries of martensite increase, and crack propagation progresses. Ductility may decrease. Therefore, when adding Cr and Mo, the content of each element should be 1.000% or less.

Cu:1.000%以下
Cuは、鋼の強化に有効な元素である。よって、Cuを添加する場合、Cu量は0.005%以上とすることが好ましい。しかし、Cu量が過剰の場合、硬質なマルテンサイトの面積率が過大となり、引張試験時に、焼戻しマルテンサイトの結晶粒界でのマイクロボイドが増加し、さらに、亀裂の伝播が進行してしまい、延性が低下する場合がある。よって、Cuを添加する場合、Cu量は1.000%以下とする。
Cu: 1.000% or less Cu is an element effective in strengthening steel. Therefore, when adding Cu, the amount of Cu is preferably 0.005% or more. However, when the amount of Cu is excessive, the area ratio of hard martensite becomes excessive, microvoids at grain boundaries of tempered martensite increase during a tensile test, and crack propagation progresses. Ductility may decrease. Therefore, when adding Cu, the amount of Cu is 1.000% or less.

Sn:0.200%以下、Sb:0.200%以下
Sn及びSbは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の領域の脱炭を抑制することや、強度や材質安定性の確保に有効である。よって、Sn及びSbを添加する場合、各元素の含有量は0.002%以上とすることが好ましい。しかし、各含有量が過剰の場合、靭性が低下する場合がある。よって、Sn及びSbを添加する場合、各元素の含有量は0.200%以下とする。
Sn: 0.200% or less, Sb: 0.200% or less Sn and Sb suppress decarburization in an area of several tens of μm on the steel plate surface layer caused by nitriding and oxidation of the steel plate surface, and improve strength and material stability. It is effective in ensuring sex. Therefore, when adding Sn and Sb, the content of each element is preferably 0.002% or more. However, if each content is excessive, toughness may decrease. Therefore, when adding Sn and Sb, the content of each element should be 0.200% or less.

Ta:0.100%以下
Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して高強度化に寄与する。加えて、Nb炭化物やNb炭窒化物に一部固溶し、(Nb、Ta)(C、N)のような複合析出物を生成することで、析出物の粗大化を著しく抑制し、析出強化による強度への寄与を安定化させる効果があると考えられる。よって、Taを添加する場合、Ta量は0.001%以上とすることが好ましい。しかし、Taを過剰に添加しても析出物安定化効果が飽和する場合がある上、合金コストも増加する。よって、Taを添加する場合、Ta量は0.100%以下とする。
Ta: 0.100% or less Ta, like Ti and Nb, generates alloy carbides and alloy carbonitrides and contributes to high strength. In addition, by partially forming a solid solution in Nb carbide and Nb carbonitride to form composite precipitates such as (Nb, Ta) (C, N), coarsening of the precipitates is significantly suppressed and precipitation It is thought that this has the effect of stabilizing the contribution to strength due to reinforcement. Therefore, when adding Ta, the amount of Ta is preferably 0.001% or more. However, even if Ta is added excessively, the precipitate stabilizing effect may become saturated, and the alloy cost also increases. Therefore, when adding Ta, the amount of Ta should be 0.100% or less.

Ca:0.0050%以下、Mg:0.0050%以下、Zr:0.1000%以下、REM(Rare Earth Metal):0.0050%以下
Ca、Mg、Zr及びREMは、硫化物の形状を球状化し、成形性への硫化物の悪影響を改善するために有効な元素である。これらの元素を添加する場合には、各元素の含有量は0.0005%以上とすることが好ましい。しかし、各含有量が過剰の場合、介在物等が増加し、表面及び内部欠陥が発生する場合がある。よって、これらの元素を添加する場合、各元素の含有量は0.0050%以下とする。
Ca: 0.0050% or less, Mg: 0.0050% or less, Zr: 0.1000% or less, REM (Rare Earth Metal): 0.0050% or less Ca, Mg, Zr and REM change the shape of the sulfide. It is an effective element for spheroidizing and improving the adverse effects of sulfide on formability. When these elements are added, the content of each element is preferably 0.0005% or more. However, when each content is excessive, inclusions and the like increase, and surface and internal defects may occur. Therefore, when adding these elements, the content of each element should be 0.0050% or less.

[冷延鋼板の成分組成:ステンレス鋼板]
冷延鋼板Sがステンレス鋼板である場合の成分組成について説明する。以下、「質量%」は単に「%」と記す。
[Composition of cold rolled steel sheet: stainless steel sheet]
The composition when the cold rolled steel sheet S is a stainless steel sheet will be explained. Hereinafter, "mass %" is simply written as "%".

C:0.001~0.400%
Cは、ステンレス鋼において高強度を得るために欠かせない元素である。しかし、鋼製造における焼戻し時にCrと結合して炭化物として析出し、これが鋼の耐食性及び靭性を劣化させる。C量が0.001%未満では十分な強度が得られず、0.400%を超えると前記劣化が顕著になる。このため、C量は0.001~0.400%とする。
C: 0.001-0.400%
C is an essential element for obtaining high strength in stainless steel. However, during tempering in steel manufacturing, it combines with Cr and precipitates as carbides, which deteriorates the corrosion resistance and toughness of the steel. If the C content is less than 0.001%, sufficient strength cannot be obtained, and if it exceeds 0.400%, the deterioration becomes noticeable. Therefore, the amount of C is set to 0.001 to 0.400%.

Si:0.01~2.00%
Siは、脱酸剤として有用な元素である。この効果を得る観点から、Si量は0.01%以上にする。しかし、Si量が過剰の場合、鋼中に固溶したSiは鋼の加工性を低下させる。よって、Siは2.00%以下とする。
Si: 0.01~2.00%
Si is an element useful as a deoxidizing agent. From the viewpoint of obtaining this effect, the amount of Si is set to 0.01% or more. However, when the amount of Si is excessive, Si dissolved in the steel deteriorates the workability of the steel. Therefore, Si should be 2.00% or less.

Mn:0.01~5.00%
Mnは、鋼の強度を高める効果を有する。この効果を得る観点から、Mn量は0.01%以上とする。しかし、Mn量が過剰の場合、鋼の加工性が低下する。よって、Mn量は5.00%以下とする。
Mn: 0.01-5.00%
Mn has the effect of increasing the strength of steel. From the viewpoint of obtaining this effect, the amount of Mn is set to 0.01% or more. However, when the amount of Mn is excessive, the workability of the steel decreases. Therefore, the Mn content is set to 5.00% or less.

P:0.001~0.100%
Pは、粒界偏析による粒界破壊を助長する元素である。このため、P量は低い方が望ましく、0.100%以下とし、好ましくは0.030%以下とし、より好ましくは0.020%以下とする。一方、生産技術上の制約からP量0.001%以上とする。
P:0.001~0.100%
P is an element that promotes grain boundary destruction due to grain boundary segregation. Therefore, it is desirable that the amount of P be as low as possible, and should be 0.100% or less, preferably 0.030% or less, and more preferably 0.020% or less. On the other hand, due to production technology constraints, the amount of P is set to 0.001% or more.

S:0.0001~0.0200%
Sは、MnSなどの硫化物系介在物として存在して、延性や耐食性等を低下させる。このため、S量は低い方が望ましく、0.0200%以下とし、好ましくは0.0100%以下とし、より好ましくは0.0050%以下とする。一方、生産技術上の制約からS量は0.0001%以上とする。
S: 0.0001-0.0200%
S exists as sulfide inclusions such as MnS and reduces ductility, corrosion resistance, etc. Therefore, the S amount is desirably low, and is set to 0.0200% or less, preferably 0.0100% or less, and more preferably 0.0050% or less. On the other hand, due to production technology constraints, the S content is set to 0.0001% or more.

Cr:9.0~28.0%
Crはステンレス鋼を構成する基本的な元素で、しかも耐食性を発現する重要な元素である。180℃以上の苛酷な環境における耐食性を考慮した場合、Cr量が9.0%未満では十分な耐食性が得られず、28.0%を超えると効果は飽和し経済性の点で問題が生じる。このため、Cr量は9.0~28.0%とする。
Cr:9.0~28.0%
Cr is a basic element constituting stainless steel, and is also an important element that exhibits corrosion resistance. When considering corrosion resistance in harsh environments of 180°C or higher, if the Cr content is less than 9.0%, sufficient corrosion resistance cannot be obtained, and if it exceeds 28.0%, the effect is saturated and problems arise in terms of economic efficiency. . Therefore, the Cr content is set to 9.0 to 28.0%.

Ni:0.01~40.0%
Niはステンレス鋼の耐食性を向上させる元素である。Ni量が0.01%未満ではその効果が十分に発揮されない。一方、Ni量が過剰の場合、成形性を劣化させる他、応力腐食割れが生じやすくなる。このため、Ni量は0.01~40.0%とする。
Ni: 0.01-40.0%
Ni is an element that improves the corrosion resistance of stainless steel. If the amount of Ni is less than 0.01%, the effect will not be fully exhibited. On the other hand, when the amount of Ni is excessive, not only the formability is deteriorated but also stress corrosion cracking is likely to occur. Therefore, the Ni amount is set to 0.01 to 40.0%.

N:0.0005~0.500%
Nはステンレス鋼の耐食性向上に有害な元素である。そのため、N量は0.500%以下とし、好ましくは0.200%以下とする。N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上とする。
N: 0.0005-0.500%
N is an element harmful to improving the corrosion resistance of stainless steel. Therefore, the amount of N is set to 0.500% or less, preferably 0.200% or less. The smaller the amount of N, the more preferable it is, but due to constraints on production technology, the amount of N is set to 0.0005% or more.

Al:0.001~3.000%
Alは、脱酸剤として作用する他、酸化スケールの剥離を抑制する効果がある。これらの効果を得る観点から、Al量は0.001%以上とする。しかし、Al量が過剰の場合、伸びの低下及び表面品質の劣化が起きる。よって、Al量は3.000%以下とする。
Al: 0.001-3.000%
In addition to acting as a deoxidizing agent, Al has the effect of suppressing the peeling of oxide scale. From the viewpoint of obtaining these effects, the amount of Al is set to 0.001% or more. However, when the amount of Al is excessive, a decrease in elongation and a deterioration in surface quality occur. Therefore, the amount of Al is set to 3.000% or less.

上記成分以外の残部は、Fe及び不可避的不純物である。ただし、任意で以下から選ばれる少なくとも1種の元素を含んでもよい。 The remainder other than the above components is Fe and inevitable impurities. However, it may optionally contain at least one element selected from the following.

Ti:0.500%以下
Tiは、C、N、及びSと結合して耐食性、耐粒界腐食性、及び深絞り性を向上させる。ただし、Ti量が0.500%超えの場合、固溶Tiにより靭性が劣化する。よって、Tiを添加する場合、Ti量は0.500%以下とする。
Ti: 0.500% or less Ti combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. However, when the amount of Ti exceeds 0.500%, the toughness deteriorates due to solid solution Ti. Therefore, when adding Ti, the amount of Ti should be 0.500% or less.

Nb:0.500%以下
Nbは、Tiと同様に、C、N、及びSと結合して耐食性、耐粒界腐食性、及び深絞り性を向上させる。また、加工性の向上や高温強度の向上に加え、隙間腐食の抑制や再不働態化を促進させる。ただし、過度の添加は硬質化をもたらし成形性を劣化させる。よって、Nbを添加する場合、Nb量は0.500%以下とする。
Nb: 0.500% or less Like Ti, Nb combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. In addition to improving workability and high-temperature strength, it also suppresses crevice corrosion and promotes repassivation. However, excessive addition causes hardening and deteriorates moldability. Therefore, when adding Nb, the amount of Nb should be 0.500% or less.

V:0.500%以下
Vは、隙間腐食を抑制させる。しかし、過度の添加は成形性を劣化させる。よって、Vを添加する場合、V量は0.500%以下とする。
V: 0.500% or less V suppresses crevice corrosion. However, excessive addition deteriorates moldability. Therefore, when adding V, the amount of V should be 0.500% or less.

W:2.000%以下
Wは、耐食性と高温強度の向上に寄与する。ただし、過度の添加は、鋼板製造時の靭性劣化やコスト増に繋がる。よって、Wを添加する場合、W量は2.000%以下とする。
W: 2.000% or less W contributes to improving corrosion resistance and high temperature strength. However, excessive addition leads to deterioration of toughness and increase in cost during production of steel sheets. Therefore, when adding W, the amount of W should be 2.000% or less.

B:0.0050%以下
Bは、粒界に偏析することで製品の二次加工性を向上させる。ただし、過度の添加は加工性、耐食性の低下をもたらす。よって、Bを添加する場合、B量は0.0050%以下とする。
B: 0.0050% or less B improves the secondary workability of the product by segregating at grain boundaries. However, excessive addition results in deterioration of workability and corrosion resistance. Therefore, when adding B, the amount of B should be 0.0050% or less.

Mo:2.000%以下
Moは耐食性を向上させ、特に隙間腐食を抑制する元素である。ただし、過度の添加は成形性を劣化させる。よって、Moを添加する場合、Mo量は2.000%以下とする。
Mo: 2.000% or less Mo is an element that improves corrosion resistance and particularly suppresses crevice corrosion. However, excessive addition deteriorates moldability. Therefore, when adding Mo, the amount of Mo should be 2.000% or less.

Cu:3.000%以下
Cuは、NiやMn同様、オーステナイト安定化元素であり、相変態による結晶粒の微細化に有効である。また、隙間腐食の抑制や再不動態化を促進させる。ただし、過度の添加は靭性及び成形性を劣化させる。よって、Cuを添加する場合、Cu量は3.000%以下とする。
Cu: 3.000% or less Cu, like Ni and Mn, is an austenite stabilizing element and is effective in refining crystal grains through phase transformation. It also inhibits crevice corrosion and promotes repassivation. However, excessive addition deteriorates toughness and formability. Therefore, when adding Cu, the amount of Cu is 3.000% or less.

Sn:0.500%以下
Snは、耐食性と高温強度の向上に寄与する。ただし、過度の添加は鋼板製造時のスラブ割れを生じさせるおそれがある。よって、Snを添加する場合、Sn量は0.500%以下とする。
Sn: 0.500% or less Sn contributes to improving corrosion resistance and high temperature strength. However, excessive addition may cause slab cracking during steel sheet production. Therefore, when adding Sn, the amount of Sn should be 0.500% or less.

Sb:0.200%以下
Sbは、粒界に偏析して高温強度を上げる作用を有する。ただし、過度の添加はSb偏析により溶接時に割れが生じるおそれがある。よって、Sbを添加する場合、Sb量は0.200%以下とする。
Sb: 0.200% or less Sb segregates at grain boundaries and has the effect of increasing high-temperature strength. However, excessive addition may cause cracks during welding due to Sb segregation. Therefore, when adding Sb, the amount of Sb should be 0.200% or less.

Ta:0.100%以下
Taは、CやNと結合して靭性の向上に寄与する。ただし、過度の添加により、その効果は飽和し、製造コストの増加につながる。よって、Taを添加する場合、Ta量は0.100%以下とした。
Ta: 0.100% or less Ta combines with C and N and contributes to improving toughness. However, if excessively added, the effect becomes saturated, leading to an increase in manufacturing costs. Therefore, when adding Ta, the amount of Ta was set to 0.100% or less.

Ca:0.0050%以下、Mg:0.0050%以下、Zr:0.1000%以下、REM(Rare Earth Metal):0.0050%以下
Ca、Mg、Zr及びREMは、硫化物の形状を球状化し、成形性への硫化物の悪影響を改善するために有効な元素である。これらの元素を添加する場合には、各元素の含有量は0.0005%以上とすることが好ましい。しかし、各含有量が過剰の場合、介在物等が増加し、表面及び内部欠陥が発生する場合がある。よって、これらの元素を添加する場合、各元素の含有量は0.0050%以下とする。
Ca: 0.0050% or less, Mg: 0.0050% or less, Zr: 0.1000% or less, REM (Rare Earth Metal): 0.0050% or less Ca, Mg, Zr and REM change the shape of the sulfide. It is an effective element for spheroidizing and improving the adverse effects of sulfide on formability. When these elements are added, the content of each element is preferably 0.0005% or more. However, when each content is excessive, inclusions and the like increase, and surface and internal defects may occur. Therefore, when adding these elements, the content of each element should be 0.0050% or less.

[拡散性水素量]
本実施形態において、良好な曲げ性を確保するためには、製品コイルの拡散性水素量は0.50質量ppm以下とすることが好ましく、0.30質量ppm以下とすることがより好ましく、0.20質量ppm以下とすることがさらに好ましい。なお、製品コイルの拡散性水素量の下限は特に規定しないが、生産技術上の制約から、製品コイルの拡散性水素量は0.01質量ppm以上となりうる。
[Diffusible hydrogen amount]
In this embodiment, in order to ensure good bendability, the amount of diffusible hydrogen in the product coil is preferably 0.50 mass ppm or less, more preferably 0.30 mass ppm or less, and 0.50 mass ppm or less, and more preferably 0.30 mass ppm or less. It is more preferable to set it to .20 mass ppm or less. Note that there is no particular lower limit to the amount of diffusible hydrogen in the product coil, but due to constraints on production technology, the amount of diffusible hydrogen in the product coil may be 0.01 mass ppm or more.

ここで、製品コイルの拡散性水素量の測定方法は、以下のとおりである。製品コイルから、長さが30mm、幅が5mmの試験片を採取する。溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板の製品コイルの場合、試験片の溶融亜鉛めっき層又は合金化溶融亜鉛めっき層を研削又はアルカリにより除去する。その後、試験片から放出される水素量を昇温脱離分析法(Thermal Desorption Spectrometry:TDS)によって測定する。具体的には、試験片を室温から300℃まで昇温速度200℃/hで連続加熱した後、室温まで冷却し、室温から210℃までに試験片から放出された積算水素量を測定して、製品コイルの拡散性水素量とする。 Here, the method for measuring the amount of diffusible hydrogen in the product coil is as follows. A test piece with a length of 30 mm and a width of 5 mm is taken from the product coil. In the case of product coils made of hot-dip galvanized steel sheets or alloyed hot-dip galvanized steel sheets, the hot-dip galvanized layer or alloyed hot-dip galvanized layer of the test piece is removed by grinding or alkali. Thereafter, the amount of hydrogen released from the test piece is measured by thermal desorption spectrometry (TDS). Specifically, the test piece was continuously heated from room temperature to 300°C at a heating rate of 200°C/h, then cooled to room temperature, and the cumulative amount of hydrogen released from the test piece from room temperature to 210°C was measured. , the amount of diffusible hydrogen in the product coil.

表1に示す元素を有し、残部がFe及び不可避的不純物からなる成分組成を有する鋼を転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを熱間圧延及び冷間圧延して、冷延コイルを得た。表2に示すように、一部の水準では、図1に示すCALによって冷延焼鈍鋼板(CR)の製品コイルを製造し、別の水準では、図2に示すCGLによって加熱合金化を行わず、溶融亜鉛めっき鋼板(GI)の製品コイルを製造し、残りの水準では、図2に示すCGLによって合金化溶融亜鉛めっき鋼板(GA)の製品コイルを製造した。 A steel having a composition having the elements shown in Table 1 with the balance consisting of Fe and unavoidable impurities was melted in a converter and made into a slab by a continuous casting method. The obtained slab was hot rolled and cold rolled to obtain a cold rolled coil. As shown in Table 2, some standards produce product coils of cold-rolled annealed steel (CR) by CAL as shown in Figure 1, while other standards produce product coils of cold-rolled annealed steel (CR) without heat alloying by CGL as shown in Figure 2. , production coils of hot-dip galvanized steel (GI) were produced, and for the remaining levels, production coils of alloyed galvanized steel (GA) were produced by CGL shown in FIG.

各水準にて、図4~6に示すような電磁方式の振動付加装置を用いて、通板中の冷延鋼板に対して、表2に示す最大振幅、周波数、及び振動付加時間の条件で振動を付加した。表2の「振動付加箇所」は、CAL又はCGLにおける振動付加工程を行った領域、すなわち振動付加装置を設置した場所を示す。
「(B-2)」は、CAL及びCGLにおいて、冷却帯に振動付加装置を設置し、工程(B-2)の冷却帯で振動付加工程を行ったことを意味する。
「(C)」は、CALにおいて、下流設備を通板中の冷延鋼板に振動を付加可能な位置に振動付加装置を設置したことを意味し、冷却帯より下流かつテンションリールより上流の位置、具体的には、(i)過時効処理帯28と出側ルーパー35との間、(ii)出側ルーパー35内、(iii)出側ルーパー35と調質圧延機36との間、(iv)調質圧延機36とテンションリール50との間、の少なくとも1箇所に振動付加装置を設置したことを意味する。すなわち、「(C)」は、CALにおいて、工程(C)、具体的には、上記(i)~(iv)の少なくとも1箇所にて振動付加工程を行ったことを意味する。
「(C-1)前」は、CGLにおいて、冷却帯より下流で溶融亜鉛めっき浴よりも上流の位置、具体的には、スナウト29に振動付加装置を設置し、工程(B-2)より後かつ工程(C-1)より前に振動付加工程を行ったことを意味する。
「(C-1)後」は、CGLにおいて、溶融亜鉛めっき浴より下流かつテンションリールより上流の位置、具体的には、(i)溶融亜鉛めっき浴31とガスワイピング装置32との間、(ii)ガスワイピング装置32と合金化炉33との間、(iii)合金化炉33内、(iv)合金化炉33と冷却装置34との間の空冷ゾーン、(v)冷却装置34と出側ルーパー35との間、(vi)出側ルーパー35内、(vii)出側ルーパー35と調質圧延機36との間、(viii)調質圧延機36とテンションリール50との間、の少なくとも1箇所に振動付加装置を設置し、工程(C-1)より後に、具体的には、上記(i)~(viii)の少なくとも1箇所にて振動付加工程を行ったことを意味する。
At each level, an electromagnetic type vibration applying device as shown in Figures 4 to 6 was used to apply vibrations to a cold rolled steel sheet during threading under the conditions of maximum amplitude, frequency, and vibration application time shown in Table 2. Added vibration. "Vibration application location" in Table 2 indicates the area where the vibration application process in CAL or CGL was performed, that is, the location where the vibration application device was installed.
"(B-2)" means that in CAL and CGL, a vibration adding device was installed in the cooling zone, and a vibration adding step was performed in the cooling zone of step (B-2).
In CAL, "(C)" means that the vibration adding device is installed at a position where it can add vibration to the cold rolled steel sheet being passed through the downstream equipment, and is located downstream of the cooling zone and upstream of the tension reel. Specifically, (i) between the overaging treatment zone 28 and the outlet looper 35, (ii) inside the outlet looper 35, (iii) between the outlet looper 35 and the temper rolling mill 36, ( iv) This means that a vibration applying device is installed at at least one location between the temper rolling mill 36 and the tension reel 50. That is, "(C)" means that in CAL, the vibration addition step was performed at step (C), specifically, at least one of the above (i) to (iv).
"Before (C-1)" is a position downstream of the cooling zone and upstream of the hot-dip galvanizing bath in CGL, specifically, a vibration adding device is installed in the snout 29, and from step (B-2) This means that the vibration addition step was performed after and before step (C-1).
"After (C-1)" refers to a position downstream of the hot-dip galvanizing bath and upstream of the tension reel in the CGL, specifically, (i) between the hot-dip galvanizing bath 31 and the gas wiping device 32; ii) between the gas wiping device 32 and the alloying furnace 33; (iii) within the alloying furnace 33; (iv) between the alloying furnace 33 and the cooling device 34; (v) between the cooling device 34 and the outlet. (vi) Inside the exit looper 35; (vii) Between the exit looper 35 and the skin pass rolling mill 36; (viii) Between the skin pass rolling mill 36 and the tension reel 50. This means that a vibration application device is installed at at least one location, and after step (C-1), specifically, a vibration application step is performed at at least one of the locations (i) to (viii) above.

各水準で得られた製品コイルから鋼板のサンプルを採取し、以下のとおり、引張特性及び耐水素脆化特性について評価を行い、その結果を表2に示した。 Steel plate samples were taken from the product coils obtained at each level and evaluated for tensile properties and hydrogen embrittlement resistance as described below, and the results are shown in Table 2.

引張試験は、引張方向が鋼板の圧延方向と直角となるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、TS(引張強さ)とEL(全伸び)を測定した。 The tensile test was conducted in accordance with JIS Z 2241 (2011) using a JIS No. 5 test piece whose tensile direction was perpendicular to the rolling direction of the steel plate, and the TS (tensile strength) and EL (total elongation) was measured.

耐水素脆化特性は上記の引張試験から次のように評価した。上記で測定した振動付加後の鋼板におけるELを、同一鋼板の鋼中水素量が0.00質量ppmのときのEL’で除した値が0.70以上のとき、耐水素脆化特性が良好と判定した。なお、EL’は、同一鋼板を大気中に長時間放置することで内部の鋼中水素を低減させ、その後、TDSにより鋼中水素量が0.00質量ppmになったことを確認してから、引張試験を行うことで測定した。 Hydrogen embrittlement resistance was evaluated from the above tensile test as follows. Hydrogen embrittlement resistance is good when the value obtained by dividing the EL of the steel plate after applying vibration measured above by EL' when the hydrogen content in the steel of the same steel plate is 0.00 mass ppm is 0.70 or more. It was determined that In addition, EL' reduces the hydrogen in the steel by leaving the same steel plate in the atmosphere for a long time, and then after confirming that the amount of hydrogen in the steel is 0.00 mass ppm by TDS. , was measured by performing a tensile test.

各水準で得られた製品コイルの拡散性水素量を、既述の方法で測定し、結果を表2に示した。 The amount of diffusible hydrogen in the product coil obtained at each level was measured by the method described above, and the results are shown in Table 2.

本発明例では、所定の周波数及び最大振幅の条件下で振動付加工程を行ったため、耐水素脆化特性に優れる鋼板を製造できた。 In the example of the present invention, since the vibration application step was performed under conditions of a predetermined frequency and maximum amplitude, a steel plate with excellent hydrogen embrittlement resistance could be manufactured.

Figure 0007388570000001
Figure 0007388570000001

Figure 0007388570000002
Figure 0007388570000003
Figure 0007388570000002
Figure 0007388570000003

本発明の連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法によれば、生産効率を損なうことなく、機械的特性を変化させることなく、耐水素脆化特性に優れた鋼板を製造することができる。 According to the continuous annealing apparatus, continuous hot-dip galvanizing apparatus, and steel sheet manufacturing method of the present invention, steel sheets with excellent hydrogen embrittlement resistance can be manufactured without impairing production efficiency or changing mechanical properties. be able to.

100 連続焼鈍装置
200 連続溶融亜鉛めっき装置
300 連続溶融亜鉛めっき装置
10 ペイオフリール
11 溶接機
12 クリーニング設備
13 入側ルーパー
20 焼鈍炉
22 加熱帯
24 均熱帯
26 冷却帯
26A 冷却ノズル
28 過時効処理帯
29 スナウト
30 下流設備
31 溶融亜鉛めっき浴
32 ガスワイピング装置
33 合金化炉
34 冷却装置
35 出側ルーパー
36 調質圧延機
50 テンションリール
60 振動付加装置
61 制御器
62 増幅器
63 電磁石
63A 磁石
63A1 磁極面
63B コイル
64 振動検出器
65 電源
70 振動付加装置
71 制御器
72 振動子
73 振動検出器
C 冷延コイル
S 冷延鋼板
P 製品コイル
100 Continuous annealing equipment 200 Continuous hot dip galvanizing equipment 300 Continuous hot dip galvanizing equipment 10 Payoff reel 11 Welding machine 12 Cleaning equipment 13 Inlet side looper 20 Annealing furnace 22 Heating zone 24 Soaking zone 26 Cooling zone 26A Cooling nozzle 28 Overaging treatment zone 29 Snout 30 Downstream equipment 31 Hot dip galvanizing bath 32 Gas wiping device 33 Alloying furnace 34 Cooling device 35 Output side looper 36 Temper rolling mill 50 Tension reel 60 Vibration adding device 61 Controller 62 Amplifier 63 Electromagnet 63A Magnet 63A1 Magnetic pole face 63B Coil 64 Vibration detector 65 Power supply 70 Vibration adding device 71 Controller 72 Vibrator 73 Vibration detector C Cold rolled coil S Cold rolled steel plate P Product coil

Claims (23)

冷延コイルから冷延鋼板を払い出すペイオフリールと、
前記冷延鋼板を通板させて連続焼鈍する焼鈍炉であって、通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置し、前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、前記冷却帯では前記冷延鋼板を冷却する焼鈍炉と、
前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる下流設備と、
前記下流設備を通板中の前記冷延鋼板を巻き取るテンションリールと、
前記冷却帯から前記テンションリールまでを通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の板厚方向の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加装置と、
を有し、
前記振動付加装置は、前記冷却帯に設けられる、連続焼鈍装置。
A payoff reel for discharging cold-rolled steel sheets from cold-rolled coils,
The annealing furnace continuously anneales the cold-rolled steel sheet by passing the sheet through the sheet, in which a heating zone, a soaking zone, and a cooling zone are located from the upstream side in the sheet passing direction, and in the heating zone and the soaking zone, reduction containing hydrogen is formed. an annealing furnace for annealing the cold-rolled steel sheet in a neutral atmosphere and cooling the cold-rolled steel sheet in the cooling zone;
downstream equipment that continues to pass the cold rolled steel sheet discharged from the annealing furnace;
a tension reel that winds up the cold-rolled steel sheet that is being passed through the downstream equipment;
With respect to the cold-rolled steel sheet being passed from the cooling zone to the tension reel, the vibration frequency of the cold-rolled steel sheet is 100 Hz or more and 100,000 Hz or less, and the maximum amplitude in the thickness direction of the cold-rolled steel sheet is a vibration adding device that applies vibration to a vibration of 10 nm or more and 500 μm or less;
has
The vibration applying device is a continuous annealing device provided in the cooling zone .
前記振動付加装置は、前記下流設備を通板中の前記冷延鋼板に振動を付加可能な位置に設けられる、請求項1に記載の連続焼鈍装置。 The continuous annealing apparatus according to claim 1 , wherein the vibration applying device is provided at a position where it can apply vibration to the cold rolled steel sheet while it is being passed through the downstream equipment. 前記冷延鋼板に対する振動の付加時間が1秒以上となるように、前記振動付加装置の配置と、前記冷延鋼板の通板速度が設定された、請求項1に記載の連続焼鈍装置。 The continuous annealing apparatus according to claim 1, wherein the arrangement of the vibration applying device and the passing speed of the cold rolled steel sheet are set so that the vibration is applied to the cold rolled steel sheet for one second or more. 前記振動付加装置は、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記冷延鋼板に与える外力により前記冷延鋼板が振動するように構成される、請求項1に記載の連続焼鈍装置。 The vibration applying device includes an electromagnet having a magnetic pole face facing away from the surface of the cold-rolled steel sheet, and is configured to cause the cold-rolled steel sheet to vibrate due to an external force applied by the electromagnet to the cold-rolled steel sheet. , The continuous annealing apparatus according to claim 1. 前記振動付加装置は、前記冷延鋼板に接触する振動子を有し、前記振動子によって前記冷延鋼板が振動するように構成される、請求項1に記載の連続焼鈍装置。 The continuous annealing apparatus according to claim 1, wherein the vibration applying device includes a vibrator that contacts the cold rolled steel sheet, and is configured so that the cold rolled steel sheet vibrates with the vibrator. 冷延コイルから冷延鋼板を払い出すペイオフリールと、
前記冷延鋼板を通板させて連続焼鈍する焼鈍炉であって、通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置し、前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、前記冷却帯では前記冷延鋼板を冷却する焼鈍炉と、
前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる下流設備と、
前記下流設備を通板中の前記冷延鋼板を巻き取るテンションリールと、
前記冷却帯から前記テンションリールまでを通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の板厚方向の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加装置と、
前記下流設備として、前記焼鈍炉の通板方向下流に位置し、前記冷延鋼板を浸漬させて、前記冷延鋼板に溶融亜鉛めっきを施す溶融亜鉛めっき浴と、前記溶融亜鉛めっき浴の通板方向下流に位置するガスワイピング装置と、を有し、
前記振動付加装置は、前記溶融亜鉛めっき浴より上流を通板中の前記冷延鋼板に振動を付加可能な位置、及び、前記ガスワイピング装置より下流を通板中の前記冷延鋼板に振動を付加可能な位置のいずれか一方又は両方に設けられる、連続溶融亜鉛めっき装置。
A payoff reel for discharging cold-rolled steel sheets from cold-rolled coils,
The annealing furnace continuously anneales the cold-rolled steel sheet by passing the sheet through the sheet, in which a heating zone, a soaking zone, and a cooling zone are located from the upstream side in the sheet passing direction, and in the heating zone and the soaking zone, reduction containing hydrogen is formed. an annealing furnace for annealing the cold-rolled steel sheet in a neutral atmosphere and cooling the cold-rolled steel sheet in the cooling zone;
downstream equipment that continues to pass the cold rolled steel sheet discharged from the annealing furnace;
a tension reel that winds up the cold-rolled steel sheet that is being passed through the downstream equipment;
With respect to the cold-rolled steel sheet being passed from the cooling zone to the tension reel, the vibration frequency of the cold-rolled steel sheet is 100 Hz or more and 100,000 Hz or less, and the maximum amplitude in the thickness direction of the cold-rolled steel sheet is a vibration adding device that applies vibration to a vibration of 10 nm or more and 500 μm or less;
The downstream equipment includes a hot-dip galvanizing bath located downstream of the annealing furnace in the sheet-threading direction, in which the cold-rolled steel sheet is immersed to apply hot-dip galvanization to the cold-rolled steel sheet; a gas wiping device located downstream in the direction ;
The vibration applying device is arranged at a position where vibration can be applied to the cold rolled steel sheet being passed through upstream from the hot dip galvanizing bath, and at a position where vibration can be applied to the cold rolled steel sheet being passed downstream from the gas wiping device. Continuous hot-dip galvanizing equipment installed at one or both of the possible locations .
前記下流設備として、前記ガスワイピング装置の通板方向下流に位置し、前記冷延鋼板を通板させて、前記溶融亜鉛めっきを加熱合金化する合金化炉を有する、請求項6に記載の連続溶融亜鉛めっき装置。 7. The continuous steel sheet according to claim 6 , wherein the downstream equipment includes an alloying furnace located downstream of the gas wiping device in the sheet passing direction, which passes the cold rolled steel sheet and heat-alloys the hot-dip galvanizing. Hot dip galvanizing equipment. 前記冷延鋼板に対する振動の付加時間が1秒以上となるように、前記振動付加装置の配置と、前記冷延鋼板の通板速度が設定された、請求項6に記載の連続溶融亜鉛めっき装置。 The continuous hot-dip galvanizing apparatus according to claim 6 , wherein the arrangement of the vibration applying device and the passing speed of the cold-rolled steel sheet are set so that the vibration is applied to the cold-rolled steel sheet for a time of 1 second or more. . 前記振動付加装置は、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記冷延鋼板に与える外力により前記冷延鋼板が振動するように構成される、請求項6に記載の連続溶融亜鉛めっき装置。 The vibration applying device includes an electromagnet having a magnetic pole face facing away from the surface of the cold-rolled steel sheet, and is configured to cause the cold-rolled steel sheet to vibrate due to an external force applied by the electromagnet to the cold-rolled steel sheet. , A continuous hot-dip galvanizing apparatus according to claim 6 . 前記振動付加装置は、前記冷延鋼板に接触する振動子を有し、前記振動子によって前記冷延鋼板が振動するように構成される、請求項6に記載の連続溶融亜鉛めっき装置。 The continuous hot-dip galvanizing apparatus according to claim 6 , wherein the vibration applying device includes a vibrator that contacts the cold-rolled steel sheet, and is configured so that the cold-rolled steel sheet is vibrated by the vibrator. (A)ペイオフリールにより冷延コイルから冷延鋼板を払い出す工程と、
(B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する焼鈍炉内に、前記冷延鋼板を通板させて、(B-1)前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、(B-2)前記冷却帯では前記冷延鋼板を冷却する、連続焼鈍を行う工程と、
(C)前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる工程と、
(D)テンションリールにより前記冷延鋼板を巻き取って、製品コイルとする工程と、
をこの順に有し、
工程(B-2)以降、かつ、工程(D)より前において、通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の板厚方向の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加工程を含み、
前記振動付加工程は、工程(B-2)にて行われる、鋼板の製造方法。
(A) A step of paying out the cold rolled steel sheet from the cold rolled coil with a payoff reel,
(B) The cold rolled steel sheet is passed through an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are located from the upstream side in the sheet passing direction, and (B-1) In the heating zone and the soaking zone, Annealing the cold rolled steel sheet in a reducing atmosphere containing hydrogen, (B-2) cooling the cold rolled steel sheet in the cooling zone, performing continuous annealing;
(C) a step of continuously passing the cold rolled steel sheet discharged from the annealing furnace;
(D) a step of winding up the cold-rolled steel sheet with a tension reel to form a product coil;
in this order,
After step (B-2) and before step (D), with respect to the cold rolled steel sheet being passed, the vibration frequency of the cold rolled steel sheet becomes 100 Hz or more and 100000 Hz or less, and Including a vibration adding step of adding vibration so that the maximum amplitude in the thickness direction of the steel plate is 10 nm or more and 500 μm or less ,
The method for manufacturing a steel plate , wherein the vibration adding step is performed in step (B-2) .
前記振動付加工程は、工程(C)にて行われる、請求項11に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to claim 11 , wherein the vibration adding step is performed in step (C). (A)ペイオフリールにより冷延コイルから冷延鋼板を払い出す工程と、
(B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する焼鈍炉内に、前記冷延鋼板を通板させて、(B-1)前記加熱帯及び前記均熱帯では、水素を含む還元性雰囲気で前記冷延鋼板を焼鈍し、(B-2)前記冷却帯では前記冷延鋼板を冷却する、連続焼鈍を行う工程と、
(C)前記焼鈍炉から排出された前記冷延鋼板を引き続き通板させる工程と、
(D)テンションリールにより前記冷延鋼板を巻き取って、製品コイルとする工程と、
をこの順に有し、
工程(B-2)以降、かつ、工程(D)より前において、通板中の前記冷延鋼板に対して、前記冷延鋼板の振動の周波数が100Hz以上100000Hz以下となり、かつ、前記冷延鋼板の板厚方向の最大振幅が10nm以上500μm以下となるように振動を付加する振動付加工程を含み、
工程(C)は、(C-1)前記焼鈍炉の通板方向下流に位置する溶融亜鉛めっき浴に前記冷延鋼板を浸漬させて、前記冷延鋼板に溶融亜鉛めっきを施す工程と、前記溶融亜鉛めっき浴の通板方向下流に位置するガスワイピング装置から前記冷延鋼板にガスを吹き付けるガスワイピング工程と、を含
前記振動付加工程は、工程(C-1)より前、及び、工程(C-1)の前記ガスワイピング工程より後のいずれか一方又は両方に行われる、鋼板の製造方法。
(A) A step of paying out the cold rolled steel sheet from the cold rolled coil with a payoff reel,
(B) The cold rolled steel sheet is passed through an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are located from the upstream side in the sheet passing direction, and (B-1) In the heating zone and the soaking zone, Annealing the cold rolled steel sheet in a reducing atmosphere containing hydrogen, (B-2) cooling the cold rolled steel sheet in the cooling zone, performing continuous annealing;
(C) a step of continuously passing the cold rolled steel sheet discharged from the annealing furnace;
(D) a step of winding up the cold-rolled steel sheet with a tension reel to form a product coil;
in this order,
After step (B-2) and before step (D), with respect to the cold rolled steel sheet being passed, the vibration frequency of the cold rolled steel sheet becomes 100 Hz or more and 100000 Hz or less, and Including a vibration adding step of adding vibration so that the maximum amplitude in the thickness direction of the steel plate is 10 nm or more and 500 μm or less,
Step (C) includes (C-1) immersing the cold rolled steel sheet in a hot dip galvanizing bath located downstream of the annealing furnace in the sheet passing direction to apply hot dip galvanization to the cold rolled steel sheet ; a gas wiping step of blowing gas onto the cold rolled steel sheet from a gas wiping device located downstream in the sheet passing direction of the hot dip galvanizing bath ;
The method for producing a steel plate, wherein the vibration adding step is performed either or both before step (C-1) and after the gas wiping step in step (C-1).
前記工程(C)は、前記工程(C-1)に続き、(C-2)前記ガスワイピング装置の通板方向下流に位置する合金化炉に前記冷延鋼板を通板させて、前記溶融亜鉛めっきを加熱合金化する工程を含む、請求項13に記載の鋼板の製造方法。 The step (C) is subsequent to the step (C-1), and (C-2) the cold rolled steel sheet is passed through an alloying furnace located downstream of the gas wiping device in the sheet passing direction, and the melted steel sheet is The method for manufacturing a steel sheet according to claim 13 , comprising a step of heating and alloying the zinc plating. 前記振動付加工程において、前記冷延鋼板に対する振動の付加時間を1秒以上とする、請求項11又は13に記載の鋼板の製造方法。 The method for producing a steel plate according to claim 11 or 13 , wherein in the vibration applying step, the vibration is applied to the cold rolled steel plate for a period of 1 second or more. 前記振動付加工程では、前記冷延鋼板の表面に離間して対向する磁極面を有する電磁石が前記冷延鋼板に与える外力により、前記冷延鋼板が振動する、請求項11又は13に記載の鋼板の製造方法。 The steel plate according to claim 11 or 13, wherein in the vibration adding step, the cold-rolled steel plate is vibrated by an external force applied to the cold-rolled steel plate by an electromagnet having magnetic pole faces spaced apart from and facing the surface of the cold-rolled steel plate. manufacturing method. 前記振動付加工程では、前記冷延鋼板に接触する振動子によって、前記冷延鋼板が振動する、請求項11又は13に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to claim 11 or 13, wherein in the vibration adding step, the cold rolled steel plate is vibrated by a vibrator that is in contact with the cold rolled steel plate. 前記冷延鋼板が、590MPa以上の引張強さを有する高強度鋼板である、請求項11又は13に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to claim 11 or 13 , wherein the cold-rolled steel plate is a high-strength steel plate having a tensile strength of 590 MPa or more. 前記冷延鋼板は、質量%で、
C :0.030~0.800%、
Si:0.01~3.00%、
Mn:0.01~10.00%、
P :0.001~0.100%、
S :0.0001~0.0200%、
N :0.0005~0.0100%、及び
Al:0.001~2.000%を含み、
残部がFe及び不可避的不純物からなる成分組成を有する、請求項11又は13に記載の鋼板の製造方法。
The cold-rolled steel sheet has a mass percentage of
C: 0.030-0.800%,
Si: 0.01-3.00%,
Mn: 0.01-10.00%,
P: 0.001-0.100%,
S: 0.0001-0.0200%,
N: 0.0005 to 0.0100%, and Al: 0.001 to 2.000%,
The method for manufacturing a steel plate according to claim 11 or 13 , wherein the steel sheet has a composition in which the remainder consists of Fe and unavoidable impurities.
前記成分組成が、さらに、質量%で、
Ti:0.200%以下、
Nb:0.200%以下、
V :0.500%以下、
W :0.500%以下、
B :0.0050%以下、
Ni:1.000%以下、
Cr:1.000%以下、
Mo:1.000%以下、
Cu:1.000%以下、
Sn:0.200%以下、
Sb:0.200%以下、
Ta:0.100%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Zr:0.1000%以下、及び
REM:0.0050%以下
からなる群から選ばれる少なくとも一種の元素を含有する、請求項19に記載の鋼板の製造方法。
The component composition further includes, in mass%,
Ti: 0.200% or less,
Nb: 0.200% or less,
V: 0.500% or less,
W: 0.500% or less,
B: 0.0050% or less,
Ni: 1.000% or less,
Cr: 1.000% or less,
Mo: 1.000% or less,
Cu: 1.000% or less,
Sn: 0.200% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel plate according to claim 19 , containing at least one element selected from the group consisting of Zr: 0.1000% or less, and REM: 0.0050% or less.
前記冷延鋼板は、質量%で、
C :0.001~0.400%、
Si:0.01~2.00%、
Mn:0.01~5.00%、
P :0.001~0.100%、
S :0.0001~0.0200%、
Cr:9.0~28.0%、
Ni:0.01~40.0%、
N :0.0005~0.500%、及び
Al:0.001~3.000%を含み、
残部がFe及び不可避的不純物からなる成分組成を有するステンレス鋼板である、請求項11又は13に記載の鋼板の製造方法。
The cold-rolled steel sheet has a mass percentage of
C: 0.001-0.400%,
Si: 0.01-2.00%,
Mn: 0.01 to 5.00%,
P: 0.001-0.100%,
S: 0.0001-0.0200%,
Cr: 9.0-28.0%,
Ni: 0.01 to 40.0%,
N: 0.0005 to 0.500%, and Al: 0.001 to 3.000%,
14. The method for producing a steel plate according to claim 11 or 13 , wherein the stainless steel plate has a composition in which the remainder is Fe and inevitable impurities.
前記成分組成が、さらに、質量%で、
Ti:0.500%以下、
Nb:0.500%以下、
V :0.500%以下、
W :2.000%以下、
B :0.0050%以下、
Mo:2.000%以下、
Cu:3.000%以下、
Sn:0.500%以下、
Sb:0.200%以下、
Ta:0.100%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Zr:0.1000%以下、及び
REM:0.0050%以下
からなる群から選ばれる少なくとも一種の元素を含有する、請求項21に記載の鋼板の製造方法。
The component composition further includes, in mass%,
Ti: 0.500% or less,
Nb: 0.500% or less,
V: 0.500% or less,
W: 2.000% or less,
B: 0.0050% or less,
Mo: 2.000% or less,
Cu: 3.000% or less,
Sn: 0.500% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel plate according to claim 21 , containing at least one element selected from the group consisting of Zr: 0.1000% or less, and REM: 0.0050% or less.
前記製品コイルは、0.50質量ppm以下の拡散性水素量を有する、請求項11又は13に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to claim 11 or 13 , wherein the product coil has a diffusible hydrogen amount of 0.50 mass ppm or less.
JP2022555184A 2021-07-14 2022-05-17 Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method Active JP7388570B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021116761 2021-07-14
JP2021116761 2021-07-14
PCT/JP2022/020579 WO2023286440A1 (en) 2021-07-14 2022-05-17 Continuous annealing apparatus, continuous hot-dip galvanization apparatus, and steel sheet manufacturing method

Publications (3)

Publication Number Publication Date
JPWO2023286440A1 JPWO2023286440A1 (en) 2023-01-19
JPWO2023286440A5 JPWO2023286440A5 (en) 2023-06-20
JP7388570B2 true JP7388570B2 (en) 2023-11-29

Family

ID=84919177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022555184A Active JP7388570B2 (en) 2021-07-14 2022-05-17 Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method

Country Status (5)

Country Link
EP (1) EP4361295A1 (en)
JP (1) JP7388570B2 (en)
KR (1) KR20240014501A (en)
CN (1) CN117616138A (en)
WO (1) WO2023286440A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380965B1 (en) 2022-03-25 2023-11-15 Jfeスチール株式会社 Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method
JP7460032B2 (en) * 2022-03-25 2024-04-02 Jfeスチール株式会社 Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131794A (en) 2002-10-10 2004-04-30 Nippon Steel Corp Method for dehydrogenation of steel sheet and method for manufacturing steel sheet using the same
WO2017145322A1 (en) 2016-02-25 2017-08-31 新日鐵住金株式会社 Process for producing steel sheet and device for continuously annealing steel sheet
JP2019173099A (en) 2018-03-28 2019-10-10 日鉄日新製鋼株式会社 Stainless steel material
JP2020153003A (en) 2019-03-22 2020-09-24 Jfeスチール株式会社 Method for manufacturing high strength hot-dip galvanized steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665934A (en) * 1979-10-31 1981-06-04 Nippon Parkerizing Co Ltd Continuous annealing method for steel sheet strip
JPS62287019A (en) * 1986-06-05 1987-12-12 Nippon Steel Corp Method and apparatus for applying oscillation to traveling metallic sheet without contact
JP5326626B2 (en) 2009-02-12 2013-10-30 Jfeスチール株式会社 Gas jet cooling device for continuous annealing furnace
JP6705562B2 (en) 2018-03-30 2020-06-03 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131794A (en) 2002-10-10 2004-04-30 Nippon Steel Corp Method for dehydrogenation of steel sheet and method for manufacturing steel sheet using the same
WO2017145322A1 (en) 2016-02-25 2017-08-31 新日鐵住金株式会社 Process for producing steel sheet and device for continuously annealing steel sheet
JP2019173099A (en) 2018-03-28 2019-10-10 日鉄日新製鋼株式会社 Stainless steel material
JP2020153003A (en) 2019-03-22 2020-09-24 Jfeスチール株式会社 Method for manufacturing high strength hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
WO2023286440A1 (en) 2023-01-19
KR20240014501A (en) 2024-02-01
CN117616138A (en) 2024-02-27
JPWO2023286440A1 (en) 2023-01-19
EP4361295A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP5703608B2 (en) High strength steel plate and manufacturing method thereof
KR101570629B1 (en) High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same
JP4964494B2 (en) High-strength steel sheet excellent in hole expansibility and formability and method for producing the same
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP7388570B2 (en) Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method
WO2018055695A1 (en) Steel sheet
WO2022014131A1 (en) Continuous annealing apparatus, continuous hot-dip galvanizing apparatus, and method for manufacturing steel sheet
JP2009191360A (en) High strength steel sheet, and method for producing the same
JP2009270126A (en) Cold rolled steel sheet, hot dip plated steel sheet and method for producing the steel sheet
JP2009242816A (en) High strength steel sheet and producing method therefor
JP5326362B2 (en) High strength steel plate and manufacturing method thereof
JP2007177271A (en) High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2013224477A (en) High-strength thin steel sheet excellent in workability and method for manufacturing the same
JP7384296B2 (en) Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method
JP7380965B1 (en) Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method
JP5407168B2 (en) Method for producing high-strength steel sheet and method for producing high-strength electrogalvanized steel sheet
JP4622783B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP7460032B2 (en) Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method
JP7006857B1 (en) Dehydrogenation equipment, steel sheet manufacturing system, and steel sheet manufacturing method
JP2004315882A (en) Hot dip galvanized high strength steel sheet having excellent bore eaxpandability, and its production method
JP2004244675A (en) Hot-dip galvanized high strength steel sheet with excellent bore expandabilty, and its manufacturing method
JP2009185370A (en) High-tensile-strength hot-dip galvanized steel sheet and manufacturing method therefor
JPH04365845A (en) Production of high-strength galvanized steel sheet having excellent hole expandability

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R150 Certificate of patent or registration of utility model

Ref document number: 7388570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150