JP5016510B2 - Semiconductor support equipment - Google Patents

Semiconductor support equipment Download PDF

Info

Publication number
JP5016510B2
JP5016510B2 JP2008024050A JP2008024050A JP5016510B2 JP 5016510 B2 JP5016510 B2 JP 5016510B2 JP 2008024050 A JP2008024050 A JP 2008024050A JP 2008024050 A JP2008024050 A JP 2008024050A JP 5016510 B2 JP5016510 B2 JP 5016510B2
Authority
JP
Japan
Prior art keywords
semiconductor
susceptor
sio
cooling plate
support device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008024050A
Other languages
Japanese (ja)
Other versions
JP2008218992A (en
Inventor
知之 藤井
章央 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
NGK Insulators Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, NGK Insulators Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008024050A priority Critical patent/JP5016510B2/en
Priority to TW097104556A priority patent/TWI502679B/en
Priority to US12/025,903 priority patent/US9631128B2/en
Priority to KR1020080011882A priority patent/KR101179013B1/en
Publication of JP2008218992A publication Critical patent/JP2008218992A/en
Application granted granted Critical
Publication of JP5016510B2 publication Critical patent/JP5016510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2804Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Paints Or Removers (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、静電チャック又はヒータ付静電チャック等の半導体製造装置用サセプターと冷却板を接合する接合剤及びこの接合剤により接合された半導体製造装置用サセプターと冷却板を備える半導体支持装置に関する。   The present invention relates to a bonding agent for bonding a susceptor for a semiconductor manufacturing apparatus such as an electrostatic chuck or an electrostatic chuck with a heater to a cooling plate, and a semiconductor support device including the susceptor for a semiconductor manufacturing apparatus and a cooling plate bonded by the bonding agent. .

従来、半導体製造装置用サセプターと、半導体製造装置用サセプター上に保持されるSiウェハ基板の温度を制御する冷却板とは、液状シリコーンゴム,インジウム(In)を含む金属層,又はアクリル系やエポキシ系の有機性接着剤により接合されていた(特許文献1,2,3参照)。
特開平4−287344号公報 特開平3−3249号公報 特開2002−231797号公報
Conventionally, a susceptor for a semiconductor manufacturing apparatus and a cooling plate for controlling the temperature of a Si wafer substrate held on the susceptor for a semiconductor manufacturing apparatus are a liquid silicone rubber, a metal layer containing indium (In), or an acrylic or epoxy resin. It was joined by a system organic adhesive (see Patent Documents 1, 2, and 3).
JP-A-4-287344 JP-A-3-3249 Japanese Patent Laid-Open No. 2002-231797

しかしながら、液状シリコーンゴムを用いて半導体製造装置用サセプターと冷却板を接合した場合、液状シリコーンゴムの硬化時の体積収縮により接合後にそりが発生し、半導体製造装置用サセプターの平面度が低下することがある。また、Inを含む金属層を用いた場合には、Inが製造プロセスにおいて汚染源となることがある。また、有機性接着剤を用いた場合には、有機性接着剤の耐熱温度が100[℃]程度と低いために、耐熱性の面で問題がある。   However, when a susceptor for a semiconductor manufacturing apparatus and a cooling plate are bonded using liquid silicone rubber, warpage occurs after bonding due to volume shrinkage when the liquid silicone rubber is cured, and the flatness of the susceptor for semiconductor manufacturing apparatus decreases. There is. In addition, when a metal layer containing In is used, In may become a contamination source in the manufacturing process. In addition, when an organic adhesive is used, the heat resistance temperature of the organic adhesive is as low as about 100 [° C.], so that there is a problem in terms of heat resistance.

本発明は、上述の課題を解決するためになされたものであり、その目的は、半導体製造装置用サセプターの平面度を高く保つと共に製造プロセスにおいて汚染源となることがない、耐熱性の高い接合剤を提供することにある。また、本発明の他の目的は、半導体製造装置用サセプターの平面度を高く保つと共に製造プロセスにおいて半導体製造装置用サセプターと冷却板の接合層が汚染源となることがない、耐熱性の高い半導体支持装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to maintain a high flatness of a susceptor for a semiconductor manufacturing apparatus and to prevent contamination from occurring in the manufacturing process. Is to provide. Another object of the present invention is to maintain a high degree of flatness of a susceptor for a semiconductor manufacturing apparatus and to prevent a bonding layer between a susceptor for a semiconductor manufacturing apparatus and a cooling plate from becoming a contamination source in the manufacturing process. To provide an apparatus.

上記課題を解決するために、本発明に係る半導体支持装置は、半導体製造装置用サセプターと、冷却板と、半導体製造装置用サセプターと冷却板を接合する接合剤とを備える。接合剤は、付加硬化型シリコーン粘着剤からなる硬化シートにより形成され、1分子に2個以上のビニル基を含有するオルガノポリシロキサンと、RSiO1/2(Rは脂肪族不飽和結合を有しない炭素数1〜6の1価炭化水素基)で表される単位(以下Mと表記)とSiO4/2で表される単位(以下Qと表記)とをRSiO1/2単位/SiO4/2単位のモル比(M/Q比)が0.6以上1.6以下の範囲内になる割合で含むオルガノポリシロキサンレジンと、ケイ素原子結合水素原子を含有するオルガノハイドロジェンポリシロキサンと、白金触媒と、20[vol%]以上50[vol%]以下の含有率を有する熱伝導性フィラーとを含有することを特徴とする。 In order to solve the above problems, a semiconductor support device according to the present invention includes a susceptor for a semiconductor manufacturing apparatus, a cooling plate, and a bonding agent that joins the susceptor for the semiconductor manufacturing device and the cooling plate. The bonding agent is formed of a cured sheet made of an addition-curable silicone pressure-sensitive adhesive, and is composed of an organopolysiloxane containing two or more vinyl groups per molecule and R 3 SiO 1/2 (R is an aliphatic unsaturated bond). A unit represented by a monovalent hydrocarbon group having 1 to 6 carbon atoms) (hereinafter referred to as M) and a unit represented by SiO 4/2 (hereinafter referred to as Q) as R 3 SiO 1/2 units. / SiO 4/2 unit organopolysiloxane resin containing a molar ratio (M / Q ratio) in the range of 0.6 or more and 1.6 or less, and organohydrogen poly containing silicon-bonded hydrogen atoms It contains siloxane, a platinum catalyst, and a thermally conductive filler having a content of 20 [vol%] or more and 50 [vol%] or less.

M/Q比が0.6未満である場合、耐熱性は向上するが粘着性が低下しやすくなり、またM/Q比が1.6を超えた場合も粘着性が低下しやすくなる。また熱伝導性フィラーの含有率が全系に対し20[vol%]未満である場合、熱伝導率が不十分となり、逆に50[vol%]を超えた場合には、粘着性が低下する。   When the M / Q ratio is less than 0.6, the heat resistance is improved, but the adhesiveness tends to be lowered. Also, when the M / Q ratio exceeds 1.6, the adhesiveness tends to be lowered. Moreover, when the content rate of a heat conductive filler is less than 20 [vol%] with respect to the whole system, heat conductivity becomes inadequate, and when it exceeds 50 [vol%] conversely, adhesiveness falls. .

本発明によれば、半導体製造装置用サセプターの平面度を高く保つと共に製造プロセスにおいて汚染源となることがない、耐熱性の高い接合剤を提供することができる。また、本発明によれば、半導体製造装置用サセプターの平面度を高く保つと共に製造プロセスにおいて半導体製造装置用サセプターと冷却板の接合層が汚染源となることがない、耐熱性の高い半導体支持装置を提供することができる。   According to the present invention, it is possible to provide a highly heat-resistant bonding agent that maintains high flatness of a susceptor for a semiconductor manufacturing apparatus and does not become a contamination source in the manufacturing process. Further, according to the present invention, there is provided a highly heat-resistant semiconductor support device that keeps the flatness of a susceptor for a semiconductor manufacturing apparatus high and does not cause a bonding source between a susceptor for a semiconductor manufacturing apparatus and a cooling plate in a manufacturing process. Can be provided.

本発明に係る接合剤は、付加硬化型シリコーン粘着剤からなる硬化シートにより形成され、付加硬化型シリコーン粘着剤は、1分子に2個以上のビニル基を含有するオルガノポリシロキサンと、RSiO1/2(Rは脂肪族不飽和結合を有しない炭素数1〜6の1価炭化水素基)で表される単位(以下Mと表記)とSiO4/2で表される単位(以下Qと表記)とをRSiO1/2単位/SiO4/2単位のモル比(M/Q比)が0.6以上1.6以下の範囲内になる割合で含むオルガノポリシロキサンレジンと、ケイ素原子結合水素原子を含有するオルガノハイドロジェンポリシロキサンと、白金触媒と、20[vol%]以上50[vol%]以下の含有率を有する熱伝導性フィラーとを含有する。 The bonding agent according to the present invention is formed by a cured sheet made of an addition-curable silicone pressure-sensitive adhesive, and the addition-curable silicone pressure-sensitive adhesive includes an organopolysiloxane containing two or more vinyl groups per molecule, and R 3 SiO. A unit represented by 1/2 (R is a monovalent hydrocarbon group having 1 to 6 carbon atoms not having an aliphatic unsaturated bond) and a unit represented by SiO 4/2 (hereinafter Q And an organopolysiloxane resin containing a molar ratio of R 3 SiO 1/2 units / SiO 4/2 units (M / Q ratio) in the range of 0.6 to 1.6, An organohydrogenpolysiloxane containing silicon-bonded hydrogen atoms, a platinum catalyst, and a thermally conductive filler having a content of 20 [vol%] or more and 50 [vol%] or less are contained.

付加反応硬化型シリコーン粘着剤組成物は、好ましくは、
(A)1分子中に2個以上のビニル基を有するジオルガノポリシロキサン、
(B)RSiO1/2単位(Rは脂肪族不飽和結合を有しない炭素数1〜6の1価炭化水素基)及びSiO4/2単位を含有し、RSiO1/2単位/SiO4/2単位のモル比が0.6〜1.6であるオルガノポリシロキサンレジン、
(C)SiH基を1分子中に3個以上含有するオルガノハイドロジェンポリシロキサン
(D)白金系触媒、及び
(E)熱伝導性フィラー
とを含有する組成物よりなるものである。
The addition reaction curable silicone pressure-sensitive adhesive composition is preferably
(A) a diorganopolysiloxane having two or more vinyl groups in one molecule;
(B) R 3 SiO 1/2 unit (R is a monovalent hydrocarbon group having 1 to 6 carbon atoms having no aliphatic unsaturated bond) and SiO 4/2 unit, and R 3 SiO 1/2 unit Organopolysiloxane resin having a molar ratio of / SiO 4/2 units of 0.6 to 1.6,
(C) An organohydrogenpolysiloxane containing three or more SiH groups in one molecule (D) a platinum-based catalyst, and (E) a composition containing a thermally conductive filler.

(A)成分中のビニル基含有量は、好ましくは0.02〜0.40[モル%]、より好ましくは0.04〜0.25[モル%]である。0.02[モル%]以下では粘着力、保持力が低下し、0.40[モル%]以上では粘着力、タックが低下する。   (A) Vinyl group content in a component becomes like this. Preferably it is 0.02-0.40 [mol%], More preferably, it is 0.04-0.25 [mol%]. If it is 0.02 [mol%] or less, the adhesive strength and holding power decrease, and if it is 0.40 [mol%] or higher, the adhesive strength and tack decrease.

(A)成分は、分子鎖末端及び/又は側鎖にビニル基を含有する鎖状のオルガノポリシロキサンが好ましく、オイル状または生ゴム状であればよく、その粘度は、25[℃]において1000[mPa・s]以上、特に10000[mPa・s]以上が好ましい。なお上限としては、特に限定されないが、重合度が20,000以下となるように選定することが好ましい。(A)成分は1種を単独で又は2種以上を組み合わせて使用することができる。   The component (A) is preferably a chain organopolysiloxane containing a vinyl group at the molecular chain terminal and / or side chain, and may be in the form of oil or raw rubber, and its viscosity is 1000 [at 25 [° C.]. mPa · s] or more, particularly preferably 10,000 [mPa · s] or more. The upper limit is not particularly limited, but is preferably selected so that the degree of polymerization is 20,000 or less. (A) A component can be used individually by 1 type or in combination of 2 or more types.

(B)成分はRSiO1/2単位(Rは脂肪族不飽和結合を有しない炭素数1〜6の1価炭化水素基である)及びSiO4/2単位を含有し、RSiO1/2単位/SiO4/2単位のモル比が0.6〜1.6、好ましくは0.8〜1.5、さらに好ましくは1.0〜1.5であるオルガノポリシロキサンである。RSiO1/2単位/SiO4/2単位のモル比が0.6未満では粘着力やタックが低下することがあり、1.6を越えると粘着力や保持力が低下することがある。(B)成分は、SiOH基を含有していてもよく、OH基含有量は0〜4.0[重量%]であればよい。また、(B)成分は2種以上を併用してもよい。なおRとしては、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、シクロヘキシル基などのシクロアルキル基、フェニル基等が挙げられ、メチル基が好ましい。 The component (B) contains R 3 SiO 1/2 units (R is a C 1-6 monovalent hydrocarbon group having no aliphatic unsaturated bond) and SiO 4/2 units, and R 3 SiO Organopolysiloxane having a molar ratio of 1/2 unit / SiO 4/2 unit of 0.6 to 1.6, preferably 0.8 to 1.5, and more preferably 1.0 to 1.5. If the molar ratio of R 3 SiO 1/2 unit / SiO 4/2 unit is less than 0.6, the adhesive force and tack may be reduced, and if it exceeds 1.6, the adhesive force and holding force may be reduced. . The component (B) may contain SiOH groups, and the OH group content may be 0 to 4.0 [wt%]. Moreover, 2 or more types of (B) component may be used together. Examples of R include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, a cycloalkyl group such as a cyclohexyl group, a phenyl group, and the like, and a methyl group is preferable.

(A)成分と(B)成分との質量比は80/20〜20/80、好ましくは60/40〜30/70である。(A)成分の配合割合が少な過ぎると、タック力の低下という不都合があり、逆に(A)成分の配合割合が多過ぎると、粘着力の低下という不都合があるので好ましくない。   The mass ratio of the component (A) to the component (B) is 80/20 to 20/80, preferably 60/40 to 30/70. When the blending ratio of the component (A) is too small, there is an inconvenience that the tack force is lowered. On the other hand, when the blending ratio of the component (A) is too large, there is a disadvantage that the adhesive force is lowered.

粘着性及び剥離性の点から、特に(B)成分のRSiO1/2単位/SiO4/2単位のモル比が1.0〜1.5であり、且つ、(A)成分と(B)成分との質量比が50/50〜40/60であるのがより好ましい。 From the viewpoint of adhesiveness and peelability, the molar ratio of R 3 SiO 1/2 unit / SiO 4/2 unit of component (B) is 1.0 to 1.5, and (A) component and ( It is more preferable that mass ratio with B) component is 50 / 50-40 / 60.

(C)成分は架橋剤であり、1分子中にSiH基を少なくとも3個、好ましくは4個有するオルガノヒドロポリシロキサンで、直鎖状、分岐状、環状のもの等を使用することができる。   Component (C) is a cross-linking agent, which is an organohydropolysiloxane having at least 3, preferably 4, SiH groups in one molecule, and linear, branched, cyclic, etc. can be used.

(C)成分の使用量は、(A)成分中のビニル基に対する(C)成分中のSiH基のモル比が1〜25、特に5〜20の範囲となるように配合することが好ましい。1未満では架橋密度が低くなり、これにともない保持力が低くなることがあり、25を越えると粘着力及びタックが低下したり、粘着シートの作製において、塗工の際の粘着剤組成物の使用可能時間が短くなる場合がある。   Component (C) is preferably used in such an amount that the molar ratio of SiH groups in component (C) to vinyl groups in component (A) is in the range of 1 to 25, particularly 5 to 20. If it is less than 1, the crosslink density is lowered, and the holding power may be lowered accordingly. If it exceeds 25, the adhesive strength and tack are lowered, or the pressure-sensitive adhesive composition at the time of coating in the production of the pressure-sensitive adhesive sheet is reduced. The usable time may be shortened.

(D)成分は白金系触媒であり、塩化白金酸、塩化白金酸のアルコール溶液、塩化白金酸とアルコールとの反応物、塩化白金酸とオレフィン化合物との反応物、塩化白金酸とビニル基含有シロキサンとの反応物等が挙げられる。中でも塩化白金酸とビニル基含有シロキサンとの反応物が好ましく、商品名CAT−PL−50T(信越化学工業製)として市販されている。   Component (D) is a platinum catalyst, containing chloroplatinic acid, an alcohol solution of chloroplatinic acid, a reaction product of chloroplatinic acid and alcohol, a reaction product of chloroplatinic acid and an olefin compound, and containing chloroplatinic acid and a vinyl group Examples include a reaction product with siloxane. Among them, a reaction product of chloroplatinic acid and vinyl group-containing siloxane is preferable, and is commercially available as trade name CAT-PL-50T (manufactured by Shin-Etsu Chemical Co., Ltd.).

(D)成分の添加量は、(A)及び(B)成分の合計100質量部に対して白金分が5〜500[ppm]、特に10〜200[ppm]である量が好ましい。5[ppm]未満では硬化性が低下し、架橋密度が低くなり、保持力が低下することがあり、500[ppm]を越えると塗工の際の粘着剤組成物の使用可能時間が短くなる場合がある。   The amount of component (D) added is preferably such that the platinum content is 5 to 500 [ppm], particularly 10 to 200 [ppm] based on 100 parts by mass of the total of components (A) and (B). If it is less than 5 [ppm], the curability is lowered, the crosslinking density is lowered, and the holding power may be lowered. If it exceeds 500 [ppm], the usable time of the pressure-sensitive adhesive composition at the time of coating is shortened. There is a case.

(E)成分の熱伝導性フィラーは、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、及びシリコンカーバイト(SiC)のうちのいずれかにより形成されていることが望ましい。 The thermally conductive filler of component (E) is preferably formed of any one of aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), and silicon carbide (SiC).

熱伝導性フィラーは、平均粒径が1[μm]以下の微細粒子と平均粒径が10[μm]以上30[μm]以下の数値範囲内にある粗粒子とを重量比が3:7以上1:9以下の範囲内になるように混合した粒子により形成されていることが望ましい。これにより、微細粒子が粗粒子の間に充填され、熱伝導性が安定化する。また最密充填化が図れることにより、接合剤の低弾性を維持しつつ半導体製造装置用サセプター及び冷却板との密着性を向上させることができる。なお、熱伝導性フィラーの平均粒径が30[μm]以上になると接合剤表面の平滑性が低下することによって粘着性が低下しやすくなる。   The heat conductive filler has a weight ratio of 3: 7 or more to fine particles having an average particle diameter of 1 [μm] or less and coarse particles having an average particle diameter of 10 [μm] to 30 [μm]. It is desirable to be formed of particles mixed so as to be in a range of 1: 9 or less. Thereby, the fine particles are filled between the coarse particles, and the thermal conductivity is stabilized. Further, by achieving close packing, adhesion between the susceptor for a semiconductor manufacturing apparatus and the cooling plate can be improved while maintaining low elasticity of the bonding agent. In addition, when the average particle diameter of a heat conductive filler will be 30 [micrometers] or more, adhesiveness will fall easily by the smoothness of the bonding agent surface falling.

接合剤と半導体製造装置用サセプター及び冷却板の接合面には予めシランカップリング系プライマーを塗布しておくことが望ましい。また半導体製造装置用サセプターは、窒化アルミニウム、酸化アルミニウム、窒化ホウ素(BN)、イットリアのうちのいずれかにより形成され、冷却板は、アルミニウム合金、真鍮のうちのいずれかにより形成されていることが望ましい。   It is desirable to apply a silane coupling primer in advance to the bonding surfaces of the bonding agent, the susceptor for the semiconductor manufacturing apparatus, and the cooling plate. The susceptor for semiconductor manufacturing apparatus may be formed of any one of aluminum nitride, aluminum oxide, boron nitride (BN), and yttria, and the cooling plate may be formed of any of aluminum alloy and brass. desirable.

必要に応じて(F)成分として付加反応制御剤を添加することができる。(F)成分はシリコーン粘着剤組成物を調製乃至塗工する際、加熱硬化の以前に粘着剤組成物が増粘やゲル化をおこさないようにするために添加されるものである。   If necessary, an addition reaction control agent can be added as the component (F). The component (F) is added to prevent the pressure-sensitive adhesive composition from thickening or gelling before heat curing when preparing or coating the silicone pressure-sensitive adhesive composition.

(F)成分の具体例としては、3−メチル−1−ブチン−3−オール、3−メチル−1−ペンチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、1−エチニルシクロヘキサノール、3−メチル−3−トリメチルシロキシ−1−ブチン、3−メチル−3−トリメチルシロキシ−1−ペンチン、3,5−ジメチル−3−トリメチルシロキシ−1−ヘキシン、1−エチニル−1−トリメチルシロキシシクロヘキサン、ビス(2,2−ジメチル−3−ブチノキシ)ジメチルシラン、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、1,1,3,3−テトラメチル−1,3−ジビニルジシロキサン等が挙げられる。   Specific examples of the component (F) include 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 1- Ethynylcyclohexanol, 3-methyl-3-trimethylsiloxy-1-butyne, 3-methyl-3-trimethylsiloxy-1-pentyne, 3,5-dimethyl-3-trimethylsiloxy-1-hexyne, 1-ethynyl-1 -Trimethylsiloxycyclohexane, bis (2,2-dimethyl-3-butynoxy) dimethylsilane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,1,3 , 3-tetramethyl-1,3-divinyldisiloxane and the like.

(F)成分の配合量は、(A)及び(B)成分の合計100質量部に対して0〜8.0質量部の範囲であることが好ましく、特に0.05〜2.0質量部が好ましい。8.0質量部を越えると硬化性が低下することがある。   The blending amount of the component (F) is preferably in the range of 0 to 8.0 parts by mass, particularly 0.05 to 2.0 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). Is preferred. If it exceeds 8.0 parts by mass, the curability may be lowered.

本発明に係るシリコーン粘着剤組成物には、上記各成分以外に任意成分を添加することができる。例えば、ジメチルポリシロキサン、ジメチルジフェニルポリシロキサンなどの非反応性のオルガノポリシロキサン、塗工の際の粘度を下げるためのトルエン、キシレン等の芳香族系溶剤、ヘキサン、オクタン、イソパラフィン等の脂肪族系溶剤、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、酢酸エチル、酢酸イソブチル等のエステル系溶剤、ジイソプロピルエーテル、1,4−ジオキサン等のエーテル系溶剤、又はこれらの混合溶剤、酸化防止剤、染料、顔料等が挙げられる。なお、通常、組成物の粘度を下げ、塗工を容易にするために溶剤が使用される。   In addition to the above components, optional components can be added to the silicone pressure-sensitive adhesive composition according to the present invention. For example, non-reactive organopolysiloxanes such as dimethylpolysiloxane and dimethyldiphenylpolysiloxane, aromatic solvents such as toluene and xylene for reducing the viscosity during coating, and aliphatic systems such as hexane, octane and isoparaffin Solvents, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and isobutyl acetate, ether solvents such as diisopropyl ether and 1,4-dioxane, or mixed solvents thereof, antioxidants, dyes, And pigments. Usually, a solvent is used to lower the viscosity of the composition and facilitate coating.

シリコーン粘着剤組成物の塗工量は、硬化した後の粘着層の厚みが50〜300[μm]、好ましくは100〜200[μm]であるように選択することができる。   The coating amount of the silicone pressure-sensitive adhesive composition can be selected so that the thickness of the pressure-sensitive adhesive layer after curing is 50 to 300 [μm], preferably 100 to 200 [μm].

硬化条件としては、付加反応硬化型のものは90〜120[℃]で5〜20[分]とすることができるが、この限りではない。   As the curing conditions, those of addition reaction curing type can be set to 90 to 120 [° C.] and 5 to 20 [min], but are not limited thereto.

本発明に係る接合剤は、例えば図1に示すような、半導体ウェハ1を支持する半導体製造装置用サセプター2と、冷却媒体供給路3aに供給された冷却媒体によって半導体製造装置用サセプター2を冷却することにより半導体ウェハ1の温度を制御する冷却板3とを備える半導体支持装置における、半導体製造装置用サセプター2と冷却板3を接合するための接合剤4に適用することができる。なお、図1に示す半導体支持装置では、半導体製造装置用サセプター2,冷却板3,及び接合剤4には、半導体ウェハ1と半導体製造装置用サセプター2の間にガスを供給するためのガスチャンネル5と、リフトピンを挿入して半導体製造装置用サセプター2から半導体ウェハ1を取り外すためのリフトピン穴6が形成されている。   The bonding agent according to the present invention cools the susceptor 2 for a semiconductor manufacturing apparatus with a susceptor 2 for supporting a semiconductor wafer 1 and a cooling medium supplied to a cooling medium supply path 3a as shown in FIG. By doing so, it can be applied to the bonding agent 4 for bonding the susceptor 2 for the semiconductor manufacturing apparatus and the cooling plate 3 in the semiconductor support device including the cooling plate 3 for controlling the temperature of the semiconductor wafer 1. In the semiconductor support device shown in FIG. 1, a gas channel for supplying a gas between the semiconductor wafer 1 and the susceptor 2 for the semiconductor manufacturing apparatus to the susceptor 2 for the semiconductor manufacturing apparatus, the cooling plate 3 and the bonding agent 4. 5 and a lift pin hole 6 for inserting the lift pin and removing the semiconductor wafer 1 from the susceptor 2 for semiconductor manufacturing apparatus.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

〔実施例1〕
実施例1では、始めに、分子鎖両末端にビニル基を含有するオルガノポリシロキサンを100質量部、RSiO1/2(Rは脂肪族不飽和結合を有しない炭素数1〜6の1価炭化水素基)で表される単位(以下Mと表記)とSiO4/2で表される単位(以下Qと表記)とをRSiO1/2単位/SiO4/2単位のモル比(M/Q比)が1.1になる割合で含むオルガノポリシロキサンレジンを180質量部、ケイ素原子結合水素原子を含有するオルガノハイドロジェンポリシロキサンをビニル基を含有するオルガノポリシロキサンのビニル基に対する成分中のSiH基のモル比が15となる量、白金触媒、及び20[vol%]の含有率を有し、平均粒径0.7[μm]の酸化アルミニウム(微細粒子)と平均粒径20[μm]の酸化アルミニウム(粗粒子)とを重量比10:90の割合で混合した熱伝導性フィラーからなる混合物をトルエンに溶解させた付加硬化型シリコーン粘着剤をPET離型フィルムに塗工し、100[℃]の熱風循環式乾燥機内にて10分間硬化後、硬化物をPET離型フィルムから剥離することにより厚さ120[μm]の実施例1の接合剤を得た。次に、本接合剤を種々の形状のアルミニウム(Al)角板と窒化アルミニウム(AlN)角板に100[℃],1.4[MPa]で10分間加熱加圧接合することにより実施例1の接合体を得た。
[Example 1]
In Example 1, first, 100 parts by mass of an organopolysiloxane containing vinyl groups at both ends of the molecular chain, R 3 SiO 1/2 (R is 1 to 6 carbon atoms having no aliphatic unsaturated bond). Unit represented by (valent hydrocarbon group) (hereinafter referred to as M) and a unit represented by SiO 4/2 (hereinafter referred to as Q) in a molar ratio of R 3 SiO 1/2 unit / SiO 4/2 unit. 180 parts by mass of an organopolysiloxane resin containing a ratio (M / Q ratio) of 1.1, and an organohydrogenpolysiloxane containing silicon-bonded hydrogen atoms with respect to the vinyl groups of the organopolysiloxane containing vinyl groups Aluminum oxide (fine particles) having an average particle size of 0.7 [μm] and an average particle size having an amount of SiH group in the component in an amount of 15, a platinum catalyst, and a content of 20 [vol%] 20 [μm] An addition-curable silicone pressure-sensitive adhesive prepared by dissolving a mixture of thermally conductive fillers in which aluminum oxide (coarse particles) in a weight ratio of 10:90 was dissolved in toluene was applied to a PET release film. C.] in a hot air circulating dryer for 10 minutes, and then the cured product was peeled from the PET release film to obtain a bonding agent of Example 1 having a thickness of 120 [μm]. Next, the present bonding agent is heated and pressure-bonded to aluminum (Al) square plates and aluminum nitride (AlN) square plates of various shapes at 100 [° C.] and 1.4 [MPa] for 10 minutes to obtain Example 1. A zygote was obtained.

〔実施例2〕
実施例2では、AlとAlNの接合面に予めシランカップリング系プライマーを塗布した以外は実施例1と同じ条件で製造することにより、実施例2の接合体を得た。
[Example 2]
In Example 2, the joined body of Example 2 was obtained by manufacturing under the same conditions as in Example 1 except that a silane coupling primer was previously applied to the joining surface of Al and AlN.

〔実施例3〕
実施例3では、微細粒子と粗粒子の重量比を30:70とした以外は実施例1と同じ条件で製造することにより、実施例3の接合体を得た。
Example 3
In Example 3, the joined body of Example 3 was obtained by manufacturing under the same conditions as in Example 1 except that the weight ratio of fine particles to coarse particles was 30:70.

〔実施例4〕
実施例4では、微細粒子と粗粒子の重量比を20:80とした以外は実施例1と同じ条件で製造することにより、実施例4の接合体を得た。
Example 4
In Example 4, the joined body of Example 4 was obtained by producing under the same conditions as in Example 1 except that the weight ratio of fine particles to coarse particles was 20:80.

〔実施例5〕
実施例5では、熱伝導性フィラーの含有率を33[vol%]とした以外は実施例1と同じ条件で製造することにより、実施例5の接合体を得た。
Example 5
In Example 5, the joined body of Example 5 was obtained by manufacturing on the same conditions as Example 1 except having set the content rate of the heat conductive filler to 33 [vol%].

〔実施例6〕
実施例6では、微細粒子と粗粒子の重量比を20:80とした以外は実施例5と同じ条件で製造することにより、実施例6の接合体を得た。
Example 6
In Example 6, the joined body of Example 6 was obtained by manufacturing under the same conditions as in Example 5 except that the weight ratio of fine particles to coarse particles was 20:80.

〔実施例7〕
実施例7では、AlとAlNの接合面に予めシランカップリング系プライマーを塗布した以外は実施例6と同じ条件で製造することにより、実施例7の接合体を得た。
Example 7
In Example 7, the joined body of Example 7 was obtained by manufacturing under the same conditions as in Example 6 except that a silane coupling primer was previously applied to the joining surface of Al and AlN.

〔実施例8〕
実施例8では、M/Q比を1.5とした以外は実施例6と同じ条件で製造することにより、実施例8の接合体を得た。
Example 8
In Example 8, the joined body of Example 8 was obtained by manufacturing under the same conditions as Example 6 except that the M / Q ratio was 1.5.

〔実施例9〕
実施例9では、AlとAlNの接合面に予めシランカップリング系プライマーを塗布した以外は実施例8と同じ条件で製造することにより、実施例9の接合体を得た。
Example 9
In Example 9, a joined body of Example 9 was obtained by manufacturing under the same conditions as in Example 8 except that a silane coupling primer was previously applied to the joining surface of Al and AlN.

〔実施例10〕
実施例10では、M/Q比を0.6とした以外は実施例7と同じ条件で製造することにより、実施例10の接合体を得た。
Example 10
In Example 10, the joined body of Example 10 was obtained by manufacturing under the same conditions as Example 7 except that the M / Q ratio was 0.6.

〔実施例11〕
実施例11では、粗粒子の平均粒径を10[μm]とした以外は実施例7と同じ条件で製造することにより、実施例11の接合体を得た。
Example 11
In Example 11, the joined body of Example 11 was obtained by manufacturing under the same conditions as Example 7 except that the average particle diameter of the coarse particles was 10 [μm].

〔実施例12〕
実施例12では、粗粒子の平均粒径を30[μm]とした以外は実施例7と同じ条件で製造することにより、実施例12の接合体を得た。
Example 12
In Example 12, the joined body of Example 12 was obtained by manufacturing under the same conditions as in Example 7 except that the average particle diameter of the coarse particles was set to 30 [μm].

〔実施例13〕
実施例13では、熱伝導性フィラーの含有率を50[vol%]とした以外は実施例7と同じ条件で製造することにより、実施例13の接合体を得た。
Example 13
In Example 13, the joined body of Example 13 was obtained by manufacturing on the same conditions as Example 7 except having set the content rate of the heat conductive filler to 50 [vol%].

〔実施例14〕
実施例14では、熱伝導性フィラーの材質を窒化アルミニウム(AlN)とした以外は実施例7と同じ条件で製造することにより、実施例14の接合体を得た。
Example 14
In Example 14, the joined body of Example 14 was obtained by manufacturing under the same conditions as Example 7 except that the material of the thermally conductive filler was aluminum nitride (AlN).

〔実施例15〕
実施例15では、熱伝導性フィラーの材質を炭化珪素(SiC)とした以外は実施例7と同じ条件で製造することにより、実施例15の接合体を得た。
Example 15
In Example 15, the joined body of Example 15 was obtained by manufacturing under the same conditions as Example 7 except that the material of the thermally conductive filler was silicon carbide (SiC).

〔比較例1〕
比較例1では、平均粒径10[μm]の熱伝導性フィラーを30[vol%]含有するアクリル樹脂を用意し、このアクリル樹脂によってAl及びAlNと接合することにより比較例1の接合体を得た。
[Comparative Example 1]
In Comparative Example 1, an acrylic resin containing 30 [vol%] of a heat conductive filler having an average particle size of 10 [μm] is prepared, and the bonded body of Comparative Example 1 is bonded to Al and AlN using this acrylic resin. Obtained.

〔比較例2〕
比較例2では、M/Q比を0.4とした以外は実施例6と同じ条件で製造することにより、比較例2の接合体を得た。
[Comparative Example 2]
In Comparative Example 2, a joined body of Comparative Example 2 was obtained by manufacturing under the same conditions as in Example 6 except that the M / Q ratio was 0.4.

〔比較例3〕
比較例3では、M/Q比を1.7とした以外は実施例6と同じ条件で製造することにより、比較例3の接合体を得た。
[Comparative Example 3]
In Comparative Example 3, a joined body of Comparative Example 3 was obtained by manufacturing under the same conditions as in Example 6 except that the M / Q ratio was 1.7.

〔比較例4〕
比較例4では、熱伝導性フィラーの含有率を60[vol%]とした以外は実施例6と同じ条件で製造することにより、比較例4の接合体を得た。
[Comparative Example 4]
In the comparative example 4, the joined body of the comparative example 4 was obtained by manufacturing on the same conditions as Example 6 except having set the content rate of the heat conductive filler to 60 [vol%].

〔比較例5〕
比較例5では、微細粒子と粗粒子の重量比を5:95とした以外は実施例7と同じ条件で製造することにより、比較例5の接合体を得た。
[Comparative Example 5]
In Comparative Example 5, a joined body of Comparative Example 5 was obtained by producing under the same conditions as in Example 7 except that the weight ratio of fine particles to coarse particles was 5:95.

〔比較例6〕
比較例6では、粗粒子の平均粒径を40[μm]とした以外は実施例7と同じ条件で製造することにより、比較例6の接合体を得た。
[Comparative Example 6]
In Comparative Example 6, a joined body of Comparative Example 6 was obtained by producing under the same conditions as in Example 7 except that the average particle diameter of the coarse particles was 40 [μm].

〔比較例7〕
比較例7では、熱伝導性フィラーの材質を窒化アルミニウム(AlN)とした以外は比較例4と同じ条件で製造することにより、比較例7の接合体を得た。
[Comparative Example 7]
In Comparative Example 7, a joined body of Comparative Example 7 was obtained by manufacturing under the same conditions as Comparative Example 4 except that the material of the thermally conductive filler was aluminum nitride (AlN).

〔比較例8〕
比較例8では、熱伝導性フィラーの材質を炭化珪素(SiC)とした以外は比較例4と同じ条件で製造することにより、比較例8の接合体を得た。
[Comparative Example 8]
In Comparative Example 8, a joined body of Comparative Example 8 was obtained by manufacturing under the same conditions as Comparative Example 4 except that the material of the thermally conductive filler was silicon carbide (SiC).

〔比較例9〕
比較例9では、熱伝導性フィラーの含有率を15[vol%]とした以外は実施例7と同じ条件で製造することにより、比較例9の接合体を得た。
[Comparative Example 9]
In Comparative Example 9, a joined body of Comparative Example 9 was obtained by manufacturing under the same conditions as in Example 7 except that the content of the heat conductive filler was set to 15 [vol%].

〔比較例10〕
比較例10では、熱伝導性フィラーの材質を窒化アルミニウム(AlN)とした以外は比較例9と同じ条件で製造することにより、比較例10の接合体を得た。
[Comparative Example 10]
In Comparative Example 10, a joined body of Comparative Example 10 was obtained by manufacturing under the same conditions as Comparative Example 9 except that the material of the thermally conductive filler was aluminum nitride (AlN).

〔比較例11〕
比較例11では、熱伝導性フィラーの材質を炭化珪素(SiC)とした以外は比較例9と同じ条件で製造することにより、比較例11の接合体を得た。
[Comparative Example 11]
In Comparative Example 11, a joined body of Comparative Example 11 was obtained by manufacturing under the same conditions as Comparative Example 9 except that the material of the thermally conductive filler was silicon carbide (SiC).

[せん断剥離試験]
幅25[mm]×長さ35[mm]×厚さ10[mm]のAlN製角板11とAl製角板12の間に、上記実施例1〜15及び比較例1〜8の各接合剤を25×25[mm]の大きさに切り出したものを挟み、100[℃],14[atm]で加熱加圧して接合体を作製した。そして図2に示すようなせん断剥離試験装置を用いて、室温及び150[℃]における各接合体のせん断剥離強度とせん断伸びを測定した。測定結果を以下の表1に示す。なお、φ300mmサイズの実体接合体においては、接合界面の気密性を保持するために、せん断剥離強度が室温で0.5[MPa]以上、150[℃]で0.2[MPa]以上、またせん断伸びについては室温,150[℃]共に0.04以上を目標値とすることが経験的にわかっている。
[Shear peeling test]
Between the AlN square plate 11 and the Al square plate 12 having a width of 25 [mm] × length of 35 [mm] × thickness of 10 [mm], each of the above Examples 1 to 15 and Comparative Examples 1 to 8 was joined. A product obtained by cutting the agent into a size of 25 × 25 [mm] was sandwiched, and heated and pressed at 100 [° C.] and 14 [atm] to prepare a joined body. Then, using a shear peeling test apparatus as shown in FIG. 2, the shear peeling strength and shear elongation of each joined body at room temperature and 150 [° C.] were measured. The measurement results are shown in Table 1 below. In the solid joined body of φ300 mm size, the shear peel strength is 0.5 [MPa] or more at room temperature, 0.2 [MPa] or more at 150 [° C.] in order to maintain the airtightness of the joining interface, It is empirically known that the target value for shear elongation is 0.04 or more for both room temperature and 150 [° C.].

表1から明らかなように、実施例1〜15の接合体は、比較例1〜8の接合体と比較してせん断剥離強度及びせん断伸びが優れていた。一方、比較例1の接合体は、接合剤が耐熱性の低いアクリル樹脂により形成されているために、昇温に伴うせん断剥離強度の劣化が激しかった。比較例2の接合体は、接合剤のM/Q比が低く粘着性が弱いために、せん断剥離強度が低かった。比較例3の接合体は、接合剤のM/Q比が高く粘着性が強いが軟らかすぎるために、せん断剥離強度が低かった。比較例4の接合体は、接合剤の熱伝導性フィラーの含有率が多すぎるために粘着性が弱く、せん断剥離強度が低かった。比較例5の接合体は、熱伝導性フィラーの微細粒子が少なすぎるために、粘着性が弱く、せん断剥離強度が低かった。比較例の接合体は、熱伝導性フィラーの粗粒子の平均粒径が大きすぎるために、粘着性が弱く、せん断剥離強度が低かった。比較例7及び比較例8の接合体では、熱伝導性フィラーの含有量が多すぎるために、粘着性が弱く、せん断剥離強度が低かった。

Figure 0005016510
As is clear from Table 1, the bonded bodies of Examples 1 to 15 were superior in shear peel strength and shear elongation as compared to the bonded bodies of Comparative Examples 1 to 8. On the other hand, in the bonded body of Comparative Example 1, since the bonding agent was formed of an acrylic resin having low heat resistance, the deterioration of the shear peel strength accompanying the temperature increase was severe. The bonded body of Comparative Example 2 had a low shear peel strength because the bonding agent had a low M / Q ratio and low tackiness. The joined body of Comparative Example 3 had a high M / Q ratio of the joining agent and strong tackiness, but was too soft, so that the shear peel strength was low. The bonded body of Comparative Example 4 had a low adhesiveness and a low shear peel strength because the content of the heat conductive filler in the bonding agent was too high. Since the joined body of Comparative Example 5 had too few fine particles of the heat conductive filler, the adhesiveness was weak and the shear peel strength was low. Since the average particle diameter of the coarse particles of the heat conductive filler was too large, the bonded body of the comparative example had low adhesiveness and low shear peel strength. In the joined bodies of Comparative Example 7 and Comparative Example 8, the adhesiveness was weak and the shear peel strength was low because the heat conductive filler content was too large.
Figure 0005016510

[熱伝導率の熱劣化試験]
φ10×t1[mm]のAlN製円板とφ10×t2[mm]のAl製円板の間に実施例1,5〜9及び比較例1,4,7〜11の各接合剤を25×25[mm]の大きさに切り出したものを挟み、100[℃],14[atm]で加熱加圧して接合体を作製した。そして、150[℃]の状態に500時間保持する耐久試験を行った後の各接合体の熱伝導率をレーザーフラッシュ法により測定し、熱伝導率の熱劣化を測定した。そして、測定された接合体全体の熱伝導率から既知であるAlN(90[W/mK])及びAl(160[W/mK])の熱伝導率を除くことにより接合剤単体及び接合界面の熱抵抗を加味した接合層の熱伝導率を算出した。測定結果を以下の表2に示す。熱伝導率の目標値は0.30[W/mK]以下である。
[Thermal degradation test of thermal conductivity]
Between each of the φ10 × t1 [mm] AlN disc and the φ10 × t2 [mm] Al disc, the bonding agents of Examples 1, 5 to 9 and Comparative Examples 1, 4, 7 to 11 are 25 × 25 [ mm] was sandwiched and heated and pressed at 100 [° C.] and 14 [atm] to prepare a joined body. And the thermal conductivity of each joined body after performing the durability test which hold | maintains in the state of 150 [degreeC] for 500 hours was measured by the laser flash method, and the thermal deterioration of thermal conductivity was measured. Then, by removing the known thermal conductivity of AlN (90 [W / mK]) and Al (160 [W / mK]) from the measured thermal conductivity of the entire bonded body, the bonding agent alone and the bonding interface The thermal conductivity of the bonding layer in consideration of thermal resistance was calculated. The measurement results are shown in Table 2 below. The target value of thermal conductivity is 0.30 [W / mK] or less.

比較例1,4,7〜11の接合体では、接合剤の熱伝導率が耐久試験後に低下するのに対して、実施例1,5〜9,11〜15の接合体では、耐久試験前後で接合剤の熱伝導率の低下は認められなかった。実施例1,5〜9,11〜15の接合体では耐久試験前後で接合剤の熱伝導率の低下が認められなかった理由としては、実施例1,5〜9,11〜15の接合体では、接合剤が基本的に耐熱性を有するシリコーン樹脂であり、またM/Q比及び熱伝導性フィラーの含有量が適当であるので、接合剤の粘着性が十分に発現したためであると考えられる。一方、比較例1,4,7〜11の接合体では接合剤の熱伝導率が耐久試験後に低下した理由としては、比較例1の接合体では接合剤が耐熱性の低いアクリル樹脂であるため、比較例2の接合体では接合剤のM/Q比が低く粘着性が弱いため、比較例3の接合体では接合剤のM/Q比が高く、粘着性が弱いため、比較例4,7,8の接合体では熱伝導性フィラーの含有率が多いために接合剤の粘着性が弱いため、比較例9〜11の接合体では熱伝導性フィラーの含有量が少なすぎるためと考えられる。

Figure 0005016510
In the joined bodies of Comparative Examples 1, 4, 7 to 11, the thermal conductivity of the bonding agent decreases after the durability test, whereas in the joined bodies of Examples 1, 5 to 9, and 11 to 15, the before and after the durability test. No decrease in the thermal conductivity of the bonding agent was observed. The reason why no decrease in the thermal conductivity of the bonding agent was observed before and after the durability test in the bonded bodies of Examples 1, 5 to 9, and 11 to 15 was as follows. Then, since the bonding agent is basically a silicone resin having heat resistance, and the M / Q ratio and the content of the heat conductive filler are appropriate, it is considered that the adhesive has sufficiently developed the adhesiveness. It is done. On the other hand, in the joined bodies of Comparative Examples 1, 4, and 7 to 11, the reason why the thermal conductivity of the joining agent decreased after the durability test is that the joining agent of Comparative Example 1 is an acrylic resin having low heat resistance. In the joined body of Comparative Example 2, since the M / Q ratio of the bonding agent is low and the tackiness is weak, in the joined body of Comparative Example 3, the M / Q ratio of the joining agent is high and the tackiness is weak. In the joined bodies of Nos. 7 and 8, since the content of the heat conductive filler is large, the adhesiveness of the bonding agent is weak. Therefore, in the joined bodies of Comparative Examples 9 to 11, the content of the thermally conductive filler is too small. .
Figure 0005016510

[熱サイクル試験]
AlN製の半導体製造装置用サセプターとAl製の冷却板とをせん断剥離試験から抽出した代表例である実施例1,5〜9,13〜15及び比較例1〜4の接合剤を挟んで100[℃],14[atm]で加熱加圧接合し、接合後及び耐久試験(30[℃]から150[℃]に昇温した後に再び30[℃]に降温する処理を30サイクル実施)後の平面度と接合界面におけるガスリークを評価した。なお、半導体製造装置用サセプターと冷却板の寸法はそれぞれφ300×t10[mm],φ300×t30[mm]とした。また、ガスリークの評価は、半導体製造装置用サセプターのガスチャネルを塞ぎ、冷却板にあるガスチャネルからHeリークディテクタで排気しながら接合部にHeを吹きつけ、Heリーク量を測定することにより行った。この結果を以下の表3に示す。実施例1,5〜9,13〜15の接合剤により半導体製造装置用サセプターと冷却板を接合した場合、接合後及び耐久試験後にもガスリークが認められなかったのに対して、比較例1〜4の接合剤により接合した場合には、30サイクルの耐久試験後にガスリークが認められた。平面度は、実施例1,5〜9,13〜15及び比較例1〜4共に30[um]以下であり、実使用
上問題がないレベルであった。

Figure 0005016510
[Thermal cycle test]
100, sandwiching the bonding agents of Examples 1, 5 to 9, 13 to 15 and Comparative Examples 1 to 4, which are representative examples of an AlN semiconductor susceptor for semiconductor manufacturing equipment and an Al cooling plate extracted from a shear peeling test. After heat and pressure bonding at [° C.] and 14 [atm], after bonding and after a durability test (30 cycles of a process of raising the temperature from 30 [° C.] to 150 [° C.] and then lowering the temperature to 30 [° C.]) The flatness and gas leakage at the bonding interface were evaluated. The dimensions of the susceptor for semiconductor manufacturing apparatus and the cooling plate were set to φ300 × t10 [mm] and φ300 × t30 [mm], respectively. Further, the gas leak was evaluated by closing the gas channel of the susceptor for the semiconductor manufacturing apparatus, blowing He to the joint while evacuating the gas channel on the cooling plate with the He leak detector, and measuring the amount of He leak. . The results are shown in Table 3 below. When the susceptor for a semiconductor manufacturing apparatus and the cooling plate were joined with the joining agents of Examples 1, 5 to 9, and 13 to 15, no gas leak was observed after joining and after the durability test, whereas Comparative Examples 1 to In the case of bonding with the bonding agent of No. 4, gas leak was observed after the endurance test of 30 cycles. The flatness was 30 [um] or less in each of Examples 1, 5 to 9, 13 to 15 and Comparative Examples 1 to 4, and was a level with no problem in actual use.
Figure 0005016510

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

本発明の実施形態となる半導体支持装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the semiconductor support apparatus used as embodiment of this invention. 本発明の実施形態となるせん断剥離試験装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the shear peeling test apparatus used as embodiment of this invention.

符号の説明Explanation of symbols

1:半導体ウェハ
2:半導体製造装置用サセプター
3:冷却板
3a:冷却媒体供給路
4:接合剤
5:ガスチャンネル
6:リフトピン穴
11:AlN製角板
12:Al製角板
13a,13b:せん断試験治具
1: Semiconductor wafer 2: Susceptor for semiconductor manufacturing device 3: Cooling plate 3a: Cooling medium supply path 4: Bonding agent 5: Gas channel 6: Lift pin hole 11: Square plate made of AlN 12: Square plate made of Al 13a, 13b: Shear Test jig

Claims (5)

半導体ウェハを支持する半導体製造装置用サセプターと、
冷却板と、
前記半導体製造装置用サセプターと前記冷却板を接合する接合剤とを備え、
前記接合剤は、付加硬化型シリコーン粘着剤からなる硬化シートにより形成され、
前記付加硬化型シリコーン粘着剤は、
1分子に2個以上のビニル基を含有するオルガノポリシロキサンと、
3SiO1/2(Rは脂肪族不飽和結合を有しない炭素数1〜6の1価炭化水素基)で表される単位(以下Mと表記)とSiO4/2で表される単位(以下Qと表記)とをR3SiO1/2単位/SiO4/2単位のモル比(M/Q比)が0.6以上1.5以下の範囲内になる割合で含むオルガノポリシロキサンレジンと、
ケイ素原子結合水素原子を含有するオルガノハイドロジェンポリシロキサンと、
白金触媒と、
20[vo%]以上50[vol%]以下の含有率を有する熱伝導性フィラーと
を含有し、
前記接合剤と前記半導体製造装置用サセプター及び前記冷却板の接合界面にシランカップリング系プライマー層を有することを特徴とする半導体支持装置。
A semiconductor manufacturing device susceptor for supporting a semiconductor wafer ;
A cooling plate,
A bonding agent for bonding the susceptor for the semiconductor manufacturing apparatus and the cooling plate;
The bonding agent is formed by a cured sheet made of an addition-curable silicone adhesive,
The addition-curable silicone adhesive is
An organopolysiloxane containing two or more vinyl groups per molecule;
A unit represented by R 3 SiO 1/2 (where R is a monovalent hydrocarbon group having 1 to 6 carbon atoms not having an aliphatic unsaturated bond) and a unit represented by SiO 4/2 (Hereinafter referred to as Q) in a ratio in which the molar ratio of R 3 SiO 1/2 unit / SiO 4/2 unit (M / Q ratio) is in the range of 0.6 to 1.5 Resin,
An organohydrogenpolysiloxane containing silicon-bonded hydrogen atoms;
Platinum catalyst,
Contains a thermally conductive filler having a 20 [vo l%] or more 50 [vol%] following content,
A semiconductor support device comprising a silane coupling primer layer at a bonding interface between the bonding agent, the susceptor for the semiconductor manufacturing apparatus, and the cooling plate .
前記半導体装置用サセプター及び前記冷却板は、直径が300mm以上である、請求項1に記載の半導体支持装置。  The semiconductor support device according to claim 1, wherein the semiconductor device susceptor and the cooling plate have a diameter of 300 mm or more. 前記付加硬化型シリコーン粘着剤の層の厚みは、50〜300[μm]である、請求項1又は2に記載の半導体支持装置。  3. The semiconductor support device according to claim 1, wherein the layer of the addition-curable silicone pressure-sensitive adhesive has a thickness of 50 to 300 [μm]. 請求項1乃至請求項3のうち、いずれか1項に記載の半導体支持装置であって、前記熱伝導性フィラーは、酸化アルミニウム、窒化アルミニウム、及びシリコンカーバイトのうちのいずれかにより形成されていることを特徴とする半導体支持装置。 4. The semiconductor support device according to claim 1 , wherein the thermally conductive filler is formed of any one of aluminum oxide, aluminum nitride, and silicon carbide. 5. A semiconductor support device. 請求項乃至請求項のうち、いずれか1項に記載の半導体支持装置であって、前記半導体製造装置用サセプターは、窒化アルミニウム、酸化アルミニウム、窒化ホウ素、イットリアのうちのいずれかにより形成され、前記冷却板は、アルミニウム合金、真鍮のうちのいずれかにより形成されていることを特徴とする半導体支持装置。 Of claims 1 to 4, a semiconductor support device according to any one, the susceptor for semiconductor manufacturing apparatus, is formed of aluminum nitride, aluminum oxide, boron nitride, by any of yttria The cooling plate is formed of any one of an aluminum alloy and brass.
JP2008024050A 2007-02-09 2008-02-04 Semiconductor support equipment Active JP5016510B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008024050A JP5016510B2 (en) 2007-02-09 2008-02-04 Semiconductor support equipment
TW097104556A TWI502679B (en) 2007-02-09 2008-02-05 Bonding material and semiconductor supporting device
US12/025,903 US9631128B2 (en) 2007-02-09 2008-02-05 Bonding material and semiconductor supporting device
KR1020080011882A KR101179013B1 (en) 2007-02-09 2008-02-05 Semiconductor supporting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007030530 2007-02-09
JP2007030530 2007-02-09
JP2008024050A JP5016510B2 (en) 2007-02-09 2008-02-04 Semiconductor support equipment

Publications (2)

Publication Number Publication Date
JP2008218992A JP2008218992A (en) 2008-09-18
JP5016510B2 true JP5016510B2 (en) 2012-09-05

Family

ID=39838610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024050A Active JP5016510B2 (en) 2007-02-09 2008-02-04 Semiconductor support equipment

Country Status (3)

Country Link
JP (1) JP5016510B2 (en)
KR (1) KR101179013B1 (en)
TW (1) TWI502679B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520314B2 (en) * 2008-12-19 2016-12-13 Applied Materials, Inc. High temperature electrostatic chuck bonding adhesive
KR101658758B1 (en) * 2009-02-20 2016-09-21 엔지케이 인슐레이터 엘티디 Ceramic-metal junction and method of fabricating same
JP5422413B2 (en) * 2010-01-25 2014-02-19 電気化学工業株式会社 Heat dissipation member and manufacturing method thereof
KR20150013627A (en) * 2012-04-26 2015-02-05 어플라이드 머티어리얼스, 인코포레이티드 Methods and apparatus toward preventing esc bonding adhesive erosion
JP6250949B2 (en) * 2013-04-15 2017-12-20 日本特殊陶業株式会社 Parts for semiconductor manufacturing equipment and manufacturing method thereof
JP6883946B2 (en) * 2016-02-01 2021-06-09 株式会社カネカ Laminated body, its manufacturing method, and substrate bonding method
CN110556318B (en) * 2019-09-04 2022-07-12 唐山国芯晶源电子有限公司 Wafer bonding method based on wafer bonding equipment
JP7458354B2 (en) 2021-09-15 2024-03-29 日本特殊陶業株式会社 holding device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433057B1 (en) * 2000-03-28 2002-08-13 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
JP2003183576A (en) * 2001-12-21 2003-07-03 Dow Corning Toray Silicone Co Ltd Primer composition, bonding method and bonded product
JP4162955B2 (en) * 2002-09-13 2008-10-08 信越化学工業株式会社 Adhesive silicone composition for heat dissipation member
JP2004352947A (en) * 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd Room temperature-curing type of thermally conductive silicone rubber composition

Also Published As

Publication number Publication date
KR20080074789A (en) 2008-08-13
KR101179013B1 (en) 2012-08-31
TWI502679B (en) 2015-10-01
TW200847322A (en) 2008-12-01
JP2008218992A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5016510B2 (en) Semiconductor support equipment
JP7091522B2 (en) Holding device
JP3920746B2 (en) Thermally conductive composite sheet and method for producing the same
JP5234064B2 (en) Solvent-free addition-type silicone adhesive composition and adhesive article
EP1295927B1 (en) Silicone pressure-sensitive adhesive composition and pressure-sensitive adhesive tape
EP2121866B1 (en) Silicone-based pressure-sensitive adhesive composition and adhesive tape
EP3038148A1 (en) Wafer temporary bonding method and thin wafer manufacturing method
US20070218299A1 (en) Thermosetting composition and film having a layer comprising the composition
JP2004190013A (en) Silicone pressure-sensitive adhesive composition and pressure-sensitive adhesive tape
US7476446B2 (en) Silicone adhesive composition and an adhesive tape thereof
JP2019502782A (en) Silicone pressure sensitive adhesive composition
US9631128B2 (en) Bonding material and semiconductor supporting device
EP3960829A1 (en) Thermally conductive composite tape
JP7509755B2 (en) Curable silicone composition, cured product thereof, and method for producing same
JP2006028311A (en) Silicone adhesive composition having excellent heat resistance and production method
US20210317353A1 (en) Silicone adhesive agent composition, and adhesive tape or adhesive film using same
JP5629957B2 (en) Silicone adhesive article for outer space and method of using the same
JP2004168808A (en) Silicone pressure-sensitive adhesive composition and pressure-sensitive adhesive tape
US20040157064A1 (en) Silicone adhesive composition and an adhesive tape thereof
JP6530729B2 (en) Method of producing semi-cured adhesive, and method of producing composite
JP2019071380A (en) Thermally-conductive composite sheet and manufacturing method thereof
JP2021123620A (en) Addition curable silicone adhesive composition and cured product of the same
JP2007103757A (en) Holding jig and small electronic component retainer
TW201938730A (en) Heat-resistant pressure-sensitive adhesive sheet for producing semiconductor device capable of preventing electrode contamination in a no-lead package process
WO2024185675A1 (en) Thermally conductive silicone resin composition and thermally conductive member

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150