JP6316912B1 - Manufacturing method for high-strength steel sheet press products - Google Patents

Manufacturing method for high-strength steel sheet press products Download PDF

Info

Publication number
JP6316912B1
JP6316912B1 JP2016228490A JP2016228490A JP6316912B1 JP 6316912 B1 JP6316912 B1 JP 6316912B1 JP 2016228490 A JP2016228490 A JP 2016228490A JP 2016228490 A JP2016228490 A JP 2016228490A JP 6316912 B1 JP6316912 B1 JP 6316912B1
Authority
JP
Japan
Prior art keywords
press
heating
steel plate
place
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016228490A
Other languages
Japanese (ja)
Other versions
JP2018083218A (en
Inventor
泰二 久司
泰二 久司
Original Assignee
東洋スチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋スチール株式会社 filed Critical 東洋スチール株式会社
Priority to JP2016228490A priority Critical patent/JP6316912B1/en
Application granted granted Critical
Publication of JP6316912B1 publication Critical patent/JP6316912B1/en
Publication of JP2018083218A publication Critical patent/JP2018083218A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】置き割れや遅れ破壊が起らない高張力鋼板のプレス加工品を提供する。【解決手段】引張強度が400MPa〜800MPaの高張力鋼板からプレス金型を用いて絞り成形されたプレス加工品であって、そのプレス加工品の予め特定された置き割れ発生部位(P)だけの部分加熱による焼入れ状態の加熱部(a)と非焼入れ状態の未加熱残存部(b)れとも異なる組織変化の中間層である境界(c)が、上記鋼板の板面(d)とほぼ平行な方向(H−H)に沿い延在する帯状として、その置き割れ発生部位(P)における切断面の光学顕微鏡写真に表出していることを特徴とする。【選択図】図1[PROBLEMS] To provide a press-worked product of a high-strength steel plate that does not cause cracking or delayed fracture. A press-worked product formed by drawing from a high-tensile steel plate having a tensile strength of 400 MPa to 800 MPa using a press die, wherein only a predetermined crack occurrence site (P) of the press-worked product is specified. The boundary (c), which is an intermediate layer of a structural change that is different from both the heated portion (a) in the quenched state by partial heating and the unheated remaining portion (b) in the non-quenched state, is substantially parallel to the plate surface (d) of the steel plate. It is characterized in that it is shown in the optical micrograph of the cut surface at the place where cracks are generated (P) as a band extending along a specific direction (HH). [Selection] Figure 1

Description

本発明は置き割れや遅れ破壊などを起さない高張力鋼板のプレス加工品の製造法に関する。 The present invention relates to the pressed product of the process for the preparation of high-tensile steel sheet that does not cause such as season cracking or delayed fracture.

一般に、プレス金型により金属板を絞り加工する場合、その加工次第では素材の内部に引張応力が残留し、そのため加工終了後数時間から数日間放置している間に、その絞り加工品の開口端部から自然に亀裂が発生する現象(置き割れ、時期割れ又は時効割れという)や、腐蝕、溶接、酸洗い、電気メッキなどの工程における水素吸収による破壊(遅れ破壊やメッキ割れという)が起る問題がある。   In general, when a metal plate is drawn by a press die, depending on the processing, tensile stress remains in the material, so that the opening of the drawn product is left for several hours to several days after the completion of processing. Phenomenon that cracks spontaneously occur from the edge (called cracks, time cracks or aging cracks), or damage caused by hydrogen absorption in processes such as corrosion, welding, pickling and electroplating (called delayed cracks and plating cracks). There is a problem.

特に、高張力鋼板は炭素(C)のほかに、ニッケル(Ni)やシリコン(Si)、マンガン(Mn)などの合金元素を添加し、その熱処理工程を工夫することによって、高い引張強度を得ており、軽量化にも役立つため、自動車などに広く使用されつつあるが、一般鋼に比して延性が低いため、プレス金型による絞り加工上の大きな制約が伴い、割れなどの加工不良を生じやすい。加工時に割れなどの不良品を発生せず、良好な加工品を得られたとしても、その後に上記置き割れやメッキ割れ、遅れ破壊などが起るので、甚だ厄介なことである。   In particular, high-tensile steel sheets obtain high tensile strength by adding alloy elements such as nickel (Ni), silicon (Si), and manganese (Mn) in addition to carbon (C) and devising the heat treatment process. It is also widely used in automobiles, etc., because it is also useful for weight reduction. However, its ductility is lower than that of general steel. Prone to occur. Even if defective products such as cracks are not generated during processing and a good processed product is obtained, the above-mentioned cracks, plating cracks, delayed fracture, etc. occur thereafter, which is extremely troublesome.

このような問題の解決策としては、特許第2982494号が提案されている。   As a solution to such a problem, Japanese Patent No. 29882494 has been proposed.

特許第2982494号公報Japanese Patent No. 2982494

ところが、上記特許文献1に開示されたプレス法の構成では、主に素材の肉厚を均一化させるための正しごきと、素材の引張残留応力を減少させ、圧縮応力を残留させるための逆しごきとを行って、その素材が高張力鋼などの高強度材であっても、上記圧縮残留応力の生成により置き割れ現象の発生を防止するようになっているので、円筒状などの比較的単純な形状であれば、上記逆しごきを支障なく行えるとしても、複雑な形状をプレス成形する際には、そのしごき方向に制約を受けることになる結果、適用できる目的物が非常に狭く限定されてしまうのであり、汎用性に劣る。   However, in the configuration of the pressing method disclosed in the above-mentioned Patent Document 1, the normal ironing mainly for uniformizing the thickness of the material, and the reverse ironing for reducing the tensile residual stress of the material and causing the compressive stress to remain. Even if the material is a high-strength material such as high-strength steel, the generation of compressive residual stress prevents the occurrence of the cracking phenomenon. Even if the above-described reverse ironing can be performed without any problem, when pressing a complicated shape, the direction of ironing is restricted, so that applicable objects are very narrowly limited. It is inferior in versatility.

本発明はこのような問題の抜本的な解決を目的としており、その目的を達成するために、請求項1では400MPa〜800MPaの引張強度を有する高張力鋼板のプレス加工品を製造する方法であって、   The present invention aims to drastically solve such problems, and in order to achieve the object, claim 1 is a method for producing a press-formed product of a high-tensile steel sheet having a tensile strength of 400 MPa to 800 MPa. And

上記プレス加工品の置き割れ発生部位を予め特定しておくために、その高張力鋼板をプレス金型により第1次的若しくは試作的に絞り成形するか、又はその代りとなるプレス金型設計段階でのシミュレーションによる絞り成形解析を行う予備工程と、   In order to preliminarily specify the place where cracks occur in the press-processed product, the high-tensile steel sheet is first or prototypely drawn by a press die, or an alternative press die design stage. A preliminary process of drawing analysis by simulation in

上記予備工程に引き続き又は別個独立して、その予備工程と同じプレス金型を用い、同じ加工条件のもとで第2次的又は本格的に絞り成形する本番工程と、   Continuously or separately from the preliminary process, using the same press mold as the preliminary process, a production process that is secondarily or fully drawn under the same processing conditions;

その本番工程での絞り成形を終えたプレス加工品の予め特定しておいた置き割れ発生部位だけに、その後温度範囲が400℃以上1,000℃未満で、且つ保持時間が0.1秒〜1.0分の部分加熱を施す加熱工程とから成ることにより、その焼入れ状態の加熱部と非焼入れ状態の未加熱残存部との何れとも異なる組織変化の中間層である境界が、上記鋼板の板面とほぼ平行な方向に沿い延在する帯状として、その置き割れ発生部位における切断面の光学顕微鏡写真に表出することを特徴とする。   Only in the pre-specified place where cracking occurs in the press-processed product that has been drawn in the production process, the temperature range is 400 ° C. or more and less than 1,000 ° C., and the holding time is 0.1 second to The boundary of the steel sheet is an intermediate layer of a structural change different from both the heated part in the quenched state and the unheated remaining part in the non-quenched state. As a band extending along a direction substantially parallel to the plate surface, it is expressed in an optical micrograph of a cut surface at the place where the crack is generated.

また、請求項2では加熱工程での部分加熱を、その温度範囲が600℃以上900℃未満で、且つ保持時間が0.2秒〜20秒として施すことを特徴とする。   According to a second aspect of the present invention, partial heating in the heating step is performed in a temperature range of 600 ° C. or higher and lower than 900 ° C. and a holding time of 0.2 to 20 seconds.

請求項3では加熱工程での部分加熱方法が、スポット溶接機における一対の電極で予め特定しておいた置き割れ発生部位を挟みながら、10kV〜45kVで0.2秒〜20秒電圧を印加する方法であることを特徴とする。   In the third aspect, the partial heating method in the heating step applies a voltage of 0.2 to 20 seconds at 10 kV to 45 kV while sandwiching a place where a crack is generated in advance with a pair of electrodes in a spot welder. It is a method.

請求項1の製造法によれば、そのプレス加工品における予備工程での特定(知得)しておいた置き割れ発生部位だけを、その本番工程での本格的又は第2次的な絞り成形の終了後に、所定の加熱温度とその保持時間のもとで部分加熱するようになっているため、上記プレス加工品の目標とする形状に変化があっても、置き割れや遅れ破壊の起らない各種プレス加工品を容易に得られる汎用性がある。According to the manufacturing method of claim 1, only the place where the crack is generated (acquired) in the preliminary process in the press-processed product is subjected to full-scale or secondary drawing in the actual process. After the completion of the process, partial heating is performed under a predetermined heating temperature and its holding time. There is versatility to easily obtain various types of pressed products.

しかも、上記加熱温度とその保持時間での部分加熱を行う加熱工程は、プレス加工品を第2次的又は本格的に絞り成形する本番工程の後工程として、その製造ラインへ容易に組み込むことができ、その結果プレス加工品の置き割れ発生部位だけを部分加熱することとも相俟って、生産性を著しく向上できる効果もある。Moreover, the heating process for performing partial heating at the heating temperature and the holding time can be easily incorporated into the production line as a subsequent process of the production process for secondary or full-scale drawing of a pressed product. As a result, there is also an effect that the productivity can be remarkably improved in combination with partial heating of only the place where the place crack occurs in the press-processed product.

その場合、請求項2の構成を採用するならば、上記プレス加工品における置き割れや遅れ破壊の発生を、ますます効率良く確実に防止できる効果がある。In that case, if the structure of Claim 2 is employ | adopted, there exists an effect which can prevent the generation | occurrence | production of the setting crack and delayed fracture in the said press-worked product more efficiently and reliably.

更に、請求項3の構成を採用するならば、プレス加工品の絞り成形した目標形状に変化があっても、その置き割れ発生部位をスポット溶接機の電極によって容易・確実に挟むことができ、しかもその素材の中心部から表面(板面)に向かってすばやく加熱し得る効果があり、その意味でも生産性の向上に役立つ。Furthermore, if the configuration of claim 3 is adopted, even if there is a change in the drawn target shape of the press-processed product, the place where the crack occurs can be easily and reliably sandwiched by the electrode of the spot welder, In addition, there is an effect that can be quickly heated from the center of the material toward the surface (plate surface), and in this sense, it helps to improve productivity.

本発明により部分加熱した置き割れ発生部位の切断面を撮影した光学顕微鏡写真に表われた組織の模式図であって、(イ)はスポット溶接機により加熱した場合の組織を示し、(ロ)はレーザー装置により加熱した場合の組織を示している。It is the schematic diagram of the structure | tissue shown in the optical micrograph which image | photographed the cut surface of the place crack generation | occurrence | production part partially heated by this invention, (a) shows a structure | tissue at the time of heating with a spot welder, (b) Indicates a tissue when heated by a laser device. 本発明に係るプレス加工品の一例として示すキャスターの側面図である。It is a side view of the caster shown as an example of the press work product concerning the present invention. 図2の正面図である。FIG. 3 is a front view of FIG. 2. キャスターの軸受け本体をプレス加工品として、その一連の加工順序を示す説明図である。It is explanatory drawing which shows the series of processing order as the press main body of the bearing main body of a caster. 上記軸受け本体における曲げコーナー個所の置き割れ発生部位を示す斜面図である。It is a perspective view which shows the place crack generation | occurrence | production site | part of the bending corner location in the said bearing main body. 図5の置き割れ発生部位をスポット溶接機によって部分加熱する工程の概略斜面図である。FIG. 6 is a schematic slope view of a process of partially heating the place where cracks occur in FIG. 5 with a spot welder. 同じく置き割れ発生部位を挟みながら通電する加熱工程の説明図である。Similarly, it is explanatory drawing of the heating process energized while pinching a crack generation part. 上記置き割れ発生部位の加熱状態を示す正面図である。It is a front view which shows the heating state of the said crack generation part.

以下、本発明の構成を具体的に詳述する。本発明はプレス金型により高張力鋼板を各種の目標形状に絞り成形したプレス加工品と、その汎用的な製造法であり、置き割れや遅れ破壊の発生防止を目的とする。Hereinafter, the configuration of the present invention will be described in detail. The present invention is a press-processed product obtained by drawing a high-tensile steel sheet into various target shapes using a press die, and a general-purpose manufacturing method thereof, and aims to prevent occurrence of cracks and delayed fracture.

本発明において採用する高張力鋼板は、400MPa〜800MPaの引張強度を有するものである。その引張強度が400MPa未満のものについては、本発明を採用するまでもなく、一般鋼とほぼ同じ加工条件のもとで製造することができ、他方引張強度が800MPaを越えるものについては、通常のプレス加工方法による製造が困難であり、置き割れや遅れ破壊の発生原因も大きく異なるので、本発明を採用することができない。The high-tensile steel plate employed in the present invention has a tensile strength of 400 MPa to 800 MPa. Those having a tensile strength of less than 400 MPa can be manufactured under almost the same processing conditions as general steel, without adopting the present invention, while those having a tensile strength exceeding 800 MPa are ordinary. Since the production by the press working method is difficult and the cause of the occurrence of the cracking and delayed fracture is greatly different, the present invention cannot be adopted.

本発明者が高張力鋼板をプレス金型により、各種の目標形状に絞り成形したプレス加工品について、その成形加工特性を調査・検討した結果では、置き割れや遅れ破壊の発生部位が常に特定の個所に集中していること、その特定の個所は主に引張応力の残留しやすい曲げコーナー部位であることが判明した。そのため、その曲げコーナー部位の残留応力を除去又は緩和することが、問題の解決になると考えられる。As a result of investigating and examining the forming characteristics of press-worked products in which the inventor has drawn high-strength steel sheets into various target shapes using a press die, It was found that it was concentrated at the location, and that specific location was mainly the bending corner where tensile stress remained easily. Therefore, it is considered that removing or relieving the residual stress at the bending corner portion will solve the problem.

そこで、置き割れや遅れ破壊が起らない各種目標形状のプレス加工品を得るべく、その素材である上記引張強度の高張力鋼板をプレス金型により、第1次的に又は試作として絞り成形し、その絞り加工品の置き割れ発生部位を予め特定(知得)しておくのである。Therefore, in order to obtain press-processed products with various target shapes that do not cause settling or delayed fracture, the high-tensile steel plate with the above-mentioned tensile strength, which is the material, is drawn first or as a prototype using a press die. The place where cracks in the drawn product are generated is specified (knowledge) in advance.

その試作的な絞り加工を実行する代りに、プレス金型設計段階でコンピューターのシミュレーションによる絞り成形解析を行って、上記置き割れ発生部位を予め特定しておいても良い。Instead of executing the prototype drawing process, a drawing forming analysis by computer simulation may be performed at the press die design stage to specify the place where the set crack is generated in advance.

何れにしても、上記のような予備工程を行った後に、その予備工程と同じプレス金型を用い、同じ加工条件のもとで、同じ素材の高張力鋼板を第2次的又は本格的に絞り成形する。このような本番工程は上記予備工程に引き続き実行しても良く、また時間的又は場所的に別個独立して実行してもさしつかえない。In any case, after performing the preliminary process as described above, using the same press die as the preliminary process, under the same processing conditions, the high-strength steel plate of the same material is secondarily or fully developed. Draw molding. Such a production process may be executed subsequent to the preliminary process, or may be executed independently in time or place.

そして、上記本番工程での絞り成形を終えたプレス加工品の予め特定しておいた置き割れ発生部位だけに、その終了から30分などの一定時間経過後加熱工程として、温度範囲が400℃以上1000℃未満で、且つ保持時間が0.1秒〜1.0分の部分加熱を施すのである。The temperature range is 400 ° C. or higher as a heating step after a certain period of time such as 30 minutes from the end of the press-formed product that has been drawn in the production process. Partial heating is performed at a temperature lower than 1000 ° C. and a holding time of 0.1 seconds to 1.0 minutes.

その加熱工程での部分加熱方法としては、スポット溶接機(交流式抵抗溶接機)などが装備している向かい合う一対の電極で、上記絞り成形し終えたプレス加工品の予め特定しておいた置き割れ発生部位を挟みながら通電して、その素材である高張力鋼板の中心部から加熱する方法を初め、同じくプレス加工品の予め特定しておいた置き割れ発生部位へ、レーザーなどのエネルギービームを照射して、その素材である高張力鋼板の表面から加熱する方法や高周波による誘導加熱法、ガス炎やアークを用いる方法などを広く採用することができるが、特に上記スポット溶接機のような素材の中心部から置き割れ発生部位の表面に向かって、全体的にすばやく加熱できる直接通電加熱法の採用が最も好適である。As a partial heating method in the heating process, a pair of electrodes facing each other equipped with a spot welder (AC resistance welder) or the like is used to place a press-processed product that has been drawn in advance. Starting with the method of heating from the center of the high-tensile steel plate that is the raw material while sandwiching the crack generation site, an energy beam such as a laser is applied to the predetermined crack generation site of the pressed product. Irradiation and heating from the surface of the high-strength steel plate that is the material, induction heating method using high frequency, gas flame and arc method, etc. can be widely adopted, especially materials such as the above spot welder It is most preferable to use a direct current heating method that can quickly heat the entire surface from the center of the substrate toward the surface of the place where the crack occurs.

また、部分加熱の温度範囲としては上記した400℃以上1000℃未満、好ましくは600℃以上900℃未満に設定する。たとえ部分加熱であっても、その温度が400℃未満であると、期待する程の大きな組織変化を得られず、残留応力を充分に緩和できないため、未だ置き割れや遅れ破壊の起るおそれがある。後述する加熱部と未加熱残存部との何れとも異なる組織変化の境界(中間層)が、帯状に顕出することはない。Further, the temperature range of partial heating is set to the above 400 ° C. or higher and lower than 1000 ° C., preferably 600 ° C. or higher and lower than 900 ° C. Even if it is partial heating, if the temperature is less than 400 ° C., it is not possible to obtain a large structural change as expected, and the residual stress cannot be relaxed sufficiently. is there. A structure change boundary (intermediate layer) which is different from any of a heated portion and a non-heated remaining portion described later does not appear in a strip shape.

尚、加熱温度の検知については、一般的な温度測定用の各種センサーを使うことができるほかに、加熱部分の色変化による判定方法を採用することもできる。For detection of the heating temperature, various general sensors for temperature measurement can be used, and a determination method based on a color change in the heated portion can also be employed.

他方、加熱温度が1000℃を越える高温であると、熱の影響が広範囲に波及し、全体的に組織変化を起した焼入れ状態となり、加熱した部分が硬脆くなるため、耐衝撃性の低下を招く。この加熱条件でも、後述する加熱部と非加熱残存部との何れとも異なる組織変化の境界(中間層)が、帯状に顕出することはない。更に高温なると、母材が溶融してしまい、形状を維持できなくなるなどの問題を生じる。On the other hand, when the heating temperature is higher than 1000 ° C., the influence of heat spreads over a wide range, and the entire structure is changed into a quenched state, and the heated portion becomes hard and brittle, so that the impact resistance is reduced. Invite. Even under this heating condition, the boundary (intermediate layer) of the structural change that is different from any of the heating part and the non-heated residual part, which will be described later, does not appear in a strip shape. When the temperature is further increased, the base material is melted, resulting in a problem that the shape cannot be maintained.

上記スポット溶接機などの直接通電加熱法による部分加熱の場合においては、素材の板厚によって左右されるが、10kV〜45kVの電圧を印加するのである。その10kVよりも電圧が低いと、部分加熱が不充分となって、焼入れ部分を形成することが困難であり、45kVよりも電圧が高いと、加熱した部分の全体に焼きが入って、硬脆くなったり、溶融してしまったりするなどの問題を生じる。In the case of partial heating by the direct current heating method such as the spot welding machine, a voltage of 10 kV to 45 kV is applied although it depends on the thickness of the material. If the voltage is lower than 10 kV, partial heating becomes insufficient and it is difficult to form a quenched portion. If the voltage is higher than 45 kV, the entire heated portion is baked and hard and brittle. It causes problems such as becoming melted.

更に、上記部分加熱の保持時間としては0.1秒〜1,0分、好ましくは0.2秒〜20秒に設定する。その加熱保持時間が0.1秒未満では、上記加熱温度が400℃未満である場合と同様に、未だ組織変化が小さく、残留応力を緩和するまでの時間が不足するため、置き割れや遅れ破壊の起るおそれがある。プレス加工品の強度にバラツキを生じるおそれもある。Furthermore, the holding time for the partial heating is set to 0.1 second to 10 minutes, preferably 0.2 second to 20 seconds. If the heating and holding time is less than 0.1 seconds, as in the case where the heating temperature is less than 400 ° C., the structure change is still small and the time until the residual stress is relieved is insufficient. May occur. There is also a possibility that the strength of the pressed product may vary.

他方、上記加熱保持時間が1.0分を越える長時間の場合、残留応力の緩和には充分であるが、上記加熱温度が1000℃を越える場合と同様に、熱が広範囲に伝導するため、強度変化が過大となり、プレス加工品の設計強度を確保できなくなる問題がある。また、後処理に長時間を要することになる結果、生産性の低下も招く。On the other hand, when the heating holding time is longer than 1.0 minutes, it is sufficient for the relaxation of residual stress, but as in the case where the heating temperature exceeds 1000 ° C., heat is conducted in a wide range, There is a problem that the strength change becomes excessive, and the design strength of the pressed product cannot be secured. Moreover, as a result of requiring a long time for post-processing, the productivity is also lowered.

そのため、要するに上記加熱工程ではプレス金型により絞り成形を実行し終えたプレス加工品について、先の予備工程において特定しておいた置き割れ発生部位だけに、上記直接通電加熱法やエネルギービームを照射する方法などにより、温度範囲が400℃以上1000℃未満で、且つ保持時間が0.1秒〜1.0分の部分加熱を行うのである。Therefore, in short, the direct current heating method and the energy beam are applied only to the cracked part specified in the previous preliminary process for the press-processed product that has been subjected to the drawing by the press die in the heating process. Depending on the method, the partial heating is performed at a temperature range of 400 ° C. or higher and lower than 1000 ° C. and a holding time of 0.1 seconds to 1.0 minutes.

そうすれば、図1(イ)(ロ)の模式図に示す如く、そのプレス加工品(P)における置き割れ発生部位(P)の切断面をその後機械的に研磨し、ナイタール(エッチング剤:硝酸とアルコールの混合液)で腐蝕した上、光学顕微鏡で観察し、撮影した組織写真には、焼入れ状態の加熱部(a)及び非焼入れ状態の未加熱残存部(b)と異なる組織変化の中間層である境界(c)が、素材である高張力鋼板の板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出することになる。Then, as shown in the schematic diagrams of FIGS. 1 (a) and 1 (b), the cut surface of the crack generation site (P) in the press-processed product (P) is then mechanically polished to form a nital (etching agent: In the structure photograph which was corroded with a mixed solution of nitric acid and alcohol), observed with an optical microscope, and photographed, the structure changes different from the quenched part (a) and the non-quenched remaining part (b). The boundary (c), which is the intermediate layer, appears as a strip extending along a direction (HH) substantially parallel to the plate surface (d) of the high-tensile steel plate that is the material.

これを換言すれば、上記加熱後の置き割れ発生部位(P)における切断面の光学顕微鏡写真に、焼入れ状態の加熱部(a)と非焼入れ状態の未加熱残存部(b)との何れとも異なる組織変化の境界(中間層)(c)が板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出するまで、プレス加工品の置き割れ発生部位(P)だけを部分加熱するのである。In other words, in the optical micrograph of the cut surface at the place where cracks occur (P) after heating, both the heated part (a) in the quenched state and the unheated remaining part (b) in the unquenched state The place where cracks occur in the press-processed product until the boundary (intermediate layer) (c) of different texture changes appears in a strip shape extending along a direction (HH) substantially parallel to the plate surface (d) ( Only P) is partially heated.

上記本番工程と加熱工程を経て製造され、その置き割れ発生部位(P)における切断面の光学顕微鏡写真に、焼入れ状態の加熱部(a)と非焼入れ状態の未加熱残存部(b)との何れとも異なる組織変化の境界(中間層)(c)が、板面(d)とほぼ平行な方向(H−H)に沿い延在する帯状に表出したプレス加工品は、その製造後数日間放置してから目視観察するも、置き割れや遅れ破壊を起すことはなかった。その結果、上記部分加熱の条件を管理・制御することによって、置き割れや遅れ破壊が起らない各種プレス加工品を汎用的に製造することができる。It is manufactured through the production process and the heating process, and in the optical micrograph of the cut surface at the crack generation site (P), the quenched part (a) and the non-quenched unheated remaining part (b) The number of post-manufactured press-processed products in which the boundary (intermediate layer) (c), which is different from any one, appears in a strip shape extending along the direction (HH) substantially parallel to the plate surface (d) Even after visually observing after being left for days, no cracking or delayed fracture occurred. As a result, by controlling and controlling the partial heating conditions, various press-worked products that do not cause cracking and delayed fracture can be manufactured for general use.

上記の説明から理解されるように、本発明に係る高張力鋼板のプレス加工品の製造法は一般的な残留応力を緩和させるために、絞り加工前の素材である高張力鋼板を全体的に加熱する方法ではなく、同じく素材の高張力鋼板に軟化部分を設けるべく、その鋼板を絞り加工前や絞り加工中に部分加熱する方法でもない。As understood from the above description, the manufacturing method of the press-processed product of the high-strength steel sheet according to the present invention generally uses the high-tensile steel sheet as a material before drawing in order to alleviate general residual stress. It is not a method of heating, nor is it a method of partially heating the steel plate before or during drawing so as to provide a softened portion in the high-strength steel plate of the same material.

あくまでも本番工程での絞り成形し終えたプレス加工品を部分加熱する方法であり、そのため生産性の低下が危惧されるが、その高張力鋼板の第1次的又は試作的な絞り成形の実行や、その実行の代りとなるプレス金型設計段階でのシミュレーションによる絞り成形解析を行う予備工程において、その特定(把握)しておいた置き割れ発生部位だけを、その後部分加熱するようになっている構成のため、その各種プレス加工品の絞り成形する目標形状がたとえ複雑に変化したとしても、常時正確に加熱できる汎用性があり、上記素材を全体加熱する方法に比しても、その熱に起因する過大な変形を起すおそれがなく、強度の低下や生産性の低下を招くこともない。It is a method of partially heating the press-processed product that has been drawn in the production process to the last, and therefore there is a risk of a decrease in productivity, but the execution of primary or prototype drawing of the high-tensile steel plate, In the preliminary process that performs drawing forming analysis by simulation at the press die design stage instead of the execution, only the part where the crack has been identified (understood) is then partially heated. Therefore, even if the target shape of the various press-worked products changes in a complicated manner, it has versatility that it can be heated accurately at all times. There is no possibility of causing excessive deformation, and there is no reduction in strength or productivity.

更に言えば、上記加熱工程は予め特定しておいた置き割れ発生部位だけの部分加熱として、その加熱保持時間が0.1秒〜1.0分の僅少で足りるため、本番工程のタクトと合わせたり、また本番工程での絞り成形が複数回行われるような場合に、その途中へ加入したりすることも容易であり、その意味でも生産性の低下を防止することができる。Furthermore, since the heating process is a partial heating only for the place where cracks have been specified in advance, the heating and holding time is only 0.1 seconds to 1.0 minutes, so it is combined with the tact of the production process. In addition, when drawing in the production process is performed a plurality of times, it is easy to join in the middle of the process, and in this sense, it is possible to prevent the productivity from being lowered.

<実施例1>
以下、キャスターの軸受け本体に適用した本発明の実施例を説明するが、その高張力鋼板の絞り成形したプレス加工品がキャスターの軸受け本体だけに限定されることはなく、各種の目標形状に絞り成形されたプレス加工品を対象とする。
<Example 1>
In the following, embodiments of the present invention applied to a bearing body of a caster will be described. However, the press-formed product of the high-tensile steel sheet is not limited to the bearing body of the caster, but can be drawn to various target shapes. Targets molded press-formed products.

図2、3に示すようなキャスター(10)の車輪(11)を軸受けする本体(12)の素材として、引張強度が590MPa、板厚が2.0mmの高張力鋼板(JFEスチール株式会社のJSC590R−SD)を用い、150〜200Tプレス機(株式会社アマダ製)を使って、図4(i)〜(vi)のような外形抜き・穴明け→前絞り・刻印→絞り→穴明け→溝加工→車軸穴明けという6工程のプレス加工を行った。As a material of the main body (12) for bearing the wheel (11) of the caster (10) as shown in FIGS. 2 and 3, a high-strength steel plate having a tensile strength of 590 MPa and a plate thickness of 2.0 mm (JSC590R of JFE Steel Corporation) -SD), 150-200T press machine (manufactured by Amada Co., Ltd.), outline drawing / drilling as shown in FIGS. 4 (i)-(vi) → pre-drawing / engraving → drawing → drilling → groove 6 steps of press working, machining → axle drilling.

その加工直後のプレス加工品を目視観察したが、割れや裂けなどの不具合を確認できなかったので、そのまま12時間放置した後、再度上記プレス加工品を目視観察したところ、図5の符号(P)で示す曲げコーナー部位に割れが見つかった。また、割れが発見されなかったプレス加工品については、三価ユニクロメッキ(亜鉛メッキ)を施したところが、同じ図5の符号(P)で示す曲げコーナー部位に割れが見つかり、軸受け本体(12)として使用できない状態であった。Although the press-processed product immediately after the processing was visually observed, defects such as cracks and tears could not be confirmed. Therefore, after leaving for 12 hours as it was, the press-processed product was visually observed again. Cracks were found at the bending corners indicated by Moreover, about the press-processed product in which the crack was not discovered, when the trivalent unichrome plating (galvanization) was given, the crack was found in the bending corner part shown with the code | symbol (P) of the same FIG. 5, and a bearing main body (12) It was in a state that could not be used as.

そこで、上記軸受け本体(12)における図5の符号(P)で示す割れが発生している曲げコーナー部位を、そのプレス加工後30分経過してから図6、7のように、スポット溶接機(W)における2mmの直径を備えた向かい合う一対の電極(13)で挟み、30kVで0.4秒電圧を印加することにより部分加熱した。その印加中、電極(13)で挟まれた部位には赤熱が見られ、その発色の度合いから判定される加熱温度は800℃程度であった。Therefore, a spot welder as shown in FIGS. 6 and 7 after 30 minutes has elapsed after the press working at the bending corner portion where the crack (P) in FIG. 5 has occurred in the bearing body (12). It was sandwiched between a pair of electrodes (13) facing each other with a diameter of 2 mm in (W) and partially heated by applying a voltage at 30 kV for 0.4 seconds. During the application, red heat was seen at the portion sandwiched between the electrodes (13), and the heating temperature determined from the degree of color development was about 800 ° C.

その加熱後、上記軸受け本体(12)における不具合の有無を目視観察したが、割れや裂けなどの不具合を発見しなかった。また、上記加熱後48時間放置した時点で、再度軸受け本体(12)の不具合を目視観察したが、上記不具合を確認することはできなかった。After the heating, the bearing main body (12) was visually observed for defects, but no defects such as cracks or tears were found. Further, when the sample was left for 48 hours after the heating, the defect of the bearing body (12) was visually observed again, but the defect could not be confirmed.

更に、上記軸受け本体(12)に三価ユニクロメッキ(亜鉛メッキ)を施した後、その不具合の有無を目視観察したが、やはり上記不具合を確認することはできなかった。Furthermore, after trivalent unichrome plating (zinc plating) was performed on the bearing body (12), the presence or absence of the defect was visually observed, but the defect could not be confirmed.

上記メッキ加工を行った軸受け本体(12)に、車輪(11)やベアリングなどの必要な部品を組み付けて、その完成したキャスター(10)の走行試験を行ったところ、100km試験走行した後でも、上記不具合を発見しなかった。The bearing body (12) subjected to the above plating process was assembled with necessary parts such as wheels (11) and bearings, and a running test of the completed caster (10) was conducted. The above bug was not found.

上記実施例1の加熱条件と結果を表1に示す。その表1の結果では、予め特定しておいた上記曲げコーナー部位(置き割れ発生部位)の本発明による部分加熱が、プレス加工品の置き割れやメッキ割れ、遅れ破壊の防止に寄与したものと考えられる。The heating conditions and results of Example 1 are shown in Table 1. In the results of Table 1, the partial heating according to the present invention at the bending corner portion (placement crack occurrence portion) specified in advance contributed to the prevention of the placement crack, plating crack, and delayed fracture of the pressed product. Conceivable.

Figure 0006316912
Figure 0006316912

その軸受け本体(12)の部分加熱した曲げコーナー部位(置き割れ発生部位)(P)を、図8のZ−Z線に沿ってカットし、その切断面を研磨した後、ナイタールで腐蝕処理し、撮影した光学顕微鏡写真に表出した組織は、図1(イ)の模式図に示すとおりであり、その写真には上記部分加熱した結果(証拠)を意味する焼入れ状態の加熱部(a)と非焼入れ状態の未加熱残存部(b)との何れとも異なる組織変化の中間層である境界(c)が、板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出していた。帯状境界(中間層)(c)としての組織変化が起生される上記加熱温度とその保持時間での部分加熱である結果、その絞り成形したプレス加工品である軸受け本体(12)の機械的強度を低下させることもなかった。The partially heated bending corner part (placement cracking part) (P) of the bearing body (12) is cut along the line ZZ in FIG. 8, and the cut surface is polished and then subjected to corrosion treatment with nital. The structure shown in the photographed optical micrograph is as shown in the schematic diagram of FIG. 1 (a). The photograph shows the result of the partial heating (evidence) in the quenched state (a) And the boundary (c), which is an intermediate layer of the structure change different from any of the unheated remaining part (b) in the non-quenched state, extends along a direction (HH) substantially parallel to the plate surface (d) It was expressed in a belt shape. As a result of the partial heating at the heating temperature and the holding time at which the structural change occurs as the belt-like boundary (intermediate layer) (c), the mechanical performance of the bearing body (12), which is a press-formed product that has been drawn. The strength was not reduced.

<実施例2>
これは実施例1における上記加熱条件のうち、電圧(40kV)と加熱温度(950℃)だけを変えて、同じスポット溶接機(W)により部分加熱した実施例である。
<Example 2>
This is an example in which only the voltage (40 kV) and the heating temperature (950 ° C.) are changed and partial heating is performed by the same spot welder (W) among the heating conditions in Example 1.

<実施例3>
これは実施例1における上記加熱条件のうち、加熱温度(900℃)とその加熱保持時間(0.6秒)だけを変えて、やはりスポット溶接機(W)により部分加熱した実施例である。
<Example 3>
This is an example in which, of the heating conditions in Example 1, only the heating temperature (900 ° C.) and the heating holding time (0.6 seconds) were changed, and partial heating was performed by the spot welder (W).

<実施例4>
これは実施例1における上記加熱条件のうち、絞り成形後の放置時間だけを180分として、長く経過してからスポット溶接機(W)により部分加熱した実施例である。
<Example 4>
This is an example of partial heating by the spot welder (W) after a long period of time, in which only the standing time after drawing is 180 minutes among the heating conditions in Example 1.

尚、実施例2〜4でも表1に記載した結果から明白なように、実施例1と同じ図1(イ)の帯状境界(中間層)(c)が顕出し、やはり強度の低下を招くこともなく、置き割れや遅れ破壊の発生を防止することができた。As is clear from the results described in Table 1 in Examples 2 to 4, the same belt-like boundary (intermediate layer) (c) in FIG. It was possible to prevent the occurrence of cracks and delayed fracture.

<実施例5>
これは実施例1〜4において採用したスポット溶接機(W)に代えて、レーザー加熱装置(株式会社アマダ製)(図示省略)を使用し、その出力240Wで2cm/秒で加熱した。そのエネルギービームが照射された表面には赤熱が見られ、その発色度合いから850℃に加熱されていると判定した。
<Example 5>
In place of the spot welder (W) employed in Examples 1 to 4, a laser heating device (manufactured by Amada Co., Ltd.) (not shown) was used and heated at an output of 240 W at 2 cm / second. It was determined that the surface irradiated with the energy beam was red-hot and heated to 850 ° C. from the degree of color development.

その加熱後48時間放置した時点で、上記キャスター(10)における軸受け本体(12)の不具合を目視観察したが、割れや裂けなどの不具合を確認することはできなかった。また、実施例1と同じメッキ加工と更に完成したキャスター(10)の走行試験も行ったが、やはり割れや裂けなどの不具合は確認されなかった。When the caster (10) was allowed to stand for 48 hours after the heating, the bearing body (12) in the caster (10) was visually observed for defects. However, defects such as cracks and tears could not be confirmed. Further, the same plating process as in Example 1 and a running test of the completed caster (10) were also conducted, but no defects such as cracks and tears were confirmed.

そして、上記レーザー加熱装置のエネルギービームにより部分加熱した部位をカットし、その切断面をナイタールで腐蝕処理し、光学顕微鏡で組織の変化状態を観察したところ、その写真には図1(ロ)の模式図に示す如き、焼入れ状態の加熱部(a)と非焼入れ状態の未加熱残存部(b)との何れとも相違する組織変化の中間層である境界(c)が、やはり板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出していた。And the part heated partially by the energy beam of the said laser heating apparatus was cut, the cut surface was corroded with nital, and when the change state of the structure | tissue was observed with the optical microscope, the photograph of FIG. As shown in the schematic diagram, the boundary (c), which is an intermediate layer of the structural change that is different from any of the heated part (a) in the quenched state and the unheated remaining part (b) in the unquenched state, is also the plate surface (d ) In a strip shape extending along a direction (HH) substantially parallel to ().

尚、上記実施例1と実施例5では部分加熱温度の判定を、加熱温度と加熱色との対応関係資料(図示省略)に基いて感覚的に行ったが、市販の適当な温度センサーを使って測定しても良いことは、既述のとおりである。In Examples 1 and 5, the partial heating temperature was judged sensuously based on the correspondence data (not shown) between the heating temperature and the heating color, but a commercially available appropriate temperature sensor was used. As described above, measurement may be performed as described above.

更に、表1に併記した比較例1〜4の加熱条件は、何れも本発明の規定する上記数値範囲をはずれているため、所期する置き割れや遅れ破壊などの防止効果を達成することができなかった。上記実施例1〜5では確認できた組織変化の帯状境界(中間層)(c)が、比較例1〜4の加熱条件下において表出しなかったことは言うまでもない。Furthermore, since the heating conditions of Comparative Examples 1 to 4 written together in Table 1 are all out of the numerical range defined by the present invention, it is possible to achieve the desired effect of preventing cracks and delayed fracture. could not. Needless to say, the belt-like boundary (intermediate layer) (c) of the structure change confirmed in Examples 1 to 5 was not exposed under the heating conditions of Comparative Examples 1 to 4.

<比較例1>
これでは、加熱後48時間放置した時点において割れや裂けなどの不具合は確認されなかったが、その上記軸受け本体(12)に三価ユニクロメッキ(亜鉛メッキ)を施したところ、その一部に割れ(メッキ割れ)が観察された。更に、メッキ割れを起さなかった軸受け本体(12)に、車輪やベアリングなどを組み付け完成させたキャスター(10)の走行試験を行ったところ、60km走行した時点で割れが発生した。
<Comparative Example 1>
In this case, defects such as cracks and tears were not confirmed when left for 48 hours after heating. However, when the trivalent unichrome plating (zinc plating) was applied to the bearing body (12), some of the cracks were cracked. (Plating crack) was observed. Furthermore, when a running test was conducted on the caster (10) in which wheels and bearings were assembled and completed on the bearing body (12) which did not cause plating cracking, cracking occurred at the time of running for 60 km.

その原因としては、加熱温度が著しく低いため、プレス加工品の残留応力を確実に緩和又は除去できなかったものと考えられる。The reason is considered that the residual temperature of the pressed product could not be relieved or removed reliably because the heating temperature was extremely low.

<比較例2>
これでは、加熱温度が高くなりすぎてしまい、加熱部分が溶融し、所定の形状を保つことができなかった。
<Comparative example 2>
In this case, the heating temperature becomes too high, the heated portion is melted, and the predetermined shape cannot be maintained.

<比較例3>
これでは、加熱後48時間放置しても割れは確認されなかったが、その後三価ユニクロメッキ(亜鉛メッキ)を施したところ、すべてに割れが発生した。
<Comparative Example 3>
In this case, cracking was not confirmed even after standing for 48 hours after heating, but when trivalent unichrome plating (zinc plating) was applied thereafter, cracking occurred in all.

その原因としては、加熱保持時間が著しく短く、絞り加工品の残留応力を緩和するための加熱不足であると考えられる。The reason for this is considered that the heating and holding time is remarkably short and the heating is insufficient to relieve the residual stress of the drawn product.

<比較例4>
これでは、加熱後48時間放置しても割れは確認されず、三価ユニクロメッキ(亜鉛メッキ)を施した後にも割れは観察されなかったが、その後更に走行試験に供したところ、70km走行した時点で割れが発生した。
<Comparative Example 4>
In this case, no cracks were confirmed even after standing for 48 hours after heating, and no cracks were observed even after the trivalent unichrome plating (zinc plating) was applied. Cracks occurred at that time.

その原因としては、上記比較例3との逆に、加熱保持時間が著しく長いため、その熱の影響が広範囲に波及し、全体の組織変化を起し、硬脆くなってしまったものと考えられる。As the cause, contrary to the comparative example 3, since the heating and holding time is remarkably long, the influence of the heat spreads over a wide range, causing the entire structure to change and becoming hard and brittle. .

(10)・キャスター
(11)・車輪
(12)・軸受け本体
(13)・電極
(P)・置き割れ発生部位
(w)・スポット溶接機
(a)・焼入れ状態の加熱部
(b)・非焼入れ状態の未加熱残存部
(c)・境界(中間層)
(d)・板面
(10) ・ Caster (11) ・ Wheel (12) ・ Bearing body (13) ・ Electrode (P) ・ Place where cracks occur (w) ・ Spot welder (a) ・ Heat-hardened part (b) ・ Non Quenched unheated remaining part (c), boundary (intermediate layer)
(D) ・ Plate surface

Claims (3)

400MPa〜800MPaの引張強度を有する高張力鋼板のプレス加工品を製造する方法であって、
上記プレス加工品の置き割れ発生部位を予め特定しておくために、その高張力鋼板をプレス金型により第1次的若しくは試作的に絞り成形するか、又はその代りとなるプレス金型設計段階でのシミュレーションによる絞り成形解析を行う予備工程と、
上記予備工程に引き続き又は別個独立して、その予備工程と同じプレス金型を用い、同じ加工条件のもとで第2次的又は本格的に絞り成形する本番工程と、
その本番工程での絞り成形を終えたプレス加工品の予め特定しておいた置き割れ発生部位だけに、その後温度範囲が400℃以上1,000℃未満で、且つ保持時間が0.1秒〜1.0分の部分加熱を施す加熱工程とから成ることにより、
その焼入れ状態の加熱部と非焼入れ状態の未加熱残存部との何れとも異なる組織変化の中間層である境界が、上記鋼板の板面とほぼ平行な方向に沿い延在する帯状として、その置き割れ発生部位における切断面の光学顕微鏡写真に表出することを特徴とする高張力鋼板のプレス加工品の製造法。
A method for producing a press-formed product of a high-tensile steel plate having a tensile strength of 400 MPa to 800 MPa,
In order to preliminarily specify the place where cracks occur in the press-processed product, the high-tensile steel sheet is first or prototypely drawn by a press die, or an alternative press die design stage. A preliminary process of drawing analysis by simulation in
Continuously or separately from the preliminary process, using the same press mold as the preliminary process, a production process that is secondarily or fully drawn under the same processing conditions;
Only in the pre-specified place where cracking occurs in the press-processed product that has been drawn in the production process, the temperature range is 400 ° C. or more and less than 1,000 ° C., and the holding time is 0.1 second to By comprising a heating step for performing partial heating for 1.0 minute,
The boundary, which is an intermediate layer of a structural change different from both the heated part in the quenched state and the unheated remaining part in the unquenched state, is formed as a band extending along a direction substantially parallel to the plate surface of the steel plate. A method for producing a press-worked product of a high-strength steel sheet, characterized by being shown in an optical micrograph of a cut surface at a crack occurrence site.
加熱工程での部分加熱を、その温度範囲が600℃以上900℃未満で、且つ保持時間が0.2秒〜20秒として施すことを特徴とする請求項1記載の高張力鋼板のプレス加工品の製造法。   2. The high-tensile steel press-formed product according to claim 1, wherein the partial heating in the heating step is performed at a temperature range of 600 ° C. or more and less than 900 ° C. and a holding time of 0.2 to 20 seconds. Manufacturing method. 加熱工程での部分加熱方法が、スポット溶接機における一対の電極で予め特定しておいた置き割れ発生部位を挟みながら、10kV〜45kVで0.2秒〜20秒電圧を印加する方法であることを特徴とする請求項1記載の高張力鋼板のプレス加工品の製造法。   The partial heating method in the heating step is a method of applying a voltage of 0.2 to 20 seconds at 10 kV to 45 kV while sandwiching a place where a crack is generated in advance with a pair of electrodes in a spot welder. The manufacturing method of the press-worked product of the high strength steel plate of Claim 1 characterized by these.
JP2016228490A 2016-11-25 2016-11-25 Manufacturing method for high-strength steel sheet press products Active JP6316912B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016228490A JP6316912B1 (en) 2016-11-25 2016-11-25 Manufacturing method for high-strength steel sheet press products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016228490A JP6316912B1 (en) 2016-11-25 2016-11-25 Manufacturing method for high-strength steel sheet press products

Publications (2)

Publication Number Publication Date
JP6316912B1 true JP6316912B1 (en) 2018-04-25
JP2018083218A JP2018083218A (en) 2018-05-31

Family

ID=62069417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228490A Active JP6316912B1 (en) 2016-11-25 2016-11-25 Manufacturing method for high-strength steel sheet press products

Country Status (1)

Country Link
JP (1) JP6316912B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228927A (en) * 1995-03-01 1996-09-10 Nisshin Steel Co Ltd Production of inside cylinder of electric kettle
JP2982494B2 (en) * 1992-05-29 1999-11-22 トヨタ自動車株式会社 Press method for forming plate-like material into cylindrical container
JP2010144229A (en) * 2008-12-19 2010-07-01 Jfe Steel Corp Method for manufacturing high-strength member and operation method therefor
JP2011202204A (en) * 2010-03-24 2011-10-13 Jfe Steel Corp Method for producing ultra-high strength member and using method
JP2013147750A (en) * 2013-03-07 2013-08-01 Nippon Steel & Sumitomo Metal Corp High strength hot-stamped product having excellent toughness and hydrogen embrittlement resistance, and method for producing the same
JP6050912B1 (en) * 2016-06-24 2016-12-21 東洋スチール株式会社 How to prevent cracks in drawn products of high-strength steel sheets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982494B2 (en) * 1992-05-29 1999-11-22 トヨタ自動車株式会社 Press method for forming plate-like material into cylindrical container
JPH08228927A (en) * 1995-03-01 1996-09-10 Nisshin Steel Co Ltd Production of inside cylinder of electric kettle
JP2010144229A (en) * 2008-12-19 2010-07-01 Jfe Steel Corp Method for manufacturing high-strength member and operation method therefor
JP2011202204A (en) * 2010-03-24 2011-10-13 Jfe Steel Corp Method for producing ultra-high strength member and using method
JP2013147750A (en) * 2013-03-07 2013-08-01 Nippon Steel & Sumitomo Metal Corp High strength hot-stamped product having excellent toughness and hydrogen embrittlement resistance, and method for producing the same
JP6050912B1 (en) * 2016-06-24 2016-12-21 東洋スチール株式会社 How to prevent cracks in drawn products of high-strength steel sheets

Also Published As

Publication number Publication date
JP2018083218A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
KR102292675B1 (en) Steel welded parts with aluminum or aluminum alloy coating and method for their preparation
CN108136534B (en) Resistance spot welding method
RU2633409C2 (en) Method of resistance spot welding
JP6050912B1 (en) How to prevent cracks in drawn products of high-strength steel sheets
EP2480693B1 (en) Stainless steel having local variations in mechanical resistance
JP2000117338A (en) Elongating process for forming aluminum alloy subjected to age hardening
US11365466B2 (en) Steel plate for hot forming and manufacturing method of hot press formed steel member
CN106363288A (en) Resistance spot welding technology for improving quality of welding spots of dual-phase steel
JP2004124151A (en) Heat treatment method for aluminum alloy
WO2021177254A1 (en) Resistance spot welding method and manufacturing method for resistance spot welded joint
JP4514137B2 (en) Method for preventing rolling surface flaw of Ni-containing steel
JP6316912B1 (en) Manufacturing method for high-strength steel sheet press products
CN111014537B (en) Forging method of large multi-rib complex 7050 aluminum alloy forging
JP2010172947A (en) Method of super-high temperature hot forging
US20210101225A1 (en) Weld joint manufacturing method and weld joint
JPH0847716A (en) Manufacture of electric resistance welded steel pipe excellent in hic resistance and sscc resistance properties
JP6670441B2 (en) Manufacturing method of steel strip for metal belt
JP5763181B2 (en) Manufacturing method of steel product having fine ferrite grain boundary precipitation type martensite structure
JP2005048271A (en) Method for welding high-carbon steel material
JP2006021206A (en) Steel casting having part repaired by welding, and method for repairing steel casting by welding
JPH08127851A (en) Production of forged aluminum alloy wheel excellent in corrosion fatigue resistance
JP4532017B2 (en) Method and apparatus for manufacturing titanium ring of drum for manufacturing electrolytic metal foil
JP2019111567A (en) Manufacturing method of press forming article
JP6070615B2 (en) Manufacturing method of extra heavy steel sheet
TWI606120B (en) Method of treating surface of austenitic alloy steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180328

R150 Certificate of patent or registration of utility model

Ref document number: 6316912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250