JP2004244675A - Hot-dip galvanized high strength steel sheet with excellent bore expandabilty, and its manufacturing method - Google Patents

Hot-dip galvanized high strength steel sheet with excellent bore expandabilty, and its manufacturing method Download PDF

Info

Publication number
JP2004244675A
JP2004244675A JP2003035291A JP2003035291A JP2004244675A JP 2004244675 A JP2004244675 A JP 2004244675A JP 2003035291 A JP2003035291 A JP 2003035291A JP 2003035291 A JP2003035291 A JP 2003035291A JP 2004244675 A JP2004244675 A JP 2004244675A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
dip galvanized
mass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003035291A
Other languages
Japanese (ja)
Other versions
JP4288085B2 (en
Inventor
Shigeto Takebayashi
重人 竹林
Naoki Yoshinaga
直樹 吉永
Nobuhiro Fujita
展弘 藤田
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003035291A priority Critical patent/JP4288085B2/en
Publication of JP2004244675A publication Critical patent/JP2004244675A/en
Application granted granted Critical
Publication of JP4288085B2 publication Critical patent/JP4288085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet having ≥900 MPa tensile strength and excellent bore expandability and to provide its manufacturing method. <P>SOLUTION: The steel sheet has a composition containing, by mass, 0.03 to 0.12% C, 0.001 to 0.8% Si, 2.3 to 3.3% Mn, 0.001 to 0.1% P, 0.0001 to 0.01% S and 0.001 to 0.2% Al, further containing, by mass, 0.11 to 1.0% Mo and 0.005 to 0.3% Ti and having the balance Fe with inevitable impurities. This steel sheet has ≥900 MPa tensile strength and ≥45% bore expandability. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建材、家電製品、自動車などに適する、穴拡げ性に優れた溶融亜鉛めっきおよび溶融合金化亜鉛めっき高強度鋼板とその製造方法に関する。本発明における亜鉛めっきとは、通常の溶融亜鉛めっきのみならず、合金化溶融亜鉛めっきも含む。めっき層には、純亜鉛の他、Fe、Al、Mg、Cr、などを含有しても構わない。
【0002】
【従来の技術】
近年、特に自動車車体において燃費向上や耐久性向上の観点を目的とした加工性の良い高強度鋼板の需要が高まっている。加えて、衝突安全性やキャビンスペースの拡大のニーズから引張り強度にして780MPa級クラス以上の鋼板が、一部レインフォースなどの部材に使用されつつある。
【0003】
このような高強度材を用いて部材を組みあげる時には、延性、曲げ性、穴拡げ性などの諸特性が重要となるが、引張り強度で590MPa程度までの高強度鋼板においてはこれらに対する対策が講じられている。
【0004】
たとえば、穴拡げ性については、非特許文献1に開示されているように、主相をベイナイトとして穴拡げ性を向上させ、さらには張り出し成形性についても、第2相に残留オーステナイトを生成させることで現行の残留オーステナイト鋼並の張り出し性を示すことが提案されている。さらには、Ms温度以下でオーステンパ処理をすることで体積率2〜3%の残留オーステナイトを生成させると、引張り強度×穴拡げ率が最大となることも示されている。しかし、ここに開示されている技術は、590MPa程度の鋼板におけるものであり、900MPaを超えたものについては単純に成り立たない。
【0005】
また、高強度材の高延性化を図るために、複合組織を積極的に活用することが一般的である。しかし、第2相にマルテンサイトや残留オーステナイトを活用した場合に、穴拡げ性が著しく低下してしまうという問題がある(例えば、非特許文献2)。また、本文献中には、主相をフェライト、第2相をマルテンサイトととし、両者の硬度差を減少させることで穴拡げ率が向上することが開示されているが、穴拡げ率で70%未満と、著しく改善されているわけではない。
【0006】
また、引っ張り強度900MPa以上の強度で、溶融亜鉛メッキを施したものとして、いくつかの開示例がある。これらを、以下にあげる。
【0007】
(1) 特許文献1及び、特許文献2においては、高い強度を得られる技術が開示されているが、複合組織が主体であるために、相間の硬度差が出てしまい、穴拡げ率が30%以下と低くなっている。
【0008】
(2) 特許文献3においては、C濃度を0.1〜0.2%、Mn濃度を2〜3%とすることで、オーステナイト相を安定化させ、めっきラインで熱処理後、480℃〜560℃で低温保持することでオーステナイト相を残すことによって強度と加工性を得る方法が開示されている。しかしながら、残留オーステナイト相があるため、不均一な複合組織になりやすく、穴拡げ率は向上しない。
【0009】
(3) 特許文献4においては、C:0.05%、Si:0.55%、Mn:1.59%に、Mo,Ti,Cr,Nb,B、V等を微量に添加し、93%の穴拡げ率を得ているが,Mnが低いため、熱処理時の加熱温度が低い場合や、熱処理後の冷却速度が低い場合等に不均一複合組織になってしまい、安定的に高い穴拡げ性を得ることが困難である。
【0010】
(4) 特許文献5においては、C:0.16%、Mn:2.3%、Ti:0.01%にNb,Bを微量に添加した例が開示されており、強度が1180MPa程度を得ているが、複合組織を基本としたものであるため、相間の硬度差のためにその穴拡げ率は、40%以下にとどまっている。
【0011】
従って、引っ張り強度において900MPa以上の強度を持ち、穴拡げ率において45%以上の値を持つ、穴拡げ性に優れた溶融亜鉛メッキ鋼板は、存在しない。
【0012】
【非特許文献1】
CAMP−ISIJ vol.13 (2000) p.395
【非特許文献2】
CAMP−ISIJ, vol.13(2000),p.391
【特許文献1】
特許第2607906号公報
【特許文献2】
特許第2862187号公報
【特許文献3】
特開平1−198459号公報
【特許文献4】
特開2001−355043号公報
【特許文献5】
特許第3037767号公報
【0013】
【発明が解決しようとする課題】
前述のような問題の原因の一つに、連続溶融亜鉛めっき工程における冷却能力が挙げられる。即ち、同工程においては、一般に鋼板が最高温度に到達した後、0.1℃/秒〜20℃/秒という、比較的低い冷却速度が採用されているため、組織が不均一になりやすい。その結果穴拡げ性が劣化することになる。さらに、合金化溶融亜鉛めっきを施したような鋼板においては、溶融亜鉛めっき槽に鋼板を浸漬した後に連続的に熱処理を施し、合金化させ、その後連続的に巻き取ることとなるが、この合金化のための熱処理過程において、それまでに造りこまれた鋼板中の組織において、鉄中に過飽和に固溶した炭素が鉄炭化物として析出し、鋼板中に微細に析出させた炭化鉄が粗大化するなどの現象が起こり、組織が変質してしまう。それに伴い、穴拡げ性が著しく劣化してしまうのである。
【0014】
本発明は、このような従来技術の問題点を解決し、引張り強度が900MPa以上で優れた穴拡げ性を有する溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき高強度鋼板、並びにそれらの製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明者らは、種々検討を行った結果、化学成分を限定することで、引張り強度が900MPa以上で優れた穴拡げ性を有する溶融亜鉛めっき鋼板を得ることができることを発見した。本発明による高強度鋼板は、〔(穴拡げ試験後の穴の内径/穴拡げ試験前の穴径)−1〕×100で定義される穴拡げ率が45%以上を有し、耐食性に優れることはもちろん、溶接熱影響部の軟化を抑制して溶接部の疲労耐久性にも優れる。
【0016】
本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
【0017】
(1) 質量%で、
C :0.03〜0.12%、
Si:0.001〜0.8%
Mn:2.3〜3.3%、
P:0.001〜0.1%、
S:0.0001〜0.01%、
Al:0.001〜0.2%
を含有し、さらに、
Mo:0.11〜1.0%、
Ti:0.005〜0.3%
を含有し、残部をFeおよび不可避的不純物とし、引張強度が900MPa以上であり、且つ穴拡げ率が45%以上であることを特徴とする穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
【0018】
(2) さらに、質量%で、Ni:0.01〜2.0%、Cu:0.001〜2.0%の1種または2種を含有することを特徴とする上記(1)に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
【0019】
(3) さらに、質量%で、B:0.0001〜0.01%、Nb:0.003〜0.3%の1種または2種を含有することを特徴とする上記(1)または(2)に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
【0020】
(4) さらに、質量%で、Cr:0.01〜2%、Co:0.01〜1%、W :0.01〜0.3%の1種または2種以上を含有することを特徴とする上記(1)〜(3)のいずれか1項に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
【0021】
(5) さらに、質量%で、Zr、Hf、Ta、Vの1種または2種以上を合計で0.001〜1%含有することを特徴とする上記(1)〜(4)のいずれか1項に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
【0022】
(6) さらに、質量%で、Ca、Mg、REMの1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする上記(1)〜(5)のいずれか1項に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
【0023】
(7) 上記(1)〜(6)のいずれか1項に記載の成分からなる鋳造スラブを直接または一旦1000℃以下まで冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後雰囲気を酸素濃度が50ppm以下、露点を−20℃以下とし、最高到達温度をAc (℃)以上1100℃以下とする熱処理をした後に、0.1〜20℃/秒の冷却速度で亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持を行うことを特徴とする引張強度が900MPa以上であり、且つ穴拡げ率が45%以上である穴拡げ性に優れた溶融亜鉛めっき高強度鋼板の製造方法。
【0024】
(8) 上記(7)に記載の製造方法において、亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持後、合金化処理を430℃〜580℃にて行うことを特徴とする穴拡げ性に優れた溶融亜鉛めっき高強度鋼板の製造方法。
【0025】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0026】
先ず、本発明における鋼板成分の好適な範囲の限定理由について述べる。
【0027】
C:0.03〜0.12%
良好な強度−穴拡げ性バランスを確保するための主相および第2相の分率を制御する目的で添加する元素である。素地の微細均一化についても影響を与える。強度および各第2相の面積率を確保するために0.03質量%(以下、同じ)以上を必要とする。0.12%を越えると、穴拡げ性が低下するのでこれを上限とする。更に、溶接部の強度が劣化しやすくなる。
0.04〜0.10%がより好ましい範囲である。
【0028】
Si:0.001〜0.8%
Siは、強度延性バランスを劣化させる比較的粗大な炭化物の生成を抑制する目的で添加する元素であるがめっき性を著しく劣化させるので上限を0.8%とする。また、過剰添加は溶接性に悪影響を及ぼす。表面性状の観点から0.6%を上限とするのが好ましい。一方で、極低Si化は製造コストの高騰を招くことから、めっき性を大きくは悪化させない0.001%以上の添加とすることが望ましい。
【0029】
Mn:2.3〜3.3%
Mnは、本発明にとって重要である。即ち、前述した溶融亜鉛めっきラインにおける比較的遅い冷却速度に対してMnを所定の範囲に限定することが穴拡げ性の観点で極めて重要であることを見出した。フェライト変態を抑制して、面積率最大の相である主相をベイナイトまたはベイニティックフェライトとすることで均一組織を得る。さらに、強度低下と穴拡げ性劣化の1つの原因である炭化物析出や、パーライト生成を抑制するため2.3質量%以上とする。好ましくは、2.5%超を下限とする。一方、過剰添加は、マルテンサイト生成を促進したり、偏析などによって延性や穴拡げ性の著しい低下を招くために3.3質量%を上限とした。
【0030】
P:0.001〜0.1%
Pは、強化元素である。また、低P化は穴拡げ性を向上させるが、極低化は経済的にも不利であることから0.001質量%を下限とした。また、多量添加は、溶接性や鋳造時や熱延時の製造性、さらには穴拡げ性にも悪影響を及ぼすため、0.1%を上限とした。
【0031】
S:0.0001〜0.01%
Sは、低S化は穴拡げ性向上に有効である。一方、極低S化は経済的に不利であることから、0.0001質量%を下限とし、また、0.01質量%を上限としたのは、これを超える量の添加では、鋼板の穴拡げ性に悪影響を及ぼすためである。より好ましくは、0.003%を上限とする。
【0032】
Al:0.001〜0.2%
Alは、脱酸元素として有効である。このため、0.001質量%を下限とした。一方過剰添加は穴拡げ性、溶接性およびめっき濡れ性を損なうため0.2%を上限とした。好ましくは、0.005〜0.08%の範囲である。
【0033】
Mo:0.11〜1%
Ti:0.005〜0.3%
Mo、Tiは、本発明にとって極めて重要である。即ち、MoとTiを複合添加し、かつMn量を上述のように2.3%以上とすることで初めて良好な穴拡げ性が得られる。Moの添加量は、0.11%以上にてその効果が得られる。しかしながら、1%を越えるとコストの上昇が問題となるため、上限は、1.0%とする。Moは、その他に、焼入れ性を向上させ、かつ、溶接時の熱影響部において軟化を防止する効果も有する。
【0034】
Tiも上述の観点からその下限を0.005質量%とする。また、過剰添加は、延性と穴拡げ性の劣化を招くことから、上限を0.3%とする。Tiは、基本的に強度−穴拡げ性バランスを劣化させる炭化物やパーライトの生成を抑制する。また、フェライト変態を抑制して、主相をベイナイトまたはベイニティックフェライトにするのに有効であり、良好な強度−穴拡げ性およびめっき材の溶接性や溶接後の疲労耐久性の極めて良好なバランスを得るために有効である。しかし、Tiだけを添加してもその効果は、本発明の目的に対して充分ではなく、上記の通り、MnとMoと同時に添加することが必須である。より好ましくは、Mo:0.20以上、Ti:0.015以上とする。MoとTiの複合添加の効果をより助長するために、Mo(質量%)+10×Ti(質量%)≧0.3%とすることが望ましい。
【0035】
さらに、本発明が対象とする鋼は、強度−穴拡げ性バランスに悪影響を与えずにめっき性を向上させることを目的として、Cu,Niを添加することができる。
【0036】
Niは、めっき性向上以外には焼き入れ性の向上の目的もあり、0.01質量%以上とし、2質量%を超えると、加工性、特にマルテンサイト生成に伴う硬度上昇に寄与して悪影響を及ぼすため、これを上限とした。
【0037】
Cuは、めっき性向上以外には強度の向上の目的もあり、0.001質量%以上の添加とし、2質量%を超えると、加工性および製造性に悪影響を及ぼす。
【0038】
特にSi量が、0.3%以上添加されている場合には、Niを0.2%以上、Cuを0.1%以上とすることがめっき性と合金化反応性の観点から望ましい。
【0039】
さらに、本発明が対象とする鋼は、強度−穴拡げ性バランスのさらなる向上を目的として、Nb,Bを添加することができる。
【0040】
Nbは、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化に極めて有効である。また、フェライト変態を遅滞させ、ベイナイトおよびベイニティックフェライトの生成を助長する。さらには、溶接熱影響部の軟化抑制にも効果的であることから、0.003質量%以上の添加とし。一方で、過剰添加は、延性や熱間加工性を劣化させることから、上限として0.3質量%とした。
【0041】
Bは、0.0001質量%以上の添加で粒界の強化や鋼材の高強度化に有効であるが、その添加量が0.01質量%を超えるとその効果が飽和するばかりでなく、Nbと同様に熱間加工性が低下するため、上限を0.01質量%とした。
【0042】
さらには、Cr、Co、Wの1種または2種以上を含有できる。
【0043】
Crは、強化および炭化物生成の抑制とベイナイトおよびベイニティックフェライト生成の目的から添加する元素で、0.01%以上とし、2%を超える量の添加では、加工性やめっき性に悪影響を及ぼすため、これを上限とした。
【0044】
Coは、ベイナイト変態制御による強度−穴拡げ性の良好なバランスのため、0.01質量%以上の添加とした。一方、添加の上限は特に設けないが、高価な元素であるため多量添加は経済性を損なうため、1質量%以下にすることが望ましい。
【0045】
Wは、0.01質量%以上で強化効果が現れ、0.3質量%を上限としたのは、これを超えると、加工性に悪影響を及ぼすためである。
【0046】
さらに、本発明が対象とする鋼は、強度と穴拡げ性とのバランスのさらなる向上を目的として強炭化物形成元素であるZr、Hf、Ta、Vの1種または2種以上を合計で0.001質量%以上添加としてもよい。一方で、延性や熱間加工性の劣化を招くことから、1種または2種以上の合計添加量の上限として1質量%とした。
【0047】
Ca、Mg、REMは、適量添加により介在物制御、特に微細分散化に寄与することから、1種又は2種以上の合計で0.0001%以上とし、一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため0.5質量%を上限とした。
【0048】
不可避的不純物として、例えばNやSnなどがあるがこれら元素を合計で0.2質量%以下の範囲で含有しても本発明の効果を損なうものではない。
【0049】
次に、基材鋼板の好ましいミクロ組織について述べる。
【0050】
900MPa以上の引張り強度と、優れた穴拡げ性を両立させるためには、主相としてベイナイトまたはベイニティックフェライトが適している。優れた穴拡げ性を得るためには、面積率で80%以上とする。
【0051】
また、ここで言うベイナイトはラス境界に炭化物が生成している上部ベイナイトおよびラス内に微細炭化物が生成している下部ベイナイトの双方を含む。また、ベイニティックフェライトは炭化物のないベイナイトを意味し、例えばアシキュラーフェライトがその1例である。
【0052】
穴拡げ性向上には、炭化物が微細分散している下部ベイナイトもしくは炭化物の無いベイニティックフェライトが主相で、面積率が85%を超えることが望ましい。
【0053】
その他残部組織として、フェライト、オーステナイト、マルテンサイト、上部ベイナイトの各組織の1種または2種以上の合計を、面積率として15%未満含有しても良い。さらには10%未満が好ましい。特に優れた穴拡げ性を得るためにはオーステナイト及びマルテンサイトは、面積率で5%以下、さらには3%以下とすることが好ましい。また、上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物、更には、これらの複合化合物を合計で面積率2%以下含有する場合も本発明で用いることができ、これらは主相の面積率に含めた。
【0054】
なお、上記ミクロ組織の各相、フェライト(ベイニティックフェライト)、ベイナイト、オーステナイト、マルテンサイト、界面酸化相および残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延直角方向断面を腐食して500倍〜1000倍の光学顕微鏡観察および1000〜100000倍の電子顕微鏡(走査型および透過型)により定量化が可能である。各20視野以上の観察を行い、ポイントカウント法や画像解析により各組織の面積率を求める事ができる。
【0055】
このような組織を有する穴拡げ性に優れた高強度鋼板およびの製造方法について以下に説明する。
【0056】
熱延後冷延・熱処理して本発明の鋼板を製造する場合には、所定の成分に調整されたスラブを直接もしくは一旦1000℃以下に冷却した後再加熱して熱延を行う。鋳造ままの鋼片をそのまま加熱して熱延することは加熱原単位の減少になり好ましく、また鋼片を1000℃以下まで冷却すると最終製品の延性の観点から好ましい。
【0057】
このときの再加熱温度は1100℃以上1300℃以下とすることが望ましい。再加熱温度が高温になると粗粒化や厚い酸化スケールが形成され、一方、低温加熱では圧延時の変形抵抗が高くなってしまう。
【0058】
また、熱延完了温度は鋼の化学成分によって決まるAr 変態温度以上で行うのが一般的であるが、Ar −100℃程度の温度までであれば最終的な鋼板の特性を劣化させない。また、冷却後の巻取温度は鋼の化学成分によって決まるベイナイト変態開始温度以上とすることで、冷延時の荷重を必要以上に高めることがさけられるが、冷延の全圧下率が小さい場合にはこの限りでなく、鋼のベイナイト変態温度以下で巻き取られても最終的な鋼板の特性を劣化させない。
【0059】
また熱延後は、高圧デスケーリング装置や酸洗することなどで表面スケール削除を行うと製品での表面清浄がよくなり、めっきを施す際に有利である。その後、冷延後熱処理し、溶融亜鉛めっきを施すことで最終製品とする。また、後処理として更に電気めっきを施してもよい。また、冷延の全圧下率は、最終板厚と冷延荷重の関係から設定されるが、30%以上であれば再結晶させるには十分で、最終的な鋼板の特性を劣化させない。
【0060】
冷延後加熱する際に、最高到達温度が鋼の化学成分によって決まる温度Ac 温度(例えば「鉄鋼材料学」:W.C.Leslie著、幸田成康監訳、丸善P273)未満の場合には、加熱時に得られるオーステナイト量が少ないので、最終的な鋼板中に主にベイナイトまたはベイニティックフェライトを生成させることができない。また、最高到達温度が高温となるほど結晶粒の粗大化や表面酸化が促進されるうえ、製造コストの上昇をまねくために、最高到達温度の上限を1100℃とした。Ac+100(℃)がより好ましい上限である。この温度域での熱処理時間は鋼板の温度均一化とオーステナイトの確保のために1秒以上が必要である。しかし、10分超では、粒界酸化相生成が促進されるうえ、コストの上昇を招くので1秒〜10分とすることが好ましい。ここで、加熱時の雰囲気が酸素濃度が50ppm以下で露点が−20℃以下とした。酸素濃度が50ppmを超えたり、露点が−20℃を超えると、鋼板のめっき性、特に濡れ性が劣化し、不めっきの原因となる。
【0061】
その後の冷却はオーステナイト相からフェライト相への変態をある程度抑制しつつ、ベイナイトまたはベイニティックフェライトを生成させるのに重要である。この冷却速度を0.1℃/秒未満にすることは、フェライトやパーライトの生成を促進して強度低下を招く懸念があることから、冷却速度の下限を0.1℃/秒とした。一方、冷却速度の上限は高いほうが有利であるが、連続溶融亜鉛めっきライン通板時の緩冷却によっても高い穴拡げ性を確保するのが本発明の目的であるため、あえて上限を20℃/秒とした。本発明鋼板は、10℃/秒以下の領域の冷却速度、即ち、従来の鋼板においては強度、及びその穴拡げ性を安定的に確保しにくい冷却速度条件下でも、その目標とする900MPa以上の強度及び45%以上の穴拡げ性を充分に安定的に確保できるのである。更に、この冷却過程において、0.1℃/秒〜20℃/秒の範囲で単一の冷却速度で目標とする温度まで冷却するのみならず、前記範囲内の冷却速度を複数個組み合わせることにより段階的に冷却速度を変えて目標とする温度まで冷却してもよい。
【0062】
冷却がめっき浴温度−20℃未満まで行われると、めっき浴浸入時の抜熱が大きいことなどの操業上の問題がある。また、冷却停止温度がめっき浴+50℃を超えると、操業上の問題に加え、その後の保持時に炭化物が生成してしまい、強度低下を招くため、これを上限とした。この温度域での停留時間が長時間になると生産性上好ましくないうえ、炭化物が生成してしまうことから1000秒以内とすることが望ましい。また、ベイナイト変態を進行させたり、めっき濡れ性を確保するため1秒以上保持し、好ましくは15秒から10分保持する。
【0063】
また、合金化処理を行う場合には、430℃以上580℃以下とした。合金化処理温度が430℃未満であると合金化の進行が遅く、生産性が悪い。また、580℃を超えると炭化物析出を伴い、材質劣化する。
【0064】
本発明で得られる鋼板の引っ張り強度は、900MPa以上である。好ましくは、980MPa以上である。上限はとくに限定しないが、1600MPa以上とするのは困難であるのでこれを上限とする。穴拡げ性は45%以上で、好ましくは60%以上とする。200%以上とすることは困難なのでこれが実質的な上限である。
【0065】
また、本発明の鋼は、溶接性にも優れている。溶接方法については、通常行われる溶接方法、たとえばアーク、スポット、TIG、MIG、マッシュおよびレーザー等の溶接方法に適合する。
【0066】
【実施例】
本発明になる鋼板について、ミクロ組織観察、鉄鋼連盟規定の穴拡げ試験、JISに準拠した引張り試験を行った。
【0067】
以下、実施例によって本発明をさらに詳細に説明する。
<実施例1>
表1、表2(表1のつづき)に示すような組成の鋳造スラブを一端室温まで冷却した後、1200℃に加熱し、Ar 変態温度以上である880℃〜910℃で熱延を完了し、冷却後各鋼の化学成分で決まるベイナイト変態開始温度以上である550℃で巻き取った厚さ2.5mmの鋼帯を酸洗後、冷延して1.2mm厚の鋼板とした。
【0068】
その後、各鋼の成分(質量%)から下記式にしたがってAc 変態温度を計算により求めた。

Figure 2004244675
Ac 変態温度から最高到達温度を決めた。各鋼において条件を満たす温度として870℃を選択し、各鋼とも最高到達温度は、870℃一定とした。昇温、冷却過程は、以下のように行った。即ち、昇温速度10℃/sで(最高到達温度−110)(℃)、即ちここでは、760℃まで昇温し、次に昇温速度2℃/秒で最高到達温度の870℃まで昇温したのち、0.2℃/秒の冷却速度で(最高到達温度−20)(℃)である温度、即ちここでは、850℃まで冷却し、更に650℃までを2℃/秒で冷却し、その後冷却速度を10℃/秒として500℃まで冷却し、引き続き、冷却速度を2℃/秒として460℃まで冷却した。引き続き460℃の溶融亜鉛めっき槽に浸漬し、その後3℃/秒の昇温速度で500℃まで加熱し、30秒保持して合金化処理を施した後、冷却した。
【0069】
これらの鋼板からJIS5号引張り試験片を採取して、機械的性質を測定した。さらに、鉄鋼連盟規格に準拠して穴拡げ試験を行い、穴拡げ率を求めた。各鋼の機械的性質及び穴拡げ性を表3に示す。本発明の要綱を満たす発明鋼は、穴拡げ性(45%以上)強度(引張り強度で900MPa以上)のバランスに優れていることがわかる。本発明鋼において、めっきの密着性などで特に問題は無く、めっき性は良好であるが、Ni及びCuが添加されている鋼種AB及びACにおいては、めっき外観の仕上がりが更に良好であることが分かった。即ち、これらの添加によって更にめっきの密着性等が向上し、めっき性がより良好になっていることが分かる。
【0070】
また、比較例である鋼種Qにおいては、Mo,Tiが添加されておらず、他の元素組成は、本発明の範囲であり、穴拡げ性において劣っていることが分かる。即ち本発明におけるMo,Tiの効果を示す例である。鋼種T及びUは、本発明鋼であり、強度、穴拡げ性ともに良好であるが、穴拡げ性が他の発明鋼に比較してやや劣る。
【0071】
鋼種T及び鋼種Uにおいては、Mo(質量%)+10xTi(質量%)が各々0.23(%)、0.21(%)である。この二鋼種以外の本発明になる鋼において、この量はすべて0.3(%)以上であり、発明実施の形態の項で述べたようにMo(質量%)+10xTi(質量%)≧0.3(%)が望ましいことが分かる。また、鋼種J及びKは、発明鋼であり、各々穴広げ率が76%、71%と充分な穴拡げ性を示すが、鋼種T及びUを除く本発明鋼と比較するとやや劣っている。これは、鋼種J及びKにおいて、Nb及びBが添加されていないため、冷却過程において組織に不均一性が生じやすくなっているためである。これは、実用に供するにあたって何の問題も生じせしめることはないが、Nb及びBを本発明の組成範囲内で添加することが好ましいことを示すものである。
【0072】
また、本発明の条件から外れる比較鋼は、すべて穴拡げ性が劣勢である。
【0073】
【表1】
Figure 2004244675
【0074】
【表2】
Figure 2004244675
【0075】
【表3】
Figure 2004244675
【0076】
<実施例2>
表1、表2(表1のつづき)に示した鋼のうち、鋼種A及び鋼種Rについて、冷延後の熱処理条件を変化させた。即ち、実施例1における熱処理条件において、最高到達温度及び、冷却過程における(最高到達温度−20)(℃)から650℃までの冷却速度を変化させた。その他の条件は、実施例1における条件と同一とした。(但し、最高到達温度が異なるため、昇温過程において10℃/秒の加熱速度で昇温する過程の到達温度であるところの(最高到達温度−110)(℃)は異なる。)それらの鋼について機械的性質及び穴拡げ性を測定した結果を表4に示す。本発明の条件を満たす発明鋼は、穴拡げ率(45%以上)、強度(引張り強度で900MPa以上)のバランスに優れていることがわかる。
【0077】
一方、本発明の条件から外れる比較鋼は、穴拡げ性が劣勢である。
【0078】
【表4】
Figure 2004244675
【0079】
<実施例3>
表1、表2(表1のつづき)に示した鋼のうち、鋼種Sについて鋳造スラブをそのまま実施例1と同じ条件で加熱〜冷延まで行い、冷延後に以下のように処理を行った。即ち、昇温速度5℃/sで最高到達温度まで昇温し、90秒保持し、次に5℃/秒の冷却速度で680℃まで冷却し、その後冷却速度を変化させて460℃まで冷却した。引き続き460℃の溶融亜鉛めっき槽に浸漬し、その後3℃/秒の昇温速度で500℃まで加熱し、30秒保持して合金化処理を施した後、冷却した。以上の処理過程において、最高到達温度、及び680℃から460℃までの冷却速度を変化させた。処理終了後、機械試験及び穴拡げ性の測定を行った。結果を表5に示す。本発明の条件を満たす発明鋼は、穴拡げ性(45%以上)強度(引張り強度で900MPa以上)のバランスに優れていることがわかる。
【0080】
一方、本発明の条件から外れる比較鋼は、穴拡げ性が劣勢である。
【0081】
【表5】
Figure 2004244675
【0082】
【発明の効果】
本発明により、引張り強度が900MPa以上であり、穴拡げ性が45%以上である溶融亜鉛めっき高強度鋼板およびその製造方法を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to hot-dip galvanized and hot-dip galvanized high-strength steel sheets having excellent hole-expanding properties and suitable for building materials, home appliances, automobiles, and the like, and a method for producing the same. The zinc plating in the present invention includes not only ordinary hot-dip galvanizing but also alloyed hot-dip galvanizing. The plating layer may contain Fe, Al, Mg, Cr, etc. in addition to pure zinc.
[0002]
[Prior art]
In recent years, demand for high-strength steel sheets having good workability for the purpose of improving fuel efficiency and durability has been increasing, particularly in automobile bodies. In addition, steel plates having a tensile strength of 780 MPa class or higher have been used in some members such as reinforces in view of the need for collision safety and an increase in cabin space.
[0003]
When assembling a member using such a high-strength material, various characteristics such as ductility, bendability, and hole-expandability are important. For high-strength steel sheets with a tensile strength of up to about 590 MPa, countermeasures against these are taken. Have been.
[0004]
For example, as for the hole expandability, as disclosed in Non-Patent Document 1, the main phase is bainite to improve the hole expandability, and also for the stretch formability, it is necessary to form the retained austenite in the second phase. Has been proposed to exhibit the same overhang property as the existing retained austenitic steel. Furthermore, it is also shown that when austempering is performed at a temperature of Ms or lower to generate a retained austenite having a volume ratio of 2 to 3%, the tensile strength × the hole expansion rate is maximized. However, the technology disclosed herein is for a steel plate of about 590 MPa, and simply does not hold for a steel sheet exceeding 900 MPa.
[0005]
In addition, in order to increase the ductility of a high-strength material, it is common to actively use a composite structure. However, when martensite or retained austenite is used for the second phase, there is a problem that the hole expandability is significantly reduced (for example, Non-Patent Document 2). In addition, this document discloses that the main phase is ferrite and the second phase is martensite, and the hole expansion ratio is improved by reducing the difference in hardness between the two. %, There is no significant improvement.
[0006]
In addition, there are some disclosed examples of hot-dip galvanizing with a tensile strength of 900 MPa or more. These are listed below.
[0007]
(1) Patent Literature 1 and Patent Literature 2 disclose techniques capable of obtaining high strength. However, since the composite structure is mainly used, a hardness difference between the phases occurs, and the hole expansion rate is 30%. % Or less.
[0008]
(2) In Patent Document 3, by setting the C concentration to 0.1 to 0.2% and the Mn concentration to 2 to 3%, the austenite phase is stabilized, and after heat treatment in a plating line, 480 ° C. to 560. There is disclosed a method of obtaining strength and workability by maintaining an austenite phase by maintaining a low temperature at ℃. However, since there is a retained austenite phase, an uneven composite structure is likely to be formed, and the hole expansion rate is not improved.
[0009]
(3) In Patent Document 4, a small amount of Mo, Ti, Cr, Nb, B, V, etc. is added to C: 0.05%, Si: 0.55%, Mn: 1.59%, and 93 % Hole expansion ratio, but due to low Mn, when the heating temperature during heat treatment is low, or when the cooling rate after heat treatment is low, a heterogeneous composite structure is formed, resulting in a stably high hole. It is difficult to obtain expandability.
[0010]
(4) Patent Document 5 discloses an example in which Nb and B are added in trace amounts to C: 0.16%, Mn: 2.3%, and Ti: 0.01%, and has a strength of about 1180 MPa. However, the hole expansion rate is 40% or less because of the difference in hardness between the phases because of the composite structure.
[0011]
Therefore, there is no hot-dip galvanized steel sheet which has a tensile strength of 900 MPa or more and a hole expansion ratio of 45% or more and has excellent hole expandability.
[0012]
[Non-patent document 1]
CAMP-ISIJ vol. 13 (2000) p. 395
[Non-patent document 2]
CAMP-ISIJ, vol. 13 (2000), p. 391
[Patent Document 1]
Japanese Patent No. 2607906
[Patent Document 2]
Japanese Patent No. 2862187
[Patent Document 3]
JP-A-1-198459
[Patent Document 4]
JP 2001-355043 A
[Patent Document 5]
Japanese Patent No. 3037767
[0013]
[Problems to be solved by the invention]
One of the causes of the above-mentioned problem is the cooling capacity in the continuous hot-dip galvanizing process. That is, in the same process, after the steel sheet reaches the maximum temperature, a relatively low cooling rate of 0.1 ° C./sec to 20 ° C./sec is generally employed, so that the structure tends to be uneven. As a result, the hole expandability deteriorates. Furthermore, in the case of a steel sheet that has been subjected to alloyed hot-dip galvanizing, the steel sheet is immersed in a hot-dip galvanizing bath, then subjected to a continuous heat treatment, alloyed, and then continuously wound up. In the heat treatment process for carbonization, the supersaturated solid solution carbon in iron precipitates as iron carbide in the structure of the steel sheet built up to that point, and the finely precipitated iron carbide in the steel sheet coarsens. Phenomenon occurs, and the organization is deteriorated. Along with this, the hole expandability is significantly deteriorated.
[0014]
The present invention solves such problems of the prior art, and provides a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized high-strength steel sheet having excellent hole expandability with a tensile strength of 900 MPa or more, and a method for producing them. The purpose is to do.
[0015]
[Means for Solving the Problems]
As a result of various studies, the present inventors have found that by limiting the chemical components, a hot-dip galvanized steel sheet having a tensile strength of 900 MPa or more and excellent hole expandability can be obtained. The high-strength steel sheet according to the present invention has a hole expansion ratio defined by [(inner diameter of hole after hole expansion test / hole diameter before hole expansion test) −1] × 100 of 45% or more, and is excellent in corrosion resistance. Needless to say, the softening of the heat affected zone is suppressed and the fatigue durability of the welded portion is excellent.
[0016]
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[0017]
(1) In mass%,
C: 0.03-0.12%,
Si: 0.001 to 0.8%
Mn: 2.3 to 3.3%,
P: 0.001-0.1%,
S: 0.0001-0.01%,
Al: 0.001 to 0.2%
Containing, further,
Mo: 0.11 to 1.0%,
Ti: 0.005 to 0.3%
A high-strength hot-dip galvanized steel sheet having excellent hole expandability, characterized by containing Fe and the remainder being Fe and inevitable impurities, having a tensile strength of 900 MPa or more, and a hole expansion ratio of 45% or more.
[0018]
(2) The above-mentioned (1), further comprising one or two of Ni: 0.01 to 2.0% and Cu: 0.001 to 2.0% by mass%. Hot-dip galvanized high-strength steel sheet with excellent hole expansion properties.
[0019]
(3) The above (1) or (1), further comprising one or two of B: 0.0001 to 0.01% and Nb: 0.003 to 0.3% by mass%. A hot-dip galvanized high-strength steel sheet excellent in hole expandability according to 2).
[0020]
(4) Further, one or more of Cr: 0.01 to 2%, Co: 0.01 to 1%, and W: 0.01 to 0.3% are contained by mass%. The hot-dip galvanized high-strength steel sheet excellent in hole expandability according to any one of the above (1) to (3).
[0021]
(5) Any one of the above (1) to (4), further comprising one or more of Zr, Hf, Ta and V in a mass% of 0.001 to 1% in total. 2. A hot-dip galvanized high-strength steel sheet having excellent hole expandability according to claim 1.
[0022]
(6) Any one of the above (1) to (5), further containing one or more of Ca, Mg, and REM in a mass% of 0.0001 to 0.5% in total. 2. A hot-dip galvanized high-strength steel sheet having excellent hole expandability according to claim 1.
[0023]
(7) The cast slab comprising the component described in any one of the above (1) to (6) is directly or temporarily cooled to 1000 ° C. or lower, and then heated again. After washing and cold rolling, the atmosphere is adjusted to have an oxygen concentration of 50 ppm or less, a dew point of -20 ° C or less, and a maximum temperature of Ac. 3 (° C) or more and 1100 ° C or less, and then cooled at a cooling rate of 0.1 to 20 ° C / sec to a temperature range of −20 ° C to + 50 ° C. High-strength hot-dip galvanized steel with excellent tensile strength of 900MPa or more and excellent hole-expansion rate of 45% or more, characterized by holding for 1 second to 1000 seconds including immersion in a temperature range. Steel plate manufacturing method.
[0024]
(8) In the manufacturing method described in the above (7), the temperature is cooled to a temperature range of zinc plating bath temperature −20 ° C. to zinc plating bath temperature + 50 ° C., and subsequently 1 second to 1000 seconds including plating immersion at the same temperature range. A method for producing a hot-dip galvanized high-strength steel sheet having excellent hole expandability, wherein alloying treatment is performed at 430 ° C. to 580 ° C. after holding for seconds.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0026]
First, the reason for limiting the preferred range of the steel sheet component in the present invention will be described.
[0027]
C: 0.03 to 0.12%
It is an element added for the purpose of controlling the fractions of the main phase and the second phase for securing a good strength-hole expanding property balance. It also affects the fine uniformity of the substrate. To secure the strength and the area ratio of each second phase, 0.03% by mass (hereinafter the same) is required. If it exceeds 0.12%, the hole expandability is reduced, so this is made the upper limit. Further, the strength of the welded portion is likely to deteriorate.
0.04 to 0.10% is a more preferable range.
[0028]
Si: 0.001 to 0.8%
Si is an element added for the purpose of suppressing the formation of relatively coarse carbides that degrade the strength-ductility balance, but since the plating property is significantly deteriorated, the upper limit is set to 0.8%. Excessive addition has a bad influence on weldability. From the viewpoint of surface properties, the upper limit is preferably set to 0.6%. On the other hand, since ultra-low Si causes an increase in manufacturing cost, it is desirable to add 0.001% or more that does not greatly deteriorate the plating property.
[0029]
Mn: 2.3 to 3.3%
Mn is important for the present invention. That is, it has been found that it is extremely important to limit Mn to a predetermined range for a relatively slow cooling rate in the hot-dip galvanizing line from the viewpoint of hole expandability. A uniform structure is obtained by suppressing the ferrite transformation and setting the main phase, which is the phase having the largest area ratio, to bainite or bainitic ferrite. Further, the content is set to 2.3% by mass or more in order to suppress carbide precipitation and pearlite generation, which are one cause of a decrease in strength and a deterioration in hole expandability. Preferably, the lower limit is more than 2.5%. On the other hand, excessive addition promotes the formation of martensite and causes remarkable decrease in ductility and hole expandability due to segregation and the like, so the upper limit was set to 3.3% by mass.
[0030]
P: 0.001-0.1%
P is a strengthening element. Further, lowering the P improves the hole-expanding property, but the extremely lowering is economically disadvantageous, so the lower limit was made 0.001% by mass. Further, the addition of a large amount has an adverse effect on weldability, manufacturability during casting or hot rolling, and also on hole expandability, so the upper limit was made 0.1%.
[0031]
S: 0.0001-0.01%
As for S, lowering S is effective in improving hole expandability. On the other hand, since the extremely low S is economically disadvantageous, the lower limit of 0.0001% by mass and the upper limit of 0.01% by mass are that the addition of an amount exceeding this lowers the hole in the steel sheet. This is because it has an adverse effect on the spreadability. More preferably, the upper limit is 0.003%.
[0032]
Al: 0.001 to 0.2%
Al is effective as a deoxidizing element. Therefore, the lower limit is 0.001% by mass. On the other hand, excessive addition impairs hole expandability, weldability and plating wettability, so the upper limit was made 0.2%. Preferably, it is in the range of 0.005 to 0.08%.
[0033]
Mo: 0.11 to 1%
Ti: 0.005 to 0.3%
Mo and Ti are extremely important for the present invention. That is, good hole expandability can be obtained only by adding Mo and Ti in a combined manner and setting the Mn content to 2.3% or more as described above. The effect is obtained when the amount of Mo added is 0.11% or more. However, if it exceeds 1%, an increase in cost becomes a problem, so the upper limit is made 1.0%. Mo also has the effect of improving the hardenability and preventing softening in the heat-affected zone during welding.
[0034]
The lower limit of Ti is set to 0.005% by mass from the above viewpoint. Further, excessive addition causes deterioration of ductility and hole expandability, so the upper limit is made 0.3%. Ti basically suppresses the formation of carbides and pearlite that deteriorate the strength-hole expandability balance. In addition, it is effective for suppressing ferrite transformation and making the main phase bainite or bainitic ferrite, and has excellent strength-hole expandability and weldability of plated material and extremely good fatigue durability after welding. It is effective for obtaining balance. However, the effect of adding only Ti is not sufficient for the purpose of the present invention, and as described above, it is essential to add Mn and Mo at the same time. More preferably, Mo: 0.20 or more and Ti: 0.015 or more. In order to further promote the effect of the composite addition of Mo and Ti, it is desirable that Mo (% by mass) + 10 × Ti (% by mass) ≧ 0.3%.
[0035]
Further, the steel targeted by the present invention may be added with Cu and Ni for the purpose of improving the plating property without adversely affecting the strength-hole expandability balance.
[0036]
Ni has the purpose of improving the hardenability in addition to the improvement of the plating property, and is set to 0.01% by mass or more. , The upper limit was set.
[0037]
Cu also has the purpose of improving the strength in addition to the improvement of the plating property. When Cu is added in an amount of 0.001% by mass or more, if it exceeds 2% by mass, workability and manufacturability are adversely affected.
[0038]
In particular, when the amount of Si is 0.3% or more, it is desirable to make Ni 0.2% or more and Cu 0.1% or more from the viewpoint of plating property and alloying reactivity.
[0039]
Furthermore, Nb and B can be added to the steel targeted by the present invention for the purpose of further improving the strength-hole expandability balance.
[0040]
Nb forms fine carbides, nitrides or carbonitrides and is extremely effective in strengthening steel sheets. It also slows down ferrite transformation and promotes the formation of bainite and bainitic ferrite. Further, it is effective in suppressing the softening of the heat affected zone by welding, so 0.003% by mass or more is added. On the other hand, since excessive addition deteriorates ductility and hot workability, the upper limit is set to 0.3% by mass.
[0041]
B is effective for strengthening grain boundaries and increasing the strength of steel when added in an amount of 0.0001% by mass or more. However, when the amount exceeds 0.01% by mass, not only the effect is saturated but also Nb Since the hot workability is reduced as in the case of the above, the upper limit is set to 0.01% by mass.
[0042]
Further, one or more of Cr, Co, and W can be contained.
[0043]
Cr is an element added for the purpose of strengthening, suppressing the formation of carbides, and forming bainite and bainitic ferrite. When Cr is added in an amount of 0.01% or more, workability and plating property are adversely affected. Therefore, this was set as the upper limit.
[0044]
Co was added in an amount of 0.01% by mass or more for a good balance between strength and hole expandability by controlling bainite transformation. On the other hand, the upper limit of the addition is not particularly set. However, since it is an expensive element, the addition of a large amount impairs the economic efficiency, so that it is preferable to set the amount to 1% by mass or less.
[0045]
The effect of strengthening appears when W is 0.01% by mass or more, and the upper limit is set to 0.3% by mass.
[0046]
Further, in the steel targeted by the present invention, in order to further improve the balance between strength and hole expandability, one or more of Zr, Hf, Ta, and V, which are strong carbide forming elements, are added in a total amount of 0.1%. 001% by mass or more may be added. On the other hand, since the ductility and the hot workability are deteriorated, the upper limit of the total amount of one or two or more kinds is set to 1% by mass.
[0047]
Ca, Mg, and REM contribute to inclusion control, particularly fine dispersion, when added in appropriate amounts. Therefore, the total amount of one or more of them is 0.0001% or more. In order to reduce the productivity such as workability and the ductility of the steel sheet product, the upper limit is 0.5% by mass.
[0048]
Inevitable impurities include, for example, N and Sn. However, even if these elements are contained in a total amount of 0.2% by mass or less, the effect of the present invention is not impaired.
[0049]
Next, a preferred microstructure of the base steel sheet will be described.
[0050]
In order to achieve both a tensile strength of 900 MPa or more and excellent hole expandability, bainite or bainitic ferrite is suitable as the main phase. In order to obtain excellent hole expandability, the area ratio is set to 80% or more.
[0051]
In addition, the bainite referred to here includes both upper bainite in which carbide is generated at the lath boundary and lower bainite in which fine carbide is generated in the lath. Further, bainitic ferrite means bainite without carbide, and for example, acicular ferrite is one example.
[0052]
To improve the hole expandability, it is desirable that the lower bainite in which carbide is finely dispersed or the bainitic ferrite without carbide is the main phase and the area ratio exceeds 85%.
[0053]
Other than the remaining structure, one or more of the respective structures of ferrite, austenite, martensite, and upper bainite may be contained in an area ratio of less than 15%. More preferably, it is less than 10%. In order to obtain particularly excellent hole expandability, the area ratio of austenite and martensite is preferably 5% or less, more preferably 3% or less. In addition to the above, the present invention can also be used in the present invention in cases where the remaining microstructure includes carbides, nitrides, sulfides, oxides, and further, these composite compounds have a total area ratio of 2% or less. These were included in the area ratio of the main phase.
[0054]
The identification of each phase of the above microstructure, ferrite (bainitic ferrite), bainite, austenite, martensite, interfacial oxide phase and the remaining structure, observation of the existing position, and measurement of the area ratio were carried out by the Nital reagent and the method disclosed in Corrosion of the cross section in the rolling direction of the steel sheet or the cross section in the direction perpendicular to the rolling by the reagent disclosed in JP-A-59-219473, and quantification by observation with an optical microscope of 500 to 1000 times and an electron microscope of 1000 to 100,000 times (scanning type and transmission type). Is possible. By observing at least 20 visual fields, the area ratio of each tissue can be determined by the point count method or image analysis.
[0055]
A method for producing a high-strength steel sheet having such a structure and excellent in hole expandability and a method for producing the same will be described below.
[0056]
When the steel sheet of the present invention is manufactured by cold rolling and heat treatment after hot rolling, a slab adjusted to a predetermined component is directly or temporarily cooled to 1000 ° C. or lower and then reheated to perform hot rolling. It is preferable to heat the as-cast steel slab and hot-roll it as it is, because it reduces the heat intensity, and it is preferable to cool the slab to 1000 ° C. or less from the viewpoint of the ductility of the final product.
[0057]
It is desirable that the reheating temperature at this time be 1100 ° C. or more and 1300 ° C. or less. When the reheating temperature is high, coarse grains and a thick oxide scale are formed, while on the other hand, when the reheating temperature is low, the deformation resistance during rolling increases.
[0058]
The hot-rolling completion temperature is determined by the chemical composition of steel. 3 Generally, the reaction is performed at a temperature higher than the transformation temperature. 3 Up to a temperature of about −100 ° C., the properties of the final steel sheet are not deteriorated. In addition, by setting the winding temperature after cooling to be higher than the bainite transformation start temperature determined by the chemical composition of the steel, the load during cold rolling can be increased more than necessary, but when the total draft of the cold rolling is small, Is not limited thereto, and does not deteriorate the properties of the final steel sheet even if it is wound at a temperature lower than the bainite transformation temperature of the steel.
[0059]
After hot rolling, if the surface scale is removed by a high-pressure descaling apparatus or pickling, the surface of the product can be cleaned well, which is advantageous when plating. After that, heat treatment is performed after cold rolling, and hot-dip galvanizing is performed to obtain a final product. Further, electroplating may be further performed as a post-treatment. Further, the total rolling reduction of the cold rolling is set from the relationship between the final sheet thickness and the cold rolling load, but if it is 30% or more, it is sufficient for recrystallization and does not deteriorate the properties of the final steel sheet.
[0060]
When heating after cold rolling, the maximum temperature, Ac, is determined by the chemical composition of the steel. 3 If the temperature is lower than the temperature (for example, “Steel Materials Science”: WC Leslie, translated by Shigeyasu Koda, Maruzen P273), the amount of austenite obtained during heating is small, so that bainite or bayite is mainly contained in the final steel sheet. Nitic ferrite cannot be generated. Further, as the maximum temperature reaches a higher temperature, the coarsening of the crystal grains and the surface oxidation are promoted, and the upper limit of the maximum temperature is set to 1100 ° C. in order to increase the production cost. Ac 3 +100 (° C.) is a more preferred upper limit. The heat treatment time in this temperature range requires 1 second or more in order to make the temperature of the steel sheet uniform and to secure austenite. However, if the time exceeds 10 minutes, the formation of the grain boundary oxidized phase is promoted and the cost is increased. Therefore, the time is preferably 1 second to 10 minutes. Here, the atmosphere at the time of heating was set to have an oxygen concentration of 50 ppm or less and a dew point of -20 ° C or less. If the oxygen concentration exceeds 50 ppm or the dew point exceeds −20 ° C., the plating property, particularly the wettability, of the steel sheet deteriorates, which causes non-plating.
[0061]
Subsequent cooling is important for forming bainite or bainitic ferrite while suppressing the transformation of the austenite phase to the ferrite phase to some extent. When the cooling rate is set to less than 0.1 ° C./sec, there is a concern that the formation of ferrite or pearlite is promoted and the strength is reduced, so the lower limit of the cooling rate is set to 0.1 ° C./sec. On the other hand, it is advantageous that the upper limit of the cooling rate is higher. However, since the object of the present invention is to secure high hole expandability even by slow cooling during continuous hot-dip galvanizing line passing, the upper limit is intentionally set at 20 ° C. / Seconds. The steel sheet of the present invention has a cooling rate in the region of 10 ° C./sec or less, that is, the target steel sheet has a target cooling rate of 900 MPa or more even under a cooling rate condition in which it is difficult to stably secure strength and hole expandability in the conventional steel sheet. Strength and hole expandability of 45% or more can be sufficiently and stably secured. Further, in this cooling process, not only cooling to a target temperature at a single cooling rate in the range of 0.1 ° C./sec to 20 ° C./sec, but also combining a plurality of cooling rates within the above-mentioned range. The cooling rate may be changed stepwise to cool to a target temperature.
[0062]
If cooling is performed to a plating bath temperature of less than −20 ° C., there is an operational problem such as a large heat removal when the plating bath enters. Further, when the cooling stop temperature exceeds + 50 ° C. in the plating bath, in addition to the problem in operation, carbides are generated at the time of subsequent holding, resulting in a decrease in strength. If the residence time in this temperature range is long, it is not preferable from the viewpoint of productivity, and carbide is generated. In order to promote bainite transformation and to ensure plating wettability, the temperature is maintained for 1 second or more, preferably for 15 seconds to 10 minutes.
[0063]
In the case of performing the alloying treatment, the temperature was set to 430 ° C. or more and 580 ° C. or less. When the alloying temperature is lower than 430 ° C., the progress of alloying is slow, and the productivity is poor. On the other hand, if the temperature exceeds 580 ° C., carbides are precipitated and the material is deteriorated.
[0064]
The steel sheet obtained by the present invention has a tensile strength of 900 MPa or more. Preferably, it is 980 MPa or more. The upper limit is not particularly limited, but it is difficult to increase the pressure to 1600 MPa or more. The hole spreadability is 45% or more, preferably 60% or more. This is a practical upper limit because it is difficult to make the content 200% or more.
[0065]
Further, the steel of the present invention is excellent in weldability. As for the welding method, it is compatible with welding methods usually performed, for example, welding methods such as arc, spot, TIG, MIG, mash and laser.
[0066]
【Example】
The steel sheet according to the present invention was subjected to microstructure observation, a hole expansion test prescribed by the Iron and Steel Federation, and a tensile test in accordance with JIS.
[0067]
Hereinafter, the present invention will be described in more detail with reference to examples.
<Example 1>
A cast slab having a composition as shown in Tables 1 and 2 (continued from Table 1) was once cooled to room temperature and then heated to 1200 ° C. 3 Hot rolling is completed at 880 ° C to 910 ° C, which is higher than the transformation temperature, and after cooling, a 2.5mm thick steel strip wound at 550 ° C, which is higher than the bainite transformation start temperature determined by the chemical composition of each steel, is pickled. Thereafter, the steel sheet was cold-rolled into a steel sheet having a thickness of 1.2 mm.
[0068]
Then, from the components (% by mass) of each steel, Ac 3 The transformation temperature was determined by calculation.
Figure 2004244675
Ac 3 The ultimate temperature was determined from the transformation temperature. 870 ° C. was selected as the temperature satisfying the conditions in each steel, and the maximum attained temperature was 870 ° C. constant for each steel. The heating and cooling processes were performed as follows. That is, at a heating rate of 10 ° C./s (maximum reaching temperature −110) (° C.), that is, in this case, the temperature is raised to 760 ° C., and then at a heating rate of 2 ° C./sec to the maximum reaching temperature of 870 ° C. After heating, at a cooling rate of 0.2 ° C./sec, the temperature is (maximum attained temperature −20) (° C.), ie, here, it is cooled to 850 ° C., and further cooled to 650 ° C. at 2 ° C./sec. Thereafter, cooling was performed at a cooling rate of 10 ° C./sec to 500 ° C., followed by cooling at a cooling rate of 2 ° C./sec to 460 ° C. Subsequently, it was immersed in a hot-dip galvanizing bath at 460 ° C., heated to 500 ° C. at a rate of 3 ° C./sec, held for 30 seconds to perform an alloying treatment, and then cooled.
[0069]
JIS No. 5 tensile test pieces were collected from these steel sheets, and their mechanical properties were measured. Further, a hole expansion test was performed in accordance with the standards of the Iron and Steel Federation to determine the hole expansion ratio. Table 3 shows the mechanical properties and hole expandability of each steel. It can be seen that the invention steel satisfying the requirements of the present invention has an excellent balance of hole expandability (45% or more) and strength (tensile strength of 900 MPa or more). In the steel of the present invention, there is no particular problem in the adhesion of the plating and the like, and the plating properties are good. However, in the steel types AB and AC to which Ni and Cu are added, the finish of the plating appearance is more favorable. Do you get it. That is, it can be seen that the addition of these further improves the plating adhesion and the like, and further improves the plating properties.
[0070]
In addition, in the steel type Q as a comparative example, Mo and Ti were not added, and the other element compositions were within the scope of the present invention, and it was found that the hole expandability was poor. That is, this is an example showing the effects of Mo and Ti in the present invention. Steel types T and U are steels of the present invention and have good strength and hole expandability, but are slightly inferior in hole expandability to other invention steels.
[0071]
In steel type T and steel type U, Mo (% by mass) + 10 × Ti (% by mass) is 0.23 (%) and 0.21 (%), respectively. In the steels according to the present invention other than these two steel types, the amounts are all 0.3 (%) or more, and as described in the section of the embodiment of the invention, Mo (% by mass) + 10 × Ti (% by mass) ≧ 0. It is understood that 3 (%) is desirable. Further, steel types J and K are invention steels, and have sufficient hole expandability of 76% and 71%, respectively, but are slightly inferior to the steels of the present invention except steel types T and U. This is because in the steel types J and K, since Nb and B are not added, the structure tends to be non-uniform during the cooling process. This does not cause any problem in practical use, but indicates that it is preferable to add Nb and B within the composition range of the present invention.
[0072]
All of the comparative steels that do not satisfy the conditions of the present invention have inferior hole expandability.
[0073]
[Table 1]
Figure 2004244675
[0074]
[Table 2]
Figure 2004244675
[0075]
[Table 3]
Figure 2004244675
[0076]
<Example 2>
Of the steels shown in Tables 1 and 2 (continued from Table 1), the heat treatment conditions after cold rolling were changed for steel types A and R. That is, under the heat treatment conditions in Example 1, the maximum attained temperature and the cooling rate from (maximum attained temperature−20) (° C.) to 650 ° C. in the cooling process were changed. Other conditions were the same as those in Example 1. (However, since the maximum temperature is different, (the maximum temperature-110) (° C.) which is the temperature reached in the process of raising the temperature at a heating rate of 10 ° C./sec in the temperature raising process is different.) Table 4 shows the results of measuring the mechanical properties and the hole expandability of the sample. It can be seen that the invention steel satisfying the conditions of the present invention has an excellent balance between the hole expansion rate (45% or more) and the strength (tensile strength of 900 MPa or more).
[0077]
On the other hand, the comparative steels deviating from the conditions of the present invention are inferior in hole expandability.
[0078]
[Table 4]
Figure 2004244675
[0079]
<Example 3>
Among the steels shown in Tables 1 and 2 (continued from Table 1), for the steel type S, the cast slab was directly subjected to heating to cold rolling under the same conditions as in Example 1, and after the cold rolling, the following treatment was performed. . That is, the temperature is raised to the highest temperature at a rate of 5 ° C./s, held for 90 seconds, then cooled to 680 ° C. at a cooling rate of 5 ° C./sec, and then changed to a cooling rate of 460 ° C. did. Subsequently, it was immersed in a hot-dip galvanizing bath at 460 ° C., heated to 500 ° C. at a rate of 3 ° C./second, held for 30 seconds to perform an alloying treatment, and then cooled. In the above process, the maximum temperature and the cooling rate from 680 ° C. to 460 ° C. were changed. After the treatment, a mechanical test and a measurement of hole expandability were performed. Table 5 shows the results. It can be seen that the invention steel satisfying the conditions of the present invention has an excellent balance of hole expandability (45% or more) and strength (tensile strength of 900 MPa or more).
[0080]
On the other hand, the comparative steels deviating from the conditions of the present invention are inferior in hole expandability.
[0081]
[Table 5]
Figure 2004244675
[0082]
【The invention's effect】
According to the present invention, a hot-dip galvanized high-strength steel sheet having a tensile strength of 900 MPa or more and a hole expandability of 45% or more and a method for producing the same can be obtained.

Claims (8)

質量%で、
C :0.03〜0.12%、
Si:0.001〜0.8%、
Mn:2.3〜3.3%、
P:0.001〜0.1%、
S:0.0001〜0.01%、
Al:0.001〜0.2%
を含有し、さらに、
Mo:0.11〜1.0%、
Ti:0.005〜0.3%
を含有し、残部をFeおよび不可避的不純物とし、引張強度が900MPa以上であり、且つ穴拡げ率が45%以上であることを特徴とする穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
In mass%,
C: 0.03-0.12%,
Si: 0.001 to 0.8%,
Mn: 2.3 to 3.3%,
P: 0.001-0.1%,
S: 0.0001-0.01%,
Al: 0.001 to 0.2%
Containing, further,
Mo: 0.11 to 1.0%,
Ti: 0.005 to 0.3%
A high-strength hot-dip galvanized steel sheet having excellent hole expandability, characterized by containing Fe and the remainder being Fe and inevitable impurities, having a tensile strength of 900 MPa or more, and a hole expansion ratio of 45% or more.
さらに、質量%で、
Ni:0.01〜2.0%、
Cu:0.001〜2.0%、
の1種または2種を含有することを特徴とする請求項1に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
Furthermore, in mass%,
Ni: 0.01 to 2.0%,
Cu: 0.001 to 2.0%,
The hot-dip galvanized high-strength steel sheet having excellent hole expandability according to claim 1, comprising one or two of the following.
さらに、質量%で、
B:0.0001〜0.01%、
Nb:0.003〜0.3%、
の1種または2種を含有することを特徴とする請求項1または請求項2に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
Furthermore, in mass%,
B: 0.0001 to 0.01%,
Nb: 0.003 to 0.3%,
The hot-dip galvanized high-strength steel sheet excellent in hole expandability according to claim 1 or 2, which comprises one or two of the following.
さらに、質量%で、
Cr:0.01〜2.0%
Co:0.01〜1%、
W :0.01〜0.3%
の1種または2種以上を含有することを特徴とする請求項1〜請求項3のいずれか1項に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。
Furthermore, in mass%,
Cr: 0.01 to 2.0%
Co: 0.01-1%,
W: 0.01 to 0.3%
The hot-dip galvanized high-strength steel sheet having excellent hole expandability according to any one of claims 1 to 3, wherein the hot-dip galvanized steel sheet contains one or more of the following.
さらに、質量%で、Zr、Hf、Ta、Vの1種または2種以上を合計で0.001〜1%含有することを特徴とする請求項1〜請求項4のいずれか1項に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。5. The composition according to claim 1, further comprising, in mass%, one or more of Zr, Hf, Ta, and V in a total amount of 0.001 to 1%. 6. Hot-dip galvanized high-strength steel sheet with excellent hole expansion properties. さらに、質量%で、Ca、Mg、REMの1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする請求項1〜請求項5のいずれか1項に記載の穴拡げ性に優れた溶融亜鉛めっき高強度鋼板。Furthermore, one or more of Ca, Mg, and REM are contained in a total of 0.0001 to 0.5% by mass, and the total is 0.001 to 0.5%. Hot-dip galvanized high-strength steel sheet with excellent hole expansion properties. 請求項1〜請求項6のいずれか1項に記載の成分からなる鋳造スラブを直接または一旦1000℃以下まで冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後雰囲気を酸素濃度が50ppm以下、露点を−20℃以下とし、最高到達温度をAc (℃)以上1100℃以下とする熱処理をした後に、0.1〜20℃/秒の冷却速度で亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持を行うことを特徴とする引張強度が900MPa以上であり、且つ穴拡げ率が45%以上である穴拡げ性に優れた溶融亜鉛めっき高強度鋼板の製造方法。A cast slab comprising the component according to any one of claims 1 to 6 is directly or once cooled to 1000 ° C or lower and then heated again, and the hot-rolled hot-rolled steel sheet is pickled and then cold-rolled. After that, the atmosphere is subjected to a heat treatment in which the oxygen concentration is 50 ppm or less, the dew point is -20 ° C or less, and the maximum temperature is Ac 3 (° C.) or more and 1100 ° C. or less, and the cooling rate is 0.1 to 20 ° C./sec. The temperature is reduced to a temperature range of -20 ° C. to + 50 ° C. in the galvanizing bath temperature, and then maintained for 1 to 1000 seconds including immersion in the same temperature range, wherein the tensile strength is 900 MPa. A method for producing a hot-dip galvanized high-strength steel sheet which is excellent in hole expandability and has a hole expansion ratio of 45% or more. 請求項7に記載の製造方法において、亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持後、合金化処理を430℃〜580℃にて行うことを特徴とする穴拡げ性に優れた溶融亜鉛めっき高強度鋼板の製造方法。The manufacturing method according to claim 7, wherein the temperature is cooled to a temperature range of zinc plating bath temperature -20 ° C to zinc plating bath temperature + 50 ° C, and subsequently held for 1 second to 1000 seconds including plating immersion in the same temperature range, A method for producing a hot-dip galvanized high-strength steel sheet having excellent hole expandability, wherein the alloying treatment is performed at 430 ° C to 580 ° C.
JP2003035291A 2003-02-13 2003-02-13 Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same Expired - Fee Related JP4288085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035291A JP4288085B2 (en) 2003-02-13 2003-02-13 Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035291A JP4288085B2 (en) 2003-02-13 2003-02-13 Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004244675A true JP2004244675A (en) 2004-09-02
JP4288085B2 JP4288085B2 (en) 2009-07-01

Family

ID=33020755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035291A Expired - Fee Related JP4288085B2 (en) 2003-02-13 2003-02-13 Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same

Country Status (1)

Country Link
JP (1) JP4288085B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119842A (en) * 2005-10-27 2007-05-17 Jfe Steel Kk Method for producing high-strength galvanized steel sheet excellent in stretch-flanging property
WO2008078912A1 (en) * 2006-12-27 2008-07-03 Posco Zn-coated steel sheet having excellent surface quality and the method for manufacturing the same
WO2008082146A1 (en) * 2006-12-28 2008-07-10 Posco High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119842A (en) * 2005-10-27 2007-05-17 Jfe Steel Kk Method for producing high-strength galvanized steel sheet excellent in stretch-flanging property
WO2008078912A1 (en) * 2006-12-27 2008-07-03 Posco Zn-coated steel sheet having excellent surface quality and the method for manufacturing the same
WO2008082146A1 (en) * 2006-12-28 2008-07-10 Posco High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same
JP2010502845A (en) * 2006-12-28 2010-01-28 ポスコ High strength galvanized steel sheet with excellent mechanical properties and surface quality and method for producing the same

Also Published As

Publication number Publication date
JP4288085B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP6635236B1 (en) High strength cold rolled steel sheet and method for producing the same
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
KR101130837B1 (en) High-strength steel sheets which are extreamely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
CN109072380B (en) Steel sheet, plated steel sheet, and method for producing same
JP5162836B2 (en) High-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance of welds and method for producing the same
JP6544494B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
JP2007211279A (en) Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
CN108779536B (en) Steel sheet, plated steel sheet, and method for producing same
JP2005105367A (en) High yield ratio and high strength cold-rolled steel plate and high yield ratio and high strength galvanized steel plate excellent in weldability and ductility, and high yield ratio and high strength alloyed galvanized steel plate and its manufacturing method
JP2007231369A (en) High-strength cold rolled steel, high-strength hot dip galvanized steel sheet and high-strength galvannealed steel sheet having excellent formability and weldability, method for producing high-strength cold rolled steel sheet, method for producing high-strength hot dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
WO2017168958A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP3698046B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same
KR102217100B1 (en) High-strength steel sheet and its manufacturing method
EP4180547A1 (en) Hot-pressed member and manufacturing method therefor
JP2006265607A (en) High strength cold rolled steel sheet, high strength hot dip galvanized steel sheet, high strength alloyed hot dip galvannealed steel sheet, production method of high strength cold rolled steel sheet, production method of high hot dip galvannealed steel sheet, and production method of high strength alloyed galvannealed steel sheet
JP4500197B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability
JP2010043360A (en) High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor
JP2006274378A (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them
JP2012031466A (en) High strength steel sheet, and method of manufacturing the same
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4288085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees