JP7384296B2 - Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method - Google Patents

Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method Download PDF

Info

Publication number
JP7384296B2
JP7384296B2 JP2022555186A JP2022555186A JP7384296B2 JP 7384296 B2 JP7384296 B2 JP 7384296B2 JP 2022555186 A JP2022555186 A JP 2022555186A JP 2022555186 A JP2022555186 A JP 2022555186A JP 7384296 B2 JP7384296 B2 JP 7384296B2
Authority
JP
Japan
Prior art keywords
steel plate
coil
less
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022555186A
Other languages
Japanese (ja)
Other versions
JPWO2023286441A1 (en
JPWO2023286441A5 (en
Inventor
勇樹 田路
一輝 遠藤
秀和 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2023286441A1 publication Critical patent/JPWO2023286441A1/ja
Publication of JPWO2023286441A5 publication Critical patent/JPWO2023286441A5/ja
Application granted granted Critical
Publication of JP7384296B2 publication Critical patent/JP7384296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/663Bell-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、自動車、家電製品、及び建材などの産業分野で使用される部材として好適な鋼板を製造するための脱水素装置及び鋼板の製造システムに関する。特に、本発明は、鋼中に内在する拡散性水素量の少ない耐水素脆化に優れた鋼板を得るための脱水素装置及び鋼板の製造システム、並びに鋼板の製造方法に関する。 The present invention relates to a dehydrogenation device and a steel sheet manufacturing system for manufacturing steel sheets suitable as members used in industrial fields such as automobiles, home appliances, and building materials. In particular, the present invention relates to a dehydrogenation device and a steel plate production system for obtaining a steel plate with a small amount of diffusible hydrogen inherent in the steel and excellent resistance to hydrogen embrittlement, and a steel plate production method.

高強度鋼板に特有の懸念点として、鋼板に侵入した水素に起因して鋼板が脆化することが知られている(水素脆化)。連続焼鈍装置及び連続溶融亜鉛めっき装置を用いて鋼板に焼鈍を施す場合、焼鈍炉には、しばしば還元性又は非酸化性のガスとして用いられるH-N混合ガスが導入される。該H-N混合ガス中における焼鈍が原因で、鋼中に水素が侵入する。また、自動車用の鋼板では、自動車の使用環境下で進行する腐食反応によって、水素が発生し、鋼中に侵入する。鋼中に侵入した拡散性水素を充分に低減させなければ、拡散性水素に起因して、鋼板が水素脆化し、遅れ破壊が発生する虞がある。It is known that a particular concern with high-strength steel sheets is that the steel sheets become brittle due to hydrogen penetrating the steel sheets (hydrogen embrittlement). When a steel sheet is annealed using a continuous annealing device and a continuous hot-dip galvanizing device, a H 2 —N 2 mixed gas, which is often used as a reducing or non-oxidizing gas, is introduced into the annealing furnace. Due to the annealing in the H 2 -N 2 gas mixture, hydrogen penetrates into the steel. Furthermore, in steel sheets for automobiles, hydrogen is generated due to the corrosion reaction that progresses in the environment in which the automobile is used, and enters into the steel. If the diffusible hydrogen that has entered the steel is not sufficiently reduced, there is a risk that the steel sheet will become hydrogen embrittled due to the diffusible hydrogen, resulting in delayed fracture.

従来、鋼中の拡散性水素量を低減する方法について種々の検討がなされてきた。例えば、特許文献1には、焼鈍処理及び伸長圧延後に時効処理を行うことで、鋼中にトラップされる水素量を低減する方法が開示されている。また、拡散性水素を低減させる方法として、焼鈍後の鋼板を室温にて長時間放置して、鋼板表面から拡散性水素を脱離させる方法が知られている。特許文献2には、冷間圧延後焼鈍を施した鋼板を、50℃以上300℃以下の温度域内で1800s以上3200s以下保持することで、鋼中の拡散性水素量を低減させる方法が開示されている。 Conventionally, various studies have been made on methods of reducing the amount of diffusible hydrogen in steel. For example, Patent Document 1 discloses a method of reducing the amount of hydrogen trapped in steel by performing aging treatment after annealing treatment and elongation rolling. Furthermore, as a method for reducing diffusible hydrogen, a method is known in which a steel plate after annealing is left at room temperature for a long time to desorb diffusible hydrogen from the surface of the steel plate. Patent Document 2 discloses a method of reducing the amount of diffusible hydrogen in steel by holding a cold-rolled and then annealed steel plate within a temperature range of 50°C or more and 300°C or less for 1800 seconds or more and 3200 seconds or less. ing.

特許第6562180号公報Patent No. 6562180 国際公開第2019/188642号明細書International Publication No. 2019/188642

しかしながら、特許文献1、2に記載の方法においては、焼鈍後の加熱保持により組織変化が起こる虞があるため、特許文献1、2に記載の方法を他の鋼板に対して適用することが困難であった。また、室温において鋼板を放置する方法においては、長時間鋼板を放置する必要があり、生産性が低い。 However, in the methods described in Patent Documents 1 and 2, it is difficult to apply the methods described in Patent Documents 1 and 2 to other steel sheets because there is a risk that structural changes may occur due to heating and holding after annealing. Met. Furthermore, in the method of leaving the steel plate at room temperature, it is necessary to leave the steel plate for a long time, resulting in low productivity.

本発明は、かかる事情に鑑みてなされたもので、鋼板の機械特性を変化させることなく、耐水素脆化特性に優れた鋼板を製造することが可能な、鋼板の脱水素装置及び鋼板の製造システム、並びに鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes a steel plate dehydrogenation device and a steel plate manufacturing apparatus that can produce a steel plate with excellent hydrogen embrittlement resistance without changing the mechanical properties of the steel plate. The purpose of the present invention is to provide a system and a method for manufacturing steel sheets.

本発明者らは、上記した課題を達成するために、鋭意検討を重ねた結果、鋼板に対して所定の振動数及び最大振幅の振動を付加すれば、鋼中の拡散性水素量を低減して水素脆化を抑制することができることを知見した。具体的には、鋼板を高い周波数かつ小さい最大振幅で微振動させることによって、鋼板中の水素を十分に効率良く低減させることができることが分かった。これは、以下のメカニズムによるものと推測される。鋼板を強制的に微振動させることで、鋼板にくり返し曲げ変形が与えられる。その結果、鋼板の厚み中心部に比べて表面の格子間隔が拡張する。鋼板中の水素は、格子間隔が広くポテンシャルエネルギーの低い鋼板表面に向かって拡散し、当該表面から脱離する。 In order to achieve the above-mentioned problem, the inventors of the present invention have conducted extensive studies and found that by applying vibrations of a predetermined frequency and maximum amplitude to a steel plate, the amount of diffusible hydrogen in the steel can be reduced. We found that hydrogen embrittlement can be suppressed by using hydrogen embrittlement. Specifically, it has been found that hydrogen in the steel plate can be sufficiently and efficiently reduced by slightly vibrating the steel plate at a high frequency and a small maximum amplitude. This is presumed to be due to the following mechanism. By forcibly vibrating the steel plate, the steel plate is repeatedly subjected to bending deformation. As a result, the lattice spacing on the surface is expanded compared to the center of the thickness of the steel plate. Hydrogen in the steel sheet diffuses toward the surface of the steel sheet, which has a wide lattice spacing and low potential energy, and is desorbed from the surface.

本発明は、上記知見に基づいてなされたものである。すなわち、本発明の要旨構成は以下のとおりである。 The present invention has been made based on the above findings. That is, the gist of the present invention is as follows.

[1] 鋼帯をコイル状に巻き取った鋼板コイルを収容する収容部と、
前記収容部に収容される前記鋼板コイルに対して、前記鋼板コイルの振動の周波数が100~100000Hzとなり、かつ、前記鋼板コイルの最大振幅が10nm~500μmとなるように振動を付加する振動付加装置と、
を有する、脱水素装置。
[1] A housing section that houses a steel plate coil obtained by winding a steel strip into a coil shape;
A vibration adding device that applies vibration to the steel plate coil housed in the housing part so that the frequency of vibration of the steel plate coil is 100 to 100,000 Hz, and the maximum amplitude of the steel plate coil is 10 nm to 500 μm. and,
A dehydrogenation device with

[2] 前記振動付加装置は、前記鋼板コイルの表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記鋼板コイルに与える外力により前記鋼板コイルが振動するように構成される、前記[1]に記載の脱水素装置。 [2] The vibration adding device includes an electromagnet having a magnetic pole face spaced apart from and facing the surface of the steel plate coil, and is configured such that the steel plate coil vibrates due to an external force applied by the electromagnet to the steel plate coil. , the dehydrogenation apparatus according to [1] above.

[3] 前記振動付加装置は、前記鋼板コイルに接触する振動子を有し、前記振動子によって前記鋼板コイルが振動するように構成される、前記[1]に記載の脱水素装置。 [3] The dehydrogenation device according to [1], wherein the vibration applying device has a vibrator that contacts the steel plate coil, and is configured so that the steel plate coil vibrates with the vibrator.

[4] 前記鋼板コイルを加熱しつつ前記振動を付加するための加熱部をさらに有する、前記[1]から[3]のいずれか1項に記載の脱水素装置。 [4] The dehydrogenation device according to any one of [1] to [3], further including a heating section for applying the vibration while heating the steel plate coil.

[5] 鋼板コイルから鋼帯を払い出す払い出し装置と、
前記鋼帯を通板させる通板装置と、
前記鋼帯を巻き取る巻き取り装置と、
前記通板装置を通板中の前記鋼帯に対して、前記鋼帯の振動の周波数が100~100000Hzとなり、かつ、前記鋼帯の最大振幅が10nm~500μmとなるように振動を付加する振動付加装置と、
を有する、脱水素装置。
[5] A dispensing device for dispensing a steel strip from a steel plate coil;
A threading device for threading the steel strip;
a winding device that winds up the steel strip;
Vibration is applied to the steel strip being passed through the sheet threading device so that the frequency of vibration of the steel strip is 100 to 100,000 Hz and the maximum amplitude of the steel strip is 10 nm to 500 μm. additional equipment;
A dehydrogenation device with

[6] 前記振動付加装置は、通板中の前記鋼帯の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記鋼帯に与える外力により前記鋼帯が振動するように構成される、前記[5]に記載の脱水素装置。 [6] The vibration adding device has an electromagnet having a magnetic pole face spaced apart from and facing the surface of the steel strip during threading, and causes the steel strip to vibrate due to an external force applied by the electromagnet to the steel strip. The dehydrogenation apparatus according to the above [5], which is configured as follows.

[7] 前記振動付加装置は、通板中の前記鋼帯に接触する振動子を有し、前記振動子によって前記鋼帯が振動するように構成される、前記[5]に記載の脱水素装置。 [7] The dehydrogenation device according to [5], wherein the vibration applying device has a vibrator that contacts the steel strip during threading, and is configured so that the steel strip vibrates with the vibrator. Device.

[8] 前記鋼帯を加熱しつつ前記振動を付加するための加熱部をさらに有する、前記[5]から[7]のいずれか1項に記載の脱水素装置。 [8] The dehydrogenation device according to any one of [5] to [7], further comprising a heating section for applying the vibration while heating the steel strip.

[9] 前記脱水素装置の外部に前記振動が伝達することを防ぐ制振部をさらに有する、前記[1]から[8]のいずれか1項に記載の脱水素装置。 [9] The dehydrogenation device according to any one of [1] to [8], further comprising a vibration damping portion that prevents the vibration from being transmitted to the outside of the dehydrogenation device.

[10] 鋼スラブに熱間圧延を施して熱延鋼板とする熱間圧延装置と、
前記熱延鋼板を巻き取って熱延コイルを得る熱延鋼板巻き取り装置と、
前記熱延コイルを前記鋼板コイルとする、前記[1]から[9]のいずれか1項に記載の脱水素装置と、
を有する、鋼板の製造システム。
[10] A hot rolling device that hot-rolls a steel slab to produce a hot-rolled steel plate;
a hot-rolled steel sheet winding device that winds up the hot-rolled steel sheet to obtain a hot-rolled coil;
The dehydrogenation device according to any one of [1] to [9], wherein the hot rolled coil is the steel plate coil;
A steel sheet manufacturing system with

[11] 熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延装置と、
前記冷延鋼板を巻き取って冷延コイルを得る冷延鋼板巻き取り装置と、
前記冷延コイルを前記鋼板コイルとする、前記[1]から[9]のいずれか1項に記載の脱水素装置と、
を有する、鋼板の製造システム。
[11] A cold rolling device that cold-rolls a hot-rolled steel plate to produce a cold-rolled steel plate;
a cold-rolled steel sheet winding device that winds up the cold-rolled steel sheet to obtain a cold-rolled coil;
The dehydrogenation device according to any one of [1] to [9], wherein the cold-rolled coil is the steel plate coil;
A steel sheet manufacturing system with

[12] 冷延コイル又は熱延コイルにバッチ焼鈍を施して焼鈍コイルを得るバッチ焼鈍炉と、
前記焼鈍コイルを前記鋼板コイルとする、前記[1]から[9]のいずれか1項に記載の脱水素装置と、
を有する、鋼板の製造システム。
[12] A batch annealing furnace that performs batch annealing on a cold-rolled coil or a hot-rolled coil to obtain an annealed coil;
The dehydrogenation device according to any one of [1] to [9], wherein the annealed coil is the steel plate coil;
A steel sheet manufacturing system with

[13] 冷延コイル又は熱延コイルからそれぞれ冷延鋼板又は熱延鋼板を払い出す焼鈍前払い出し装置と、
前記冷延鋼板又は熱延鋼板を連続焼鈍して、焼鈍鋼板とする連続焼鈍炉と、
前記焼鈍鋼板を巻き取って、焼鈍コイルを得る焼鈍鋼板巻き取り装置と、
前記焼鈍コイルを前記鋼板コイルとする、前記[1]から[9]のいずれか1項に記載の脱水素装置と、
を有する、鋼板の製造システム。
[13] A pre-annealing payout device that pays out a cold rolled steel plate or a hot rolled steel plate from a cold rolled coil or a hot rolled coil, respectively;
a continuous annealing furnace that continuously anneals the cold-rolled steel plate or hot-rolled steel plate to produce an annealed steel plate;
an annealed steel plate winding device that winds up the annealed steel plate to obtain an annealed coil;
The dehydrogenation device according to any one of [1] to [9], wherein the annealed coil is the steel plate coil;
A steel sheet manufacturing system with

[14] 熱延鋼板又は冷延鋼板の表面にめっき皮膜を形成してめっき鋼板とするめっき装置と、
前記めっき鋼板を巻き取って、めっき鋼板コイルを得るめっき鋼板巻き取り装置と、
前記めっき鋼板コイルを前記鋼板コイルとする、前記[1]から[9]のいずれか1項に記載の脱水素装置と、
を有する、鋼板の製造システム。
[14] A plating device that forms a plating film on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet to obtain a plated steel sheet;
a plated steel plate winding device that winds up the plated steel plate to obtain a plated steel plate coil;
The dehydrogenation device according to any one of [1] to [9], wherein the plated steel coil is the steel plate coil;
A steel sheet manufacturing system with

[15] 前記めっき装置が溶融亜鉛めっき装置である、前記[14]に記載の鋼板の製造システム。 [15] The steel sheet manufacturing system according to [14] above, wherein the plating device is a hot-dip galvanizing device.

[16] 前記めっき装置が、溶融亜鉛めっき装置と、これに続く合金化炉とを含む、前記[14]に記載の鋼板の製造システム。 [16] The steel sheet manufacturing system according to [14], wherein the plating device includes a hot-dip galvanizing device and an alloying furnace following the galvanizing device.

[17] 前記めっき装置が電気めっき装置である、前記[14]に記載の鋼板の製造システム。 [17] The steel plate manufacturing system according to [14] above, wherein the plating device is an electroplating device.

[18] 鋼帯をコイル状に巻き取った鋼板コイルに対して、前記鋼板コイルの振動の周波数が100~100000Hzとなり、かつ、前記鋼板コイルの最大振幅が10nm~500μmとなるように振動を付加して製品コイルとする振動付加工程を含む、鋼板の製造方法。 [18] Vibration is applied to a steel plate coil obtained by winding a steel strip into a coil shape so that the frequency of vibration of the steel plate coil is 100 to 100,000 Hz and the maximum amplitude of the steel plate coil is 10 nm to 500 μm. A method for producing a steel sheet, including a vibration adding process to produce a product coil.

[19] 前記振動付加工程は、前記鋼板コイルを300℃以下に保持して行われる、前記[18]に記載の鋼板の製造方法。 [19] The method for manufacturing a steel plate according to [18], wherein the vibration applying step is performed while maintaining the steel plate coil at 300° C. or lower.

[20] 鋼板コイルから鋼帯を払い出す工程と、
前記鋼帯を通板させる通板工程と、
前記鋼帯を巻き取って製品コイルとする工程と、
を有し、前記通板工程は、前記鋼帯に対して、前記鋼帯の振動の周波数が100~100000Hzとなり、かつ、前記鋼帯の最大振幅が10nm~500μmとなるように振動を付加する振動付加工程を含む、鋼板の製造方法。
[20] A step of discharging the steel strip from the steel sheet coil,
A threading step of threading the steel strip;
a step of winding the steel strip into a product coil;
In the threading step, vibration is applied to the steel strip so that the frequency of vibration of the steel strip is 100 to 100,000 Hz, and the maximum amplitude of the steel strip is 10 nm to 500 μm. A method for manufacturing a steel plate, including a vibration addition process.

[21] 前記振動付加工程は、前記鋼帯を300℃以下に保持して行われる、前記[20]に記載の鋼板の製造方法。 [21] The method for manufacturing a steel plate according to [20], wherein the vibration applying step is performed while maintaining the steel strip at 300° C. or lower.

[22] 鋼スラブに熱間圧延を施して熱延鋼板とする工程と、
前記熱延鋼板を巻き取って熱延コイルを得る工程と、
を含み、前記熱延コイルを前記鋼板コイルとする、前記[18]から[21]のいずれか1項に記載の鋼板の製造方法。
[22] A step of hot rolling a steel slab to produce a hot rolled steel plate;
a step of winding the hot-rolled steel sheet to obtain a hot-rolled coil;
The method for manufacturing a steel plate according to any one of [18] to [21], wherein the hot rolled coil is the steel plate coil.

[23] 熱延鋼板に冷間圧延を施して冷延鋼板とする工程と、
前記冷延鋼板を巻き取って冷延コイルを得る工程と、
を含み、前記冷延コイルを前記鋼板コイルとする、前記[18]から[21]のいずれか1項に記載の鋼板の製造方法。
[23] A step of cold-rolling a hot-rolled steel sheet to obtain a cold-rolled steel sheet;
a step of winding the cold-rolled steel sheet to obtain a cold-rolled coil;
The method for manufacturing a steel plate according to any one of [18] to [21], wherein the cold rolled coil is the steel plate coil.

[24] 冷延コイルまたは熱延コイルにバッチ焼鈍を施して焼鈍コイルを得る工程を含み、前記焼鈍コイルを前記鋼板コイルとする、前記[18]から[21]のいずれか1項に記載の鋼板の製造方法。 [24] The method according to any one of [18] to [21], including the step of batch annealing a cold-rolled coil or a hot-rolled coil to obtain an annealed coil, wherein the annealed coil is the steel plate coil. Method of manufacturing steel plates.

[25] 冷延コイルまたは熱延コイルからそれぞれ冷延鋼板または熱延鋼板を払い出す工程と、
前記冷延鋼板または前記熱延鋼板を連続焼鈍して、焼鈍鋼板を得る工程と、
前記焼鈍鋼板を巻き取って、焼鈍コイルを得る工程と、
を含み、前記焼鈍コイルを前記鋼板コイルとする、前記[18]から[21]のいずれか1項に記載の鋼板の製造方法。
[25] A step of discharging a cold-rolled steel plate or a hot-rolled steel plate from a cold-rolled coil or a hot-rolled coil, respectively;
Continuously annealing the cold rolled steel plate or the hot rolled steel plate to obtain an annealed steel plate;
Winding the annealed steel plate to obtain an annealed coil;
The method for manufacturing a steel plate according to any one of [18] to [21], wherein the annealed coil is the steel plate coil.

[26] 熱延鋼板または冷延鋼板の表面にめっき皮膜を形成してめっき鋼板とするめっき工程と、
前記めっき鋼板を巻き取って、めっき鋼板コイルを得る工程と、
を含み、前記めっき鋼板コイルを前記鋼板コイルとする、前記[18]から[21]のいずれか1項に記載の鋼板の製造方法。
[26] A plating step of forming a plating film on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet to obtain a plated steel sheet;
a step of winding up the plated steel sheet to obtain a plated steel sheet coil;
The method for manufacturing a steel plate according to any one of [18] to [21], wherein the plated steel coil is the steel plate coil.

[27] 前記めっき工程が溶融亜鉛めっき工程を含む、前記[26]に記載の鋼板の製造方法。 [27] The method for manufacturing a steel sheet according to [26] above, wherein the plating step includes a hot-dip galvanizing step.

[28] 前記めっき工程が、溶融亜鉛めっき工程と、これに続く合金化工程とを含む、前記[26]に記載の鋼板の製造方法。 [28] The method for manufacturing a steel sheet according to [26] above, wherein the plating step includes a hot-dip galvanizing step and a subsequent alloying step.

[29] 前記めっき工程が電気めっき工程を含む、前記[26]に記載の鋼板の製造方法。 [29] The method for manufacturing a steel plate according to [26] above, wherein the plating step includes an electroplating step.

[30] 前記製品コイルが、590MPa以上の引張強さを有する高強度鋼板からなる、前記[18]から[29]のいずれか1項に記載の鋼板の製造方法。 [30] The method for manufacturing a steel plate according to any one of [18] to [29], wherein the product coil is made of a high-strength steel plate having a tensile strength of 590 MPa or more.

[31] 前記製品コイルが、質量%で、
C :0.030%以上0.800%以下、
Si:0.01%以上3.00%以下、
Mn:0.01%以上10.00%以下、
P :0.001%以上0.100%以下、
S :0.0001%以上0.0200%以下、
N :0.0005%以上0.0100%以下および
Al:2.000%以下
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する下地鋼板を含む、前記[18]から[30]のいずれか1項に記載の鋼板の製造方法。
[31] The product coil has a mass percentage of
C: 0.030% or more and 0.800% or less,
Si: 0.01% or more and 3.00% or less,
Mn: 0.01% or more and 10.00% or less,
P: 0.001% or more and 0.100% or less,
S: 0.0001% or more and 0.0200% or less,
[18] to [30] above, comprising a base steel sheet having a composition containing N: 0.0005% or more and 0.0100% or less and Al: 2.000% or less, with the balance consisting of Fe and inevitable impurities. The method for manufacturing a steel plate according to any one of the above.

[32] 前記成分組成は、さらに質量%で、
Ti:0.200%以下、
Nb:0.200%以下、
V :0.500%以下、
W :0.500%以下、
B :0.0050%以下、
Ni:1.000%以下、
Cr:1.000%以下、
Mo:1.000%以下、
Cu:1.000%以下、
Sn:0.200%以下、
Sb:0.200%以下、
Ta:0.100%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Zr:0.0050%以下および
REM:0.0050%以下からなる群から選ばれる少なくとも1種の元素をさらに含有する、前記[31]に記載の鋼板の製造方法。
[32] The component composition further includes, in mass%,
Ti: 0.200% or less,
Nb: 0.200% or less,
V: 0.500% or less,
W: 0.500% or less,
B: 0.0050% or less,
Ni: 1.000% or less,
Cr: 1.000% or less,
Mo: 1.000% or less,
Cu: 1.000% or less,
Sn: 0.200% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel plate according to [31] above, further containing at least one element selected from the group consisting of Zr: 0.0050% or less and REM: 0.0050% or less.

[33] 前記製品コイルは、質量%で、
C :0.001%以上0.400%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上5.00%以下、
P :0.001%以上0.100%以下、
S :0.0001%以上0.0200%以下、
Cr:9.0%以上28.0%以下、
Ni:0.01%以上40.0%以下、
N :0.0005%以上0.500%以下および
Al:3.000%以下
を含有し、残部がFe及び不可避的不純物からなる成分組成を有するステンレス鋼板を含む、前記[18]から[30]のいずれか1項に記載の鋼板の製造方法。
[33] The product coil has a mass percentage of
C: 0.001% or more and 0.400% or less,
Si: 0.01% or more and 2.00% or less,
Mn: 0.01% or more and 5.00% or less,
P: 0.001% or more and 0.100% or less,
S: 0.0001% or more and 0.0200% or less,
Cr: 9.0% or more and 28.0% or less,
Ni: 0.01% or more and 40.0% or less,
[18] to [30] above, comprising a stainless steel plate having a composition containing N: 0.0005% or more and 0.500% or less and Al: 3.000% or less, with the balance consisting of Fe and inevitable impurities. The method for manufacturing a steel plate according to any one of the above.

[34] 前記成分組成が、さらに、質量%で、
Ti:0.500%以下、
Nb:0.500%以下、
V :0.500%以下、
W :2.000%以下、
B :0.0050%以下、
Mo:2.000%以下、
Cu:3.000%以下、
Sn:0.500%以下、
Sb:0.200%以下、
Ta:0.100%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Zr:0.0050%以下および
REM:0.0050%以下
からなる群から選ばれる少なくとも1種の元素をさらに含有する、前記[33]に記載の鋼板の製造方法。
[34] The component composition further comprises, in mass%,
Ti: 0.500% or less,
Nb: 0.500% or less,
V: 0.500% or less,
W: 2.000% or less,
B: 0.0050% or less,
Mo: 2.000% or less,
Cu: 3.000% or less,
Sn: 0.500% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel plate according to [33] above, further containing at least one element selected from the group consisting of Zr: 0.0050% or less and REM: 0.0050% or less.

[35] 前記製品コイルは0.50質量ppm以下の拡散性水素量を有する、前記[18]から[34]のいずれか1項に記載の鋼板の製造方法。 [35] The method for manufacturing a steel plate according to any one of [18] to [34], wherein the product coil has a diffusible hydrogen amount of 0.50 mass ppm or less.

本発明によれば、鋼板の機械特性を変化させることなく、耐水素脆化特性に優れた鋼板を製造することができる。 According to the present invention, a steel plate with excellent hydrogen embrittlement resistance can be manufactured without changing the mechanical properties of the steel plate.

振動付加装置の構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of a vibration adding device. (A)及び(B)は、本発明の各実施形態において、鋼板コイルCに対する振動付加装置60の電磁石63の設置態様の例を模式的に示した図である。(A) and (B) are diagrams schematically showing an example of how the electromagnet 63 of the vibration adding device 60 is installed with respect to the steel plate coil C in each embodiment of the present invention. (A)及び(B)は、本発明の各実施形態において、電磁石63からの磁場の発生態様を模式的に示した図である。(A) and (B) are diagrams schematically showing how a magnetic field is generated from an electromagnet 63 in each embodiment of the present invention. 振動付加装置の構成の別例を示す模式図である。It is a schematic diagram which shows another example of a structure of a vibration adding device. 実施形態1に係る振動付加装置60を備える脱水素装置の構成の一例を説明するための概要図であり、(A)は脱水素装置の斜視図、(B)は脱水素装置を側面a側から見た図、(C)は脱水素装置の一例を側面bから見た図の一例、(D)は脱水素装置の別の例を側面bから見た図である。FIG. 2 is a schematic diagram for explaining an example of the configuration of a dehydrogenation device including a vibration applying device 60 according to Embodiment 1, in which (A) is a perspective view of the dehydrogenation device, and (B) is a perspective view of the dehydrogenation device on the side a side. (C) is an example of a view of an example of a dehydrogenation device seen from side b, and (D) is a view of another example of the dehydrogenation device seen from side b. 実施形態1に係る振動付加装置70を備える脱水素装置の構成の一例を説明するための概要図である。1 is a schematic diagram for explaining an example of the configuration of a dehydrogenation device including a vibration applying device 70 according to Embodiment 1. FIG. 実施形態2に係る振動付加装置60を備える脱水素装置の構成の一例を、鋼板コイルの巻き取り軸方向から見た図である。FIG. 3 is a diagram illustrating an example of the configuration of a dehydrogenation device including a vibration applying device 60 according to Embodiment 2, as viewed from the winding axis direction of a steel plate coil. 実施形態2に係る振動付加装置70を備える脱水素装置の構成の一例を、鋼板コイルの巻き取り軸方向から見た図である。FIG. 3 is a diagram illustrating an example of the configuration of a dehydrogenation device including a vibration applying device 70 according to Embodiment 2, as viewed from the winding axis direction of a steel sheet coil.

以下、本発明の実施形態について説明する。本発明は以下の実施形態に限定されない。本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本明細書において「鋼板」は、熱延鋼板、冷延鋼板、それらをさらに焼鈍した焼鈍鋼板、及びこれらの表面にめっき皮膜を形成しためっき鋼板を包含する総称である。「鋼板」の形状は限定されず、鋼板コイル及び払い出された鋼帯のいずれもが含まれる。 Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments. In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits. In this specification, "steel plate" is a general term that includes hot rolled steel plates, cold rolled steel plates, annealed steel plates obtained by further annealing these steel plates, and plated steel plates with a plating film formed on the surfaces thereof. The shape of the "steel plate" is not limited, and includes both a steel plate coil and a rolled-out steel strip.

本脱水素装置は、鋼板に所定の振動数及び最大振幅の振動を付加して、鋼中の拡散性水素量を低減する。本脱水素装置によれば、鋼板に対する加熱処理を必須としないことから、鋼板の組織特性を変化させる懸念もなく、鋼中の拡散水素量を低減することができる。 This dehydrogenation device applies vibrations of a predetermined frequency and maximum amplitude to a steel plate to reduce the amount of diffusible hydrogen in the steel. According to this dehydrogenation apparatus, since heat treatment on the steel plate is not essential, there is no concern that the structural characteristics of the steel plate will change, and the amount of hydrogen diffused in the steel can be reduced.

また、本鋼板の製造方法においては、鋼板の振動の周波数が100~100000Hzとなり、かつ、前記鋼板の最大振幅が10nm~500μmとなるように振動を付加する。本鋼板の製造方法によれば、鋼板に対する加熱処理を必須としないことから、鋼板の組織特性を変化させる懸念もなく、鋼中の拡散水素量を低減することができる。 Further, in the method for manufacturing the steel plate, vibration is applied so that the frequency of vibration of the steel plate is 100 to 100,000 Hz, and the maximum amplitude of the steel plate is 10 nm to 500 μm. According to the present method for producing a steel sheet, since heat treatment on the steel sheet is not essential, the amount of diffused hydrogen in the steel can be reduced without fear of changing the structural characteristics of the steel sheet.

ここで、鋼板に振動を付加することで鋼板の耐水素脆性を向上することができる理由は明らかではないが、本発明者らは以下のとおり推察する。
すなわち、鋼板に対して所定の条件で振動を付加して、鋼板を強制加振する。この強制加振による曲げ変形に起因して、鋼板の格子間隔が板厚方向に拡張(引張)・収縮(圧縮)を繰り返す。鋼中の拡散性水素は、よりポテンシャルエネルギーの低い引張側への拡散が誘起されるため、この格子間隔の拡張・収縮に伴って拡散性水素の拡散が促進され、鋼板内部と表面とを結ぶ拡散性水素の拡散パスが強制的に引き起こされる。拡散パスが強制的に形成された拡散性水素は、鋼板の表面近傍における格子間隔が拡張したタイミングで、表面を通って更にポテンシャルエネルギー的に有利な鋼板外部へと逃げていく。このように、鋼板に対して所定の条件で付加した振動が、鋼中の拡散性水素を十分にかつ効率よく低減させるので、鋼板の水素脆化を良好かつ簡便に抑制できるものと推察される。
Although it is not clear why the hydrogen embrittlement resistance of the steel plate can be improved by applying vibration to the steel plate, the present inventors speculate as follows.
That is, vibration is applied to the steel plate under predetermined conditions to forcibly vibrate the steel plate. Due to the bending deformation caused by this forced vibration, the lattice spacing of the steel plate repeats expansion (tension) and contraction (compression) in the thickness direction. Diffusible hydrogen in steel is induced to diffuse toward the tensile side, which has lower potential energy, so the expansion and contraction of this lattice spacing promotes the diffusion of diffusible hydrogen, connecting the inside of the steel sheet and the surface. The diffusion path of diffusible hydrogen is forced. The diffusible hydrogen whose diffusion path has been forcibly formed escapes through the surface to the outside of the steel sheet where it is advantageous in terms of potential energy, at the timing when the lattice spacing near the surface of the steel sheet is expanded. In this way, the vibration applied to the steel plate under predetermined conditions sufficiently and efficiently reduces the diffusible hydrogen in the steel, so it is presumed that hydrogen embrittlement of the steel plate can be effectively and easily suppressed. .

以下では、(1)鋼板コイルに対して振動を付加する脱水素装置及び鋼板の製造方法、並びに(2)鋼板コイルを払い出して再度巻き戻しつつ、払い出した鋼板に振動を付加する脱水素装置及び鋼板の製造方法に分けて説明を行う。 The following describes (1) a dehydrogenation device that applies vibration to a steel plate coil and a method for manufacturing a steel plate, and (2) a dehydrogenation device that applies vibration to the discharged steel plate while unwinding the steel plate coil and rewinding it again. The explanation will be divided into the manufacturing methods of steel sheets.

<実施形態1>
本実施形態に係る脱水素装置は、鋼帯をコイル状に巻き取った鋼板コイルCを収容する収容部と、前記収容部に収容される前記鋼板コイルに対して、前記鋼板コイルの振動の周波数が100~100000Hzとなり、かつ、前記鋼板コイルの最大振幅が10nm~500μmとなるように振動を付加する振動付加装置を有する、脱水素装置である。鋼板の製造における種々の工程において、鋼帯は巻き取られて鋼板コイルとされる。
<Embodiment 1>
The dehydrogenation device according to the present embodiment includes a storage part that stores a steel plate coil C obtained by winding a steel strip into a coil shape, and a frequency of vibration of the steel plate coil with respect to the steel plate coil accommodated in the storage part. This is a dehydrogenation device having a vibration adding device that applies vibrations such that the frequency is 100 to 100,000 Hz and the maximum amplitude of the steel plate coil is 10 nm to 500 μm. In various steps in manufacturing steel sheets, steel strips are wound into steel sheet coils.

また、本実施形態に係る鋼板の製造方法は、鋼帯をコイル状に巻き取った鋼板コイルに対して、前記鋼板コイルの振動の周波数が100~100000Hzとなり、かつ、前記鋼板コイルの最大振幅が10nm~500μmとなるように振動を付加する振動付加工程を含む。鋼板の製造における種々の工程において、鋼帯は巻き取られて鋼板コイルとされる。 Further, in the method for manufacturing a steel plate according to the present embodiment, the frequency of vibration of the steel plate coil is 100 to 100,000 Hz, and the maximum amplitude of the steel plate coil is 100 to 100,000 Hz. A vibration adding step is included in which vibration is applied so that the vibration becomes 10 nm to 500 μm. In various steps in manufacturing steel sheets, steel strips are wound into steel sheet coils.

本実施形態に係る脱水素装置及び鋼板の製造方法においては、この鋼板コイルに対して振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた鋼板を得ることができる。特に、鋼板コイルにおいては、鋼帯に曲げ変形が加えられており鋼帯の径方向外側の面の格子間隔が拡張していることから、径方向外側に向かって水素の拡散パスが形成されやすいと考えられる。本実施形態においては、鋼板コイルに対して振動を付加することで、径方向外側の面の格子間隔が拡張した状態の鋼帯に対してさらに微小曲げ変形を加えることになることから、より好適に鋼中の拡散性水素を低減することができる。 In the dehydrogenation device and the method for manufacturing a steel plate according to the present embodiment, by applying vibration to the steel plate coil, the amount of diffusible hydrogen in the steel is reduced, and the steel plate has excellent hydrogen embrittlement resistance. can be obtained. In particular, in steel plate coils, since the steel strip is subjected to bending deformation and the lattice spacing on the radially outer surface of the steel strip is expanded, hydrogen diffusion paths are likely to be formed radially outward. it is conceivable that. In this embodiment, by applying vibration to the steel plate coil, a small bending deformation is further applied to the steel strip in a state where the lattice spacing on the radially outer surface is expanded, which is more suitable. Diffusible hydrogen in steel can be reduced.

[[振動付加装置]]
(振動付加装置60)
振動の付加には、振動付加装置を用いることができる。一例において、振動付加装置は、電磁石が鋼板コイルに与える外力(引力)により鋼板コイルが振動するように構成され得る。図1に、振動付加装置の構成の一例を示す。一例において、振動付加装置60は、制御器61と、増幅器62と、電磁石63と、振動検出器64と、電源65とを備える。図3(A),(B)に示すように、一例において、振動付加装置60は、磁石63Aと、この磁石63Aを巻回するコイル63Bとを含む電磁石63を有し、電磁石63は、鋼板コイルの表面に離間して対向する磁極面63A1を有する。なお、ここで「鋼板コイルの表面」とは、鋼板コイルCの径方向において最外周部に位置する鋼板の表面を意味する。
[[Vibration adding device]]
(Vibration adding device 60)
A vibration adding device can be used to add vibration. In one example, the vibration applying device may be configured to cause the steel plate coil to vibrate due to an external force (attractive force) applied to the steel plate coil by an electromagnet. FIG. 1 shows an example of the configuration of a vibration applying device. In one example, the vibration applying device 60 includes a controller 61, an amplifier 62, an electromagnet 63, a vibration detector 64, and a power source 65. As shown in FIGS. 3A and 3B, in one example, the vibration adding device 60 has an electromagnet 63 including a magnet 63A and a coil 63B wound around the magnet 63A. It has a magnetic pole face 63A1 spaced apart from and facing the surface of the coil. In addition, the "surface of the steel plate coil" here means the surface of the steel plate located at the outermost peripheral part in the radial direction of the steel plate coil C.

電磁石63は、鋼板コイルCの表面に離間して対向する磁極面63A1を有する。電磁石63は、鋼板コイルCの径方向に対して磁極面63A1が垂直になるように鋼板コイルCの表面に離間して対向する磁極面63A1を有することが好ましい。これにより、図3(A),(B)に示すように、磁力線の方向が鋼板コイルCの径方向に沿い、鋼板コイルCに引力を働かせることができる。電磁石の形状及び設置態様として、例えば、図2(A),(B)を挙げることができる。 The electromagnet 63 has a magnetic pole face 63A1 spaced apart from and facing the surface of the steel plate coil C. It is preferable that the electromagnet 63 has a magnetic pole face 63A1 facing the surface of the steel plate coil C at a distance such that the magnetic pole face 63A1 is perpendicular to the radial direction of the steel plate coil C. Thereby, as shown in FIGS. 3A and 3B, the direction of the magnetic lines of force is along the radial direction of the steel plate coil C, and an attractive force can be exerted on the steel plate coil C. Examples of the shape and installation mode of the electromagnet are shown in FIGS. 2(A) and 2(B).

図2(A)では、直方体形状の電磁石63が、鋼板コイルCの表面において互いに所定の間隔をあけて、鋼板板幅方向に沿って延在しており、これにより、鋼板コイルCの表面の幅方向に均一に外力(引力)を加えることができ、幅方向に均一な振動を実現できる。そして、このような電磁石63を通板方向に沿って複数配置することによって、鋼板コイルCに振動を付加する時間を十分に確保することができる。図2(A)に示すように、電磁石63は、磁石63Aと、その周囲に巻回されたコイル63Bとを有し、コイル63Bの軸方向は冷延鋼板Sの板厚方向と一致させる。この場合、コイル63Bに流れる電流の向きに応じて、図3(A)のように、鋼板コイルCと対向する磁極面63A1がN極になるか、又は、図3(B)のように、鋼板コイルCと対向する磁極面63A1がS極となる。 In FIG. 2(A), rectangular parallelepiped electromagnets 63 extend along the width direction of the steel plate at a predetermined distance from each other on the surface of the steel plate coil C. External force (gravitational force) can be applied uniformly in the width direction, and uniform vibration can be realized in the width direction. By arranging a plurality of such electromagnets 63 along the sheet passing direction, it is possible to sufficiently secure time for applying vibration to the steel plate coil C. As shown in FIG. 2A, the electromagnet 63 includes a magnet 63A and a coil 63B wound around the magnet 63A, and the axial direction of the coil 63B is made to coincide with the thickness direction of the cold rolled steel sheet S. In this case, depending on the direction of the current flowing through the coil 63B, the magnetic pole surface 63A1 facing the steel plate coil C becomes the north pole as shown in FIG. The magnetic pole surface 63A1 facing the steel plate coil C becomes the S pole.

図2(B)では、複数の円柱形状の電磁石63を、その底部の磁極面が鋼板コイルCの表面に離間して対向するように、鋼板板幅方向に沿って所定の間隔で配置しており、これにより、鋼板コイルCの表面の幅方向に均一に外力(引力)を加えることができ、幅方向に均一な振動を実現できる。そして、このような円柱形状の電磁石63の列を通板方向に沿って複数配置することによって、鋼板コイルCに振動を付加する時間を十分に確保することができる。図2(B)に示すように、各々の電磁石63は、円柱状の磁石と、その周囲に巻回されたコイルとを有し、コイルの軸方向は鋼板コイルCの板厚方向と一致させる。この場合、コイルに流れる電流の向きに応じて、図3(A)のように、鋼板コイルCと対向する磁極面63A1がN極になるか、又は、図3(B)のように、鋼板コイルCと対向する磁極面63A1がS極となる。 In FIG. 2(B), a plurality of cylindrical electromagnets 63 are arranged at predetermined intervals along the width direction of the steel plate so that the magnetic pole faces at the bottom face the surface of the steel plate coil C at a distance. Therefore, an external force (attractive force) can be uniformly applied to the surface of the steel plate coil C in the width direction, and uniform vibration can be realized in the width direction. By arranging a plurality of rows of such cylindrical electromagnets 63 along the sheet passing direction, sufficient time for applying vibration to the steel plate coil C can be ensured. As shown in FIG. 2(B), each electromagnet 63 has a cylindrical magnet and a coil wound around the cylindrical magnet, and the axial direction of the coil is aligned with the thickness direction of the steel plate coil C. . In this case, depending on the direction of the current flowing through the coil, the magnetic pole surface 63A1 facing the steel sheet coil C becomes the N pole, as shown in FIG. The magnetic pole surface 63A1 facing the coil C becomes the S pole.

鋼板コイルCの表面全体に対して均一に振動を付加するために、電磁石63は、鋼板コイルCの周方向に沿って均一な間隔を開けて複数配置されることが好ましい。一例においては、電磁石63は、鋼板コイルCの周方向に沿って、鋼板コイルCの中心角において互いに1°~30°の間隔を開けて複数配置され得る。 In order to apply vibration uniformly to the entire surface of the steel plate coil C, it is preferable that a plurality of electromagnets 63 are arranged at uniform intervals along the circumferential direction of the steel plate coil C. In one example, a plurality of electromagnets 63 may be arranged along the circumferential direction of the steel plate coil C at intervals of 1° to 30° at the central angle of the steel plate coil C.

図3(A)及び図3(B)の場合、電磁石63に電流を流すことで、鋼板コイルCの表面には外力(引力)が働く。電磁石63に流す電流は、直流のパルス電流か、交流の連続電流とする。電磁石63に直流のパルス電流を流す場合、冷延鋼板Sに間欠的に引力が働くことで、鋼板コイルCが振動する。電磁石63に交流の連続電流を流す場合、電流の向きが変わるたびに、鋼板コイルCと対向する磁極面63A1がN極とS極とで切り替わることになるが、常に、鋼板コイルには外力(引力)が働く。交流の場合、電流値の経時変化に応じて鋼板コイルに働く外力(引力)の大きさも変化するため、鋼板コイルCが振動する。 In the case of FIGS. 3A and 3B, an external force (attractive force) acts on the surface of the steel plate coil C by passing a current through the electromagnet 63. The current flowing through the electromagnet 63 is a direct current pulse current or an alternating current continuous current. When a DC pulse current is passed through the electromagnet 63, an attractive force is intermittently applied to the cold-rolled steel sheet S, causing the steel sheet coil C to vibrate. When a continuous alternating current is passed through the electromagnet 63, each time the direction of the current changes, the magnetic pole surface 63A1 facing the steel plate coil C switches between N and S poles, but the steel plate coil is always subjected to an external force ( gravitational force) works. In the case of alternating current, the magnitude of the external force (gravitational force) acting on the steel plate coil changes as the current value changes over time, so the steel plate coil C vibrates.

図1に示す振動検出器64は、鋼板コイルCの表面と所定の間隔をあけて配置されたレーザー変位計又はレーザードップラー振動計であり、鋼板コイルCの表面の振動の周波数及び振幅を測定することができる。鋼板コイルにおいて電磁石63と同じ高さ位置に振動検出器64を配置することで、振動検出器64で鋼板コイルCの振動の最大振幅を測定することができる。振動検出器64により検出された周波数及び最大振幅は、制御器61に出力される。制御器61は、振動検出器64から出力された周波数及び最大振幅の値を受け取り、設定値と比較し、その偏差にPID演算などを行って、冷延鋼板Sを所定の周波数及び最大振幅で振動させるように、電磁石63の周波数(直流のパルス電流の周波数又は交流の連続電流の周波数)及び電流値を決定し、また、増幅器62の増幅率を考慮して増幅器62に与える電流値を決定し、電源65に指令値を与える。電源65は、電磁石63のコイルに電流を流すための電源であり、制御器61から入力される指令値を受け取り、増幅器62に所定の周波数及び電流値の電流を与える。増幅器62は、電源65から与えられた電流値を所定の増幅率で増幅して、電磁石63に指令値を与える。その結果、電磁石63には所定の周波数及び電流値の電流が流れ、鋼板コイルCを所定の周波数及び最大振幅で振動させることができる。 The vibration detector 64 shown in FIG. 1 is a laser displacement meter or a laser Doppler vibrometer placed at a predetermined distance from the surface of the steel plate coil C, and measures the frequency and amplitude of vibration on the surface of the steel plate coil C. be able to. By arranging the vibration detector 64 at the same height as the electromagnet 63 in the steel plate coil, the vibration detector 64 can measure the maximum amplitude of vibration of the steel plate coil C. The frequency and maximum amplitude detected by the vibration detector 64 are output to the controller 61. The controller 61 receives the frequency and maximum amplitude values output from the vibration detector 64, compares them with set values, performs PID calculation etc. on the deviation, and controls the cold rolled steel sheet S at a predetermined frequency and maximum amplitude. The frequency (direct current pulse current frequency or alternating current continuous current frequency) and current value of the electromagnet 63 are determined so as to vibrate, and the current value given to the amplifier 62 is determined in consideration of the amplification factor of the amplifier 62. Then, a command value is given to the power supply 65. The power supply 65 is a power supply for passing a current through the coil of the electromagnet 63, receives a command value input from the controller 61, and supplies a current of a predetermined frequency and current value to the amplifier 62. The amplifier 62 amplifies the current value given from the power supply 65 by a predetermined amplification factor, and gives a command value to the electromagnet 63. As a result, a current with a predetermined frequency and current value flows through the electromagnet 63, and the steel plate coil C can be vibrated with a predetermined frequency and maximum amplitude.

(振動付加装置70)
別例において、振動付加装置は、鋼板コイルCの表面に接触する振動子72を有し、この振動子72によって鋼板コイルCが振動するように構成される。図4Aに、振動付加装置の構成の別例を示す。図4Aを参照して、振動付加装置70は、制御器71と、振動子72と、振動検出器73とを備える。振動付加装置70は、鋼板コイルCに接触する振動子72を有し、この振動子72によって鋼板コイルCが振動するように構成される。
(Vibration adding device 70)
In another example, the vibration applying device has a vibrator 72 that contacts the surface of the steel plate coil C, and is configured so that the steel plate coil C is vibrated by the vibrator 72. FIG. 4A shows another example of the configuration of the vibration applying device. Referring to FIG. 4A, vibration adding device 70 includes a controller 71, a vibrator 72, and a vibration detector 73. The vibration adding device 70 has a vibrator 72 that contacts the steel plate coil C, and is configured so that the steel plate coil C is vibrated by the vibrator 72.

振動子72は、一般的な圧電素子であれば特に限定されず、その形状及び設置態様も限定されないが、例えば、図4Bに示すように、鋼板コイルCの板幅方向を長手とする平板状の振動子72を鋼板コイルCの表面に面接触させることで、鋼板コイルCを振動させることができる。鋼板コイルCの表面全体に対して均一に振動を付加するために、振動子72は、鋼板コイルCの周方向に沿って均一な間隔を開けて複数配置されることが好ましい。一例においては、振動子72は、鋼板コイルCの周方向に沿って、鋼板コイルCの中心角において互いに1°~30°の間隔を開けて複数配置され得る。 The vibrator 72 is not particularly limited as long as it is a general piezoelectric element, and its shape and installation mode are also not limited. For example, as shown in FIG. By bringing the vibrator 72 into surface contact with the surface of the steel plate coil C, the steel plate coil C can be vibrated. In order to apply vibration uniformly to the entire surface of the steel plate coil C, it is preferable that a plurality of vibrators 72 are arranged at uniform intervals along the circumferential direction of the steel plate coil C. In one example, a plurality of vibrators 72 may be arranged along the circumferential direction of the steel plate coil C at intervals of 1° to 30° from each other at the central angle of the steel plate coil C.

図4Aに示す振動検出器73は、鋼板コイルCの表面において互いに所定の間隔をあけて配置されたレーザー変位計又はレーザードップラー振動計であり、鋼板コイルCの振動の周波数及び振幅を測定することができる。鋼板コイルCの振動子72と同じ高さ位置に振動検出器73を配置することで、振動検出器73で鋼板コイルCの振動の最大振幅を測定することができる。振動検出器73により検出された周波数及び最大振幅は、制御器71に出力される。制御器71は、振動検出器73から出力された周波数及び最大振幅の値を受け取り、設定値と比較し、その偏差にID演算などを行って、鋼板コイルCを所定の周波数及び最大振幅で振動させるように、振動子72に流れる直流パルス電流の周波数及び電流値を決定し、図示しない電源を制御して振動子72に所定の周波数及び電流値の直流パルス電流を与える。これにより、振動子72は所定の周波数及び振幅で振動し、その結果、鋼板コイルCを所定の周波数及び最大振幅で振動させることができる。 The vibration detector 73 shown in FIG. 4A is a laser displacement meter or a laser Doppler vibrometer arranged at a predetermined interval on the surface of the steel plate coil C, and measures the frequency and amplitude of vibration of the steel plate coil C. Can be done. By arranging the vibration detector 73 at the same height position as the vibrator 72 of the steel plate coil C, the maximum amplitude of the vibration of the steel plate coil C can be measured by the vibration detector 73. The frequency and maximum amplitude detected by the vibration detector 73 are output to the controller 71. The controller 71 receives the frequency and maximum amplitude values output from the vibration detector 73, compares them with set values, performs ID calculation on the deviation, and vibrates the steel plate coil C at a predetermined frequency and maximum amplitude. The frequency and current value of the DC pulse current flowing through the vibrator 72 are determined so as to provide the vibrator 72 with a DC pulse current having a predetermined frequency and current value by controlling a power source (not shown). Thereby, the vibrator 72 vibrates at a predetermined frequency and amplitude, and as a result, the steel plate coil C can be vibrated at a predetermined frequency and maximum amplitude.

[[脱水素装置]
図5に、鋼板コイルCに対して振動付加装置60により振動を付加して鋼中の拡散性水素を低減するための脱水素装置の一例を示す。図5(A)は、脱水素装置300aの斜視図である。なお、図5(A)においては、脱水素装置300aの側面a側から見た最も手前側の数列の電磁石63のみを図示している。図5(B)は、脱水素装置300aを、側面a側から見た図である。図5(A)及び図5(B)に示すように、脱水素装置300aは、鋼板コイルCを収容するための収容部80を備え、該収容部80に収容された鋼板コイルCに対して、振動を付加する電磁石63を備える。電磁石63の数、配置は特に限定されないが、図2の例においては、鋼板コイルCの周囲を取り囲むように、複数の電磁石63が配置されている。なお、図5(A)~(D)においては図示しないが、各電磁石63には、増幅器62と、電源65と、制御器61と、とが結合されており、さらに制御器61には振動検出器64が結合されており、電磁石63から鋼板コイルCに対して振動が付加されるようになっている。鋼板コイルCの周囲を取り囲むように、複数の電磁石63を配置することで、鋼板コイルCに対して均一に振動を付加することができる。図5(A)に示すように鋼板コイルCの周囲を取り囲むように電磁石63を設けた場合、電磁石63により鋼板コイルCのコイル表面が振動するものと考えられる。コイル表面が振動された鋼板コイルCにおいては、鋼板コイルC中の鋼板間に存在する空気を媒介してコイル内周に向かって振動が伝播し、あるいは、コイルの最外周表面の振動から直接コイル内周に向かって振動が伝播して、最終的にはコイル最内部まで振動が伝播されるものと考えられる。なお、図示するように、収容部80には、複数の鋼板コイルCが収容可能であってもよい。
[[Dehydrogenation equipment]
FIG. 5 shows an example of a dehydrogenation device for reducing diffusible hydrogen in steel by applying vibration to the steel plate coil C by a vibration adding device 60. FIG. 5(A) is a perspective view of the dehydrogenation device 300a. In addition, in FIG. 5(A), only the electromagnets 63 in the nearest row when viewed from the side a side of the dehydrogenation device 300a are shown. FIG. 5(B) is a diagram of the dehydrogenation device 300a viewed from the side a side. As shown in FIGS. 5(A) and 5(B), the dehydrogenation device 300a includes a housing section 80 for housing the steel sheet coil C, and the steel sheet coil C accommodated in the housing section 80 is , an electromagnet 63 that adds vibration. Although the number and arrangement of electromagnets 63 are not particularly limited, in the example of FIG. 2, a plurality of electromagnets 63 are arranged so as to surround the steel plate coil C. Although not shown in FIGS. 5A to 5D, an amplifier 62, a power source 65, and a controller 61 are coupled to each electromagnet 63, and the controller 61 is connected to a vibration A detector 64 is coupled, and vibration is applied to the steel plate coil C from the electromagnet 63. By arranging a plurality of electromagnets 63 so as to surround the steel plate coil C, vibration can be applied uniformly to the steel plate coil C. When the electromagnet 63 is provided so as to surround the steel plate coil C as shown in FIG. 5(A), it is considered that the electromagnet 63 causes the surface of the steel plate coil C to vibrate. In the steel plate coil C whose coil surface is vibrated, the vibration propagates toward the inner circumference of the coil via the air existing between the steel plates in the steel plate coil C, or directly from the vibration of the outermost surface of the coil. It is thought that the vibration propagates toward the inner circumference and eventually reaches the innermost part of the coil. Note that, as illustrated, the housing portion 80 may be capable of housing a plurality of steel plate coils C.

鋼板コイルCの表面全面に対して均一に振動を付加する観点からは、鋼板コイルCを取り囲むように、脱水素装置300aの内壁の高さ方向、幅方向に沿って複数の電磁石63を配置することが好ましい。図5(C)に、脱水素装置の一例を側面bから見た図を示す。図5(C)に示すように、電磁石63を、側面bの高さ方向、幅方向に沿って均一な間隔で設けてもよい。また、図5(D)に、脱水素装置の別の例を側面bから見た図を示す。電磁石63は、鋼板コイルCに対して振動を付加できればよく、例えば図5(D)に示すように、断面長方形状の角筒形状としてもよい。また、鋼板コイルCが区画する中空部に電磁石63を入れて、鋼板コイルCの内側から振動を付加してもよい。 From the viewpoint of applying vibration uniformly to the entire surface of the steel plate coil C, a plurality of electromagnets 63 are arranged along the height direction and width direction of the inner wall of the dehydrogenation device 300a so as to surround the steel plate coil C. It is preferable. FIG. 5(C) shows a diagram of an example of the dehydrogenation device viewed from side b. As shown in FIG. 5C, the electromagnets 63 may be provided at uniform intervals along the height and width directions of the side surface b. Moreover, FIG. 5(D) shows a diagram of another example of the dehydrogenation device viewed from side b. The electromagnet 63 only needs to be able to apply vibration to the steel plate coil C, and may have a rectangular tube shape with a rectangular cross section, for example, as shown in FIG. 5(D). Alternatively, an electromagnet 63 may be placed in a hollow portion defined by the steel plate coil C to apply vibrations from inside the steel plate coil C.

なお、拡散性水素は鋼板コイルCの端面からも放出されるため、鋼板コイルCの鋼板幅方向端部よりも鋼板幅方向中央部の方が拡散性水素量を低減させる効率が低下すると考えられる。よって、電磁石63は特に鋼板コイルCの鋼板幅方向中央部付近に設けることが好ましい。 In addition, since diffusible hydrogen is also released from the end face of the steel plate coil C, it is thought that the efficiency of reducing the amount of diffusible hydrogen is lower at the center part of the steel plate coil C in the width direction of the steel plate than at the ends of the steel plate coil C in the width direction of the steel plate. . Therefore, it is particularly preferable that the electromagnet 63 be provided near the center of the steel plate coil C in the width direction of the steel plate.

なお、図示するように、脱水素装置300a内には、コイル保持部90が適宜設けられている。コイル保持部90の形態は特に限定されないが、鋼板コイルCの巻き取り軸方向が脱水素装置300aの床と平行になるように鋼板コイルCを載置する場合、コイル保持部90は、図5(A)に示すように、鋼板コイルCが脱水素装置300a内で転がることを防ぐために、鋼板コイルCを両側から挟持する一対の棒状部材であり得る。コイル保持部90は、図5(A)に示すように、鋼板コイルCの最外周が描く弧に沿った凹弧状の上面を有する一対の棒状部材であってもよい。また、図示しないが、鋼板コイルCは、巻き取り軸方向が脱水素装置300aの床と平行になるように載置してもよい。 Note that, as shown in the figure, a coil holding section 90 is appropriately provided in the dehydrogenation device 300a. Although the form of the coil holding part 90 is not particularly limited, when the steel plate coil C is placed so that the winding axis direction of the steel plate coil C is parallel to the floor of the dehydrogenation apparatus 300a, the coil holding part 90 is as shown in FIG. As shown in (A), in order to prevent the steel plate coil C from rolling within the dehydrogenation device 300a, it may be a pair of rod-shaped members that sandwich the steel plate coil C from both sides. The coil holding portion 90 may be a pair of rod-shaped members having a concave arc-shaped upper surface along an arc drawn by the outermost circumference of the steel plate coil C, as shown in FIG. 5(A). Further, although not shown, the steel plate coil C may be placed so that the direction of the winding axis is parallel to the floor of the dehydrogenation apparatus 300a.

鋼板コイルCの表面全面に対して均一に振動を付加する観点からは、鋼板コイルCを取り囲むように、脱水素装置300aの内壁の高さ方向、幅方向に沿って複数の電磁石63を配置することが好ましい。図5(C)に、脱水素装置の一例を側面bから見た図を示す。図5(C)に示すように、電磁石63を、側面bの高さ方向、幅方向に沿って均一な間隔で設けてもよい。また、図5(D)に、脱水素装置の別の例を側面bから見た図を示す。電磁石63は、鋼板コイルCに対して振動を付加できればよく、例えば図5(D)に示すように、断面長方形状の角筒形状としてもよい。また、鋼板コイルCが区画する中空部に電磁石63を入れて、鋼板コイルCの内側から振動を付加してもよい。 From the viewpoint of applying vibration uniformly to the entire surface of the steel plate coil C, a plurality of electromagnets 63 are arranged along the height direction and width direction of the inner wall of the dehydrogenation device 300a so as to surround the steel plate coil C. It is preferable. FIG. 5(C) shows a diagram of an example of the dehydrogenation device viewed from side b. As shown in FIG. 5C, the electromagnets 63 may be provided at uniform intervals along the height and width directions of the side surface b. Moreover, FIG. 5(D) shows a diagram of another example of the dehydrogenation device viewed from side b. The electromagnet 63 only needs to be able to apply vibration to the steel plate coil C, and may have a rectangular tube shape with a rectangular cross section, for example, as shown in FIG. 5(D). Alternatively, an electromagnet 63 may be placed in a hollow portion defined by the steel plate coil C to apply vibrations from inside the steel plate coil C.

なお、拡散性水素は鋼板コイルCの端面からも放出されるため、鋼板コイルCの鋼板幅方向端部よりも鋼板幅方向中央部の方が拡散性水素量を低減させる効率が低下すると考えられる。よって、電磁石63は特に鋼板コイルCの鋼板幅方向中央部付近に設けることが好ましい。 In addition, since diffusible hydrogen is also released from the end face of the steel plate coil C, it is thought that the efficiency of reducing the amount of diffusible hydrogen is lower at the center part of the steel plate coil C in the width direction of the steel plate than at the ends of the steel plate coil C in the width direction of the steel plate. . Therefore, it is particularly preferable that the electromagnet 63 be provided near the center of the steel plate coil C in the width direction of the steel plate.

なお、図示するように、脱水素装置300a内には、コイル保持部90が適宜設けられている。コイル保持部90の形態は特に限定されないが、鋼板コイルCの巻き取り軸方向が脱水素装置300aの床と平行になるように鋼板コイルCを載置する場合、コイル保持部90は、図5(A)に示すように、鋼板コイルCが脱水素装置300a内で転がることを防ぐために、鋼板コイルCを両側から挟持する一対の棒状部材であり得る。コイル保持部90は、図5(A)に示すように、鋼板コイルCの最外周が描く弧に沿った凹弧状の上面を有する一対の棒状部材であってもよい。また、図示しないが、鋼板コイルCは、巻き取り軸方向が脱水素装置300aの床と平行になるように載置してもよい。 Note that, as shown in the figure, a coil holding section 90 is appropriately provided in the dehydrogenation device 300a. Although the form of the coil holding part 90 is not particularly limited, when the steel plate coil C is placed so that the winding axis direction of the steel plate coil C is parallel to the floor of the dehydrogenation apparatus 300a, the coil holding part 90 is as shown in FIG. As shown in (A), in order to prevent the steel plate coil C from rolling within the dehydrogenation device 300a, it may be a pair of rod-shaped members that sandwich the steel plate coil C from both sides. The coil holding portion 90 may be a pair of rod-shaped members having a concave arc-shaped upper surface along an arc drawn by the outermost circumference of the steel plate coil C, as shown in FIG. 5(A). Further, although not shown, the steel plate coil C may be placed so that the direction of the winding axis is parallel to the floor of the dehydrogenation apparatus 300a.

図6に、鋼板コイルCに対して振動付加装置70により振動を付加して鋼中の拡散性水素を低減するための脱水素装置の一例を示す。図6は、脱水素装置300aを、鋼板コイルCの端面側から見た図である。図6に示すように、脱水素装置300aは、鋼板コイルCを収容するための収容部80を備え、該収容部80に収容された鋼板コイルCに振動を付加する振動子72を備える。振動子72は、鋼板コイルCに接触して鋼板コイルCに振動を付加する。なお、図示しないが、各振動付加装置70において、各振動子72には、制御器71と、振動検出器73とが結合されており、振動子72から鋼板コイルCに対して振動が付加されるようになっている。振動付加装置70により振動を付加する脱水素装置300aにおいては、図6に示すように、収容部80内にて振動子72が鋼板コイルCの表面に面接触するように、振動子72を鋼板コイルCの表面に沿って配置する。脱水素装置300a内で振動子72を鋼板コイルCの表面に沿って配置するための形態は特に限定されないが、例えば収容部80内に鋼板コイルCの表面を覆うように足場を設け、該足場に振動子72を一定の間隔で固定することができる。 FIG. 6 shows an example of a dehydrogenation device for reducing diffusible hydrogen in steel by applying vibration to the steel plate coil C by a vibration applying device 70. FIG. 6 is a diagram of the dehydrogenation device 300a viewed from the end surface side of the steel plate coil C. As shown in FIG. 6, the dehydrogenation device 300a includes a housing section 80 for housing the steel sheet coil C, and a vibrator 72 that applies vibration to the steel sheet coil C housed in the housing section 80. The vibrator 72 contacts the steel plate coil C and applies vibration to the steel plate coil C. Although not shown, in each vibration adding device 70, a controller 71 and a vibration detector 73 are coupled to each vibrator 72, and vibration is applied from the vibrator 72 to the steel plate coil C. It has become so. In the dehydrogenation device 300a that applies vibration by the vibration adding device 70, as shown in FIG. It is placed along the surface of the coil C. Although the form for arranging the vibrator 72 along the surface of the steel plate coil C within the dehydrogenation device 300a is not particularly limited, for example, a scaffold may be provided in the accommodation portion 80 so as to cover the surface of the steel plate coil C, and the scaffold may The vibrators 72 can be fixed at regular intervals.

鋼板コイルCの表面全面に対して均一に振動を付加する観点からは、鋼板コイルCの板幅方向に沿って一定間隔で振動子72を設けることが好ましい。あるいは、図4(B)に示すように、鋼板コイルCの板幅方向に沿って延在する振動子72を用いることが好ましい。 From the viewpoint of uniformly applying vibration to the entire surface of the steel plate coil C, it is preferable to provide the vibrators 72 at regular intervals along the width direction of the steel plate coil C. Alternatively, as shown in FIG. 4(B), it is preferable to use a vibrator 72 extending along the width direction of the steel plate coil C.

なお、拡散性水素は鋼板コイルCの端面からも放出されるため、鋼板コイルCの鋼板幅方向端部よりも鋼板幅方向中央部の方が拡散性水素量を低減させる効率が低下すると考えられる。よって、振動子72は特に鋼板コイルCの鋼板幅方向中央部付近に設けることが好ましい。 In addition, since diffusible hydrogen is also released from the end face of the steel plate coil C, it is thought that the efficiency of reducing the amount of diffusible hydrogen is lower at the center part of the steel plate coil C in the width direction of the steel plate than at the ends of the steel plate coil C in the width direction of the steel plate. . Therefore, it is particularly preferable that the vibrator 72 be provided near the center of the steel plate coil C in the width direction of the steel plate.

なお、図示するように、脱水素装置300a内には、コイル保持部90が適宜設けられている。コイル保持部90の詳細については上述したため、ここでは説明を省略する。 Note that, as shown in the figure, a coil holding section 90 is appropriately provided in the dehydrogenation device 300a. Since the details of the coil holding part 90 have been described above, the explanation will be omitted here.

(振動の周波数)
水素の拡散を促進する観点から、鋼板コイルCの振動の周波数は100Hz以上であることが肝要である。当該周波数が100Hz未満の場合、冷延鋼板S中に含有された水素を脱離させる効果は得られない。この観点から、当該周波数は100Hz以上とし、好ましくは500Hz以上とし、より好ましくは1000Hz以上とする。なお、鋼板コイルCは、意図せず振動したりする。しかし、これらの振動において、鋼板コイルCの振動の周波数は高々20Hz程度であり、この場合、鋼板コイルC中に含有された水素を脱離させる効果は得られない。他方で、当該周波数が過多の場合、鋼板内で格子間隔を膨張させておく十分な時間を確保できず、やはり水素を脱離する効果を得ることができない。この観点から、当該周波数は、100000Hz以下とすることが肝要であり、好ましくは80000Hz以下とし、より好ましくは50000Hz以下とする。鋼板コイルCの振動の周波数は、図1に示した振動検出器64又は図4Aに示した振動検出器73により測定することができる。また、鋼板コイルCの振動の周波数は、図1に示す振動付加装置60の場合、直流のパルス電流の周波数又は交流の連続電流の周波数を制御することによって調整することができ、図4A,Bに示す振動付加装置70の場合、振動子72の振動周波数を制御することによって調整することができる。
(frequency of vibration)
From the viewpoint of promoting hydrogen diffusion, it is important that the frequency of vibration of the steel plate coil C is 100 Hz or more. When the frequency is less than 100 Hz, the effect of desorbing hydrogen contained in the cold rolled steel sheet S cannot be obtained. From this point of view, the frequency is 100 Hz or more, preferably 500 Hz or more, and more preferably 1000 Hz or more. Note that the steel plate coil C may vibrate unintentionally. However, in these vibrations, the frequency of vibration of the steel plate coil C is about 20 Hz at most, and in this case, the effect of desorbing hydrogen contained in the steel plate coil C cannot be obtained. On the other hand, if the frequency is too high, sufficient time for expanding the lattice spacing within the steel sheet cannot be secured, and the effect of desorbing hydrogen cannot be obtained. From this point of view, it is important that the frequency be 100,000 Hz or less, preferably 80,000 Hz or less, and more preferably 50,000 Hz or less. The frequency of vibration of the steel plate coil C can be measured by the vibration detector 64 shown in FIG. 1 or the vibration detector 73 shown in FIG. 4A. Furthermore, in the case of the vibration adding device 60 shown in FIG. 1, the frequency of vibration of the steel plate coil C can be adjusted by controlling the frequency of the DC pulse current or the frequency of the AC continuous current; In the case of the vibration adding device 70 shown in FIG. 7, the vibration frequency can be adjusted by controlling the vibration frequency of the vibrator 72.

(振動の最大振幅)
鋼板コイルCの最大振幅が10nm未満の場合、鋼板表面の格子間隔が十分に拡張せず、水素拡散の促進が不十分のため、鋼板コイルC中に含有された水素を脱離させる効果は得られない。よって、鋼板コイルCの最大振幅は10nm以上とすることが肝要であり、好ましくは100nm以上とし、より好ましくは500nm以上とする。また、鋼板コイルCの最大振幅が500μm超えの場合、鋼板表面におけるひずみが大きくなり、塑性変形を生じ、結果として水素をトラップしてしまうため、鋼板コイルC中に含有された水素を脱離させる効果は得られない。この観点から、鋼板コイルCの最大振幅は500μm以下とすることが肝要であり、好ましくは400μm以下とし、より好ましくは300μm以下とする。なお、鋼板コイルCは、その通板過程で自ずと振動したり、例えばガスワイピング装置32からガスを受けて振動したりする。しかし、これらの振動において、鋼板コイルCの最大振幅は少なくとも0.5mm超えとなるため、鋼板コイルC中に含有された水素を脱離させる効果は得られない。鋼板コイルCの最大振幅は、図1に示した振動検出器64又は図4Aに示した振動検出器73により測定することができる。また、鋼板コイルCの最大振幅は、図1に示す振動付加装置60の場合、電磁石63に流す電流量を制御することによって調整することができ、図4A,Bに示す振動付加装置70の場合、振動子72の振動の振幅を制御することによって調整することができる。
(Maximum amplitude of vibration)
When the maximum amplitude of the steel plate coil C is less than 10 nm, the lattice spacing on the steel plate surface is not sufficiently expanded and hydrogen diffusion is insufficiently promoted, so that the effect of desorbing hydrogen contained in the steel plate coil C is not achieved. I can't do it. Therefore, it is important that the maximum amplitude of the steel plate coil C is 10 nm or more, preferably 100 nm or more, and more preferably 500 nm or more. In addition, if the maximum amplitude of the steel plate coil C exceeds 500 μm, the strain on the steel plate surface increases, causing plastic deformation and trapping hydrogen as a result, so that the hydrogen contained in the steel plate coil C is desorbed. No effect will be obtained. From this point of view, it is important that the maximum amplitude of the steel plate coil C is 500 μm or less, preferably 400 μm or less, and more preferably 300 μm or less. The steel plate coil C vibrates on its own during the threading process, or vibrates when it receives gas from the gas wiping device 32, for example. However, in these vibrations, the maximum amplitude of the steel plate coil C exceeds at least 0.5 mm, so that the effect of desorbing hydrogen contained in the steel plate coil C cannot be obtained. The maximum amplitude of the steel plate coil C can be measured by the vibration detector 64 shown in FIG. 1 or the vibration detector 73 shown in FIG. 4A. Further, the maximum amplitude of the steel plate coil C can be adjusted by controlling the amount of current flowing through the electromagnet 63 in the case of the vibration adding device 60 shown in FIG. 1, and in the case of the vibration adding device 70 shown in FIGS. 4A and B. , can be adjusted by controlling the amplitude of the vibration of the vibrator 72.

(振動付加時間)
鋼板コイルCに対して振動を付加する時間は特に限定されない。本実施形態においては、熱間圧延後又は冷間圧延後に鋼板コイルに対して振動を付加するため、鋼帯を通板させつつ振動を付加する場合とは異なり、照射時間の制約なく振動を付加することができる。振動を付加する時間は長いほど拡散性水素を低減することができると推測されることから、振動を付加する時間は1分間以上とすることが好ましい。振動の付加時間は、より好ましくは30分間以上、さらに好ましくは60分間以上とする。一方で、生産性の観点から、振動の付加時間は30000分間以下とすることが好ましく、10000分間以下とすることがより好ましく、1000分間以下とすることがさらに好ましい。振動の付加時間は、例えば振動付加装置60の駆動時間を制御部により制御することで制御することができる。
(Vibration addition time)
The time period during which vibration is applied to the steel plate coil C is not particularly limited. In this embodiment, vibration is applied to the steel sheet coil after hot rolling or cold rolling, so unlike the case where vibration is applied while passing the steel strip, vibration is applied without restrictions on the irradiation time. can do. Since it is presumed that the longer the vibration is applied, the more diffusible hydrogen can be reduced, the vibration is preferably applied for one minute or more. The duration of vibration is more preferably 30 minutes or longer, and even more preferably 60 minutes or longer. On the other hand, from the viewpoint of productivity, the vibration application time is preferably 30,000 minutes or less, more preferably 10,000 minutes or less, and even more preferably 1,000 minutes or less. The vibration application time can be controlled, for example, by controlling the driving time of the vibration application device 60 by the control unit.

[[加熱装置]]
[[鋼板コイルの保持温度]]
脱水素装置300aは、鋼板コイルCを加熱しつつ振動を付加するための加熱部をさらに有していてもよい。振動付加工程における鋼板コイルCの温度は特に限定されない。本実施形態によれば、鋼板コイルCを加熱保持せずとも、鋼中の拡散性水素を低減することができるためである。しかしながら、加熱部によって鋼板コイルCを加熱しながら振動を付加することで、水素の拡散速度をより高めることができるため、鋼中の拡散性水素量をより低減することができる。よって、振動を付加する際の鋼板コイルCの温度は30℃以上とすることが好ましく、50℃以上とすることがより好ましく、100℃以上とすることがさらに好ましい。振動付加工程における鋼板コイルCの温度の上限は特に限定されないが、鋼板コイルCの組織変化を好適に防ぐ観点から、後述するように、バッチ焼鈍中に振動付加を行う場合を除き、300℃以下とすることが好ましい。なお、本実施形態において、振動を付加する際の鋼板コイルCの温度は、鋼板コイル径方向2分の1位置の温度を基準とする。鋼板コイル径方向2分の1位置の温度は、鋼板コイルの径方向2分の1位置に熱電対を直接挟み込み、径方向2分の1位置に存在する鋼帯の温度を測定することで測定できる。鋼板コイルCの加熱方法は、例えば、収容部側壁にヒーターを設置する方法のほか、外部で発生させた高温の空気を収容部80に送風し、収容部内で循環させる方法など、一般的な方法で構わない。
[[Heating device]]
[[Holding temperature of steel plate coil]]
The dehydrogenation device 300a may further include a heating section for applying vibration while heating the steel plate coil C. The temperature of the steel plate coil C in the vibration adding step is not particularly limited. This is because, according to the present embodiment, diffusible hydrogen in the steel can be reduced without heating and holding the steel plate coil C. However, by applying vibration while heating the steel plate coil C by the heating section, the diffusion rate of hydrogen can be further increased, and therefore the amount of diffusible hydrogen in the steel can be further reduced. Therefore, the temperature of the steel plate coil C when applying vibration is preferably 30°C or higher, more preferably 50°C or higher, and even more preferably 100°C or higher. The upper limit of the temperature of the steel plate coil C in the vibration application process is not particularly limited, but from the viewpoint of suitably preventing structural changes in the steel plate coil C, as described later, the upper limit of the temperature of the steel plate coil C is 300°C or less, except when vibration is applied during batch annealing. It is preferable that In this embodiment, the temperature of the steel plate coil C when applying vibration is based on the temperature at the 1/2 position in the radial direction of the steel plate coil. The temperature at the radial 1/2 position of the steel plate coil is measured by directly inserting a thermocouple at the radial 1/2 position of the steel plate coil and measuring the temperature of the steel strip located at the radial 1/2 position. can. The steel plate coil C can be heated by common methods such as installing a heater on the side wall of the housing, or blowing high-temperature air generated externally into the housing 80 and circulating it within the housing. That's fine.

本実施形態に係る脱水素装置300aは、脱水素装置300aの外部に前記振動が伝達することを防ぐ制振部をさらに有していてもよい。制振部は例えば、収容部80の内壁を取り囲むように設けられた制振材であり得る。 The dehydrogenation device 300a according to the present embodiment may further include a vibration damping portion that prevents the vibration from being transmitted to the outside of the dehydrogenation device 300a. The damping section may be, for example, a damping material provided so as to surround the inner wall of the housing section 80.

本実施形態によれば、振動付加後に得られる製品コイルCの拡散性水素量を0.5質量ppm以下まで低減することができる。製品コイルCの拡散性水素量を0.5質量ppm以下まで低減することで、鋼板の水素脆化を防ぐことができる。振動付加後の鋼中の拡散性水素量は、好ましくは0.3質量ppm以下、さらに好ましくは0.2質量ppm以下である。 According to this embodiment, the amount of diffusible hydrogen in the product coil C obtained after vibration application can be reduced to 0.5 mass ppm or less. By reducing the amount of diffusible hydrogen in the product coil C to 0.5 mass ppm or less, hydrogen embrittlement of the steel plate can be prevented. The amount of diffusible hydrogen in the steel after vibration is applied is preferably 0.3 mass ppm or less, more preferably 0.2 mass ppm or less.

製品コイルCの拡散性水素量は、以下の通り測定する。製品コイルの径方向2分の1位置から、長さが30mm、幅が5mmの試験片を採取する。鋼板が溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板である場合、試験片の溶融亜鉛めっき層又は合金化溶融亜鉛めっき層を研削又はアルカリにより除去する。その後、試験片から放出される水素量を昇温脱離分析法(Thermal Desorption Spectrometry:TDS)によって測定する。具体的には、室温から300℃までを昇温速度200℃/hで連続加熱した後、室温まで冷却し、室温から210℃までに試験片から放出された積算水素量を測定して、製品コイルCの拡散性水素量とする。 The amount of diffusible hydrogen in the product coil C is measured as follows. A test piece with a length of 30 mm and a width of 5 mm is taken from a half position in the radial direction of the product coil. When the steel sheet is a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet, the hot-dip galvanized layer or alloyed hot-dip galvanized layer of the test piece is removed by grinding or alkali. Thereafter, the amount of hydrogen released from the test piece is measured by thermal desorption spectrometry (TDS). Specifically, after continuously heating from room temperature to 300°C at a heating rate of 200°C/h, cooling to room temperature, measuring the cumulative amount of hydrogen released from the test piece from room temperature to 210°C, and determining the product. Let it be the amount of diffusible hydrogen in coil C.

以下では、本実施形態の適用例について、より具体的に説明する。 Below, an application example of this embodiment will be described in more detail.

[[熱延鋼板]]
本実施形態に係る脱水素装置300a及び鋼板の製造方法は、熱延鋼板の製造に適用することができる。
[[Hot rolled steel plate]]
The dehydrogenation device 300a and the method for manufacturing a steel plate according to this embodiment can be applied to manufacturing a hot rolled steel plate.

本適用例に係る鋼板の製造システムは、鋼スラブに熱間圧延を施して熱延鋼板とする熱間圧延装置と、前記熱延鋼板を巻き取って熱延コイルを得る熱延鋼板巻き取り装置と、前記熱延コイルを前記鋼板コイルCとする鋼板の脱水素装置と、を有する、鋼板の製造システムである。熱間圧延装置は、公知の成分組成を有する鋼スラブに粗圧延及び仕上げ圧延からなる熱間圧延を施して熱延鋼板とする。熱延鋼板巻き取り装置は、該熱延鋼板を巻き取って熱延コイルとする。脱水素装置300aは、該熱延コイルを鋼板コイルCとして、熱延コイルに上述した条件にて振動を付加する。該振動の付加により、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた熱延鋼板を得ることができる。なお、得られた熱延鋼板にさらに冷間圧延を施して冷延鋼板としてもよい。 The steel plate manufacturing system according to this application example includes a hot rolling device that hot-rolls a steel slab to produce a hot-rolled steel plate, and a hot-rolled steel plate winding device that winds up the hot-rolled steel plate to obtain a hot-rolled coil. and a steel sheet dehydrogenation device in which the hot rolled coil is the steel sheet coil C. A hot rolling apparatus hot-rolls a steel slab having a known composition by rough rolling and finish rolling to produce a hot-rolled steel plate. The hot-rolled steel sheet winding device winds up the hot-rolled steel sheet to form a hot-rolled coil. The dehydrogenation device 300a uses the hot-rolled coil as a steel plate coil C and applies vibration to the hot-rolled coil under the above-described conditions. By applying the vibration, the amount of diffusible hydrogen in the steel can be reduced, and a hot rolled steel sheet with excellent hydrogen embrittlement resistance can be obtained. Note that the obtained hot-rolled steel sheet may be further subjected to cold rolling to obtain a cold-rolled steel sheet.

本適用例に係る鋼板の製造方法は、鋼スラブに熱間圧延を施して熱延鋼板とする工程と、前記熱延鋼板を巻き取って熱延コイルを得る工程と、を含み、前記熱延コイルを前記鋼板コイルとする。振動を付加する前の熱延コイルの製造方法は特に限定されず、公知の成分組成を有する鋼スラブに、粗圧延および仕上げ圧延からなる熱間圧延を施して熱延鋼板とし、該熱延鋼板を公知の方法に従って巻き取って熱延コイルとすればよい。該熱延コイルに対して、上述した条件にて振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた熱延鋼板を得ることができる。なお、得られた熱延鋼板にさらに冷間圧延を施して冷延鋼板としてもよい。 The method for manufacturing a steel plate according to this application example includes the steps of hot rolling a steel slab to obtain a hot rolled steel plate, and winding up the hot rolled steel plate to obtain a hot rolled coil. The coil is the steel plate coil described above. The method for producing a hot rolled coil before applying vibration is not particularly limited, and a steel slab having a known composition is subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot rolled steel plate, and the hot rolled steel plate is What is necessary is just to wind up according to a well-known method and to make a hot-rolled coil. By applying vibration to the hot-rolled coil under the conditions described above, the amount of diffusible hydrogen in the steel can be reduced, and a hot-rolled steel sheet with excellent hydrogen embrittlement resistance can be obtained. Note that the obtained hot-rolled steel sheet may be further subjected to cold rolling to obtain a cold-rolled steel sheet.

[[冷延鋼板]]
本実施形態に係る脱水素装置300a及び鋼板の製造方法は、冷延鋼板の製造にも適用することができる。
[[Cold rolled steel sheet]]
The dehydrogenation device 300a and the method for manufacturing a steel plate according to the present embodiment can also be applied to manufacturing a cold rolled steel plate.

本適用例に係る鋼板の製造システムは、熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延装置と、前記冷延鋼板を巻き取って冷延コイルを得る冷延鋼板巻き取り装置と、前記冷延コイルを前記鋼板コイルCとする脱水素装置300aと、を有する、鋼板の製造システムである。冷間圧延装置は、公知の熱延鋼板に対して、熱延板焼鈍を施し又は施さず、熱間圧延後の熱延鋼板又は熱延板焼鈍後の熱延鋼板に、1回の冷間圧延又は中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とする。冷延鋼板巻き取り装置は、冷間圧延後の冷延鋼板を、公知の方法に従って巻き取って冷延コイルとする。脱水素装置300aは、該冷延コイルを鋼板コイルCとして、冷延コイルに対して、上述した条件にて振動を付加する。該振動の付加により、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた冷延鋼板を得ることができる。なお、鋼板の製造システムは、熱間圧延後の熱延鋼板を巻き取って得られる熱延コイルに対して上述した条件にて振動を付加し得る脱水素装置300aをさらに有していてもよい。次いで、振動付加後の熱延コイルから熱延鋼板を払い出し冷間圧延を施して冷延コイルとし、該冷延コイルに対して脱水素装置300aによりさらに振動を付加することで、鋼中の拡散性水素量をさらに低減して、耐水素脆化特性に特に優れた鋼板を得ることができる。 The steel plate manufacturing system according to this application example includes a cold rolling device that cold-rolls a hot-rolled steel plate to produce a cold-rolled steel plate, and a cold-rolled steel plate winder that winds up the cold-rolled steel plate to obtain a cold-rolled coil. and a dehydrogenation device 300a that uses the cold-rolled coil as the steel sheet coil C. The cold rolling equipment applies or does not perform hot-rolled plate annealing on a known hot-rolled steel plate, and applies one cold rolling process to a hot-rolled steel plate after hot rolling or a hot-rolled steel plate after hot-rolled plate annealing. A cold-rolled steel sheet having a final thickness is obtained by performing cold rolling two or more times with rolling or intermediate annealing in between. A cold-rolled steel sheet winding device winds up a cold-rolled steel sheet after cold rolling into a cold-rolled coil according to a known method. The dehydrogenation device 300a uses the cold-rolled coil as a steel sheet coil C and applies vibration to the cold-rolled coil under the conditions described above. By applying the vibration, the amount of diffusible hydrogen in the steel can be reduced, and a cold rolled steel sheet with excellent hydrogen embrittlement resistance can be obtained. Note that the steel plate manufacturing system may further include a dehydrogenation device 300a that can apply vibration under the above-mentioned conditions to a hot rolled coil obtained by winding up a hot rolled steel plate after hot rolling. . Next, the hot-rolled steel sheet is taken out from the hot-rolled coil after vibration has been applied, and is cold-rolled to form a cold-rolled coil, and further vibration is applied to the cold-rolled coil by the dehydrogenation device 300a, thereby reducing the diffusion in the steel. By further reducing the amount of hydrogen embrittlement, it is possible to obtain a steel sheet with particularly excellent hydrogen embrittlement resistance.

本適用例に係る鋼板の製造方法は、熱延鋼板を冷間圧延して冷延鋼板とする工程と、前記冷延鋼板を巻き取って冷延コイルを得る工程と、を含み、前記冷延コイルを前記鋼板コイルとする。振動を付加する前の冷延コイルの製造方法は特に限定されない。一例においては、公知の成分組成を有する鋼スラブに、粗圧延および仕上げ圧延からなる熱間圧延を施して熱延鋼板とし、該熱延鋼板に対して、熱延板焼鈍を施しまたは施さず、熱間圧延後の熱延鋼板または熱延板焼鈍後の熱延鋼板に、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とすることができる。冷間圧延後の冷延鋼板は、公知の方法に従って巻き取って冷延コイルとする。該冷延コイルに対して、上述した条件にて振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた冷延鋼板を得ることができる。なお、冷延コイルに振動を付加することに加えて、熱間圧延後の熱延鋼板を巻き取って熱延コイルとし、該熱延コイルに対しても、上述した条件にて振動を付加してもよい。次いで、振動付加後の熱延コイルから熱延鋼板を払い出し、冷間圧延を施して冷延コイルとし、該冷延コイルに対してさらに振動を付加することで、鋼中の拡散性水素量をさらに低減して、耐水素脆化特性に特に優れた鋼板を得ることができる。 The method for manufacturing a steel plate according to this application example includes a step of cold rolling a hot rolled steel sheet to obtain a cold rolled steel sheet, and a step of winding the cold rolled steel sheet to obtain a cold rolled coil. The coil is the steel plate coil described above. The method of manufacturing the cold rolled coil before applying vibration is not particularly limited. In one example, a steel slab having a known composition is subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot rolled steel plate, and the hot rolled steel plate is subjected to or without hot rolling annealing, A cold-rolled steel plate having a final thickness obtained by subjecting a hot-rolled steel plate after hot rolling or a hot-rolled steel plate after hot-rolled plate annealing to one cold rolling or two or more cold rollings with intermediate annealing in between. can do. The cold-rolled steel sheet after cold rolling is wound into a cold-rolled coil according to a known method. By applying vibration to the cold-rolled coil under the conditions described above, the amount of diffusible hydrogen in the steel can be reduced, and a cold-rolled steel sheet with excellent hydrogen embrittlement resistance can be obtained. In addition to applying vibration to the cold-rolled coil, the hot-rolled steel sheet after hot rolling was wound up to form a hot-rolled coil, and vibration was also applied to the hot-rolled coil under the conditions described above. You can. Next, the hot-rolled steel sheet is taken out from the hot-rolled coil after vibration has been applied, cold-rolled to form a cold-rolled coil, and further vibration is applied to the cold-rolled coil to reduce the amount of diffusible hydrogen in the steel. By further reducing it, a steel plate with particularly excellent hydrogen embrittlement resistance can be obtained.

本実施形態において、振動を付加する熱延鋼板または冷延鋼板の種類は特に限定されない。鋼板の成分組成は特に限定されないが、実施形態を特に好適に適用し得る鋼板として、以下の成分組成を有する鋼板が例示される。先ず、鋼板の成分組成の適正範囲およびその限定理由について説明する。 In this embodiment, the type of hot-rolled steel plate or cold-rolled steel plate to which vibration is applied is not particularly limited. Although the composition of the steel plate is not particularly limited, a steel plate having the following composition is exemplified as a steel plate to which the embodiment can be particularly suitably applied. First, the appropriate range of the composition of the steel sheet and the reason for its limitation will be explained.

[必須成分]
C:0.030%以上0.800%以下
Cは、強度を上昇させるために必要な元素である。C量を0.030%以上とすることで、特に好適な強度を得ることができる。また、C量を0.800%以下とすることで、材料自体の脆化を特に好適に防ぐことができる。こうした観点から、C量は、0.030%以上とすることが好ましく、0.800%以下とすることが好ましい。C量はより好ましくは0.080%以上とする。また、C量はより好ましくは0.500%以下である。
[Essential ingredients]
C: 0.030% or more and 0.800% or less C is an element necessary to increase strength. Particularly suitable strength can be obtained by setting the C content to 0.030% or more. Furthermore, by setting the C content to 0.800% or less, embrittlement of the material itself can be particularly preferably prevented. From this viewpoint, the amount of C is preferably 0.030% or more, and preferably 0.800% or less. The amount of C is more preferably 0.080% or more. Moreover, the amount of C is more preferably 0.500% or less.

Si:0.01%以上3.00%以下、
Siは、置換型固溶体となって材質を大きく硬質化する固溶強化元素であり、鋼板の強度を上昇させるために有効である。Si添加による強度上昇の効果を得るために、Si量は0.01%以上とすることが好ましい。一方で、鋼の脆化および延性の低下を防ぎ、さらには赤スケールなどを防いで良好な表面性状を得て、ひいては良好なめっき外観およびめっき密着性を得る観点から、Si量は3.00%以下とすることが好ましい。そのため、Siは0.01%以上とすることが好ましく、3.00%以下とすることが好ましい。Siは、0.10%以上とすることがより好ましく、2.50%以下とすることがより好ましい。
Si: 0.01% or more and 3.00% or less,
Si is a solid solution strengthening element that becomes a substitutional solid solution and greatly hardens the material, and is effective for increasing the strength of the steel plate. In order to obtain the effect of increasing strength by adding Si, the amount of Si is preferably 0.01% or more. On the other hand, from the viewpoint of preventing embrittlement and deterioration of ductility of the steel, and further preventing red scale and the like to obtain good surface properties, and in turn, obtaining good plating appearance and plating adhesion, the Si amount is set to 3.00. % or less. Therefore, the content of Si is preferably 0.01% or more, and preferably 3.00% or less. The content of Si is more preferably 0.10% or more, and more preferably 2.50% or less.

Mn:0.01%以上10.00%以下
Mnは、固溶強化により鋼板の強度を上昇させる。この効果を得るために、Mn量は0.01%以上とすることが好ましい。一方で、Mn量を10.00%以下とすることで、Mn偏析を好適に防ぎ、鋼組織のムラを防いで、水素脆化をより抑制することができる。よって、Mn量は10.00%以下とすることが好ましい。Mn量は、0.5%以上とすることがより好ましく、8.00%以下とすることがより好ましい。
Mn: 0.01% or more and 10.00% or less Mn increases the strength of the steel plate by solid solution strengthening. In order to obtain this effect, the amount of Mn is preferably 0.01% or more. On the other hand, by setting the Mn amount to 10.00% or less, Mn segregation can be suitably prevented, unevenness in the steel structure can be prevented, and hydrogen embrittlement can be further suppressed. Therefore, it is preferable that the amount of Mn is 10.00% or less. The amount of Mn is more preferably 0.5% or more, and more preferably 8.00% or less.

P:0.001%以上0.100%以下
Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。こうした効果を得るために、P量を0.001%以上にすることが好ましい。一方で、P量を0.100%以下とすることで、優れた溶接性を得ることができる。また、P量を0.100%以下とすることで、鋼板表面に亜鉛めっき皮膜を形成し、該亜鉛めっき皮膜に合金化処理を施して合金化亜鉛めっき皮膜を形成する場合に、合金化速度の低下を防いで、優れた品質の亜鉛めっき皮膜を形成することができる。したがって、P量は0.001%以上とすることが好ましく、0.100%以下とすることが好ましい。P量は、0.003%以上とすることがより好ましい。また、P量は0.050%以下とすることがより好ましい。
P: 0.001% or more and 0.100% or less P is an element that has a solid solution strengthening effect and can be added depending on the desired strength. In order to obtain these effects, it is preferable that the amount of P be 0.001% or more. On the other hand, by controlling the amount of P to 0.100% or less, excellent weldability can be obtained. In addition, by setting the amount of P to 0.100% or less, when forming a galvanized film on the surface of the steel sheet and performing alloying treatment on the galvanized film to form an alloyed galvanized film, the alloying rate can be increased. It is possible to form a galvanized film of excellent quality by preventing the deterioration of the coating. Therefore, the amount of P is preferably 0.001% or more, and preferably 0.100% or less. The amount of P is more preferably 0.003% or more. Further, the amount of P is more preferably 0.050% or less.

S:0.0001%以上0.0200%以下
S量を低減することで、熱間加工時の鋼の脆化を好適に防ぐとともに、硫化物の発生を好適に防いで局部変形能を向上させることができる。そのため、S量は0.0200%以下とすることが好ましく、0.0100%以下とすることがより好ましく、0.0050%以下とすることがさらに好ましい。S量の下限は特に限定されないが、生産技術上の制約から、S量は0.0001%以上にすることが好ましく、0.0050%以下とすることがより好ましい。
S: 0.0001% or more and 0.0200% or less By reducing the amount of S, the embrittlement of steel during hot working is suitably prevented, and the generation of sulfides is suitably prevented to improve local deformability. be able to. Therefore, the amount of S is preferably 0.0200% or less, more preferably 0.0100% or less, and even more preferably 0.0050% or less. Although the lower limit of the amount of S is not particularly limited, due to constraints on production technology, the amount of S is preferably 0.0001% or more, and more preferably 0.0050% or less.

N:0.0005%以上0.0100%以下
N量を低減することで、鋼の耐時効性を向上することができる。そのため、N量は0.0100%以下とすることが好ましく、0.0070%以下とすることがより好ましい。N量の下限は特に限定されないが、生産技術上の制約から、N量は0.0005%以上とすることが好ましく、0.0010%以上とすることがより好ましい。
N: 0.0005% or more and 0.0100% or less By reducing the amount of N, the aging resistance of steel can be improved. Therefore, the amount of N is preferably 0.0100% or less, more preferably 0.0070% or less. Although the lower limit of the amount of N is not particularly limited, due to constraints on production technology, the amount of N is preferably 0.0005% or more, more preferably 0.0010% or more.

Al:2.000%以下
Alは脱酸剤として作用し、鋼の清浄度に有効な元素であり、脱酸工程で添加することが好ましい。添加効果を得るために、添加する場合、Al量は0.001%以上とすることが好ましい。一方で、連続鋳造時に鋼片割れが発生することを好適に防ぐ観点からは、Al量は2.000%以下とすることが好ましい。Al量は、0.010%以上とすることがより好ましい。またAl量は、1.200%以下とすることがより好ましい。
Al: 2.000% or less Al acts as a deoxidizing agent and is an effective element for improving the cleanliness of steel, and is preferably added in the deoxidizing step. In order to obtain the effect of addition, when added, the amount of Al is preferably 0.001% or more. On the other hand, from the viewpoint of suitably preventing the occurrence of steel billet cracking during continuous casting, the Al content is preferably 2.000% or less. The amount of Al is more preferably 0.010% or more. Further, the amount of Al is more preferably 1.200% or less.

[任意成分]
成分組成は、さらに質量%で、Ti:0.200%以下、Nb:0.200%以下、V:0.500%以下、W:0.500%以下、B:0.0050%以下、Ni:1.000%以下、Cr:1.000%以下、Mo:1.000%以下、Cu:1.000%以下、Sn:0.200%以下、Sb:0.200%以下、Ta:0.100%以下、Ca:0.0050%以下、Mg:0.0050%以下、Zr:0.0050%以下およびREM:0.0050%以下からなる群から選ばれる少なくとも1種の元素をさらに含有してもよい。
[Optional ingredients]
The component composition is further expressed in mass%: Ti: 0.200% or less, Nb: 0.200% or less, V: 0.500% or less, W: 0.500% or less, B: 0.0050% or less, Ni : 1.000% or less, Cr: 1.000% or less, Mo: 1.000% or less, Cu: 1.000% or less, Sn: 0.200% or less, Sb: 0.200% or less, Ta: 0 .100% or less, Ca: 0.0050% or less, Mg: 0.0050% or less, Zr: 0.0050% or less, and REM: 0.0050% or less. You may.

Ti:0.200%以下
Tiは、鋼の析出強化によって、またフェライト結晶粒の成長抑制による細粒強化によって、鋼板の強度上昇に寄与する。Tiを添加する場合には、0.005%以上とすることが好ましい。Tiを添加する場合、Ti量はより好ましくは、0.010%以上である。また、Ti量を0.200%以下とすることで、炭窒化物の析出を好適に防ぎ、成形性をより向上することができる。従って、Tiを添加する場合には、その添加量を0.200%以下とすることが好ましい。Ti量は、より好ましくは0.100%以下とする。
Ti: 0.200% or less Ti contributes to increasing the strength of the steel sheet by precipitation strengthening of the steel and fine grain strengthening by suppressing the growth of ferrite crystal grains. When adding Ti, it is preferably 0.005% or more. When adding Ti, the amount of Ti is more preferably 0.010% or more. Further, by setting the Ti amount to 0.200% or less, precipitation of carbonitrides can be suitably prevented and formability can be further improved. Therefore, when adding Ti, it is preferable that the amount added is 0.200% or less. The amount of Ti is more preferably 0.100% or less.

Nb:0.200%以下、V:0.500%以下、W:0.500%以下
Nb、V、Wは、鋼の析出強化に有効である。Nb、V、Wを添加する場合には、それぞれ0.005%以上とすることが好ましい。Nb、V、Wを添加する場合、より好ましくは、それぞれ0.010%以上とする。また、Nbは0.200%以下、V、Wは0.500%以下とすることで、Tiと同様に炭窒化物の析出量を好適に防ぐことができ、成形性をより向上することができる。従って、Nbを添加する場合には、その添加量は好ましくは0.200%以下とし、より好ましくは0.100%以下とする。V、Wを添加する場合は、その添加量は、好ましくはそれぞれ0.500%以下とし、より好ましくはそれぞれ0.300%以下とする。
Nb: 0.200% or less, V: 0.500% or less, W: 0.500% or less Nb, V, and W are effective for precipitation strengthening of steel. When adding Nb, V, and W, it is preferable that each of them be 0.005% or more. When Nb, V, and W are added, more preferably each of them is 0.010% or more. In addition, by setting Nb to 0.200% or less and V and W to 0.500% or less, the amount of carbonitride precipitation can be suitably prevented similarly to Ti, and formability can be further improved. can. Therefore, when adding Nb, the amount added is preferably 0.200% or less, more preferably 0.100% or less. When V and W are added, their amounts are preferably each 0.500% or less, more preferably each 0.300% or less.

B:0.0050%以下
Bは、粒界の強化および鋼板の高強度化に有効である。Bを添加する場合には、0.0003%以上とすることが好ましい。また、より好適な成形性を得るために、Bは0.0050%以下とすることが好ましい。従って、Bを添加する場合には、その添加量は、好ましくは0.0050%以下、より好ましくは0.0030%以下とする。
B: 0.0050% or less B is effective in strengthening grain boundaries and increasing the strength of steel sheets. When B is added, it is preferably 0.0003% or more. Further, in order to obtain more suitable moldability, it is preferable that B be 0.0050% or less. Therefore, when B is added, the amount added is preferably 0.0050% or less, more preferably 0.0030% or less.

Ni:1.000%以下
Niは、固溶強化により鋼の強度を上昇させる元素である。Niを添加する場合には、0.005%以上が好ましい。また、硬質なマルテンサイトの面積率を低減して延性をより向上する観点から、Niは1.000%以下とすることが好ましい。従って、Niを添加する場合には、その添加量は、好ましくは1.000%以下、より好ましくは0.500%以下とする。
Ni: 1.000% or less Ni is an element that increases the strength of steel through solid solution strengthening. When adding Ni, it is preferably 0.005% or more. Further, from the viewpoint of further improving ductility by reducing the area ratio of hard martensite, Ni is preferably 1.000% or less. Therefore, when adding Ni, the amount added is preferably 1.000% or less, more preferably 0.500% or less.

Cr:1.000%以下、Mo:1.000%以下
Cr、Moは、強度と成形性とのバランスを向上させる作用を有するので必要に応じて添加することができる。Cr、Moを添加する場合には、Cr:0.005%以上、Mo:0.005%以上とすることが好ましい。また、硬質なマルテンサイトの面積率を低減して延性をより向上する観点から、Cr,MoはそれぞれCr:1.000%以下、Mo:1.000%以下とすることが好ましい。Cr,MoはそれぞれCr:0.500%以下、Mo:0.500%以下とすることが好ましい。
Cr: 1.000% or less, Mo: 1.000% or less Cr and Mo have the effect of improving the balance between strength and formability, so they can be added as necessary. When adding Cr and Mo, it is preferable that Cr: 0.005% or more and Mo: 0.005% or more. Moreover, from the viewpoint of reducing the area ratio of hard martensite and further improving ductility, it is preferable that Cr and Mo be 1.000% or less, and 1.000% or less, respectively. It is preferable that Cr and Mo be Cr: 0.500% or less and Mo: 0.500% or less, respectively.

Cu:1.000%以下
Cuは、鋼の強化に有効な元素であり、必要に応じて添加することができる。Cuを添加する場合には、0.005%以上とすることが好ましい。また、硬質なマルテンサイトの面積率を低減して延性をより向上する観点から、Cuを添加する場合には、その量を1.000%以下とすることが好ましく、0.200%以下とすることがより好ましい。
Cu: 1.000% or less Cu is an element effective in strengthening steel, and can be added as necessary. When adding Cu, it is preferably 0.005% or more. In addition, from the viewpoint of reducing the area ratio of hard martensite and further improving ductility, when adding Cu, the amount is preferably 1.000% or less, and 0.200% or less. It is more preferable.

Sn:0.200%以下、Sb:0.200%以下
SnおよびSbは、鋼板表面の窒化および酸化によって生じる鋼板表層の数十μm程度の領域の脱炭を抑制することから、必要に応じて添加することで、強度および材質安定性の確保に有効である。Sn、Sbを添加する場合には、それぞれ0.002%以上とすることが好ましい。また、より優れた靭性を得るために、SnおよびSbを添加する場合には、その含有量は、それぞれ0.200%以下とすることが好ましく、0.050%以下とすることがより好ましい。
Sn: 0.200% or less, Sb: 0.200% or less Sn and Sb suppress decarburization in an area of several tens of μm on the steel plate surface layer caused by nitriding and oxidation of the steel plate surface, so they may be added as necessary. Adding it is effective in ensuring strength and material stability. When adding Sn and Sb, it is preferable to add each to 0.002% or more. Further, in order to obtain better toughness, when adding Sn and Sb, the content thereof is preferably 0.200% or less, and more preferably 0.050% or less.

Ta:0.100%以下
Taは、TiやNbと同様に、合金炭化物および合金炭窒化物を生成して高強度化に寄与する。加えて、Nb炭化物やNb炭窒化物に一部固溶し、(Nb、Ta)(C、N)のような複合析出物を生成することで析出物の粗大化を著しく抑制し、析出強化による強度への寄与を安定化させる効果があると考えられる。このため、Taを含有することが好ましい。ここで、Taを添加する場合には、0.001%以上とすることが好ましい。Ta量の上限は特に限定されないが、コストを低減する観点から、Taを添加する場合には、その含有量は、0.100%以下とすることが好ましく、0.050%以下とすることがより好ましい。
Ta: 0.100% or less Like Ti and Nb, Ta generates alloy carbides and alloy carbonitrides and contributes to high strength. In addition, by partially forming a solid solution in Nb carbide and Nb carbonitride and forming composite precipitates such as (Nb, Ta) (C, N), coarsening of the precipitates is significantly suppressed and precipitation strengthening is achieved. This is thought to have the effect of stabilizing the contribution of For this reason, it is preferable to contain Ta. Here, when Ta is added, it is preferably 0.001% or more. The upper limit of the amount of Ta is not particularly limited, but from the viewpoint of reducing costs, when adding Ta, the content is preferably 0.100% or less, and preferably 0.050% or less. More preferred.

Ca:0.0050%以下、Mg:0.0050%以下、Zr:0.0050%以下、REM:0.0050%以下
Ca、Mg、ZrおよびREMは、硫化物の形状を球状化し、成形性への硫化物の悪影響を改善するために有効な元素である。これらの元素を添加する場合には、それぞれ0.0005%以上とすることが好ましい。また、介在物等の増加を好適に防ぎ、表面および内部欠陥などをより好適に防ぐために、Ca、Mg、ZrおよびREMを添加する場合は、その添加量はそれぞれ0.0050%以下とすることが好ましく、0.0020%以下とすることがより好ましい。
Ca: 0.0050% or less, Mg: 0.0050% or less, Zr: 0.0050% or less, REM: 0.0050% or less Ca, Mg, Zr, and REM make the shape of the sulfide spherical and improve moldability. It is an effective element to improve the negative effects of sulfide on When these elements are added, it is preferable to add each of them in an amount of 0.0005% or more. Furthermore, in order to better prevent the increase of inclusions, etc., and better prevent surface and internal defects, when adding Ca, Mg, Zr, and REM, the amount of each should be 0.0050% or less. is preferable, and more preferably 0.0020% or less.

本実施形態は、特に水素脆化が問題となる高強度鋼板に対しても好適に適用し得る。高強度鋼板からなる鋼板コイルCに対して脱水素装置300aにて、あるいは本鋼板の製造方法を適用して、振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた高強度鋼板を得ることができる。例えば、本実施形態において製造される鋼板は、590MPa以上、より好ましくは1180MPa以上、さらに好ましくは1470MPa以上の引張強さを有する高強度鋼板であり得る。なお、鋼板の引張強さは、JIS Z 2241(2011)に準拠して測定する。高強度鋼板においては、水素脆化による遅れ破壊がしばし問題になるが、本実施形態によれば、引張強さを損なうことなく、耐水素脆化特性に優れた高強度鋼板を製造することができる。 The present embodiment can also be suitably applied to high-strength steel plates in which hydrogen embrittlement is particularly a problem. By applying vibration to the steel plate coil C made of high-strength steel plate in the dehydrogenation device 300a or by applying the manufacturing method of this steel plate, the amount of diffusible hydrogen in the steel is reduced and the hydrogen resistance is increased. A high-strength steel plate with excellent embrittlement properties can be obtained. For example, the steel plate manufactured in this embodiment may be a high-strength steel plate having a tensile strength of 590 MPa or more, more preferably 1180 MPa or more, and still more preferably 1470 MPa or more. Note that the tensile strength of the steel plate is measured in accordance with JIS Z 2241 (2011). Delayed fracture due to hydrogen embrittlement is often a problem in high-strength steel plates, but according to this embodiment, it is possible to manufacture high-strength steel plates with excellent hydrogen embrittlement resistance without compromising tensile strength. can.

また、本実施形態に係る脱水素装置及び鋼板の製造方法によれば、公知のステンレス鋼に振動を付加して、耐水素脆化特性に優れたステンレス鋼を製造することもできる。以下、鋼板がステンレス鋼板である場合の成分組成およびその限定理由について説明する。 Further, according to the dehydrogenation device and the method for manufacturing a steel plate according to the present embodiment, it is also possible to manufacture a stainless steel with excellent hydrogen embrittlement resistance by adding vibration to a known stainless steel. Hereinafter, the component composition and the reason for its limitation will be explained when the steel plate is a stainless steel plate.

[必須成分]
C :0.001%以上0.400%以下
Cは、ステンレス鋼において高強度を得るためにも欠かせない元素である。しかし、C含有量が0.400%を超えると、鋼製造における焼戻し時にCrと結合して炭化物として析出し、該炭化物が鋼の耐食性及び靭性を劣化させる。一方で、Cの含有量が0.001%未満では十分な強度が得られず、0.400%を超えると前記劣化が顕著になる。よって、Cの含有量を0.001%以上0.400%以下とする。C含有量は0.005%以上とすることが好ましい。また、C含有量は0.350%以下とすることが好ましい。
[Essential ingredients]
C: 0.001% or more and 0.400% or less C is an essential element for obtaining high strength in stainless steel. However, when the C content exceeds 0.400%, it combines with Cr and precipitates as carbides during tempering in steel manufacturing, and the carbides deteriorate the corrosion resistance and toughness of the steel. On the other hand, if the C content is less than 0.001%, sufficient strength cannot be obtained, and if it exceeds 0.400%, the deterioration becomes noticeable. Therefore, the C content is set to 0.001% or more and 0.400% or less. The C content is preferably 0.005% or more. Further, the C content is preferably 0.350% or less.

Si:0.01%以上2.00%以下
Siは、脱酸剤として有用な元素である。この効果はSi含有量を0.01%以上にすることで得られる。しかし、Siを過剰に含有すると、鋼中に固溶したSiが鋼の加工性を低下させる。このため、Si含有量の上限は2.00%とする。Si含有量は0.05%以上とすることが好ましい。また、Si含有量は1.8%以下とすることが好ましい。
Si: 0.01% or more and 2.00% or less Si is an element useful as a deoxidizing agent. This effect can be obtained by setting the Si content to 0.01% or more. However, when Si is contained excessively, Si dissolved in the steel deteriorates the workability of the steel. Therefore, the upper limit of the Si content is set to 2.00%. The Si content is preferably 0.05% or more. Further, the Si content is preferably 1.8% or less.

Mn:0.01%以上5.00%以下
Mnは、鋼の強度を高める効果を有する。これらの効果は、Mnの0.01%以上の含有で得られる。しかし、Mn含有量が5.00%を超えると、鋼の加工性が低下する。このため、Mn含有量の上限は5.00%とする。Mn含有量は0.05%以上とすることが好ましい。また、Mn含有量は4.6%以下とすることが好ましい。
Mn: 0.01% or more and 5.00% or less Mn has the effect of increasing the strength of steel. These effects can be obtained by containing 0.01% or more of Mn. However, when the Mn content exceeds 5.00%, the workability of the steel decreases. Therefore, the upper limit of the Mn content is set to 5.00%. The Mn content is preferably 0.05% or more. Further, the Mn content is preferably 4.6% or less.

P:0.001%以上0.100%以下
Pは粒界偏析による粒界破壊を助長する元素であるため低い方が望ましく、上限を0.100%とする。好ましくはP含有量は0.030%以下である。さらに好ましくはP含有量は0.020%以下である。なお、P含有量の下限は特に限定されないが、生産技術上の観点から0.001%以上とする。
P: 0.001% or more and 0.100% or less Since P is an element that promotes grain boundary fracture due to grain boundary segregation, a lower content is preferable, and the upper limit is set to 0.100%. Preferably the P content is 0.030% or less. More preferably, the P content is 0.020% or less. Note that the lower limit of the P content is not particularly limited, but from the viewpoint of production technology, it is set to 0.001% or more.

S:0.0001%以上0.0200%以下
SはMnSなどの硫化物系介在物となって存在して延性や耐食性等を低下させる元素であり、特に含有量が0.0200%を超えた場合にそれらの悪影響が顕著に生じる。そのためS含有量は極力低い方が望ましく、S含有量の上限は0.0200%とする。好ましくはS含有量は0.010%以下である。さらに好ましくはS含有量は0.005%以下である。なお、S含有量の下限は特に限定されないが、生産技術上の観点から0.0001%以上とする。
S: 0.0001% or more and 0.0200% or less S is an element that exists in the form of sulfide inclusions such as MnS and reduces ductility and corrosion resistance, especially when the content exceeds 0.0200%. In some cases, these adverse effects are noticeable. Therefore, it is desirable that the S content be as low as possible, and the upper limit of the S content is 0.0200%. Preferably the S content is 0.010% or less. More preferably, the S content is 0.005% or less. Note that the lower limit of the S content is not particularly limited, but from the viewpoint of production technology, it is set to 0.0001% or more.

Cr:9.0%以上28.0%以下
Crはステンレス鋼を構成する基本的な元素で、しかも耐食性を発現する重要な元素である。180℃以上の苛酷な環境における耐食性を考慮した場合、Cr含有量が9%未満では十分な耐食性が得られず、一方で28.0%を超えると効果は飽和し経済性の点で問題が生じる。よって、Cr含有量を9.0%以上28.0%以下とする。Cr含有量は10.0%以上とすることが好ましい。また、Cr含有量は25.0%以下とすることが好ましい。
Cr: 9.0% or more and 28.0% or less Cr is a basic element constituting stainless steel, and is also an important element that exhibits corrosion resistance. When considering corrosion resistance in a harsh environment of 180°C or higher, if the Cr content is less than 9%, sufficient corrosion resistance cannot be obtained, while if it exceeds 28.0%, the effect is saturated and there is a problem in terms of economic efficiency. arise. Therefore, the Cr content is set to 9.0% or more and 28.0% or less. The Cr content is preferably 10.0% or more. Further, the Cr content is preferably 25.0% or less.

Ni:0.01%以上40.0%以下
Niはステンレス鋼の耐食性を向上させる元素であるが、0.01%未満ではその効果が十分に発揮されず、一方、過度の添加は、ステンレス鋼を硬質化し、成形性を劣化させる他、応力腐食割れを生じさせやすくなる。そのため、Ni含有量を0.01%以上40.0%以下とする。Ni含有量は0.1%以上とすることが好ましい。また、Ni含有量は30.0%以下とすることが好ましい。
Ni: 0.01% or more and 40.0% or less Ni is an element that improves the corrosion resistance of stainless steel, but if it is less than 0.01%, its effect will not be fully demonstrated. In addition to hardening and deteriorating formability, it also makes stress corrosion cracking more likely. Therefore, the Ni content is set to 0.01% or more and 40.0% or less. The Ni content is preferably 0.1% or more. Further, the Ni content is preferably 30.0% or less.

N:0.0005%以上0.500%以下
Nはステンレス鋼の耐食性向上に有害な元素であるが、オーステナイト生成元素でもある。0.5%を超えて含有させると熱処理時に窒化物となって析出し、ステンレス鋼の耐食性及び靭性が劣化する。そのため、N含有量の上限を0.500%、好ましくは0.20%とする。
N: 0.0005% or more and 0.500% or less N is an element harmful to improving the corrosion resistance of stainless steel, but is also an austenite-forming element. If the content exceeds 0.5%, it will precipitate as nitrides during heat treatment, and the corrosion resistance and toughness of stainless steel will deteriorate. Therefore, the upper limit of the N content is set to 0.500%, preferably 0.20%.

Al:3.000%以下、
Alは脱酸元素として添加される他、酸化スケールの剥離を抑制する効果がある。しかし、3.000%を超えて添加すると、伸びの低下、および表面品質の劣化をもたらす。そのため、Al含有量の上限を3.000%とする。Al含有量の下限は特に限定されないが、0.001%以上とすることが好ましい。Al含有量は0.01%以上とすることがより好ましい。また、Al含有量は2.5%以下とすることが好ましい。
Al: 3.000% or less,
Al is added as a deoxidizing element and also has the effect of suppressing peeling of oxide scale. However, adding more than 3.000% results in a decrease in elongation and deterioration in surface quality. Therefore, the upper limit of the Al content is set to 3.000%. Although the lower limit of the Al content is not particularly limited, it is preferably 0.001% or more. More preferably, the Al content is 0.01% or more. Further, the Al content is preferably 2.5% or less.

[任意成分]
ステンレス鋼の成分組成は、さらに質量%で、Ti:0.500%以下、Nb:0.500%以下、V:0.500%以下、W:2.000%以下、B:0.0050%以下、Mo:2.000%以下、Cu:3.000%以下、Sn:0.500%以下、Sb:0.200%以下、Ta:0.100%以下、Ca:0.0050%以下、Mg:0.0050%以下、Zr:0.0050%以下およびREM:0.0050%以下からなる群から選ばれる少なくとも1種の元素をさらに含有していてもよい。
[Optional ingredients]
The composition of the stainless steel is further expressed in mass%: Ti: 0.500% or less, Nb: 0.500% or less, V: 0.500% or less, W: 2.000% or less, B: 0.0050%. Below, Mo: 2.000% or less, Cu: 3.000% or less, Sn: 0.500% or less, Sb: 0.200% or less, Ta: 0.100% or less, Ca: 0.0050% or less, It may further contain at least one element selected from the group consisting of Mg: 0.0050% or less, Zr: 0.0050% or less, and REM: 0.0050% or less.

Ti:0.500%以下
Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性を向上させるために添加する元素である。ただし、0.500%を超えて添加すると、固溶Tiによりステンレス鋼が硬質化し、靭性が劣化する。そのため、Ti含有量の上限を0.500%とする。Ti含有量の下限は特に限定されないが、0.003%以上とすることが好ましい。Ti含有量は0.005%以上とすることがより好ましい。またTi含有量は0.300%以下とすることが好ましい。
Ti: 0.500% or less Ti is an element added to combine with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. However, if it is added in an amount exceeding 0.500%, the solid solution Ti will harden the stainless steel and deteriorate the toughness. Therefore, the upper limit of the Ti content is set to 0.500%. Although the lower limit of the Ti content is not particularly limited, it is preferably 0.003% or more. The Ti content is more preferably 0.005% or more. Further, the Ti content is preferably 0.300% or less.

Nb:0.500%以下
Nbは、Tiと同様に、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性を向上させるために添加する元素である。また、加工性の向上や高温強度の向上に加え、隙間腐食の抑制および再不働態化を促進させるため、必要に応じて添加される。ただし、過度の添加はステンレス鋼の硬質化をもたらし成形性を劣化させるため、Nb含有量の上限を0.500%とする。Nb含有量の下限は特に限定されないが、0.003%以上とすることが好ましい。Nb含有量は0.005%以上とすることがより好ましい。また、Nb含有量は0.300%以下とすることが好ましい。
Nb: 0.500% or less Nb, like Ti, is an element added to combine with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. Further, in addition to improving workability and high-temperature strength, it is added as necessary to suppress crevice corrosion and promote re-passivation. However, since excessive addition causes the stainless steel to become hard and deteriorates formability, the upper limit of the Nb content is set to 0.500%. Although the lower limit of the Nb content is not particularly limited, it is preferably 0.003% or more. The Nb content is more preferably 0.005% or more. Further, the Nb content is preferably 0.300% or less.

V :0.500%以下
Vは、隙間腐食を抑制させるため、必要に応じて添加される。しかし、過度の添加は、ステンレス鋼を硬質化し成形性を劣化させるため、V含有量の上限を0.500%とする。V含有量の下限は特に限定されないが、0.01%以上とすることが好ましいV含有量は0.03%以上とすることがより好ましい。また、V含有量は0.300%以下とすることが好ましい。
V: 0.500% or less V is added as necessary to suppress crevice corrosion. However, excessive addition makes stainless steel hard and deteriorates formability, so the upper limit of the V content is set to 0.500%. Although the lower limit of the V content is not particularly limited, the V content is preferably 0.01% or more, and more preferably 0.03% or more. Further, the V content is preferably 0.300% or less.

W :2.000%以下
Wは、耐食性と高温強度の向上に寄与するため、必要に応じて添加する。ただし、2.000%超の添加によりステンレス鋼が硬質化し、鋼板製造時の靭性劣化やコスト増に繋がるため、W含有量の上限を2.000%とする。W含有量の下限は特に限定されないが、0.050%以上とすることが好ましい。W含有量は0.010%以上とすることがより好ましい。また、W含有量は1.500%以下とすることが好ましい。
W: 2.000% or less W contributes to improving corrosion resistance and high temperature strength, so it is added as necessary. However, since addition of more than 2.000% makes stainless steel hard, leading to deterioration of toughness and increase in cost during production of steel sheets, the upper limit of the W content is set at 2.000%. Although the lower limit of the W content is not particularly limited, it is preferably 0.050% or more. More preferably, the W content is 0.010% or more. Further, the W content is preferably 1.500% or less.

B :0.0050%以下
粒界に偏析することで製品の二次加工性を向上させる元素である。部品を二次加工する際の縦割れを抑制する他、冬場に割れを生じさせないために必要に応じて添加する。ただし、過度の添加は加工性、耐食性の低下をもたらす。そのため、B含有量の上限を0.0050%とする。B含有量の下限は特に限定されないが、0.0002%以上とすることが好ましい。B含有量は0.0005%以上とすることがより好ましい。また、B含有量は0.0035%以下とすることが好ましい。
B: 0.0050% or less An element that improves the secondary workability of products by segregating at grain boundaries. In addition to suppressing vertical cracking during secondary processing of parts, it is added as necessary to prevent cracking in winter. However, excessive addition results in deterioration of workability and corrosion resistance. Therefore, the upper limit of the B content is set to 0.0050%. Although the lower limit of the B content is not particularly limited, it is preferably 0.0002% or more. More preferably, the B content is 0.0005% or more. Further, the B content is preferably 0.0035% or less.

Mo:2.000%以下
Moは耐食性を向上させる元素であり、特に隙間構造を有する場合には隙間腐食を抑制する元素である。ただし、2.0%を超えると著しく成形性が劣化するため、その含有量の上限を2.000%とする。Mo含有量の下限は特に限定されないが、0.005%以上とすることが好ましい。Mo含有量は0.010%以上とすることがより好ましい。また、Mo含有量は1.500%以下とすることが好ましい。
Mo: 2.000% or less Mo is an element that improves corrosion resistance, and is an element that suppresses crevice corrosion, especially when it has a crevice structure. However, if it exceeds 2.0%, moldability will deteriorate significantly, so the upper limit of its content is set at 2.000%. Although the lower limit of the Mo content is not particularly limited, it is preferably 0.005% or more. More preferably, the Mo content is 0.010% or more. Further, the Mo content is preferably 1.500% or less.

Cu:3.000%以下
Cuは、NiやMn同様、オーステナイト安定化元素であり、相変態による結晶粒微細化に有効である。また、隙間腐食の抑制や再不動態化を促進させるため、必要に応じて添加される。ただし、過度の添加は硬質化する他、靭性および成形性を劣化させるため、その含有量の上限を3.000%とする。Cu含有量の下限は特に限定されないが、0.005%以上とすることが好ましい。Cu含有量は0.010%以上とすることがより好ましい。また、Cu含有量は2.000%以下とすることが好ましい。
Cu: 3.000% or less Cu, like Ni and Mn, is an austenite stabilizing element and is effective in refining crystal grains through phase transformation. Further, it is added as necessary to suppress crevice corrosion and promote repassivation. However, excessive addition causes hardening and deterioration of toughness and formability, so the upper limit of its content is set at 3.000%. Although the lower limit of the Cu content is not particularly limited, it is preferably 0.005% or more. More preferably, the Cu content is 0.010% or more. Further, the Cu content is preferably 2.000% or less.

Sn:0.500%以下
Snは、耐食性と高温強度の向上に寄与するため、必要に応じて添加する。ただし、0.500%を超えて添加すると鋼板製造時のスラブ割れが生じる場合が有るため、その含有量の上限を0.500%以下とする。Sn含有量の下限は特に限定されないが、0.002%以上とすることが好ましい。Sn含有量は0.005%以上とすることがより好ましい。また、Sn含有量は0.300%以下とすることが好ましい。
Sn: 0.500% or less Sn contributes to improving corrosion resistance and high temperature strength, so it is added as necessary. However, if added in excess of 0.500%, slab cracking may occur during steel sheet production, so the upper limit of its content is set to 0.500% or less. Although the lower limit of the Sn content is not particularly limited, it is preferably 0.002% or more. It is more preferable that the Sn content is 0.005% or more. Further, the Sn content is preferably 0.300% or less.

Sb:0.200%以下
Sbは、粒界に偏析して高温強度を上げる作用をなす元素である。ただし、0.200%を超えると、Sb偏析が生じて、溶接時に割れが生じるので、その含有量の上限を0.200%とする。Sb含有量の下限は特に限定されないが、0.002%以上とすることが好ましい。Sb含有量は0.005%以上とすることがより好ましい。また、Sb含有量は0.100%以下とすることが好ましい。
Sb: 0.200% or less Sb is an element that segregates at grain boundaries and acts to increase high-temperature strength. However, if it exceeds 0.200%, Sb segregation will occur and cracks will occur during welding, so the upper limit of the content is set at 0.200%. Although the lower limit of the Sb content is not particularly limited, it is preferably 0.002% or more. More preferably, the Sb content is 0.005% or more. Further, the Sb content is preferably 0.100% or less.

Ta:0.100%以下
Taは、CやNと結合して靭性の向上に寄与するため必要に応じて添加する。ただし、0.100%を超えて添加するとその効果は飽和し、製造コストの増加になるため、その含有量の上限を0.100%とする。Ta含有量の下限は特に限定されないが、0.002%以上とすることが好ましい。Ta含有量は0.005%以上とすることがより好ましい。また、Ta含有量は0.080%以下とすることが好ましい。
Ta: 0.100% or less Ta is added as necessary because it combines with C and N and contributes to improving toughness. However, if it is added in excess of 0.100%, the effect will be saturated and the manufacturing cost will increase, so the upper limit of the content is set at 0.100%. Although the lower limit of the Ta content is not particularly limited, it is preferably 0.002% or more. More preferably, the Ta content is 0.005% or more. Further, the Ta content is preferably 0.080% or less.

Ca:0.0050%以下、Mg:0.0050%以下、Zr:0.0050%以下、REM(Rare Earth Metal):0.0050%以下
Ca、Mg、Zr及びREMは、硫化物の形状を球状化し、成形性への硫化物の悪影響を改善するために有効な元素である。これらいずれかの元素を添加する場合には、各元素の含有量はそれぞれ0.0005%以上とすることが好ましい。しかし、各含有量が過剰の場合、介在物等が増加し、表面及び内部欠陥が発生する場合がある。よって、これらいずれかの元素を添加する場合、各元素の含有量はそれぞれ0.0050%以下とする。これらの元素の含有量の下限は特に限定されないが、各元素の含有量は0.0002%以上とすることが好ましい。各元素の含有量は0.0005%以上とすることがより好ましい。また、各元素の含有量はそれぞれ0.0035%以下とすることが好ましい。
Ca: 0.0050% or less, Mg: 0.0050% or less, Zr: 0.0050% or less, REM (Rare Earth Metal): 0.0050% or less Ca, Mg, Zr and REM have a sulfide shape. It is an effective element for spheroidizing and improving the adverse effects of sulfide on formability. When adding any of these elements, the content of each element is preferably 0.0005% or more. However, when each content is excessive, inclusions and the like increase, and surface and internal defects may occur. Therefore, when adding any of these elements, the content of each element should be 0.0050% or less. Although the lower limit of the content of these elements is not particularly limited, it is preferable that the content of each element is 0.0002% or more. The content of each element is more preferably 0.0005% or more. Further, the content of each element is preferably 0.0035% or less.

[[焼鈍装置]]
[[焼鈍工程]]
上述した冷延鋼板、熱延鋼板に対して、焼鈍を施してもよい。すなわち、本鋼板の製造システムは、冷延鋼板、熱延鋼板に対して焼鈍を施す焼鈍装置を有していてもよい。焼鈍を施すタイミングは特に限定されないが、一般的に焼鈍工程において鋼中に水素が侵入することから、最終的に耐水素脆化特性に優れた鋼板を得るために、焼鈍は振動を付加する前に施すことが好ましい。焼鈍装置は、バッチ焼鈍炉であってもよいし、連続焼鈍装置であってもよい。
[[Annealing equipment]]
[[Annealing process]]
The cold-rolled steel sheet and hot-rolled steel sheet described above may be annealed. That is, the present steel plate manufacturing system may include an annealing device that anneals cold-rolled steel plates and hot-rolled steel plates. The timing of annealing is not particularly limited, but since hydrogen generally enters the steel during the annealing process, annealing is performed before adding vibration in order to ultimately obtain a steel plate with excellent hydrogen embrittlement resistance. It is preferable to apply it to The annealing device may be a batch annealing furnace or a continuous annealing device.

[バッチ焼鈍]
バッチ焼鈍炉を用いて焼鈍工程を行う場合、鋼板の製造システムは、冷延コイル又は熱延コイルにバッチ焼鈍を施して焼鈍コイルを得るバッチ焼鈍炉と、前記焼鈍コイルを前記鋼板コイルCとする脱水素装置300aと、を有する。バッチ焼鈍炉は、冷延コイル又は熱延コイルにバッチ焼鈍を施して焼鈍コイルとする。なお、本明細書においてバッチ焼鈍とは、バッチ焼鈍炉における加熱保持を意味し、加熱保持後の徐冷は含まない。焼鈍後の焼鈍コイルは、バッチ焼鈍炉内における炉冷、又は空冷などによって冷却する。脱水素装置300aは、焼鈍コイルを鋼板コイルCとして、鋼板コイルCに対して上述した条件にて振動を付加する。脱水素装置300aは、バッチ焼鈍炉とは別に設けられていてもよいが、脱水素装置300aの収容部80及び加熱部がバッチ焼鈍炉を兼ねていてもよい。換言すれば、バッチ焼鈍炉に、炉内に収容される鋼板コイルCに対して振動を付加して製品コイルとする振動付加装置60を設けて、脱水素装置300aとしてもよい。脱水素装置300aの収容部80及び加熱部がバッチ焼鈍炉を兼ねている場合、振動の付加は、バッチ焼鈍後、焼鈍コイルを室温まで冷却した後に行うこともでき、焼鈍コイルを冷却しつつ振動の付加を行うこともできる。上述したように、鋼板の温度が高い方が拡散性水素を効率よく低減することができるため、バッチ焼鈍後、焼鈍コイルを室温まで冷却した後に行うこともでき、焼鈍コイルを冷却しつつ振動の付加を行うことで、鋼中の拡散性水素をより効率よく低減することができる。
[Batch annealing]
When performing the annealing process using a batch annealing furnace, the steel sheet manufacturing system includes a batch annealing furnace that performs batch annealing on a cold-rolled coil or a hot-rolled coil to obtain an annealed coil, and the annealed coil as the steel sheet coil C. It has a dehydrogenation device 300a. A batch annealing furnace performs batch annealing on a cold-rolled coil or a hot-rolled coil to produce an annealed coil. Note that in this specification, batch annealing means heating and holding in a batch annealing furnace, and does not include slow cooling after heating and holding. The annealed coil after annealing is cooled by furnace cooling in a batch annealing furnace, air cooling, or the like. The dehydrogenation device 300a uses a steel plate coil C as an annealing coil, and applies vibration to the steel plate coil C under the above-described conditions. Although the dehydrogenation device 300a may be provided separately from the batch annealing furnace, the housing section 80 and the heating section of the dehydrogenation device 300a may also serve as the batch annealing furnace. In other words, the dehydrogenation device 300a may be implemented by providing the batch annealing furnace with a vibration applying device 60 that applies vibration to the steel sheet coil C housed in the furnace to produce a product coil. When the housing section 80 and the heating section of the dehydrogenation device 300a also serve as a batch annealing furnace, the vibration can be applied after the annealing coil is cooled to room temperature after the batch annealing. It is also possible to add As mentioned above, diffusible hydrogen can be reduced more efficiently when the temperature of the steel sheet is higher. Therefore, it is also possible to perform batch annealing after cooling the annealed coil to room temperature, thereby reducing vibration while cooling the annealed coil. By adding hydrogen, diffusible hydrogen in steel can be reduced more efficiently.

バッチ焼鈍炉を用いて焼鈍工程を行う場合、鋼板の製造方法は、冷延鋼板または熱延鋼板を巻き取って得た冷延コイルまたは熱延コイルにバッチ焼鈍を施して焼鈍コイルを得る工程を含み、該焼鈍コイルを前記鋼板コイルとして、焼鈍コイルに対して上述した条件にて振動を付加する。まず、冷延鋼板または熱延鋼板を公知の方法により巻き取って冷延コイルまたは熱延コイルとする。次いで、冷延コイルまたは熱延コイルをバッチ焼鈍炉に入れて、バッチ焼鈍炉内にてバッチ焼鈍を施して焼鈍コイルとする。焼鈍後の焼鈍コイルは、バッチ焼鈍炉内における炉冷、または空冷などによって冷却する。次いで、焼鈍コイルに対して上述した条件にて振動を付加する。焼鈍コイルに対する振動の付加は、バッチ焼鈍中、すなわち冷延コイルまたは熱延コイルを加熱保持中に行えばよい。さらに、振動の付加は、バッチ焼鈍後、すなわち冷延コイルまたは熱延コイルを加熱保持した後に行ってもよい。振動の付加は、バッチ焼鈍後、焼鈍コイルを室温まで冷却した後に行ってもよく、焼鈍コイルを冷却しつつ行ってもよい。上述したように、鋼板の温度が高い方が拡散性水素を効率よく低減することができるため、バッチ焼鈍中、またはバッチ焼鈍後焼鈍コイルを冷却しつつ、焼鈍コイルに対して振動を付加することが好ましい。焼鈍コイルに対する振動付加は、バッチ焼鈍炉内にて行うこともできるし、焼鈍コイルをバッチ焼鈍炉から取り出して行うこともできる。好ましくは、バッチ焼鈍炉内にて焼鈍コイルに対して振動を付加する。バッチ焼鈍炉内にて焼鈍コイルに対して振動を付加することにより、効率よく鋼中の拡散性水素を低減することができる。 When performing the annealing process using a batch annealing furnace, the steel plate manufacturing method includes a step of batch annealing a cold rolled coil or hot rolled coil obtained by winding a cold rolled steel plate or hot rolled steel plate to obtain an annealed coil. The annealed coil is used as the steel plate coil, and vibration is applied to the annealed coil under the above-mentioned conditions. First, a cold-rolled steel sheet or a hot-rolled steel sheet is wound up by a known method to form a cold-rolled coil or a hot-rolled coil. Next, the cold rolled coil or the hot rolled coil is placed in a batch annealing furnace, and batch annealing is performed in the batch annealing furnace to obtain an annealed coil. The annealed coil after annealing is cooled by furnace cooling in a batch annealing furnace, air cooling, or the like. Next, vibrations are applied to the annealed coil under the conditions described above. Vibration may be applied to the annealed coil during batch annealing, that is, while the cold-rolled coil or hot-rolled coil is being held under heat. Furthermore, the vibration may be applied after batch annealing, that is, after the cold-rolled coil or hot-rolled coil is heated and held. The vibration may be applied after the annealed coil is cooled to room temperature after batch annealing, or may be applied while the annealed coil is being cooled. As mentioned above, diffusible hydrogen can be reduced more efficiently when the temperature of the steel sheet is higher, so vibrations are applied to the annealed coil during batch annealing or while cooling the annealed coil after batch annealing. is preferred. The application of vibration to the annealed coil can be performed within the batch annealing furnace, or can be performed by taking the annealed coil out of the batch annealing furnace. Preferably, vibration is applied to the annealing coil in a batch annealing furnace. By applying vibration to an annealing coil in a batch annealing furnace, diffusible hydrogen in steel can be efficiently reduced.

[連続焼鈍装置による焼鈍]
焼鈍は、冷延鋼板又は熱延鋼板を連続焼鈍装置(Continuous Annealing Line:CAL)に通板させることによって行なうこともできる。連続焼鈍装置を用いて焼鈍工程を行う場合、鋼板の製造システムは、冷延コイル又は熱延コイルから冷延鋼板又は熱延鋼板を払い出す焼鈍前払い出し装置と、前記冷延鋼板又は熱延鋼板を連続焼鈍して、焼鈍鋼板とする連続焼鈍炉と、前記焼鈍鋼板を巻き取って、焼鈍コイルを得る焼鈍鋼板巻き取り装置と、前記焼鈍コイルを前記鋼板コイルCとする脱水素装置300aと、を有する。焼鈍前払い出し装置は、冷延コイル又は熱延コイルから冷延鋼板又は熱延鋼板を払い出して、該冷延鋼板又は熱延鋼板をCALに供給する。CALの構成は特に限定されないが、一例においてCALは、加熱帯、均熱帯、及び冷却帯がこの順に配置された連続焼鈍炉を有する。冷却帯は、複数の冷却帯から構成されてもよく、その場合、一部の冷却帯は、冷却過程の冷延鋼帯を一定温度範囲で保持する保持帯や、冷却過程の鋼板を再加熱する再加熱帯であってもよい。また、加熱帯の通板方向上流側に予熱帯があってもよい。焼鈍前払い出し装置は、CALの連続焼鈍炉の上流に設けられたペイオフリールであり得る。焼鈍鋼板巻き取り装置は、CALの連続焼鈍炉の下流に設けられたテンションリールであり得る。CALにおいては、(A)ペイオフリールにより冷延コイル又は熱延コイルから払い出された冷延鋼板又は熱延鋼板が、(B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する連続焼鈍炉内に通板されて、(B-1)加熱帯及び均熱帯内にて冷延鋼板又は熱延鋼板を焼鈍して焼鈍鋼板とし、(B-2)冷却帯内で焼鈍鋼板を冷却して、連続焼鈍を行い、(C)連続焼鈍炉から排出された焼鈍鋼板を引き続き通板させ、(D)テンションリールにより鋼板を巻き取って、焼鈍コイルとする。脱水素装置300aは、該焼鈍コイルを鋼板コイルCとして、焼鈍コイルに対して上述した条件にて振動を付加する。該振動の付加により、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた焼鈍鋼板を得ることができる。なお、冷却帯における鋼板の冷却方法及び冷却速度は特に限定されず、ガスジェット冷却、ミスト冷却、水冷などのいずれの冷却でも構わない。
[Annealing using continuous annealing equipment]
Annealing can also be performed by passing a cold rolled steel plate or a hot rolled steel plate through a continuous annealing device (Continuous Annealing Line: CAL). When performing the annealing process using a continuous annealing device, the steel sheet manufacturing system includes a pre-annealing device that discharges the cold-rolled steel sheet or the hot-rolled steel sheet from the cold-rolled coil or the hot-rolled coil, and the cold-rolled steel sheet or the hot-rolled steel sheet. a continuous annealing furnace that continuously anneals the annealed steel sheet to produce an annealed steel sheet; an annealed steel sheet winding device that winds up the annealed steel sheet to obtain an annealed coil; and a dehydrogenation device 300a that turns the annealed coil into the steel sheet coil C. has. The pre-annealing payout device pays out a cold rolled steel plate or a hot rolled steel plate from a cold rolled coil or a hot rolled coil, and supplies the cold rolled steel plate or hot rolled steel plate to CAL. Although the configuration of the CAL is not particularly limited, in one example, the CAL has a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order. The cooling zone may be composed of multiple cooling zones, in which case some of the cooling zones may be a holding zone that holds the cold-rolled steel strip in the cooling process within a certain temperature range, or a holding zone that holds the cold-rolled steel strip in the cooling process and reheats the steel plate in the cooling process. It may also be a reheating zone. Further, a preheating zone may be provided on the upstream side of the heating zone in the sheet passing direction. The pre-anneal payout device may be a payoff reel provided upstream of the continuous annealing furnace of the CAL. The annealed steel sheet winding device may be a tension reel provided downstream of the continuous annealing furnace of the CAL. In CAL, (A) a cold-rolled steel sheet or a hot-rolled steel sheet is discharged from a cold-rolled coil or a hot-rolled coil by a payoff reel, and (B) a heating zone, a soaking zone, and a cooling zone are separated from the upstream side in the sheet threading direction. The steel sheet is passed through a continuous annealing furnace located in the furnace, and (B-1) the cold-rolled steel sheet or hot-rolled steel sheet is annealed in the heating zone and the soaking zone to form an annealed steel sheet, and (B-2) it is annealed in the cooling zone. The steel plate is cooled and continuously annealed, (C) the annealed steel plate discharged from the continuous annealing furnace is continuously passed through the plate, and (D) the steel plate is wound up with a tension reel to form an annealed coil. The dehydrogenation device 300a uses the annealed coil as a steel plate coil C and applies vibration to the annealed coil under the above-described conditions. By applying the vibration, the amount of diffusible hydrogen in the steel can be reduced, and an annealed steel sheet with excellent hydrogen embrittlement resistance can be obtained. Note that the cooling method and cooling rate of the steel plate in the cooling zone are not particularly limited, and any cooling such as gas jet cooling, mist cooling, water cooling, etc. may be used.

連続焼鈍装置を用いて焼鈍工程を行う場合、鋼板の製造方法は、冷延コイルから冷延鋼板を払い出す工程と、前記冷延鋼板を連続焼鈍して、焼鈍鋼板とする工程と、前記焼鈍鋼板を巻き取って、焼鈍コイルを得る工程と、を含み、前記焼鈍コイルを前記鋼板コイルとする。CALにおいては、(A)鋼板コイルが、ペイオフリールにより払い出され、(B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する焼鈍炉内に、鋼板を通板させて、(B-1)加熱帯及び均熱帯内で鋼板を焼鈍し、(B-2)冷却帯内で鋼板を冷却して、連続焼鈍を行い、(C)焼鈍炉から排出された鋼板を引き続き通板させ、(D)テンションリールにより鋼板を巻き取って、焼鈍コイルとする。該焼鈍コイルに対して上述した条件にて振動を付加することで、耐水素脆化特性に優れた冷延鋼板または熱延鋼板を得ることができる。 When performing the annealing process using a continuous annealing device, the method for producing a steel plate includes a step of discharging the cold rolled steel sheet from the cold rolled coil, a step of continuously annealing the cold rolled steel sheet to obtain an annealed steel sheet, and a step of the annealing. and a step of winding up a steel plate to obtain an annealed coil, and the annealed coil is used as the steel plate coil. In CAL, (A) a steel plate coil is unloaded by a payoff reel, and (B) the steel plate is passed from the upstream side in the threading direction into an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are located. , (B-1) Annealing the steel plate in the heating zone and soaking zone, (B-2) Cooling the steel plate in the cooling zone to perform continuous annealing, and (C) Continuously annealing the steel plate discharged from the annealing furnace. The steel plate is passed through the steel plate, and (D) the steel plate is wound up using a tension reel to form an annealed coil. By applying vibration to the annealed coil under the conditions described above, a cold-rolled steel sheet or a hot-rolled steel sheet with excellent hydrogen embrittlement resistance can be obtained.

[[めっき鋼板]]
また、本実施形態に係る脱水素装置300aは、めっき鋼板の製造にも適用することができる。本適用例に係る鋼板の製造システムは、熱延鋼板又は冷延鋼板の表面にめっき皮膜を形成してめっき鋼板とするめっき装置と、前記めっき鋼板を巻き取って、めっき鋼板コイルを得るめっき鋼板巻き取り装置と、前記めっき鋼板コイルを前記鋼板コイルCとする脱水素装置300aと、を有する。めっき装置は、熱延鋼板、冷延鋼板を下地鋼板として、表面にめっき皮膜を形成してめっき鋼板を得る。めっき鋼板巻き取り装置は、該めっき鋼板を巻き取ってめっき鋼板コイルとする。脱水素装置300aは、該めっき鋼板コイルを鋼板コイルCとして、めっき鋼板コイルに対して上述した条件にて振動を付加する。該振動の付加により、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れためっき鋼板を得ることができる。
[[Plated steel sheet]]
Moreover, the dehydrogenation apparatus 300a according to this embodiment can also be applied to the production of plated steel sheets. The steel sheet manufacturing system according to this application example includes a plating device that forms a plating film on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet to produce a plated steel sheet, and a plated steel sheet that winds up the plated steel sheet to obtain a plated steel sheet coil. It has a winding device and a dehydrogenation device 300a that uses the plated steel sheet coil as the steel sheet coil C. The plating apparatus forms a plating film on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet as a base steel sheet to obtain a plated steel sheet. The plated steel sheet winding device winds up the plated steel sheet to form a plated steel sheet coil. The dehydrogenation device 300a uses the plated steel coil as a steel plate coil C and applies vibration to the plated steel coil under the above-described conditions. By applying the vibration, the amount of diffusible hydrogen in the steel can be reduced, and a plated steel sheet with excellent hydrogen embrittlement resistance can be obtained.

また、熱延鋼板、冷延鋼板を下地鋼板として、表面にめっき皮膜を形成してめっき鋼板を得て、該めっき鋼板を振動を付加する鋼板コイルとしてもよい。めっき鋼板コイルに対して振動を付加する場合、鋼板の製造方法は、熱延鋼板または冷延鋼板の表面にめっき皮膜を形成してめっき鋼板とする工程と、前記めっき鋼板を巻き取って、めっき鋼板コイルを得る工程と、を含み、前記めっき鋼板コイルを前記鋼板コイルとする。 Alternatively, a plated steel plate may be obtained by forming a plating film on the surface of a hot-rolled steel plate or a cold-rolled steel plate as a base steel plate, and the plated steel plate may be used as a steel plate coil to which vibration is applied. When applying vibration to a plated steel plate coil, the method of manufacturing the steel plate includes a process of forming a plating film on the surface of a hot-rolled steel plate or a cold-rolled steel plate to obtain a plated steel plate, and a process of winding up the plated steel plate and applying the plating process to the plated steel plate. and a step of obtaining a steel plate coil, and the plated steel plate coil is used as the steel plate coil.

[連続溶融亜鉛めっき装置によるめっき皮膜の形成]
めっき装置の種類は特に限定されないが、例えば溶融亜鉛めっき装置であり得る。溶融亜鉛めっき装置は、一例においては連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)であり得る。CGLの構成は特に限定されないが、一例においてCGLは、加熱帯、均熱帯、及び冷却帯がこの順に配置された連続焼鈍炉と、該冷却帯の後に設けられた溶融亜鉛めっき設備とを有する。CGLにおいては、(A)ペイオフリールにより冷延コイル又は熱延コイルより払い出された冷延鋼板又は熱延鋼板が、(B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する連続焼鈍炉内に通板されて、(B-1)均熱帯内にて、水素を含む還元性雰囲気で熱延鋼板又は冷延鋼板に焼鈍を施して焼鈍鋼板とし、(B-2)冷却帯内にて焼鈍鋼板を冷却する、連続焼鈍を行ない、(C)焼鈍炉から排出された焼鈍鋼板を引き続き通板させ、(C-1)連続焼鈍炉の通板方向下流に位置する溶融亜鉛めっき浴に焼鈍鋼板を浸漬させて、焼鈍鋼板に溶融亜鉛めっき処理を施して溶融亜鉛めっき鋼板とし、(D)テンションリールにより溶融亜鉛めっき鋼板を巻き取って、溶融亜鉛めっき鋼板コイルとする。脱水素装置300aは、該溶融亜鉛めっき鋼板コイルを鋼板コイルCとして、該溶融亜鉛めっき鋼板コイルに対して上述した条件にて振動を付加する。該振動の付加により、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた溶融亜鉛めっき鋼板を得ることができる。
[Formation of plating film using continuous hot-dip galvanizing equipment]
The type of plating device is not particularly limited, but may be, for example, a hot-dip galvanizing device. The hot-dip galvanizing equipment may be a continuous hot-dip galvanizing line (CGL) in one example. Although the configuration of the CGL is not particularly limited, in one example, the CGL includes a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and hot-dip galvanizing equipment provided after the cooling zone. In CGL, (A) a cold rolled steel sheet or a hot rolled steel sheet is discharged from a cold rolled coil or a hot rolled coil by a payoff reel, and (B) a heating zone, a soaking zone, and a cooling zone are separated from the upstream side in the sheet threading direction. (B-1) The hot-rolled steel sheet or cold-rolled steel sheet is annealed in a reducing atmosphere containing hydrogen in the soaking zone to produce an annealed steel sheet, and (B-2 ) Cooling the annealed steel sheet in a cooling zone to perform continuous annealing, (C) Continue passing the annealed steel sheet discharged from the annealing furnace, and (C-1) Located downstream of the continuous annealing furnace in the sheet passing direction. An annealed steel sheet is immersed in a hot-dip galvanizing bath, and the annealed steel sheet is subjected to hot-dip galvanizing treatment to form a hot-dip galvanized steel sheet, and (D) the hot-dip galvanized steel sheet is wound up using a tension reel to form a hot-dip galvanized steel sheet coil. . The dehydrogenation device 300a uses the hot-dip galvanized steel sheet coil as the steel sheet coil C and applies vibration to the hot-dip galvanized steel sheet coil under the above-described conditions. By applying the vibration, the amount of diffusible hydrogen in the steel can be reduced, and a hot-dip galvanized steel sheet with excellent hydrogen embrittlement resistance can be obtained.

熱延鋼板または冷延鋼板の表面にめっき皮膜を形成する方法は特に限定されないが、めっき工程が溶融亜鉛めっき工程を含んでいてもよい。すなわち、熱延鋼板または冷延鋼板に溶融亜鉛めっき処理を施して溶融亜鉛めっき鋼板としてもよい。一例においては連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)を用いて鋼板に対して溶融亜鉛めっき処理を施すことができる。CGLにおいては、鋼板コイルを、(A)ペイオフリールにより払い出し、(B)通板方向上流側から加熱帯、均熱帯、及び冷却帯が位置する焼鈍炉内に、熱延鋼板または冷延鋼板を通板させて、(B-1)均熱帯内では、水素を含む還元性雰囲気で熱延鋼板または冷延鋼板を焼鈍して焼鈍鋼板とし、(B-2)冷却帯内では焼鈍鋼板を冷却する、連続焼鈍を行ない、(C)焼鈍炉から排出された焼鈍鋼板を引き続き通板させ、(D)テンションリールにより焼鈍鋼板を巻き取って、焼鈍コイルとし、そして、工程(C)は、(C-1)焼鈍炉の通板方向下流に位置する溶融亜鉛めっき浴に焼鈍鋼板を浸漬させて、焼鈍鋼板に溶融亜鉛めっき処理を施す工程を含む。巻き取られた焼鈍コイルは溶融亜鉛めっき鋼板からなる溶融亜鉛めっき鋼板コイルである。該溶融亜鉛めっき鋼板コイルに対して上述した条件にて振動を付加することで、耐水素脆化特性に優れた溶融亜鉛めっき鋼板を得ることができる。 Although the method of forming a plating film on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet is not particularly limited, the plating process may include a hot-dip galvanizing process. That is, a hot-rolled steel sheet or a cold-rolled steel sheet may be subjected to hot-dip galvanizing treatment to produce a hot-dip galvanized steel sheet. In one example, a continuous hot-dip galvanizing line (CGL) can be used to hot-dip galvanize a steel sheet. In CGL, the steel sheet coil is (A) delivered by a payoff reel, and (B) the hot-rolled steel sheet or cold-rolled steel sheet is placed into an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are located from the upstream side in the sheet threading direction. (B-1) In the soaking zone, the hot-rolled steel sheet or cold-rolled steel sheet is annealed in a reducing atmosphere containing hydrogen to form an annealed steel sheet, and (B-2) in the cooling zone, the annealed steel sheet is cooled. (C) continue to pass the annealed steel plate discharged from the annealing furnace; (D) wind up the annealed steel plate with a tension reel to form an annealed coil; C-1) Includes a step of subjecting the annealed steel sheet to hot-dip galvanizing treatment by immersing the annealed steel sheet in a hot-dip galvanizing bath located downstream of the annealing furnace in the sheet passing direction. The wound annealed coil is a hot-dip galvanized steel sheet coil made of hot-dip galvanized steel sheet. By applying vibration to the hot-dip galvanized steel sheet coil under the above-described conditions, a hot-dip galvanized steel sheet with excellent hydrogen embrittlement resistance can be obtained.

また、めっき装置が溶融亜鉛めっき装置と、これに続く合金化炉とを含んでいてもよい。一例においては、CGLを用いて溶融亜鉛めっき鋼板を製造した後、上述した工程(C-1)に引き続き、(C-2)溶融亜鉛めっき浴の通板方向下流に位置する合金化炉に鋼板を通板させて、溶融亜鉛めっきを加熱合金化する。合金化炉を通板されて合金化された合金化溶融亜鉛めっき鋼板は、巻き取られて、合金化溶融亜鉛めっき鋼板コイルとなる。脱水素装置300aは、該合金化溶融亜鉛めっき鋼板コイルを鋼板コイルCとして、合金化溶融亜鉛めっき鋼板コイルに対して上述した条件にて振動を付加する。該振動の付加により、耐水素脆化特性に優れた合金化溶融亜鉛めっき鋼板を得ることができる。 Further, the plating apparatus may include a hot-dip galvanizing apparatus and an alloying furnace following the hot-dip galvanizing apparatus. In one example, after manufacturing a hot-dip galvanized steel sheet using CGL, following the above-mentioned step (C-1), (C-2) the steel sheet is placed in an alloying furnace located downstream of the hot-dip galvanizing bath in the sheet passing direction. The hot-dip galvanizing is heated and alloyed by passing through the plate. The alloyed hot-dip galvanized steel sheet that has been passed through the alloying furnace and alloyed is wound up to become an alloyed hot-dip galvanized steel sheet coil. The dehydrogenation device 300a uses the alloyed hot-dip galvanized steel sheet coil as the steel sheet coil C and applies vibration to the alloyed hot-dip galvanized steel sheet coil under the above-described conditions. By applying the vibration, an alloyed hot-dip galvanized steel sheet with excellent hydrogen embrittlement resistance can be obtained.

また、めっき工程が溶融亜鉛めっき工程と、これに続く合金化工程とを含んでいてもよい。すなわち、溶融亜鉛めっき鋼板にさらに合金化処理を施して、合金化溶融亜鉛めっき鋼板とし、該溶融亜鉛めっき鋼板に対して振動を付加してもよい。一例においては、CGLを用いて溶融亜鉛めっき鋼板を製造した後、上述した工程(C-1)に引き続き、(C-2)溶融亜鉛めっき浴の通板方向下流に位置する合金化炉に鋼板を通板させて、溶融亜鉛めっきを加熱合金化する。合金化炉を通板されて合金化された合金化溶融亜鉛めっき鋼板は、巻き取られて、合金化溶融亜鉛めっき鋼板コイルとなる。該合金化溶融亜鉛めっき鋼板コイルに対して上述した条件にて振動を付加することで、耐水素脆化特性に優れた合金化溶融亜鉛めっき鋼板を得ることができる。 Further, the plating process may include a hot-dip galvanizing process and a subsequent alloying process. That is, the hot-dip galvanized steel sheet may be further subjected to alloying treatment to obtain an alloyed hot-dip galvanized steel sheet, and vibration may be applied to the hot-dip galvanized steel sheet. In one example, after manufacturing a hot-dip galvanized steel sheet using CGL, following the above-mentioned step (C-1), (C-2) the steel sheet is placed in an alloying furnace located downstream of the hot-dip galvanizing bath in the sheet passing direction. The hot-dip galvanizing is heated and alloyed by passing through the plate. The alloyed hot-dip galvanized steel sheet that has been passed through the alloying furnace and alloyed is wound up to become an alloyed hot-dip galvanized steel sheet coil. By applying vibration to the alloyed hot-dip galvanized steel sheet coil under the above-mentioned conditions, it is possible to obtain an alloyed hot-dip galvanized steel sheet with excellent hydrogen embrittlement resistance.

また、めっき装置は、亜鉛めっき皮膜のほか、Alめっき皮膜、Feめっき皮膜を形成し得る。また、めっき装置は溶融めっき装置に限定されず、電気めっき装置であってもよい。 Moreover, the plating apparatus can form an Al plating film and a Fe plating film in addition to a zinc plating film. Further, the plating device is not limited to a hot-dip plating device, but may be an electroplating device.

また、振動を付加する鋼板の表面に対して形成し得るめっき皮膜の種類は特に限定されず、Alめっき皮膜、Feめっき皮膜であってもよい。めっき皮膜を形成する方法は溶融めっき工程に限定されず、電気めっき工程であってもよい。 Further, the type of plating film that can be formed on the surface of the steel plate to which vibration is applied is not particularly limited, and may be an Al plating film or an Fe plating film. The method for forming the plating film is not limited to the hot-dip plating process, but may also be an electroplating process.

鋼板の製造システムは、上記の通り得られた熱延鋼板、冷延鋼板、並びに当該熱延鋼板又は冷延鋼板の表面に各種めっき皮膜を有するめっき鋼板に対して、形状矯正及び表面粗度の調整等を目的としてスキンパス圧延を行うスキンパス圧延装置をさらに有していてもよい。すなわち、本鋼板の製造方法においては、上記の通り得られた熱延鋼板、冷延鋼板、並びに当該熱延鋼板または冷延鋼板の表面に各種めっき皮膜を有するめっき鋼板に対しては、形状矯正および表面粗度の調整等を目的としてスキンパス圧延を行うことができる。スキンパス圧延の圧下率は、0.1%以上に制御することが好ましく、また2.0%以下に制御することが好ましい。スキンパス圧延の圧下率を0.1%以上とすることで、形状矯正の効果、及び表面粗度の調整の効果をより好適に得ることができ、また圧下率の制御もより好適となる。また、スキンパス圧延の圧下率を2.0%以下とすることで、生産性がより良好である。なお、スキンパス圧延装置は、CGL又はCALと連続した装置としてもよいし(インライン)、CGL又はCALとは不連続な装置としてもよい(オフライン)。一度に目的の圧下率のスキンパス圧延を行ってもよいし、数回に分けてスキンパス圧延を行って、目的の圧下率を達成してもよい。また、鋼板の製造システムは、上記の通り得られた熱延鋼板、冷延鋼板、並びに当該熱延鋼板又は冷延鋼板の表面に各種めっき皮膜を有するめっき鋼板の表面に、樹脂又は油脂コーティングなどの各種塗装処理を施す塗装設備をさらに有していてもよい。すなわち、上記の通り得られた熱延鋼板、冷延鋼板、並びに当該熱延鋼板または冷延鋼板の表面に各種めっき皮膜を有するめっき鋼板の表面に、樹脂または油脂コーティングなどの各種塗装処理を施すこともできる。 The steel sheet manufacturing system processes shape correction and surface roughness for hot rolled steel sheets, cold rolled steel sheets, and plated steel sheets having various plating films on the surface of the hot rolled steel sheets or cold rolled steel sheets obtained as described above. It may further include a skin pass rolling device that performs skin pass rolling for the purpose of adjustment and the like. In other words, in the method for manufacturing this steel sheet, the hot rolled steel sheet, the cold rolled steel sheet, and the plated steel sheet having various plating films on the surface of the hot rolled steel sheet or cold rolled steel sheet obtained as described above are subjected to shape correction. Also, skin pass rolling can be performed for the purpose of adjusting surface roughness. The reduction ratio in skin pass rolling is preferably controlled to 0.1% or more, and preferably 2.0% or less. By setting the rolling reduction ratio of skin pass rolling to 0.1% or more, the effect of shape correction and the effect of adjusting surface roughness can be obtained more suitably, and the rolling reduction ratio can also be controlled more suitably. Further, by setting the rolling reduction ratio of skin pass rolling to 2.0% or less, productivity is better. Note that the skin pass rolling device may be a device that is continuous with the CGL or CAL (in-line), or may be a device that is discontinuous with the CGL or CAL (off-line). Skin pass rolling may be performed at the desired rolling reduction at once, or skin pass rolling may be performed in several steps to achieve the desired rolling reduction. In addition, the steel plate manufacturing system includes a resin or oil coating on the surface of the hot-rolled steel plate, cold-rolled steel plate, and plated steel plate having various plating films on the surface of the hot-rolled steel plate or cold-rolled steel plate obtained as described above. It may further include coating equipment for performing various coating treatments. That is, various painting treatments such as resin or oil coating are applied to the surface of the hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet having various plating films on the surface of the hot-rolled steel sheet or cold-rolled steel sheet obtained as described above. You can also do that.

<実施形態2>
本発明の実施形態2に係る脱水素装置は、鋼板コイルから鋼帯を払い出す払い出し装置と、前記鋼帯を通板させる通板装置と、前記鋼帯を巻き取る巻き取り装置と、前記通板装置を通板中の前記鋼帯に対して、前記鋼帯の振動の周波数が100~100000Hzとなり、かつ、前記鋼帯の最大振幅が10nm~500μmとなるように振動を付加する振動付加装置と、を有する。
<Embodiment 2>
A dehydrogenation device according to Embodiment 2 of the present invention includes a dispensing device for dispensing a steel strip from a steel plate coil, a threading device for passing the steel strip, a winding device for winding the steel strip, and a dispensing device for dispensing a steel strip from a steel plate coil, a threading device for passing the steel strip through the steel strip, a winding device for winding the steel strip, and a winding device for winding the steel strip. A vibration adding device that applies vibration to the steel strip while it is being passed through the plate device so that the frequency of vibration of the steel strip is 100 to 100,000 Hz and the maximum amplitude of the steel strip is 10 nm to 500 μm. and has.

また、本発明の実施形態2に係る鋼板の製造方法は、鋼板コイルから鋼帯を払い出す工程と、前記鋼帯を通板させる通板工程と、前記鋼帯を巻き取って製品コイルとする工程と、を有し、前記通板工程は、前記鋼帯に対して、前記鋼帯の振動の周波数が100~100000Hzとなり、かつ、前記鋼帯の最大振幅が10nm~500μmとなるように振動を付加する振動付加工程を含む。 Further, the method for manufacturing a steel sheet according to Embodiment 2 of the present invention includes a step of discharging a steel strip from a steel sheet coil, a threading step of passing the steel strip through the steel strip, and winding the steel strip to form a product coil. The threading step includes vibrating the steel strip so that the frequency of vibration of the steel strip is 100 to 100,000 Hz and the maximum amplitude of the steel strip is 10 nm to 500 μm. Includes a vibration addition process that adds .

熱間圧延又は冷間圧延後に任意で焼鈍を施された鋼板、あるいはさらにめっき皮膜を形成されためっき鋼板は、コイル状に巻き取られて鋼板コイルとされる。該鋼板コイルの質量はしばしば出荷時の梱包質量とは異なることから、リコイルラインにおいて梱包質量への分割が行われる。払い出し装置によって鋼板コイルから鋼帯が払い出され、払い出された鋼帯は巻き戻し装置によって再度巻き戻され、所定の梱包質量になった段階でせん断されて分割される。本実施形態においては、このリコイルラインによって払い出された鋼帯に対して振動を付加する。本実施形態によれば、通板中の鋼帯に対して振動を付加することから、鋼帯の全長にわたって万遍なく振動を付加することができる。なお、本実施形態に係る脱水素装置は、連続焼鈍装置又は連続溶融亜鉛めっき装置とは不連続な装置(オフライン)であり、脱水素装置は、鋼帯に対する焼鈍、めっき処理、及び溶融亜鉛めっき処理を行うための設備を含まない。 A steel sheet that has been optionally annealed after hot rolling or cold rolling, or a plated steel sheet that has been further formed with a plating film, is wound into a coil to form a steel sheet coil. Since the mass of the steel sheet coil is often different from the packed mass at the time of shipment, division into packed masses is performed at the recoil line. The steel strip is paid out from the steel plate coil by the payout device, and the paid out steel strip is rewound again by the unwinding device, and when it reaches a predetermined packing mass, it is sheared and divided. In this embodiment, vibrations are applied to the steel strip discharged by the recoil line. According to this embodiment, since vibration is applied to the steel strip during threading, it is possible to apply vibration evenly over the entire length of the steel strip. Note that the dehydrogenation device according to this embodiment is a discontinuous device (offline) from the continuous annealing device or the continuous hot-dip galvanizing device, and the dehydrogenation device is capable of annealing, plating, and hot-dip galvanizing the steel strip. Does not include equipment for processing.

(振動付加装置60)
振動の付加には、振動付加装置を用いることができる。一例において、振動付加装置は、上述した実施形態1に係る振動付加装置60と同様、電磁石63が通板中の鋼帯に与える外力(引力)により通板中の鋼帯が振動するように構成され得る。振動付加装置60の構成については、振動を付加する対象を鋼板コイルではなく通板中の鋼帯とすること以外は、実施形態1と同様にすることができる。
(Vibration adding device 60)
A vibration adding device can be used to add vibration. In one example, the vibration adding device is configured to vibrate the steel strip being threaded by an external force (attractive force) applied by the electromagnet 63 to the steel strip being threaded, similar to the vibration adding device 60 according to the first embodiment described above. can be done. The configuration of the vibration applying device 60 can be the same as in Embodiment 1, except that the object to which vibration is applied is not the steel plate coil but the steel strip being threaded.

なお、電磁石63は、通板中の鋼帯の片方の表面に対向するように設ければ十分であるが、表裏両面に対向するように設けてもよい。ただし、その場合には、片面側の電磁石63が他面側の電磁石63と同じ高さ位置にないように、高さ位置をずらすことが好ましい。 It is sufficient that the electromagnet 63 is provided so as to face one surface of the steel strip being threaded, but it may be provided so as to face both the front and back surfaces. However, in that case, it is preferable to shift the height position so that the electromagnet 63 on one side is not at the same height position as the electromagnet 63 on the other side.

(振動付加装置70)
別の例においては、振動付加装置は、上述した実施形態1に係る振動付加装置70と同様、振動子が通板中の鋼帯に与える外力(引力)により通板中の鋼帯が振動するように構成され得る。図4Aに示すように、振動付加装置70は、通板中の鋼帯に接触する振動子72を有し、この振動子72によって鋼帯Sが振動するように構成され得る。振動付加装置70の構成については、振動を付加する対象を鋼板コイルではなく通板中の鋼帯とすること以外は、実施形態1と同様にすることができる。
(Vibration adding device 70)
In another example, the vibration adding device vibrates the steel strip being threaded due to an external force (gravitational force) applied by the vibrator to the steel strip being threaded, similar to the vibration adding device 70 according to the first embodiment described above. It can be configured as follows. As shown in FIG. 4A, the vibration applying device 70 has a vibrator 72 that contacts the steel strip being threaded, and can be configured so that the steel strip S is vibrated by the vibrator 72. The configuration of the vibration applying device 70 can be the same as in Embodiment 1, except that the object to which vibration is applied is not the steel plate coil but the steel strip being threaded.

[[脱水素装置]]
図7に、本実施形態に係る鋼板の製造方法に用いる脱水素装置300bを鋼帯Sの幅方向を手前にして見た図を示す。図7は、通板中の鋼帯Sに対して振動付加装置60により振動を付加して鋼中の拡散性水素を低減するための脱水素装置の一例を示す図である。図7に示すように、本脱水素装置300bにおいては、払い出し装置によって払い出された鋼帯Sの通板過程に振動付加装置60を配置する。なお、図示しないが、各振動付加装置60において、各電磁石63には、増幅器62と、電源65と、制御器61とが結合されており、さらに制御器61には振動検出器64が結合されており、電磁石63から鋼帯Sに対して振動が付加されるようになっている。図7に示すように、振動付加装置60は、通板中の鋼帯Sの表裏片面に対してのみ設けてもよいし、通板中の鋼帯Sの表裏両面に対して鋼帯Sが加振するように設けてもよい。振動付加装置60を通板中の鋼帯Sの表裏両面に対して設けることで、振動付加タイミングを制御して、より効率よく鋼中の拡散性水素量を低減することができる。なお、図示しないが、脱水素装置300bは、鋼帯Sを払い出し装置から巻き取り装置に向かって通板させるための通板装置を備える。通板装置は、例えば鋼帯Sを巻き取り装置に向かって通板させる通板ロールを含む。
[[Dehydrogenation equipment]]
FIG. 7 shows a view of a dehydrogenation device 300b used in the method of manufacturing a steel plate according to the present embodiment, with the width direction of the steel strip S facing toward you. FIG. 7 is a diagram illustrating an example of a dehydrogenation device for reducing diffusible hydrogen in steel by applying vibration by a vibration applying device 60 to the steel strip S during threading. As shown in FIG. 7, in this dehydrogenation apparatus 300b, a vibration applying device 60 is disposed in the process of threading the steel strip S discharged by the dispensing device. Although not shown, in each vibration adding device 60, an amplifier 62, a power source 65, and a controller 61 are coupled to each electromagnet 63, and a vibration detector 64 is further coupled to the controller 61. The electromagnet 63 applies vibration to the steel strip S. As shown in FIG. 7, the vibration adding device 60 may be provided only on one side of the front and back sides of the steel strip S during threading, or the vibration applying device 60 may be provided on both the front and back sides of the steel strip S during threading. It may be provided so as to vibrate. By providing the vibration applying device 60 on both the front and back surfaces of the steel strip S during threading, it is possible to control the vibration application timing and more efficiently reduce the amount of diffusible hydrogen in the steel. Although not shown, the dehydrogenation device 300b includes a threading device for threading the steel strip S from the payout device to the winding device. The threading device includes, for example, a threading roll that threads the steel strip S toward a winding device.

通板中の鋼帯Sの表面と所定の間隔をあけて、鋼帯幅方向に沿って複数の電磁石63を設置することが好ましい。各電磁石63から通板中の鋼帯Sの表面に向けて振動を付加することで、当該表面の幅方向に均一に振動を付加することができる。鋼帯幅方向に沿って位置する複数の電磁石63を通板方向に沿って複数配置することによって、鋼帯Sの表面が振動を付加される時間を十分に確保することができる。 It is preferable that a plurality of electromagnets 63 be installed along the width direction of the steel strip at a predetermined interval from the surface of the steel strip S being threaded. By applying vibration from each electromagnet 63 toward the surface of the steel strip S being threaded, it is possible to apply vibration uniformly in the width direction of the surface. By arranging a plurality of electromagnets 63 located along the width direction of the steel strip along the threading direction, a sufficient amount of time can be secured for the surface of the steel strip S to be subjected to vibration.

脱水素装置300b内で電磁石63を一定の間隔で保持するための形態は特に限定されないが、例えば通板経路に通板中の鋼帯Sを覆うように箱状部を設け、該箱状部の内壁に電磁石63を一定の間隔で固定することができる。 The form for holding the electromagnets 63 at regular intervals in the dehydrogenation device 300b is not particularly limited, but for example, a box-shaped part is provided in the strip passing route so as to cover the steel strip S being threaded, and the box-shaped part Electromagnets 63 can be fixed at regular intervals on the inner wall of.

図8に、通板中の鋼帯Sに対して振動付加装置70により振動を付加して鋼中の拡散性水素を低減するための脱水素装置の一例を示す。図8においては、鋼帯Sの幅方向を手前にして示している。図8に示すように、脱水素装置300bは、払い出し装置によって払い出された鋼帯Sの通板過程に振動付加装置70の振動子72を配置する。なお、図示しないが、各振動付加装置70において、各振動子72には、制御器71と、振動検出器73とが結合されており、振動子72から鋼帯Sに対して振動が付加されるようになっている。図8に示すように、振動子72は通板中の鋼帯Sに接触するように配置する。振動付加装置70は、通板中の鋼帯Sの表裏片面に対してのみ設けてもよいし、通板中の鋼帯Sの表裏両面に対して鋼帯Sが加振するように設けてもよい。振動付加装置70を通板中の鋼帯Sの表裏両面に対して設けることで、振動付加タイミングを制御して、より効率よく鋼中の拡散性水素量を低減することができる。 FIG. 8 shows an example of a dehydrogenation device for reducing diffusible hydrogen in steel by applying vibration by a vibration adding device 70 to the steel strip S during threading. In FIG. 8, the width direction of the steel strip S is shown in the front. As shown in FIG. 8, the dehydrogenation device 300b arranges the vibrator 72 of the vibration applying device 70 during the threading process of the steel strip S dispensed by the dispensing device. Although not shown, in each vibration adding device 70, a controller 71 and a vibration detector 73 are coupled to each vibrator 72, and vibration is applied to the steel strip S from the vibrator 72. It has become so. As shown in FIG. 8, the vibrator 72 is arranged so as to be in contact with the steel strip S being threaded. The vibration adding device 70 may be provided only on one side of the front and back sides of the steel strip S during threading, or may be provided so that the steel strip S vibrates on both the front and back sides of the steel strip S during threading. Good too. By providing the vibration applying device 70 on both the front and back surfaces of the steel strip S during threading, it is possible to control the vibration application timing and more efficiently reduce the amount of diffusible hydrogen in the steel.

振動子72が通板中の鋼帯Sの表面と接触するように、鋼帯幅方向に沿って複数の振動子72を設置することが好ましい。各振動子72から通板中の鋼帯Sの表面に振動を付加することで、当該表面の幅方向に均一に振動を付加することができる。鋼帯幅方向に沿って位置する複数の振動子72を通板方向に沿って複数配置することによって、鋼帯Sの表面が振動を付加される時間を十分に確保することができる。 It is preferable that a plurality of vibrators 72 be installed along the width direction of the steel strip so that the vibrators 72 come into contact with the surface of the steel strip S being threaded. By applying vibration from each vibrator 72 to the surface of the steel strip S being threaded, the vibration can be applied uniformly to the surface in the width direction. By arranging a plurality of vibrators 72 along the steel strip width direction along the sheet passing direction, it is possible to sufficiently secure the time during which the surface of the steel strip S is subjected to vibration.

脱水素装置300b内で振動子72を一定の間隔で保持するための形態は特に限定されないが、例えば通板経路に通板中の鋼帯Sを覆うように箱状部を設け、該箱状部の内壁に振動子72を一定の間隔で固定することができる。 The form for holding the vibrators 72 at regular intervals in the dehydrogenation device 300b is not particularly limited, but for example, a box-shaped part is provided in the threading path so as to cover the steel strip S being threaded, and the box-shaped part is The vibrators 72 can be fixed to the inner wall of the section at regular intervals.

本実施形態において、通板中の鋼帯に対して付加する振動の周波数及び振動の最大振幅は、実施形態1と同様とすることができる。 In this embodiment, the frequency of vibration and the maximum amplitude of vibration applied to the steel strip during threading can be the same as in the first embodiment.

[[振動付加時間]]
リコイルラインにおいては、連続焼鈍装置又は連続溶融亜鉛めっき装置とは異なり、焼鈍時間との兼ね合いで通板速度を調節する必要がない。そのため、本実施形態によれば、照射時間の制約なく、鋼帯に対して振動を付加することができる。振動を付加する時間は長いほど拡散性水素を低減することができると推測されることから、振動を付加する時間は1分間以上とすることが好ましい。振動の付加時間は、より好ましくは30分間以上、さらに好ましくは60分間以上とする。一方で、生産性の観点から、振動の付加時間は30000分間以下とすることが好ましく、10000分間以下とすることがより好ましく、1000分間以下とすることがさらに好ましい。振動の付加時間は、鋼帯Sの通板速度と、振動付加装置の位置(例えば、鋼板幅方向に沿って位置する複数の振動付加装置60からなる装置群の通板方向に沿った数)とによって調整することができる。
[[Vibration addition time]]
In the recoil line, unlike continuous annealing equipment or continuous hot-dip galvanizing equipment, there is no need to adjust the sheet passing speed in consideration of the annealing time. Therefore, according to this embodiment, vibration can be applied to the steel strip without restrictions on irradiation time. Since it is presumed that the longer the vibration is applied, the more diffusible hydrogen can be reduced, the vibration is preferably applied for one minute or more. The duration of vibration is more preferably 30 minutes or longer, and even more preferably 60 minutes or longer. On the other hand, from the viewpoint of productivity, the vibration application time is preferably 30,000 minutes or less, more preferably 10,000 minutes or less, and even more preferably 1,000 minutes or less. The vibration application time is determined by the threading speed of the steel strip S and the position of the vibration application device (for example, the number along the threading direction of a device group consisting of a plurality of vibration application devices 60 located along the width direction of the steel sheet). It can be adjusted by

本実施形態によれば、振動付加後に得られる製品コイルの拡散性水素量を0.5質量ppm以下まで低減することができる。製品コイルの拡散性水素量を0.5質量ppm以下まで低減することで、水素脆化を防ぐことができる。振動付加後の鋼中の拡散性水素量は、好ましくは0.3質量ppm以下、さらに好ましくは0.2質量ppm以下である。振動付加後の鋼中の拡散性水素量は、実施形態1と同様に測定することができる。 According to this embodiment, the amount of diffusible hydrogen in the product coil obtained after vibration application can be reduced to 0.5 mass ppm or less. Hydrogen embrittlement can be prevented by reducing the amount of diffusible hydrogen in the product coil to 0.5 mass ppm or less. The amount of diffusible hydrogen in the steel after vibration is applied is preferably 0.3 mass ppm or less, more preferably 0.2 mass ppm or less. The amount of diffusible hydrogen in the steel after vibration is applied can be measured in the same manner as in the first embodiment.

[[加熱装置]]
[[鋼帯の保持温度]]
また、図7、8に示すように、脱水素装置300bは、鋼帯Sを300℃以下にて加熱しながら振動を付加するための加熱装置74をさらに有していてもよい。振動付加工程の鋼帯Sの温度は特に限定されない。本実施形態によれば、鋼帯Sを加熱保持せずとも、鋼中の拡散性水素を低減することができるためである。しかしながら、加熱部によって鋼帯Sを加熱しながら振動を付加することで、水素の拡散速度をより高めることができるため、鋼中の拡散性水素量をより低減することができる。よって、振動を付加する際の鋼帯Sの温度は30℃以上とすることが好ましく、50℃以上とすることがより好ましく、100℃以上とすることがさらに好ましい。振動付加工程における鋼帯Sの温度の上限は特に限定されないが、鋼帯Sの組織変化を好適に防ぐ観点から、300℃以下とすることが好ましい。なお、本実施形態において、振動を付加する際の鋼帯Sの温度は、鋼帯Sの表面の温度を基準とする。鋼帯の表面温度は、一般的な放射温度計により測定することができる。加熱装置74を設ける形態は特に限定されないが、例えば図7、8に示すように、鋼帯Sの通板経路に加熱装置74を設けることができる。鋼帯Sの通板経路に加熱装置74を設けることで、鋼帯Sを均一に加熱することができる。鋼帯Sの通板経路に加熱装置74を設ける場合、図7、8に示すように、通板経路において振動付加装置60よりも上流側に加熱装置74を設けることが好ましい。通板経路において振動付加装置60よりも上流側に加熱装置74を設けることで、十分に加熱された鋼帯Sに対して振動を付加することができる。また例えば、通板中の鋼板を上述した箱状部にて覆い、箱状部の側壁にヒーターを設置する方法により、鋼帯Sを加熱保持しつつ振動を付加することができる。また、外部で発生させた高温の空気を箱状部に送風し、箱状部内で循環させる方法によっても、鋼帯Sを加熱保持しつつ振動を付加することができる。加熱方式は特に限定されず、燃焼式、電気式のいずれであってもよい。一例において、加熱装置74は、誘導式加熱装置であり得る。
[[Heating device]]
[[Holding temperature of steel strip]]
Further, as shown in FIGS. 7 and 8, the dehydrogenation device 300b may further include a heating device 74 for applying vibration while heating the steel strip S at 300° C. or lower. The temperature of the steel strip S in the vibration adding step is not particularly limited. This is because, according to the present embodiment, diffusible hydrogen in the steel can be reduced without heating and holding the steel strip S. However, by applying vibration while heating the steel strip S by the heating section, the diffusion rate of hydrogen can be further increased, and therefore the amount of diffusible hydrogen in the steel can be further reduced. Therefore, the temperature of the steel strip S when applying vibration is preferably 30°C or higher, more preferably 50°C or higher, and even more preferably 100°C or higher. The upper limit of the temperature of the steel strip S in the vibration application step is not particularly limited, but from the viewpoint of suitably preventing changes in the structure of the steel strip S, it is preferably 300° C. or less. In this embodiment, the temperature of the steel strip S when applying vibration is based on the temperature of the surface of the steel strip S. The surface temperature of the steel strip can be measured with a general radiation thermometer. Although the form in which the heating device 74 is provided is not particularly limited, the heating device 74 can be provided in the threading path of the steel strip S, as shown in FIGS. 7 and 8, for example. By providing the heating device 74 on the passing path of the steel strip S, the steel strip S can be heated uniformly. When the heating device 74 is provided in the threading path of the steel strip S, it is preferable to provide the heating device 74 upstream of the vibration applying device 60 in the threading path, as shown in FIGS. 7 and 8. By providing the heating device 74 upstream of the vibration applying device 60 in the sheet passing path, vibration can be applied to the sufficiently heated steel strip S. Further, for example, by covering the steel sheet being threaded with the box-shaped part described above and installing a heater on the side wall of the box-shaped part, it is possible to apply vibration to the steel strip S while keeping it heated. Further, by blowing high-temperature air generated externally into the box-shaped part and circulating it within the box-shaped part, it is possible to add vibration to the steel strip S while keeping it heated. The heating method is not particularly limited, and may be either a combustion method or an electric method. In one example, heating device 74 may be an induction heating device.

本実施形態に係る脱水素装置300bは、脱水素装置300bの外部に前記振動が伝達することを防ぐ制振部をさらに有していてもよい。制振部の具体的な構成は特に限定されないが、制振部は例えば鋼帯S及び電磁石63を内包するように覆う制振材であり得る。 The dehydrogenation device 300b according to the present embodiment may further include a vibration damping portion that prevents the vibration from being transmitted to the outside of the dehydrogenation device 300b. Although the specific configuration of the vibration damping section is not particularly limited, the vibration damping section may be a damping material that encloses and covers the steel strip S and the electromagnet 63, for example.

以下では、本実施形態の適用例について、より具体的に説明する。 Below, an application example of this embodiment will be described in more detail.

[[熱延鋼板]]
実施形態1と同様、本実施形態に係る脱水素装置300b及び鋼板の製造方法は、熱延鋼板の製造に適用することができる。
[[Hot rolled steel plate]]
Similar to Embodiment 1, the dehydrogenation device 300b and the method for manufacturing a steel sheet according to this embodiment can be applied to manufacturing a hot rolled steel sheet.

本適用例に係る鋼板の製造システムは、鋼スラブに熱間圧延を施して熱延鋼板とする熱間圧延装置と、前記熱延鋼板を巻き取って熱延コイルを得る熱延鋼板巻き取り装置と、前記熱延コイルを前記鋼板コイルとする脱水素装置300bと、を有する。公知の熱間圧延装置によって製造した熱延コイルから、熱延鋼板を払い出して通板させ、通板中の熱延鋼板に対して上述した条件にて振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた熱延鋼板を得ることができる。 The steel plate manufacturing system according to this application example includes a hot rolling device that hot-rolls a steel slab to produce a hot-rolled steel plate, and a hot-rolled steel plate winding device that winds up the hot-rolled steel plate to obtain a hot-rolled coil. and a dehydrogenation device 300b in which the hot rolled coil is the steel plate coil. A hot-rolled steel sheet is taken out from a hot-rolled coil manufactured by a known hot-rolling machine and passed through the hot-rolled steel sheet, and vibrations are applied to the hot-rolled steel sheet under the above-mentioned conditions during the threading process, thereby reducing the diffusion in the steel. By reducing the amount of hydrogen embrittlement, it is possible to obtain a hot rolled steel sheet with excellent hydrogen embrittlement resistance.

実施形態1と同様、本実施形態に係る鋼板の製造方法は、熱延鋼板の製造に適用することができる。本適用例に係る鋼板の製造方法は、鋼スラブに熱間圧延を施して熱延鋼板とする工程と、前記熱延鋼板を巻き取って熱延コイルを得る工程と、を含み、前記熱延コイルを前記鋼板コイルとする。振動を付加する前の熱延コイルの製造方法は特に限定されず、例えば実施形態1に例示した製造方法とすることができる。該熱延コイルから熱延鋼板を払い出して通板させ、通板中の熱延鋼板に対して上述した条件にて振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた熱延鋼板を得ることができる。 Similar to Embodiment 1, the method for manufacturing a steel sheet according to this embodiment can be applied to manufacturing a hot rolled steel sheet. The method for manufacturing a steel plate according to this application example includes the steps of hot rolling a steel slab to obtain a hot rolled steel plate, and winding up the hot rolled steel plate to obtain a hot rolled coil. The coil is the steel plate coil described above. The method of manufacturing the hot-rolled coil before applying vibration is not particularly limited, and may be, for example, the manufacturing method illustrated in Embodiment 1. The hot-rolled steel sheet is taken out from the hot-rolled coil and passed through the hot-rolled steel sheet, and vibration is applied to the hot-rolled steel sheet under the above-mentioned conditions to reduce the amount of diffusible hydrogen in the steel and improve its durability. A hot rolled steel sheet with excellent hydrogen embrittlement properties can be obtained.

[[冷延鋼板]]
本実施形態に係る脱水素装置300b及び鋼板の製造方法は、冷延鋼板の製造にも適用することができる。
[[Cold rolled steel sheet]]
The dehydrogenation device 300b and the method for manufacturing a steel plate according to the present embodiment can also be applied to manufacturing a cold rolled steel plate.

本適用例に係る鋼板の製造システムは、熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延装置と、前記冷延鋼板を巻き取って冷延コイルを得る冷延鋼板巻き取り装置と、前記冷延コイルを前記鋼板コイルCとする脱水素装置300bと、を有する。公知の熱延鋼板に公知の冷間圧延装置によって冷間圧延を施して冷延鋼板を得る。冷延鋼板巻き取り装置は、該冷延鋼板を巻き取って冷延コイルとする。該冷延コイルを鋼板コイルCとして、該冷延コイルから冷延鋼板を払い出して通板させ、通板中の冷延鋼板に対して上述した条件にて振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた冷延鋼板を得ることができる。 The steel plate manufacturing system according to this application example includes a cold rolling device that cold-rolls a hot-rolled steel plate to produce a cold-rolled steel plate, and a cold-rolled steel plate winder that winds up the cold-rolled steel plate to obtain a cold-rolled coil. and a dehydrogenation device 300b in which the cold-rolled coil is the steel sheet coil C. A cold-rolled steel plate is obtained by subjecting a known hot-rolled steel plate to cold rolling using a known cold-rolling device. A cold-rolled steel sheet winding device winds up the cold-rolled steel sheet into a cold-rolled coil. The cold-rolled coil is used as a steel sheet coil C, and a cold-rolled steel sheet is taken out from the cold-rolled coil and passed through the cold-rolled steel sheet. By reducing the amount of diffusible hydrogen, a cold-rolled steel sheet with excellent hydrogen embrittlement resistance can be obtained.

本適用例に係る鋼板の製造方法は、熱延鋼板を冷間圧延して冷延鋼板とする工程と、前記冷延鋼板を巻き取って冷延コイルを得る工程と、を含み、前記冷延コイルを前記鋼板コイルとする。振動を付加する前の冷延コイルの製造方法は特に限定されず、例えば実施形態1に例示した製造方法とすることができる。該冷延コイルから冷延鋼板を払い出して通板させ、通板中の冷延鋼板に対して上述した条件にて振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた冷延鋼板を得ることができる。 The method for manufacturing a steel plate according to this application example includes a step of cold rolling a hot rolled steel sheet to obtain a cold rolled steel sheet, and a step of winding the cold rolled steel sheet to obtain a cold rolled coil. The coil is the steel plate coil described above. The method of manufacturing the cold-rolled coil before applying vibration is not particularly limited, and can be, for example, the manufacturing method illustrated in Embodiment 1. The cold-rolled steel sheet is taken out from the cold-rolled coil and passed through the cold-rolled steel sheet, and vibration is applied to the cold-rolled steel sheet under the above-mentioned conditions to reduce the amount of diffusible hydrogen in the steel and improve its durability. A cold-rolled steel sheet with excellent hydrogen embrittlement properties can be obtained.

脱水素装置300bによって振動を付加する熱延鋼板及び冷延鋼板の成分組成は限定されないが、本実施形態によれば、590MPa以上、より好ましくは1180MPa以上、さらに好ましくは1470MPa以上の引張強さを有する高強度鋼板に対して脱水素装置300bにて振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた高強度鋼板を得ることができる。 Although the composition of the hot-rolled steel sheet and cold-rolled steel sheet to which vibration is applied by the dehydrogenation device 300b is not limited, according to this embodiment, the tensile strength is 590 MPa or more, more preferably 1180 MPa or more, and still more preferably 1470 MPa or more. By applying vibration in the dehydrogenation device 300b to the high-strength steel plate, the amount of diffusible hydrogen in the steel can be reduced, and a high-strength steel plate with excellent hydrogen embrittlement resistance can be obtained.

熱延鋼板および冷延鋼板の成分組成は、例えば実施形態1において例示した成分組成とすることができる。 The compositions of the hot-rolled steel sheet and the cold-rolled steel sheet can be, for example, the compositions exemplified in Embodiment 1.

[[焼鈍装置]]
実施形態1と同様、鋼板の製造システムは、冷延鋼板、熱延鋼板に対して焼鈍を施す焼鈍装置を有していてもよい。焼鈍を施すタイミングは特に限定されないが、一般的に焼鈍工程において鋼中に水素が侵入することから、最終的に耐水素脆化特性に優れた鋼板を得るために、焼鈍は振動を付加する前に施すことが好ましい。焼鈍装置は、バッチ焼鈍炉であってもよいし、連続焼鈍装置であってもよい。
[[Annealing equipment]]
Similar to Embodiment 1, the steel plate manufacturing system may include an annealing device that anneals cold-rolled steel plates and hot-rolled steel plates. The timing of annealing is not particularly limited, but since hydrogen generally enters the steel during the annealing process, annealing is performed before adding vibration in order to ultimately obtain a steel plate with excellent hydrogen embrittlement resistance. It is preferable to apply it to The annealing device may be a batch annealing furnace or a continuous annealing device.

[[焼鈍工程]]
実施形態1と同様、冷延鋼板、熱延鋼板に対して、焼鈍を施してもよい。焼鈍を施すタイミングは特に限定されないが、焼鈍は振動付加工程よりも前に施すことが好ましい。焼鈍工程は、バッチ焼鈍炉によって行うこともできるし、連続焼鈍装置を用いて行うこともできる。
[[Annealing process]]
As in Embodiment 1, the cold-rolled steel sheet and the hot-rolled steel sheet may be annealed. Although the timing of annealing is not particularly limited, it is preferable to perform annealing before the vibration application step. The annealing process can be performed using a batch annealing furnace or a continuous annealing device.

[バッチ焼鈍]
バッチ焼鈍炉を用いて焼鈍工程を行う場合、鋼板の製造システムは、冷延コイル又は熱延コイルにバッチ焼鈍を施して焼鈍コイルを得るバッチ焼鈍炉と、前記焼鈍コイルを前記鋼板コイルCとする脱水素装置300bと、を有する。焼鈍後の焼鈍コイルは、バッチ焼鈍炉内における炉冷、又は空冷などによって冷却する。払い出し装置は、焼鈍コイルから焼鈍鋼板を払い出して通板装置に供給し、通板装置は、焼鈍鋼板を通板させる。振動付加装置60は、通板中の該焼鈍鋼板に対して上述した条件にて振動を付加する。該振動の付加により、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた焼鈍鋼板を得ることができる。
[Batch annealing]
When performing the annealing process using a batch annealing furnace, the steel sheet manufacturing system includes a batch annealing furnace that performs batch annealing on a cold-rolled coil or a hot-rolled coil to obtain an annealed coil, and the annealed coil as the steel sheet coil C. It has a dehydrogenation device 300b. The annealed coil after annealing is cooled by furnace cooling in a batch annealing furnace, air cooling, or the like. The payout device pays out the annealed steel sheet from the annealing coil and supplies it to the threading device, and the threading device threads the annealed steel sheet. The vibration applying device 60 applies vibration to the annealed steel sheet during threading under the above-mentioned conditions. By applying the vibration, the amount of diffusible hydrogen in the steel can be reduced, and an annealed steel sheet with excellent hydrogen embrittlement resistance can be obtained.

バッチ焼鈍炉を用いて焼鈍工程を行う場合、鋼板の製造方法は、冷延鋼板または熱延鋼板を巻き取って冷延コイルまたは熱延コイルとする工程と、冷延コイルまたは熱延コイルにバッチ焼鈍を施して焼鈍コイルを得る工程と、を含み、該焼鈍コイルを前記鋼板コイルとする。焼鈍後の焼鈍コイルは、バッチ焼鈍炉内における炉冷、または空冷などによって冷却する。次いで、焼鈍コイルから焼鈍鋼板を払い出して通板させ、通板中の該焼鈍鋼板に対して上述した条件にて振動を付加することで、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた熱延鋼板または冷延鋼板を得ることができる。 When performing the annealing process using a batch annealing furnace, the steel plate manufacturing method involves a process of winding a cold-rolled steel plate or hot-rolled steel plate into a cold-rolled coil or hot-rolled coil, and a process of winding the cold-rolled steel plate or hot-rolled steel plate into a cold-rolled coil or hot-rolled coil, and and a step of performing annealing to obtain an annealed coil, and the annealed coil is used as the steel plate coil. The annealed coil after annealing is cooled by furnace cooling in a batch annealing furnace, air cooling, or the like. Next, the annealed steel plate is taken out from the annealing coil and passed through the annealed steel plate, and vibration is applied to the annealed steel plate under the above-mentioned conditions during passing, thereby reducing the amount of diffusible hydrogen in the steel and making it hydrogen resistant. A hot-rolled steel sheet or a cold-rolled steel sheet with excellent embrittlement properties can be obtained.

[連続焼鈍装置による焼鈍]
焼鈍は、冷延鋼板又は熱延鋼板を連続焼鈍装置(Continuous Annealing Line:CAL)に通板させることによって行なうこともできる。連続焼鈍装置を用いて焼鈍工程を行う場合、鋼板の製造システムは、冷延コイル又は熱延コイルから冷延鋼板又は熱延鋼板を払い出す焼鈍前払い出し装置と、前記冷延鋼板又は熱延鋼板を連続焼鈍して、焼鈍鋼板とする連続焼鈍炉と、前記焼鈍鋼板を巻き取って、焼鈍コイルを得る焼鈍鋼板巻き取り装置と、前記焼鈍コイルを前記鋼板コイルCとする脱水素装置300bと、を有する。連続焼鈍装置の構成については、実施形態1と同様である。脱水素装置300bの払い出し装置は、焼鈍コイルから焼鈍鋼板を払い出して通板装置に供給し、通板装置は、焼鈍鋼板を通板させる。振動付加装置60は、通板中の該焼鈍鋼板に対して上述した条件にて振動を付加する。該振動の付加により、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた焼鈍鋼板を得ることができる。
[Annealing using continuous annealing equipment]
Annealing can also be performed by passing a cold rolled steel plate or a hot rolled steel plate through a continuous annealing device (Continuous Annealing Line: CAL). When performing the annealing process using a continuous annealing device, the steel sheet manufacturing system includes a pre-annealing device that discharges the cold-rolled steel sheet or the hot-rolled steel sheet from the cold-rolled coil or the hot-rolled coil, and the cold-rolled steel sheet or the hot-rolled steel sheet. a continuous annealing furnace that continuously anneals the annealed steel sheet to produce an annealed steel sheet, an annealed steel sheet winding device that winds up the annealed steel sheet to obtain an annealed coil, and a dehydrogenation device 300b that turns the annealed coil into the steel sheet coil C; has. The configuration of the continuous annealing device is the same as in the first embodiment. The discharging device of the dehydrogenation device 300b discharges the annealed steel sheet from the annealing coil and supplies it to the threading device, and the threading device threads the annealed steel sheet. The vibration applying device 60 applies vibration to the annealed steel sheet during threading under the above-mentioned conditions. By applying the vibration, the amount of diffusible hydrogen in the steel can be reduced, and an annealed steel sheet with excellent hydrogen embrittlement resistance can be obtained.

連続焼鈍装置を用いて焼鈍工程を行う場合、振動付加前の焼鈍コイルは、実施形態1と同様に製造することができる。該焼鈍コイルから焼鈍鋼帯を払い出して、通板中の焼鈍鋼板に対して上述した条件にて振動を付加することで、耐水素脆化特性に優れた冷延鋼板または熱延鋼板を得ることができる。 When performing the annealing process using a continuous annealing device, the annealed coil before vibration is applied can be manufactured in the same manner as in the first embodiment. To obtain a cold-rolled steel sheet or a hot-rolled steel sheet with excellent hydrogen embrittlement resistance by paying out the annealed steel strip from the annealing coil and applying vibration under the above-mentioned conditions to the annealed steel sheet during threading. Can be done.

[[めっき鋼板]]
実施形態1と同様、本実施形態に係る脱水素装置300b及び鋼板の製造方法は、めっき鋼板の製造にも適用することができる。
[[Plated steel sheet]]
Similar to Embodiment 1, the dehydrogenation device 300b and the method for manufacturing a steel sheet according to this embodiment can also be applied to manufacturing a plated steel sheet.

本適用例に係る鋼板の製造システムは、熱延鋼板又は冷延鋼板の表面にめっき皮膜を形成してめっき鋼板とするめっき装置と、前記めっき鋼板を巻き取って、めっき鋼板コイルを得るめっき鋼板巻き取り装置と、前記めっき鋼板コイルを前記鋼板コイルCとする脱水素装置300bと、を有する。熱延鋼板又は冷延鋼板の表面に対して形成し得るめっき皮膜の種類は特に限定されず、亜鉛めっき皮膜のほか、Alめっき皮膜、Feめっき皮膜であってもよい。めっき皮膜を形成する方法は溶融めっき工程に限定されず、電気めっき工程であってもよい。 The steel sheet manufacturing system according to this application example includes a plating device that forms a plating film on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet to produce a plated steel sheet, and a plated steel sheet that winds up the plated steel sheet to obtain a plated steel sheet coil. It has a winding device and a dehydrogenation device 300b that uses the plated steel sheet coil as the steel sheet coil C. The type of plating film that can be formed on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet is not particularly limited, and may be an Al plating film or an Fe plating film in addition to a zinc plating film. The method for forming the plating film is not limited to the hot-dip plating process, but may also be an electroplating process.

また、本適用例に係る鋼板の製造方法は、熱延鋼板または冷延鋼板の表面にめっき皮膜を形成してめっき鋼板とする工程と、前記めっき鋼板を巻き取って、めっき鋼板コイルを得る工程と、を含み、前記めっき鋼板コイルを前記鋼板コイルとする。 Further, the method for manufacturing a steel sheet according to this application example includes a step of forming a plating film on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet to obtain a plated steel sheet, and a step of winding up the plated steel sheet to obtain a plated steel sheet coil. and the plated steel sheet coil is the steel sheet coil.

[連続溶融亜鉛めっき装置によるめっき皮膜の形成]
めっき装置の種類は特に限定されないが、例えば溶融亜鉛めっき装置であり得る。溶融亜鉛めっき装置は、一例においては連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)であり得る。CGLの構成については、実施形態1と同様であり得る。脱水素装置300bの払い出し装置は、CGLによって製造された溶融亜鉛めっき鋼板コイルから溶融亜鉛めっき鋼板を払い出して通板装置に供給し、通板装置は、溶融亜鉛めっき鋼板を通板させる。振動付加装置60は、通板中の該焼鈍鋼板に対して上述した条件にて振動を付加する。該振動の付加により、鋼中の拡散性水素量を低減して、耐水素脆化特性に優れた溶融亜鉛めっき鋼板を得ることができる。
[Formation of plating film using continuous hot-dip galvanizing equipment]
The type of plating device is not particularly limited, but may be, for example, a hot-dip galvanizing device. The hot-dip galvanizing equipment may be a continuous hot-dip galvanizing line (CGL) in one example. The configuration of CGL may be the same as in the first embodiment. The dispensing device of the dehydrogenation device 300b dispenses the hot-dip galvanized steel sheet from the hot-dip galvanized steel sheet coil manufactured by CGL and supplies it to the sheet threading device, and the sheet passing device threads the hot-dip galvanized steel sheet. The vibration applying device 60 applies vibration to the annealed steel sheet during threading under the above-mentioned conditions. By applying the vibration, the amount of diffusible hydrogen in the steel can be reduced, and a hot-dip galvanized steel sheet with excellent hydrogen embrittlement resistance can be obtained.

振動を付加する前の鋼板に溶融亜鉛めっき処理を施して溶融亜鉛めっき鋼板としてもよい。一例においては連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)を用いて鋼帯に対して溶融亜鉛めっき処理を施すことができる。CGLの構成については、実施形態1と同様にすることができる。振動を付加する前の溶融亜鉛めっき鋼板コイルは、実施形態1と同様に製造することができる。該溶融亜鉛めっき鋼板コイルは溶融亜鉛めっき鋼板を払い出して通板させ、通板中の溶融亜鉛めっき鋼板に対して上述した条件にて振動を付加することで、耐水素脆化特性に優れた溶融亜鉛めっき鋼板を得ることができる。 A hot-dip galvanized steel sheet may be obtained by subjecting the steel sheet to a hot-dip galvanizing process before applying vibration. In one example, a continuous hot-dip galvanizing line (CGL) can be used to hot-dip galvanize the steel strip. The configuration of the CGL can be the same as in the first embodiment. The hot-dip galvanized steel coil before applying vibration can be manufactured in the same manner as in the first embodiment. The hot-dip galvanized steel sheet coil is produced by taking out the hot-dip galvanized steel sheet and threading it through the hot-dip galvanized steel sheet, and applying vibration under the above-mentioned conditions to the hot-dip galvanized steel sheet during the threading process. Galvanized steel sheets can be obtained.

また、めっき装置が溶融亜鉛めっき装置と、これに続く合金化炉とを含んでいてもよい。すなわち、本鋼板の製造方法において、めっき処理が溶融亜鉛めっき工程と、これに続く合金化工程とを含んでいてもよい。合金化炉を有するめっき装置としては、実施形態1にて例示した、溶融亜鉛めっき浴の通板方向下流に合金化炉を有するCGLを用いることができる。溶融亜鉛めっき工程と、これに続く合金化工程とによって形成された合金化溶融亜鉛めっき鋼板コイルから合金化溶融亜鉛めっき鋼板を払い出し、該合金化溶融亜鉛めっき鋼板に対して上述した条件にて振動を付加することで、耐水素脆化特性に優れた合金化溶融亜鉛めっき鋼板を得ることができる。 Further, the plating apparatus may include a hot-dip galvanizing apparatus and an alloying furnace following the hot-dip galvanizing apparatus. That is, in the method for manufacturing the present steel sheet, the plating treatment may include a hot-dip galvanizing step and a subsequent alloying step. As the plating apparatus having the alloying furnace, the CGL having the alloying furnace downstream of the hot-dip galvanizing bath in the sheet passing direction, as exemplified in Embodiment 1, can be used. The alloyed hot-dip galvanized steel sheet is taken out from the alloyed hot-dip galvanized steel sheet coil formed by the hot-dip galvanizing process and the subsequent alloying process, and the alloyed hot-dip galvanized steel sheet is subjected to vibration under the conditions described above. By adding , an alloyed hot-dip galvanized steel sheet with excellent hydrogen embrittlement resistance can be obtained.

実施形態1と同様、鋼板の製造システムは、上記の通り得られた熱延鋼板、冷延鋼板、並びに当該熱延鋼板又は冷延鋼板の表面に各種めっき皮膜を有するめっき鋼板に対して、形状矯正及び表面粗度の調整等を目的としてスキンパス圧延を行うスキンパス圧延装置をさらに有していてもよい。また、鋼板の製造システムは、上記の通り得られた熱延鋼板、冷延鋼板、並びに当該熱延鋼板又は冷延鋼板の表面に各種めっき皮膜を有するめっき鋼板の表面に、樹脂又は油脂コーティングなどの各種塗装処理を施す塗装設備をさらに有していてもよい。 Similar to Embodiment 1, the steel sheet manufacturing system is configured to produce a hot rolled steel sheet, a cold rolled steel sheet, and a plated steel sheet having various plating films on the surface of the hot rolled steel sheet or cold rolled steel sheet obtained as described above. It may further include a skin pass rolling device that performs skin pass rolling for the purpose of correction, adjustment of surface roughness, and the like. In addition, the steel plate manufacturing system includes a resin or oil coating on the surface of the hot-rolled steel plate, cold-rolled steel plate, and plated steel plate having various plating films on the surface of the hot-rolled steel plate or cold-rolled steel plate obtained as described above. It may further include coating equipment for performing various coating treatments.

すなわち、本鋼板の製造方法において、上記の通り得られた熱延鋼板、冷延鋼板、並びに当該熱延鋼板または冷延鋼板の表面に各種めっき皮膜を有するめっき鋼板に対しては、実施形態1と同様に、スキンパス圧延を行うことができる。また、上記の通り得られた熱延鋼板、冷延鋼板、並びに当該熱延鋼板または冷延鋼板の表面に各種めっき皮膜を有するめっき鋼板の表面に、樹脂または油脂コーティングなどの各種塗装処理を施すこともできる。 That is, in the method for manufacturing the present steel sheet, Embodiment 1 is applied to the hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet having various plating films on the surface of the hot-rolled steel sheet or cold-rolled steel sheet obtained as described above. Similarly, skin pass rolling can be performed. In addition, various painting treatments such as resin or oil coating are applied to the hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet having various plating films on the surface of the hot-rolled steel sheet or cold-rolled steel sheet obtained as described above. You can also do that.

<実施例1>
表1に示す成分組成を有し、残部がFeおよび不可避的不純物からなる鋼素材を転炉にて溶製し、連続鋳造法にて鋼スラブとした。得られた鋼スラブを熱間圧延後、冷間圧延し、さらに焼鈍を施して冷延鋼板(CR)を得た。一部の冷延鋼板に対しては、さらに溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)とした。一部の溶融亜鉛めっき鋼板に対しては、さらに合金化処理を施して、合金化溶融亜鉛めっき鋼板(GA)を得た。CR,GI,GAのいずれも板厚1.4mm、幅1000mmとした。CALとしては、加熱帯、均熱帯、及び冷却帯がこの順に配置されたCALを用いた。CGLとしては、加熱帯、均熱帯、及び冷却帯がこの順に配置された連続焼鈍炉と、該冷却帯の後に設けられた溶融亜鉛めっき設備とを有するCGLを用いた。バッチ焼鈍炉としては、一般的なバッチ焼鈍炉を用いた。
<Example 1>
A steel material having the composition shown in Table 1, with the remainder consisting of Fe and unavoidable impurities, was melted in a converter and made into a steel slab by continuous casting. The obtained steel slab was hot rolled, then cold rolled, and further annealed to obtain a cold rolled steel plate (CR). Some of the cold-rolled steel sheets were further subjected to hot-dip galvanizing treatment to obtain hot-dip galvanized steel sheets (GI). Some of the hot-dip galvanized steel sheets were further subjected to alloying treatment to obtain alloyed hot-dip galvanized steel sheets (GA). Each of CR, GI, and GA had a plate thickness of 1.4 mm and a width of 1000 mm. As the CAL, a CAL in which a heating zone, a soaking zone, and a cooling zone were arranged in this order was used. The CGL used included a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone were arranged in this order, and a hot-dip galvanizing facility provided after the cooling zone. A general batch annealing furnace was used as the batch annealing furnace.

Figure 0007384296000001
Figure 0007384296000001

得られたCR、GI、GAの鋼板コイルに対して、あるいは該鋼板コイルから払い出した鋼帯に対して、振動を付加した。図1または図4に示す振動付加装置を用いて、表2に示す周波数、最大振幅、及び照射時間の条件で振動を付加した。表2中では、鋼板コイルに対して振動を付加した場合をA、払い出した鋼帯に対して振動を付加した場合はBとして示している。鋼板コイルに対して振動を付加する場合、図5(a)、(c)、及び図6に示す脱水素装置を用いた。鋼帯に振動を付加する場合、図3,4(a)に示す脱水素装置を用いた。鋼板コイル(外径:1500mm、内径:610mm、幅:1000mm)に対して振動を付加する場合、収容部の大きさは、高さ方向:2500mm、奥行き:2000mm、幅方向:2500mmとした。電磁石により振動を付加する場合、鋼板コイルを取り囲むように電磁石を収容部の内壁に配置した。振動子により振動を付加する場合、鋼板コイルの表面に、鋼板コイルの周方向に沿って中心角10°間隔で振動子72を配置した。通板中の鋼帯に対して振動を付加した場合は、通板中の鋼帯の表裏両面側に電磁石又は振動子を配置した。電磁石は、鋼帯の幅方向に沿って6つ、鋼帯幅方向端部から鋼帯幅方向に沿って均等に配置した。なお、表2中で室温とは、25℃前後を意味する。なお、最大振幅は、振動付加装置の位置(すなわち、振動付加装置と鋼帯S又は鋼板コイルCとの距離)は固定したうえで、電磁石に流す電流の周波数及び電流値を調整することにより、又は振動子に流す直流パルス電流の周波数及び電流値を調整することにより、調整した。また、照射時間は、鋼板コイルに対して振動を付加する場合については振動付加装置の駆動時間を調整することにより、調整した。払い出した鋼帯に対して振動を付加する場合については、鋼帯の通板速度を調整することにより、振動の付加時間を調整した。 Vibration was applied to the obtained steel plate coils of CR, GI, and GA, or to the steel strip discharged from the steel plate coils. Vibration was applied using the vibration applying device shown in FIG. 1 or 4 under the conditions of frequency, maximum amplitude, and irradiation time shown in Table 2. In Table 2, A indicates the case in which vibrations were applied to the steel plate coil, and B indicates the case in which vibrations were applied to the discharged steel strip. When applying vibration to the steel plate coil, a dehydrogenation device shown in FIGS. 5(a), (c), and 6 was used. When applying vibration to the steel strip, a dehydrogenation device shown in FIGS. 3 and 4(a) was used. When applying vibration to a steel plate coil (outer diameter: 1500 mm, inner diameter: 610 mm, width: 1000 mm), the size of the housing part was 2500 mm in the height direction, 2000 mm in depth, and 2500 mm in the width direction. When applying vibrations using electromagnets, the electromagnets were placed on the inner wall of the housing so as to surround the steel plate coil. When applying vibration using a vibrator, vibrators 72 were arranged on the surface of the steel plate coil at intervals of 10° in the center angle along the circumferential direction of the steel plate coil. When vibration was applied to the steel strip during threading, electromagnets or vibrators were placed on both the front and back sides of the steel strip during threading. Six electromagnets were arranged evenly along the width direction of the steel strip from the ends of the steel strip in the width direction. Note that room temperature in Table 2 means around 25°C. The maximum amplitude can be determined by fixing the position of the vibration applying device (that is, the distance between the vibration applying device and the steel strip S or steel plate coil C) and adjusting the frequency and current value of the current flowing through the electromagnet. Alternatively, adjustment was made by adjusting the frequency and current value of the DC pulse current flowing through the vibrator. In addition, the irradiation time was adjusted by adjusting the driving time of the vibration applying device when vibration was applied to the steel plate coil. When applying vibration to the discharged steel strip, the duration of vibration application was adjusted by adjusting the threading speed of the steel strip.

振動付加後の各鋼板について、以下に説明する方法にて、引張特性、鋼中の拡散性水素量、伸びフランジ性、及び曲げ性の評価を行い、その結果を表2に示した。 After applying vibration, each steel plate was evaluated for tensile properties, amount of diffusible hydrogen in the steel, stretch flangeability, and bendability using the methods described below, and the results are shown in Table 2.

引張試験は、JIS Z 2241(2011年)に準拠して行った。振動付加後の各鋼板より、引張方向が鋼板の圧延方向と直角となるようにJIS5号試験片を採取した。各試験片を用いて、クロスヘッド変位速度が1.67×10-1mm/sの条件で引張試験を行い、TS(引張強さ)を測定した。The tensile test was conducted in accordance with JIS Z 2241 (2011). JIS No. 5 test pieces were taken from each steel plate after vibration was applied so that the tensile direction was perpendicular to the rolling direction of the steel plate. Using each test piece, a tensile test was conducted at a crosshead displacement rate of 1.67×10 −1 mm/s, and the TS (tensile strength) was measured.

伸びフランジ性は、穴広げ試験によって評価した。穴広げ試験は、JIS Z 2256に準拠して行った。得られた鋼板より、100mm×100mmのサンプルを剪断で採取した。該サンプルに、クリアランスを12.5%として直径10mmの穴を打ち抜いた。内径75mmのダイスを用いて、穴の周囲をしわ押さえ力9ton(88.26kN)で抑えた状態で、頂角60°の円錐ポンチを穴に押し込んで亀裂発生限界における穴直径を測定した。下記の式(4)から、限界穴広げ率:λ(%)を求め、この限界穴広げ率の値から穴広げ性を評価した。
限界穴広げ率:λ(%)={(D-D)/D}×100・・・・(4)
ただし、上式において、Dは亀裂発生時の穴径(mm)、Dは初期穴径(mm)である。鋼板の強度に関係なく、λの値が20%以上の場合に、伸びフランジ性が良好であると判断した。
Stretch flangeability was evaluated by a hole expansion test. The hole expansion test was conducted in accordance with JIS Z 2256. A sample of 100 mm x 100 mm was taken by shearing from the obtained steel plate. A hole with a diameter of 10 mm was punched into the sample with a clearance of 12.5%. Using a die with an inner diameter of 75 mm, a conical punch with an apex angle of 60° was pressed into the hole while the periphery of the hole was held down with a wrinkle pressing force of 9 tons (88.26 kN), and the hole diameter at the crack generation limit was measured. The critical hole expansion rate: λ (%) was determined from the following equation (4), and the hole expansion property was evaluated from the value of this critical hole expansion rate.
Critical hole expansion rate: λ (%) = {(D f − D 0 )/D 0 }×100 (4)
However, in the above formula, D f is the hole diameter (mm) at the time of crack occurrence, and D 0 is the initial hole diameter (mm). Regardless of the strength of the steel plate, it was determined that the stretch flangeability was good when the value of λ was 20% or more.

曲げ試験は、JIS Z 2248に準拠して行った。得られた鋼板より、鋼板の圧延方向に対して平行方向が曲げ試験の軸方向となるように、幅が30mm、長さが100mmとする短冊状の試験片を採取した。その後、押込み荷重が100kN、押付け保持時間を5秒とする条件で、曲げ角度を90°としてVブロック法により曲げ試験を行った。なお、本発明では、90°V曲げ試験を行い、曲げ頂点の稜線部を40倍のマイクロスコープ(RH-2000:株式会社ハイロックス製)で観察し、亀裂長さが200μm以上の亀裂が認められなくなった際の曲げ半径を最小曲げ半径(R)とした。Rを板厚(t)で除した値(R/t)が、5.0以下の場合を、曲げ試験が良好と判断した。 The bending test was conducted in accordance with JIS Z 2248. A strip-shaped test piece with a width of 30 mm and a length of 100 mm was taken from the obtained steel plate so that the direction parallel to the rolling direction of the steel plate was the axial direction of the bending test. Thereafter, a bending test was conducted using the V-block method with a bending angle of 90° and a pushing load of 100 kN and a pushing holding time of 5 seconds. In addition, in the present invention, a 90° V bending test was performed, and the ridgeline at the bending apex was observed with a 40x magnification microscope (RH-2000: manufactured by Hirox Co., Ltd.), and cracks with a crack length of 200 μm or more were observed. The bending radius at which the bending radius became impossible was defined as the minimum bending radius (R). The bending test was judged to be good when the value (R/t) obtained by dividing R by the plate thickness (t) was 5.0 or less.

鋼中の拡散性水素量は上述した方法に従って測定した。 The amount of diffusible hydrogen in steel was measured according to the method described above.

表2に示すように、本発明例では、振動付加工程を行ったため、水素量が少なく、耐水素脆化特性の指標として、伸びフランジ性(λ)及び曲げ性(R/t)に優れる鋼板を製造することができた。一方、比較例では、伸びフランジ性(λ)及び曲げ性(R/t)のいずれか一つ以上が劣っている。 As shown in Table 2, in the example of the present invention, since the vibration addition process was performed, the amount of hydrogen was small, and the steel plate had excellent stretch flangeability (λ) and bendability (R/t), which are indicators of hydrogen embrittlement resistance. was able to manufacture. On the other hand, in the comparative example, one or more of stretch flangeability (λ) and bendability (R/t) is poor.

Figure 0007384296000002
Figure 0007384296000002

本発明例では、鋼板に対して振動を付加したため、耐水素脆化特性に優れる鋼板を製造することができた。 In the example of the present invention, since vibration was applied to the steel plate, it was possible to manufacture a steel plate with excellent hydrogen embrittlement resistance.

60 振動付加装置
61 制御器
62 増幅器
63 電磁石
63A 磁石
63A1 磁極面
63B コイル
64 振動検出器
65 電源
70 振動付加装置
71 制御器
72 振動子
73 振動検出器
74 加熱装置
80 収容部
90 コイル保持部
300a,300b 脱水素装置
S 鋼帯
C 鋼板コイル
60 vibration adding device 61 controller 62 amplifier 63 electromagnet 63A magnet 63A1 magnetic pole face 63B coil 64 vibration detector 65 power supply 70 vibration adding device 71 controller 72 vibrator 73 vibration detector 74 heating device 80 housing section 90 coil holding section 300a, 300b Dehydrogenator S Steel strip C Steel plate coil

Claims (34)

鋼帯をコイル状に巻き取った鋼板コイルを収容する収容部と、
前記収容部に収容される前記鋼板コイルに対して、前記鋼板コイルの振動の周波数が100~100000Hzとなり、かつ、前記鋼板コイルの最大振幅が10nm~500μmとなるように振動を付加する振動付加装置と、
を有する、脱水素装置。
a storage section that stores a steel plate coil obtained by winding a steel strip into a coil shape;
A vibration adding device that applies vibration to the steel plate coil housed in the housing part so that the frequency of vibration of the steel plate coil is 100 to 100,000 Hz, and the maximum amplitude of the steel plate coil is 10 nm to 500 μm. and,
A dehydrogenation device with
前記振動付加装置は、前記鋼板コイルの表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記鋼板コイルに与える外力により前記鋼板コイルが振動するように構成される、請求項1に記載の脱水素装置。 The vibration adding device includes an electromagnet having a magnetic pole face facing away from the surface of the steel plate coil, and is configured such that the steel plate coil vibrates due to an external force applied by the electromagnet to the steel plate coil. 1. The dehydrogenation device according to 1. 前記振動付加装置は、前記鋼板コイルに接触する振動子を有し、前記振動子によって前記鋼板コイルが振動するように構成される、請求項1に記載の脱水素装置。 The dehydrogenation device according to claim 1, wherein the vibration applying device includes a vibrator that contacts the steel plate coil, and is configured so that the steel plate coil vibrates with the vibrator. 前記鋼板コイルを加熱しつつ前記振動を付加するための加熱部をさらに有する、請求項1から3のいずれか1項に記載の脱水素装置。 The dehydrogenation device according to any one of claims 1 to 3, further comprising a heating section for applying the vibration while heating the steel plate coil. 鋼板コイルから鋼帯を払い出す払い出し装置と、
前記鋼帯を通板させる通板装置と、
前記鋼帯を巻き取る巻き取り装置と、
前記通板装置を通板中の前記鋼帯に対して、前記鋼帯を300℃以下に保持して、前記鋼帯の振動の周波数が100~100000Hzとなり、かつ、前記鋼帯の板厚方向の最大振幅が10nm~500μmとなるように振動を20秒以上付加する振動付加装置と、
を有する、脱水素装置。
a payout device that pays out a steel strip from a steel plate coil;
A threading device for threading the steel strip;
a winding device that winds up the steel strip;
The steel strip is held at 300° C. or less while the steel strip is being passed through the sheet threading device, the vibration frequency of the steel strip is 100 to 100,000 Hz, and the steel strip is rotated in the thickness direction of the steel strip. a vibration adding device that applies vibration for 20 seconds or more so that the maximum amplitude of is 10 nm to 500 μm;
A dehydrogenation device with
前記振動付加装置は、通板中の前記鋼帯の表面に離間して対向する磁極面を有する電磁石を有し、前記電磁石が前記鋼帯に与える外力により前記鋼帯が振動するように構成される、請求項5に記載の脱水素装置。 The vibration applying device includes an electromagnet having a magnetic pole face facing away from the surface of the steel strip during threading, and is configured to cause the steel strip to vibrate due to an external force applied to the steel strip by the electromagnet. The dehydrogenation apparatus according to claim 5. 前記振動付加装置は、通板中の前記鋼帯に接触する振動子を有し、前記振動子によって前記鋼帯が振動するように構成される、請求項5に記載の脱水素装置。 The dehydrogenation device according to claim 5, wherein the vibration applying device includes a vibrator that contacts the steel strip during threading, and is configured so that the steel strip is vibrated by the vibrator. 前記鋼帯を加熱しつつ前記振動を付加するための加熱部をさらに有する、請求項5から7のいずれか1項に記載の脱水素装置。 The dehydrogenation device according to any one of claims 5 to 7, further comprising a heating section for applying the vibration while heating the steel strip. 前記脱水素装置の外部に前記振動が伝達することを防ぐ制振部をさらに有する、請求項1又は5に記載の脱水素装置。 The dehydrogenation device according to claim 1 or 5, further comprising a vibration damping part that prevents the vibration from being transmitted to the outside of the dehydrogenation device. 鋼スラブに熱間圧延を施して熱延鋼板とする熱間圧延装置と、
前記熱延鋼板を巻き取って熱延コイルを得る熱延鋼板巻き取り装置と、
前記熱延コイルを前記鋼板コイルとする、請求項1又は5に記載の脱水素装置と、
を有する、鋼板の製造システム。
a hot rolling device that hot-rolls a steel slab to produce a hot-rolled steel plate;
a hot-rolled steel sheet winding device that winds up the hot-rolled steel sheet to obtain a hot-rolled coil;
The dehydrogenation device according to claim 1 or 5, wherein the hot rolled coil is the steel plate coil,
A steel sheet manufacturing system with
熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延装置と、
前記冷延鋼板を巻き取って冷延コイルを得る冷延鋼板巻き取り装置と、
前記冷延コイルを前記鋼板コイルとする、請求項1又は5に記載の脱水素装置と、
を有する、鋼板の製造システム。
A cold rolling device that cold-rolls a hot-rolled steel plate to produce a cold-rolled steel plate;
a cold-rolled steel sheet winding device that winds up the cold-rolled steel sheet to obtain a cold-rolled coil;
The dehydrogenation device according to claim 1 or 5, wherein the cold rolled coil is the steel plate coil,
A steel sheet manufacturing system with
冷延コイル又は熱延コイルにバッチ焼鈍を施して焼鈍コイルを得るバッチ焼鈍炉と、
前記焼鈍コイルを前記鋼板コイルとする、請求項1又は5に記載の脱水素装置と、
を有する、鋼板の製造システム。
A batch annealing furnace that performs batch annealing on a cold rolled coil or a hot rolled coil to obtain an annealed coil;
The dehydrogenation device according to claim 1 or 5, wherein the annealed coil is the steel plate coil,
A steel sheet manufacturing system with
冷延コイル又は熱延コイルからそれぞれ冷延鋼板又は熱延鋼板を払い出す焼鈍前払い出し装置と、
前記冷延鋼板又は熱延鋼板を連続焼鈍して、焼鈍鋼板とする連続焼鈍炉と、
前記焼鈍鋼板を巻き取って、焼鈍コイルを得る焼鈍鋼板巻き取り装置と、
前記焼鈍コイルを前記鋼板コイルとする、請求項1又は5に記載の脱水素装置と、
を有する、鋼板の製造システム。
a pre-annealing payout device for paying out a cold rolled steel plate or a hot rolled steel plate from a cold rolled coil or a hot rolled coil, respectively;
a continuous annealing furnace that continuously anneals the cold-rolled steel plate or hot-rolled steel plate to produce an annealed steel plate;
an annealed steel plate winding device that winds up the annealed steel plate to obtain an annealed coil;
The dehydrogenation device according to claim 1 or 5, wherein the annealed coil is the steel plate coil,
A steel sheet manufacturing system with
熱延鋼板又は冷延鋼板の表面にめっき皮膜を形成してめっき鋼板とするめっき装置と、
前記めっき鋼板を巻き取って、めっき鋼板コイルを得るめっき鋼板巻き取り装置と、
前記めっき鋼板コイルを前記鋼板コイルとする、請求項1又は5に記載の脱水素装置と、
を有する、鋼板の製造システム。
A plating device that forms a plating film on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet to obtain a plated steel sheet;
a plated steel plate winding device that winds up the plated steel plate to obtain a plated steel plate coil;
The dehydrogenation device according to claim 1 or 5, wherein the plated steel sheet coil is the steel sheet coil.
A steel sheet manufacturing system with
前記めっき装置が溶融亜鉛めっき装置である、請求項14に記載の鋼板の製造システム。 The steel sheet manufacturing system according to claim 14, wherein the plating device is a hot-dip galvanizing device. 前記めっき装置が、溶融亜鉛めっき装置と、これに続く合金化炉とを含む、請求項14に記載の鋼板の製造システム。 The steel sheet manufacturing system according to claim 14, wherein the plating device includes a hot-dip galvanizing device and a subsequent alloying furnace. 前記めっき装置が電気めっき装置である、請求項14に記載の鋼板の製造システム。 The steel plate manufacturing system according to claim 14, wherein the plating device is an electroplating device. 鋼帯をコイル状に巻き取った鋼板コイルに対して、前記鋼板コイルの振動の周波数が100~100000Hzとなり、かつ、前記鋼板コイルの最大振幅が10nm~500μmとなるように振動を付加して製品コイルとする振動付加工程を含む、鋼板の製造方法。 A product is produced by adding vibration to a steel plate coil obtained by winding a steel strip into a coil shape such that the frequency of vibration of the steel plate coil is 100 to 100,000 Hz, and the maximum amplitude of the steel plate coil is 10 nm to 500 μm. A method for producing a steel plate, including a process of adding vibration to form a coil. 前記振動付加工程は、前記鋼板コイルを300℃以下に保持して行われる、請求項18に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to claim 18, wherein the vibration applying step is performed while maintaining the steel plate coil at 300°C or lower. 鋼板コイルから鋼帯を払い出す工程と、
前記鋼帯を通板させる通板工程と、
前記鋼帯を巻き取って製品コイルとする工程と、
を有し、前記通板工程は、前記鋼帯に対して、前記鋼帯の振動の周波数が100~100000Hzとなり、かつ、前記鋼帯の板厚方向の最大振幅が10nm~500μmとなるように振動を20秒以上付加する振動付加工程を含
前記振動付加工程は、前記鋼帯を300℃以下に保持して行われる、
鋼板の製造方法。
A process of discharging the steel strip from the steel plate coil,
A threading step of threading the steel strip;
a step of winding the steel strip into a product coil;
The threading process is performed with respect to the steel strip so that the frequency of vibration of the steel strip is 100 to 100,000 Hz, and the maximum amplitude of the steel strip in the thickness direction is 10 nm to 500 μm. Including a vibration adding step of adding vibration for 20 seconds or more ,
The vibration application step is performed while maintaining the steel strip at 300°C or less,
Method of manufacturing steel plates.
鋼スラブに熱間圧延を施して熱延鋼板とする工程と、
前記熱延鋼板を巻き取って熱延コイルを得る工程と、
を含み、前記熱延コイルを前記鋼板コイルとする、請求項18から20のいずれか1項に記載の鋼板の製造方法。
A process of hot rolling a steel slab to make a hot rolled steel plate;
a step of winding the hot-rolled steel sheet to obtain a hot-rolled coil;
The method for manufacturing a steel plate according to any one of claims 18 to 20 , wherein the hot rolled coil is the steel plate coil.
熱延鋼板に冷間圧延を施して冷延鋼板とする工程と、
前記冷延鋼板を巻き取って冷延コイルを得る工程と、
を含み、前記冷延コイルを前記鋼板コイルとする、請求項18から20のいずれか1項に記載の鋼板の製造方法。
A process of cold-rolling a hot-rolled steel plate to obtain a cold-rolled steel plate;
a step of winding the cold-rolled steel sheet to obtain a cold-rolled coil;
The method for manufacturing a steel plate according to any one of claims 18 to 20 , wherein the cold rolled coil is the steel plate coil.
冷延コイルまたは熱延コイルにバッチ焼鈍を施して焼鈍コイルを得る工程を含み、前記焼鈍コイルを前記鋼板コイルとする、請求項18から20のいずれか1項に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to any one of claims 18 to 20 , comprising a step of batch annealing a cold rolled coil or a hot rolled coil to obtain an annealed coil, and using the annealed coil as the steel plate coil. 冷延コイルまたは熱延コイルからそれぞれ冷延鋼板または熱延鋼板を払い出す工程と、
前記冷延鋼板または前記熱延鋼板を連続焼鈍して、焼鈍鋼板を得る工程と、
前記焼鈍鋼板を巻き取って、焼鈍コイルを得る工程と、
を含み、前記焼鈍コイルを前記鋼板コイルとする、請求項18から20のいずれか1項に記載の鋼板の製造方法。
A step of discharging a cold-rolled steel plate or a hot-rolled steel plate from a cold-rolled coil or a hot-rolled coil, respectively;
Continuously annealing the cold rolled steel plate or the hot rolled steel plate to obtain an annealed steel plate;
Winding the annealed steel plate to obtain an annealed coil;
The method for manufacturing a steel plate according to any one of claims 18 to 20 , wherein the annealing coil is the steel plate coil.
熱延鋼板または冷延鋼板の表面にめっき皮膜を形成してめっき鋼板とするめっき工程と、
前記めっき鋼板を巻き取って、めっき鋼板コイルを得る工程と、
を含み、前記めっき鋼板コイルを前記鋼板コイルとする、請求項18から20のいずれか1項に記載の鋼板の製造方法。
A plating process in which a plating film is formed on the surface of a hot-rolled steel sheet or a cold-rolled steel sheet to obtain a plated steel sheet;
a step of winding up the plated steel sheet to obtain a plated steel sheet coil;
The method for manufacturing a steel plate according to any one of claims 18 to 20 , wherein the plated steel plate coil is the steel plate coil.
前記めっき工程が溶融亜鉛めっき工程を含む、請求項25に記載の鋼板の製造方法。 The method for manufacturing a steel sheet according to claim 25 , wherein the plating step includes a hot-dip galvanizing step. 前記めっき工程が、溶融亜鉛めっき工程と、これに続く合金化工程とを含む、請求項25に記載の鋼板の製造方法。 The method for manufacturing a steel sheet according to claim 25 , wherein the plating step includes a hot-dip galvanizing step and a subsequent alloying step. 前記めっき工程が電気めっき工程を含む、請求項25に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to claim 25 , wherein the plating step includes an electroplating step. 前記製品コイルが、590MPa以上の引張強さを有する高強度鋼板からなる、請求項18から20のいずれか1項に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to any one of claims 18 to 20 , wherein the product coil is made of a high-strength steel plate having a tensile strength of 590 MPa or more. 前記製品コイルが、質量%で、
C :0.030%以上0.800%以下、
Si:0.01%以上3.00%以下、
Mn:0.01%以上10.00%以下、
P :0.001%以上0.100%以下、
S :0.0001%以上0.0200%以下、
N :0.0005%以上0.0100%以下および
Al:2.000%以下
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する下地鋼板を含む、請求項18から20のいずれか1項に記載の鋼板の製造方法。
The product coil has a mass percentage of
C: 0.030% or more and 0.800% or less,
Si: 0.01% or more and 3.00% or less,
Mn: 0.01% or more and 10.00% or less,
P: 0.001% or more and 0.100% or less,
S: 0.0001% or more and 0.0200% or less,
Any one of claims 18 to 20 , comprising a base steel plate having a composition containing N: 0.0005% or more and 0.0100% or less and Al: 2.000% or less, with the balance consisting of Fe and inevitable impurities. A method for manufacturing a steel plate according to item 1.
前記成分組成は、さらに質量%で、
Ti:0.200%以下、
Nb:0.200%以下、
V :0.500%以下、
W :0.500%以下、
B :0.0050%以下、
Ni:1.000%以下、
Cr:1.000%以下、
Mo:1.000%以下、
Cu:1.000%以下、
Sn:0.200%以下、
Sb:0.200%以下、
Ta:0.100%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Zr:0.0050%以下および
REM:0.0050%以下からなる群から選ばれる少なくとも1種の元素をさらに含有する、請求項30に記載の鋼板の製造方法。
The component composition further includes, in mass%,
Ti: 0.200% or less,
Nb: 0.200% or less,
V: 0.500% or less,
W: 0.500% or less,
B: 0.0050% or less,
Ni: 1.000% or less,
Cr: 1.000% or less,
Mo: 1.000% or less,
Cu: 1.000% or less,
Sn: 0.200% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel plate according to claim 30 , further comprising at least one element selected from the group consisting of Zr: 0.0050% or less and REM: 0.0050% or less.
前記製品コイルは、質量%で、
C :0.001%以上0.400%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上5.00%以下、
P :0.001%以上0.100%以下、
S :0.0001%以上0.0200%以下、
Cr:9.0%以上28.0%以下、
Ni:0.01%以上40.0%以下、
N :0.0005%以上0.500%以下および
Al:3.000%以下
を含有し、残部がFe及び不可避的不純物からなる成分組成を有するステンレス鋼板を含む、請求項18から20のいずれか1項に記載の鋼板の製造方法。
The product coil has a mass percentage of
C: 0.001% or more and 0.400% or less,
Si: 0.01% or more and 2.00% or less,
Mn: 0.01% or more and 5.00% or less,
P: 0.001% or more and 0.100% or less,
S: 0.0001% or more and 0.0200% or less,
Cr: 9.0% or more and 28.0% or less,
Ni: 0.01% or more and 40.0% or less,
Any one of claims 18 to 20 , comprising a stainless steel plate having a composition containing N: 0.0005% or more and 0.500% or less and Al: 3.000% or less, with the balance consisting of Fe and inevitable impurities. A method for manufacturing a steel plate according to item 1.
前記成分組成が、さらに、質量%で、
Ti:0.500%以下、
Nb:0.500%以下、
V :0.500%以下、
W :2.000%以下、
B :0.0050%以下、
Mo:2.000%以下、
Cu:3.000%以下、
Sn:0.500%以下、
Sb:0.200%以下、
Ta:0.100%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Zr:0.0050%以下および
REM:0.0050%以下
からなる群から選ばれる少なくとも1種の元素をさらに含有する、請求項32に記載の鋼板の製造方法。
The component composition further includes, in mass%,
Ti: 0.500% or less,
Nb: 0.500% or less,
V: 0.500% or less,
W: 2.000% or less,
B: 0.0050% or less,
Mo: 2.000% or less,
Cu: 3.000% or less,
Sn: 0.500% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
The method for producing a steel plate according to claim 32 , further comprising at least one element selected from the group consisting of Zr: 0.0050% or less and REM: 0.0050% or less.
前記製品コイルは0.50質量ppm以下の拡散性水素量を有する、請求項18から20のいずれか1項に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to any one of claims 18 to 20 , wherein the product coil has a diffusible hydrogen amount of 0.50 mass ppm or less.
JP2022555186A 2021-07-14 2022-05-17 Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method Active JP7384296B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021116762 2021-07-14
JP2021116762 2021-07-14
PCT/JP2022/020580 WO2023286441A1 (en) 2021-07-14 2022-05-17 Dehydrogenation device, system for manufacturing steel sheet, and method for manufacturing steel sheet

Publications (3)

Publication Number Publication Date
JPWO2023286441A1 JPWO2023286441A1 (en) 2023-01-19
JPWO2023286441A5 JPWO2023286441A5 (en) 2023-06-20
JP7384296B2 true JP7384296B2 (en) 2023-11-21

Family

ID=84919187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022555186A Active JP7384296B2 (en) 2021-07-14 2022-05-17 Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method

Country Status (5)

Country Link
EP (1) EP4357467A1 (en)
JP (1) JP7384296B2 (en)
KR (1) KR20240015105A (en)
CN (1) CN117561341A (en)
WO (1) WO2023286441A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460032B2 (en) * 2022-03-25 2024-04-02 Jfeスチール株式会社 Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131794A (en) 2002-10-10 2004-04-30 Nippon Steel Corp Method for dehydrogenation of steel sheet and method for manufacturing steel sheet using the same
JP2020153003A (en) 2019-03-22 2020-09-24 Jfeスチール株式会社 Method for manufacturing high strength hot-dip galvanized steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531172B2 (en) * 1973-12-31 1980-08-16
JPS62287019A (en) * 1986-06-05 1987-12-12 Nippon Steel Corp Method and apparatus for applying oscillation to traveling metallic sheet without contact
EP3715493A4 (en) 2017-12-27 2020-11-25 JFE Steel Corporation High strength steel sheet and method for producing same
JP6705562B2 (en) 2018-03-30 2020-06-03 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131794A (en) 2002-10-10 2004-04-30 Nippon Steel Corp Method for dehydrogenation of steel sheet and method for manufacturing steel sheet using the same
JP2020153003A (en) 2019-03-22 2020-09-24 Jfeスチール株式会社 Method for manufacturing high strength hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JPWO2023286441A1 (en) 2023-01-19
WO2023286441A1 (en) 2023-01-19
CN117561341A (en) 2024-02-13
KR20240015105A (en) 2024-02-02
EP4357467A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP6635236B1 (en) High strength cold rolled steel sheet and method for producing the same
JP4449795B2 (en) Hot-rolled steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot-press formed member
JP6315044B2 (en) High strength steel plate and manufacturing method thereof
KR101570629B1 (en) High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same
JP6304456B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
JP6304455B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
JPWO2016067624A1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
EP2757169A1 (en) High-strength steel sheet having excellent workability and method for producing same
JP2007302918A (en) High strength steel sheet with excellent bore expandability and formability, and its manufacturing method
MX2014001115A (en) High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each.
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
MX2014003797A (en) High-strength hot-dip galvanized steel sheet and process for producing same.
JP2009270126A (en) Cold rolled steel sheet, hot dip plated steel sheet and method for producing the steel sheet
JP7164024B2 (en) High-strength steel plate and its manufacturing method
JP2005082841A (en) Hot rolled steel sheet combining bh property and stretch flange formability, and its production method
JP2007177271A (en) High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor
JP7388570B2 (en) Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method
JP7259974B2 (en) CONTINUOUS ANNEALING APPARATUS, CONTINUOUS DIP GALVANIZING APPARATUS, AND METHOD FOR MANUFACTURING STEEL SHEET
JP7384296B2 (en) Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method
JP7168072B2 (en) High-strength steel plate and its manufacturing method
JP7460032B2 (en) Dehydrogenation equipment, steel plate manufacturing system, and steel plate manufacturing method
JP7006857B1 (en) Dehydrogenation equipment, steel sheet manufacturing system, and steel sheet manufacturing method
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JP2005105399A (en) Method for manufacturing low-yield-ratio high-strength galvannealed steel
JP7380965B1 (en) Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7384296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150