JP5015392B2 - 熱拡散装置および磁気共鳴映像撮像装置 - Google Patents
熱拡散装置および磁気共鳴映像撮像装置 Download PDFInfo
- Publication number
- JP5015392B2 JP5015392B2 JP2001252071A JP2001252071A JP5015392B2 JP 5015392 B2 JP5015392 B2 JP 5015392B2 JP 2001252071 A JP2001252071 A JP 2001252071A JP 2001252071 A JP2001252071 A JP 2001252071A JP 5015392 B2 JP5015392 B2 JP 5015392B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- layer
- gradient
- gradient magnetic
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Description
【発明の属する技術分野】
この発明は、均一な磁場を発生する静磁場発生磁石と、位置および時間に応じて変動する磁場を発生する勾配磁場発生部と、勾配磁場発生部から生ずる熱を除去する冷却部と、電磁波送受信手段とを有する磁気共鳴映像撮像装置に関し、特に、磁気共鳴映像撮像装置内の勾配磁場発生部において生ずる熱を効率よく排除することのできる磁気共鳴映像撮像装置に関するものである。
【0002】
【従来の技術】
従来、物体の内部構造を画像化することができ、医療現場で脳腫瘍の診断などに用いられる磁気共鳴映像撮像装置(以下「MRI装置」と言う)が知られている。MRI装置による内部構造の撮影は、具体的には以下のメカニズムによりおこなう。
【0003】
MRI装置は、特定の核種(主に水素原子)に対して核磁気共鳴現象を利用することで、撮影対象物の任意の断層面を任意の厚さで画像化することができる。核磁気共鳴現象とは、対象物体に一様な静磁場を印加すると、対象物体を構成する原子の原子核においてスピンの方向がそろい、静磁場の強度に比例した周波数(以下「共鳴周波数」と言う)の電磁波を吸収、放出するようになる現象のことである。
【0004】
位置情報を調べるために、静磁場とは別に空間的および時間的に変動する勾配磁場を撮影対象物に対して印加する。勾配磁場を印加することにより、撮影対象物に印加される磁場は場所によって異なり、撮影対象物を構成する各原子の共鳴周波数は場所によって変化する。したがって、勾配磁場を印加することで、撮影対象物のどの位置にどのような原子が存在するかを知ることができる。以上が、MRI装置による物体の内部構造撮影のメカニズムである。
【0005】
勾配磁場を印加する装置は、空間的および時間的に変化する磁場を供給するために、通常はコイルを有する電磁石からなる。図8は、従来技術に属するMRI装置における、勾配磁場発生部の構造を示す。撮影対象物は3次元的形状を有する物体であるため、撮影対象物の構成原子の位置を決定するためには3方向に渡って勾配磁場を発生する必要がある。したがって、勾配磁場発生部はX方向勾配磁場発生部61、Y方向勾配磁場発生部62、Z方向勾配磁場発生部63を有し、それぞれを縦に積層した構造からなる。また、各方向勾配磁場発生部は、勾配コイルと、このコイルを上下方向から挟み込むことにより勾配コイルを固定する固定板によって構成される。例えば、X方向勾配磁場発生部61は、勾配コイル64をX方向勾配コイル固定板65、66により挟み込む構造からなる。これらの勾配コイル64、67、70に電流を流すことにより、勾配磁場が発生して各原子の位置に関する情報を得ることが可能となる。
【0006】
【発明が解決しようとする課題】
しかし、勾配磁場を発生する勾配磁場発生部は、位置情報を得るための十分な勾配磁場を発生させるために、勾配コイル中に数百アンペアもの大電流を流す必要がある。そのため、勾配コイルから発生する熱は膨大なものとなり、勾配磁場発生部自身のみならず周囲の静磁場発生磁石や、撮影対象物に電磁波を照射および検出するためのRFコイルに対して熱が加えられ、装置としての性能が低下してしまうという問題が生ずる。また、勾配磁場発生部の周囲に配置される静磁場発生磁石は、温度により磁場強度が変化するという特性を有するため、この点からも勾配磁場発生部から生ずる熱を放置するのは妥当ではない。
【0007】
このような問題を解決するために、図8に示すように2つの冷却部を取り付ける技術が提案されている。これによれば、勾配磁場発生部の上部および下部に冷却部73、74を取り付けて熱を処理することで、勾配磁場発生部から生ずる熱によりMRI装置が損傷を受けることを防止することができる。
【0008】
しかし、冷却部73、74を勾配磁場発生部の上部および下部に配置することで、以下の問題点が生ずる。まず、冷却部を2カ所に配置することにより、MRI装置の構造が煩雑となる。したがって、MRI装置の設計における自由度が減少し、装置の設計が複雑化する。さらに、2つも冷却部を配置することで装置全体の重量も増大してしまう。
【0009】
また、冷却効率を高くできないという問題がある。勾配コイルで発生した熱は勾配磁場発生部の全表面から外部に放出されるため、勾配磁場発生部の全表面に対して冷却部を配置する必要がある。実際には勾配磁場発生部の側面における表面積は小さいため無視することができるものの、すくなくとも勾配磁場発生部の上面および下面を覆う形で冷却部を配置する必要がある。そのため、発熱量の大小および冷却部の性能の高低に関わらず、必ず2つの冷却部を配置しなければならず、効率的ではない。
【0010】
本発明は上記従来技術の欠点に鑑みてなされたものであって、MRI装置内の勾配磁場発生部において生ずる熱を効率よく排除することのできるMRI装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するため、第1の観点にかかる発明は、装置の動作に伴い発生する熱を拡散する熱拡散装置であって、熱伝導率の異なる複数の部材で形成することにより熱拡散方向に異方性を持たせた熱拡散装置であることを特徴とする。
【0012】
この第1の観点にかかる発明によれば、熱拡散装置による熱の拡散に異方性を持たせたため、たとえば熱拡散装置の周囲に熱の影響を受けやすい物体が配置されていても、その物体が配置された方向への熱の拡散を防止することができる。
【0013】
また、第2の観点にかかる発明は、第1の観点にかかる発明において、前記熱伝導率の異なる複数の部材が、所定の方向に対して順次熱伝導率の低い順に積層された構造を有することにより前記所定の方向に熱が拡散することを特徴とする。
【0014】
この第2の観点にかかる発明によれば、所定の方向に熱を拡散させることができるため、効率良く熱の拡散をおこなうことが可能となる。
【0015】
また、第3の観点にかかる発明は、第1または第2の観点にかかる発明において、前記熱伝導率の異なる複数の部材においてもっとも熱伝導率の高い部材に接触して配置された冷却部を有することを特徴とする。
【0016】
この第3の観点にかかる発明によれば、熱拡散装置を構成する部材のうち、もっとも熱伝導率の高い部材に冷却部を接触させることによって、拡散してきた熱を冷却部で効率良く処理することができる。
【0017】
また、第4の観点にかかる発明は、均一な磁場を発生する静磁場発生磁石と、位置および時間に応じて変動する磁場を発生する勾配磁場発生部と、勾配磁場発生部から生ずる熱を除去する冷却部と、電磁波送受信手段とを有する磁気共鳴映像撮像装置において、前記勾配磁場発生部を熱伝導率の異なる複数の部材により形成して、前記勾配磁場発生部内で生ずる熱の拡散に異方性を持たせた磁気共鳴映像撮像装置であることを特徴とする。
【0018】
この第4の観点にかかる発明によれば、熱伝導率の異なる複数の物質から構成することで熱の拡散に異方性を持たせることができるため、熱の影響を受けやすい装置の配置された方向に対して熱の拡散を防止することができる。
【0019】
また、第5の観点にかかる発明は、第4の観点にかかる発明において、前記勾配磁場発生部が、前記熱伝導率の異なる複数の部材を所定の方向に対して順次熱伝導率の低い順に積層した構造を有し、前記勾配磁場発生部で生ずる熱が前記所定の方向に拡散することを特徴とする。
【0020】
この第5の観点にかかる発明によれば、所定の方向に対してのみ熱の拡散をおこなうことができるため、効率の良い熱の放出をおこなうことができる。
【0021】
また、第6の観点にかかる発明は、第4または第5の観点にかかる発明において、前記勾配磁場発生部が、勾配コイルを複数の固定板により挟み込む構成からなる1方位勾配磁場発生部を複数積層したものであって、個々の前記固定板が、それぞれ下部に位置する固定板の熱伝導率よりも高い若しくは同等の熱伝導率を有し、前記冷却部が、前記勾配磁場発生部の上部に配置されていることを特徴とする。
【0022】
この第6の観点にかかる発明によれば、1方位勾配磁場発生部で発生した熱を上方向に拡散させることが可能であり、1方位勾配磁場発生部の上部に冷却部を配置することにより拡散してきた熱を効率よく排除することができる。
【0023】
また、第7の観点にかかる発明は、第6の観点にかかる発明において、前記固定板が、前記勾配コイルの周辺部分において前記固定板における他の部分よりも熱伝導率の高い物質からなることを特徴とする。
【0024】
この第7の観点にかかる発明によれば、勾配磁場発生部において、コイルが密集して大量の熱が発生する部分においては、同一の固定板の他の部分よりも熱伝導率の高い物質で構成することで、横方向への熱の拡散を抑制し、上部方向への効率良い熱拡散をおこなうことができる。
【0025】
また、第8の観点にかかる発明は、第4ないし第7の観点にかかる発明のいずれかにおいて、前記勾配磁場発生部と前記冷却部との間に配置されたヒートシンクを有することを特徴とする。
【0026】
この第8の観点にかかる発明によれば、勾配磁場発生部と冷却部との間にヒートシンクを配置することで、勾配磁場発生部で発生した熱を冷却部に効率よく伝えることができる。
【0027】
また、第9の観点にかかる発明は、第6ないし第8の観点にかかる発明のいずれかにおいて、前記固定板が、繊維強化プラスチックおよびアルミニウム酸化物を構成成分に有し、アルミニウム酸化物の含有量を変化させることで前記固定板の熱伝導率を変化させることを特徴とする。
【0028】
この第9の観点にかかる発明によれば、固定板を構成する繊維強化プラスチックにアルミニウムを混入することで熱伝導率を変化させることができるため、固定板としての機能を損なうことなく、熱伝導率を変化させることができる。
【0029】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態にかかるMRI装置について詳細に説明する。図面の記載において同一あるいは類似部分には同一あるいは類似な符号を付している。
【0030】
実施の形態1.
図1は、実施の形態1にかかるMRI装置の構造の一部を示す断面図である。また、図2は実施の形態1にかかるMRI装置のうち、特に勾配磁場発生部2の構造を示す。以下、図1および図2を用いて、実施の形態1にかかるMRI装置について、説明する。
【0031】
実施の形態1にかかるMRI装置は、図1に示すとおり、静磁場発生磁石1と、勾配磁場発生部2と、勾配磁場発生部2の上部に配置された冷却部3と、撮影対象物8に対して電磁波の送受信をおこなうRFコイル4と、磁気回路用ヨーク5と、静磁場を均一化するための整磁板6と、RFシールド7とを有する。
【0032】
静磁場発生磁石1は、例えば永久磁石または超電導磁石からなり、撮影対象物8に対して空間的および時間的に均一な静磁場を印加する機能を有する。超電導磁石からなる場合は、液体ヘリウムによって静磁場発生磁石1を冷却する必要がある。なお、静磁場発生磁石1は、撮影対象物8に対して0.2〜1.5T程度の強磁場を印加する。
【0033】
冷却部3は、勾配磁場発生部2から発生した熱を吸収するためのものである。冷却部3が熱を吸収することにより外部への拡散を抑えることで、静磁場発生磁石1から生ずる静磁場を安定化することができ、また、MRI装置を構成する他の装置の損傷なども抑制することができる。なお、冷却部3は、水を循環させることにより冷却をおこなう水冷式のものであっても、ファンで空気を送り込むことで冷却する空冷式のものであっても構わない。さらに、空冷式と水冷式を組み合わせた構造からなるものであっても、本実施の形態1における冷却部3として使用することができる。
【0034】
RFコイル4は、撮影対象物8に対して一定の範囲の周波数からなる電磁波を照射し、核磁気共鳴現象により撮影対象物8を構成する原子から放出された電磁波を受信するためのものである。RFコイル4によって照射される電磁波の周波数は、静磁場発生磁石1により印加される磁場の強度が1.0Tの場合には、数MHZ〜数十MHZである。
【0035】
磁気回路用ヨーク5は、静磁場発生磁石1において発生した磁場が本実施の形態1にかかるMRI装置の外部に放出されるのを防ぎ、撮影対象物8に効率よく磁場を印加するためのものである。具体的には、静磁場発生磁石1の下部から放出される磁力線を、磁気回路用ヨーク5を通してMRI装置の上部へと導くことで、上部からも撮影対象物8に対して磁場を印加できる。このことにより、通常ならば外部に放出される磁場成分についても撮影対象物8に印加することができ、この結果、効率的に撮影対象物8に磁場を印加することができる。
【0036】
整磁板6は、静磁場発生磁石1により発生した静磁場の均一性を高めるためのものである。本実施の形態1において、撮影対象物8は人体など一定の体積を有するものであるため、広い範囲に渡って静磁場を印加する必要がある。しかし、通常の永久磁石等では広い範囲に渡って均一な磁場を発生するのは容易でないため、整磁板6を配置することにより、磁場の均一化を図っている。整磁板6は、通常は鉄を材料として用いるが、このほかに珪素鋼板を積層したものやフェライト、アモルファスを用いてもよい。なお、図1において、整磁板6は静磁場発生磁石1の上に一様に配置されているが、これは理解の容易のために模式的に表したものであり、整磁板6は静磁場発生磁石1の内部に配置しても良いし、静磁場発生磁石1から離れた場所に配置しても良い。
【0037】
RFシールド7は、勾配磁場発生部2を構成する勾配コイル12、15、18とRFコイル4とのカップリングを避けるために設けられている。RFシールド7の材料としては非磁性でかつ導電性を有する必要があり、一般には銅箔が用いられる。
【0038】
勾配磁場発生部2は、円盤状の形状からなり、その鉛直方向の断面は図2に示すように、X方向勾配磁場発生部9、Y方向勾配磁場発生部10、Z方向勾配磁場発生部11を順に積層した構造を有し、Z方向勾配磁場発生部11の上には、冷却部3が配置されている。本実施の形態1にかかるMRI装置の撮影対象物8は、3次元的形状からなるため、画像を形成するために必要な位置情報を3次元的に得る必要があるからである。
【0039】
X方向勾配磁場発生部9は、勾配コイル12と、勾配コイル12を上下から挟み込むa層13とb層14とからなる。勾配コイル12は銅線などの導体により構成されており、勾配コイル12に電流を流すことによりX方向に勾配した磁場を撮影対象物8に対して印加する機能を有する。なお、X方向勾配磁場は、本実施の形態1において周波数エンコードのために用いられることから、以下ではX方向を周波数方向と言う。
【0040】
a層13とb層14は、ともに繊維強化プラスチック(以下「FRP」と言う)を主体とし、これにアルミナ(Al2O3)を含有させたものからなる。アルミナの含有量はb層14の方が、a層13よりも多い構造とする。アルミナの含有量の違いにより、a層13よりもb層14の方が熱伝導率の高い構造となる。
【0041】
Y方向勾配磁場発生部10は、勾配コイル15と、勾配コイル15を上下から挟み込むc層16およびd層17とからなる。勾配コイル15は電流を流すことによりY方向に勾配した磁場を発生する機能を有し、c層16とd層17は、それぞれアルミナを含有するFRPからなる。なお、Y方向勾配磁場は、本実施の形態1において位相エンコードのために用いられることから、以下ではY方向を位相方向と言う。
【0042】
また、d層17のアルミナの含有量はc層16における含有量よりも多くし、熱伝導率も高くする。なお、c層16のアルミナの含有量はb層14における含有量と同じとする。したがって、c層16の熱伝導率はb層14の熱伝導率と同等となる。
【0043】
Z方向勾配磁場発生部11は、勾配コイル18と、勾配コイル18を上下から挟み込むe層19およびf層20からなる。Z方向勾配磁場発生部11は、勾配コイル18に電流を流すことによりZ方向に勾配した磁場を発生する。なお、Z方向勾配磁場は、いわゆるスライス選択のために用いられることから、以下ではZ方向をスライス方向と言う。
【0044】
また、e層19およびf層20は、アルミナを含有するFRPからなり、e層19のアルミナの含有量はd層17における含有量と同じにし、f層20における含有量はe層19における含有量よりも多くする。したがって、f層20の熱伝導率はe層19よりも高く、e層19の熱伝導率はd層17と同等となる。
【0045】
なお、勾配コイル12、15、18について、図2では同様のパターンで示しているが、これは簡略化して表現したものであり、実際には各方向に勾配磁場を発生するため、勾配コイル12、15、18の配線パターンは互いに異なっている。このことは他の図面における勾配コイルについても同様である。
【0046】
次に、実施の形態1にかかるMRI装置を用いて、実際にMRI画像を撮影する方法について、図3を用いて説明する。まず、撮影対象物8をMRI装置内部に搬入し、静磁場発生磁石1により発生した静磁場雰囲気中に撮影対象物8を配置する(ステップS101)。なお、静磁場発生磁石1が超電導磁石からなる場合は、あらかじめ超電導磁石を液体ヘリウムなどで冷却し、超伝導状態を作り出しておく必要がある。
【0047】
その後、スライス(Z方向)勾配磁場を印加しながら撮影対象物に電磁波を照射する(ステップS102)。これにより、撮影対象物8は共鳴周波数の異なり、法線がZ方向である多数のスライスに分割され、任意のスライスの共鳴周波数と同一周波数の高周波パルスを撮影対象物8に照射することで、所望の撮影面(スライス)内のスピンを励起することができる。
【0048】
そして、撮影対象物8に対して位相(Y方向)勾配磁場を印加する(ステップS103)。位相勾配磁場を印加することにより、ステップS102において選択されたスライス中に存在する原子から放出される電磁波の位相が場所によって異なったものとなる。具体的には、スライスは位相方向を短手方向とした複数の短冊に分割され、各短冊に属する原子からは同一位相の電磁波が放出される。したがって、この時点で電磁波を放出する原子の位置は、Z方向(スライス方向)の座標およびY方向(位相方向)の座標について特定できることとなる。
【0049】
そして、各短冊における原子の位置を特定するために周波数(X方向)勾配磁場を印加しながら、撮影対象物8を構成する原子から放出される電磁波を受信する(ステップS104)。周波数方向に勾配磁場をかけることにより、周波数方向に沿って異なる周波数のエコーを得ることができるようになるため、電磁波を放出する原子のX方向(周波数方向)の座標を特定することができる。したがって、ステップS102、S103とあわせて電磁波を放出する原子の位置が特定される。なお、スライス方向、位相方向、周波数方向の各勾配磁場の印加は、図示を省略した制御部が、勾配コイル12、15、18に流す電流を制御することによりおこなう。勾配磁場を発生する際に勾配コイル12、15、18に流れる電流はそれぞれ数百アンペアである。
【0050】
そして、撮影対象物8を構成する原子から放出された、磁場強度に比例した周波数の電磁波をRFコイル4によって受信する(ステップS104)。ステップS102において送信装置として機能したRFコイル4は、本ステップS104では受信装置として機能する。RFコイル4で受信された電磁波は、図示を省略した記憶手段により、データとして記憶される。そして、S102〜S104の走査を位相方向のマトリックス数だけ繰り返し実施し、2次元データセットを得る。
【0051】
その後、2次元データセットについて2次元高速フーリエ変換をおこない、周波数に関するデータを得る(ステップS105)。撮影対象物8を構成する原子から放出された電磁波の周波数は、原子の位置によって異なるため、周波数のデータから特定の原子の分布を知ることができる。
【0052】
その後、ステップS105で得たデータの強度を輝度値に変換し(ステップS106)、画像として出力する(ステップS107)。出力の態様は、スライスごとに2次元的に表示するものであっても、撮影対象物8について内部構造が分かるように、各部を半透明な構造で3次元的に表示するものであっても良い。また、出力の方法に関しても、モニタに出力するものであっても、プリントアウトされるものであっても良い。
【0053】
上述のステップS102において、勾配磁場発生部2を構成する勾配コイル12、15、18にはそれぞれ最大で数百アンペアもの電流が流れる。この電流によって生ずる熱の拡散について、図4を用いて説明する。なお、図4は、勾配磁場発生部2の一部を示すが、理解を容易にするため勾配コイル15、18について図示を省略しており、勾配コイル12についても一部について図示を省略している。また、横方向では一様な熱伝導率を有するため、熱伝導率の違いは上下方向のみで生じ、熱の拡散は上下の1次元方向のみに行われるものとする。
【0054】
熱の拡散については、いわゆる拡散方程式が知られている。それによると、熱qの拡散は熱拡散係数Dと、温度Tを用いて、次式のように表される。なお、上下方向の座標軸をxとする。
q=−D*∂T/∂x ・・・・・(1)
ここで、拡散係数Dは熱伝導率に比例する係数であるため、熱の流れは熱伝導率および温度の変化率に比例することが分かる。すなわち、熱伝導率が高く、温度が低い場所に向かって熱は拡散する。
【0055】
最初、勾配コイル12に電流を流し始めた際には温度は位置によらず一定とみなすことができるため、勾配コイル12で発生した熱が上方向に拡散するか、下方向に拡散するかは熱伝導率の違いによって決定される。勾配コイル12の下に配置されたa層13は、上述したようにアルミナの含有量が上に配置されたb層14よりも少ないため、熱伝導率がb層14よりも小さい。したがって、a層13の存在により下方向に拡散する熱の量は上方向と比べて少なくなる。
【0056】
さらに、上方向に拡散した熱は、b層14以上の熱伝導率を有するc層16へと拡散し、さらに熱伝導率の高いd層17、e層19、f層20へと拡散していく。そして、f層20の上に配置された冷却部3によって熱が吸収される。したがって、上方向へ拡散した熱によってb層14、c層16、d層17、e層19、f層20の温度が上昇することはない。一方で、a層13に拡散した熱は依然としてa層13に留まるため、a層13ではわずかに温度が上昇する。
【0057】
そのため、勾配コイル12に電流を流してから一定時間を経過した後の温度分布について、勾配コイル12の下に配置されたa層13における温度は、b層14における温度よりも高い。したがって、式(1)より、熱は下方向へは熱は流れにくくなり、勾配コイル12から発生する熱は上方向のみに流れるようになる。したがって、a層13の温度は、撮影開始直後にわずかに上昇したあとは一定の値に留まり、本実施の形態1にかかるMRI装置を構成する他の装置に対して影響を与えることはほとんどない。さらに、図1に示した通り、勾配磁場発生部2と、勾配磁場発生部2の下部に配置される整磁板6との間には空隙が設けられており、空気は良好な断熱材として機能することから、勾配磁場発生部2の底部における微小な温度上昇は整磁板6に対して全く影響を与えないといえる。
【0058】
なお、上方向に拡散した熱については、勾配磁場発生部2の上部に冷却部3が配置されているため、冷却部3によって処理される。したがって、勾配磁場発生部2の上面の温度も上昇することはなく、勾配磁場発生部2の上面から熱が放出されることもない。
【0059】
上述の議論は、勾配コイル15および勾配コイル18についても同様に成立する。したがって、本実施の形態1にかかるMRI装置においては、勾配磁場発生部2から発生する熱を勾配磁場発生部2の上に配置した冷却部3のみで処理することが可能であることが分かる。
【0060】
以上説明したように、実施の形態1にかかるMRI装置は、使用時に勾配磁場発生部2から発生する熱を勾配磁場発生部2上に配置した冷却部3のみを用いて処理することが可能であるため、従来の冷却部を複数設けたMRI装置と比較して、効率よく熱を処理することができる。
【0061】
また、冷却部3のみで熱処理をおこなうため、MRI装置を構成する部品の数が少なくてすみ、製造コストの低減および装置設計の自由度の向上を図ることができる。
【0062】
さらに、冷却部3は、勾配磁場発生部2で発生した熱を完全に処理できるため、静磁場発生磁石1の温度が変化することなく、静磁場の均一性に影響を与えるおそれもないため、撮影された画像データも良質なものを得ることができる。また、MRI装置全体が熱により影響を受けることもないため、MRI装置自体の劣化を防ぐこともできる。
【0063】
なお、勾配磁場発生部2について、各層の熱伝導率の変化の態様は上述の例に限定されない。例えば、c層16の熱伝導率をb層14よりも大きくし、e層19の熱伝導率をd層17よりも大きくしても良い。また、本実施の形態1でa層13〜f層20の各層ごとに熱伝導率を設定したのは、あくまでこれらの層が別個独立して構成されているからに過ぎないため、必要ならば、例えばa層13自体が上部において下部よりも熱伝導率が大きくなる構造としても良い。すなわち、勾配コイル12、15、18により生ずる熱が一方向に移動する構造であれば、本実施の形態1にかかるMRI装置と同様の効果を得ることができる。
【0064】
また、静磁場発生磁石1によって発生する静磁場の値と、RFコイル4が照射する電磁波の周波数の値は、上述した値には限定されない。これらの値は撮影対象物の種類および装置の特性によって適宜変更可能なものであり、静磁場の強度と電磁波の周波数との間に核磁気共鳴現象が成立するような値とすればよい。
【0065】
実施の形態2.
次に、実施の形態2にかかるMRI装置について、図1、図5および図6を用いて説明する。なお、実施の形態1と同一または類似の部分については説明を省略する。
【0066】
実施の形態2にかかるMRI装置は、図1に示すように、静磁場発生磁石1と、勾配磁場発生部2と、勾配磁場発生部2の上部に配置された冷却部3と、撮影対象物8に対して電磁波の送受信をおこなうRFコイル4と、磁気回路用ヨーク5と、静磁場を均一化するための整磁板6と、RFシールド7とを有する。
【0067】
勾配磁場発生部2は、図5に示すように、上面から見ると円形の形状からなり中心から外周に向かって円形の低熱伝導部分25、リング形状からなる高熱伝導部分26、低熱伝導部分27、高熱伝導部分28、低熱伝導部分29が配置されている。ここで、高熱伝導部分26、28は、それぞれ勾配磁場発生部2の内部において、勾配コイルが存在する部分に対応する。すなわち、高熱伝導部分26、28は、図6におけるa”層43、b”層44、c”層45、d”層46、e”層47、f”層48が設けられた領域に対応している。
【0068】
また、勾配磁場発生部2の中央から外周部にかけての断面形状は、図6で示すように、X方向勾配磁場発生部31、Y方向勾配磁場発生部32、Z方向勾配磁場発生部33を順に積層した構造からなる。
【0069】
X方向勾配磁場発生部31は、勾配コイル34を上下から薄い円盤で挟み込む構造からなる。下の円盤は、勾配コイル34に近接した部分ではa”層43を形成し、それ以外の部分ではa’層35を形成する。同様に、上の円盤は、勾配コイル34に近接した部分ではb”層44を形成し、それ以外の部分ではb’層36を形成している。これらの各層は、それぞれFRPと、アルミナを構成成分として有する。アルミナの含有量を調整することで、それぞれの層の熱伝導率を変化させることができ、各層の熱伝導率の大小関係は、b”層44>a”層43>b’層36=a’層35とする。
【0070】
Y方向勾配磁場発生部32は、X方向勾配磁場発生部31の場合と同様に、勾配コイル37を上下方向から薄い円盤で挟み込む構造からなる。下側の円盤は、勾配コイル37の近接部分ではc”層45を形成し、それ以外の部分ではc’層38を形成する。同様に、上側の円盤は、勾配コイル37の近接部分ではd”層46を形成し、それ以外の部分ではd’層39を形成する。各層はFRPとアルミナを構成成分に有し、アルミナの含有量を調整することで、各層の熱伝導率の大小関係はd”層46>c”層45>d’層39=c’層38とする。また、X方向勾配磁場発生部31における各層との関係では、熱伝導率の大きさはc”層45=b”層44、c’層38=b’層36とする。
【0071】
Z方向勾配磁場発生部33は、勾配コイル40を上下から薄い円盤で挟み込む構造からなる。挟み込む円盤のうち、下側の円盤は、勾配コイル40に近接する部分でe”層47を形成し、それ以外の部分でe’層41を形成する。上側の円盤は、勾配コイル40に近接する部分でf”層48を形成し、それ以外の部分ではf’層42を形成する。各層は、FRPとアルミナを構成成分に有し、アルミナの含有量を調整することで各層の熱伝導率はf”層48>e”層47>e’層41=f’層42という大小関係を有する。また、Y方向勾配磁場発生部32における各層との関係では、熱伝導率の大きさはe”層47=d”層46、f’層42=c’層38とする。
【0072】
したがって、勾配磁場発生部2における各層の熱伝導率の大小関係は、f”層48>e”層47=d”層46>c”層45=b”層44>a”層43>f’層42=e’層41=d’層39=c’層38=b’層36=a’層35となる。
【0073】
次に、実施の形態2にかかるMRI装置を使用した際に、勾配磁場発生部2から発生する熱の流れについて説明する。勾配コイル34、37、40には数百アンペアの電流が流れるため、ジュール熱が発生する。これに対し、勾配磁場発生部2では、a’層35、b’層36、・・・・、f’層42における熱伝導率が他の層と比べて小さいため、勾配コイル34、37、40からこれらの層には熱はほとんど流れない。
【0074】
一方、a”層43、b”層44、・・・・、f”層48は、上に行くにしたがって熱伝導率が高くなる構造をとるため、勾配コイル34、37、40から発生する熱はこれらの層を通って上方向に拡散する。したがって、勾配コイル34、37、40から発生した熱は、勾配磁場発生部2の上面にまで到達し、勾配磁場発生部2の上部に配置された冷却部3で処理される。そのため、発生する熱はすべて冷却部3でのみ処理することができ、効率よく熱を処理をすることが可能であり、かつ、装置の構造を単純化して装置全体の重量を軽くすることができる。また、静磁場発生磁石1が熱による影響を受けないために良質な画像を得ることができる。
【0075】
また、本実施の形態2における勾配磁場発生部2では、横方向に熱が拡散することがほとんどない。したがって、発生した熱が放出されるのは図5における高熱伝導部分26、28においてのみであるため、冷却部3も高熱伝導部分26、28から放出される熱を吸収できればよい。そのため、冷却部3を小型化することが可能であり、さらにMRI装置全体において構造を単純化し、重量を軽くすることが可能である。
【0076】
なお、本実施の形態2において、高熱伝導部分26、28は勾配コイル34、37、40の配置に対応して設けられているのであるため、勾配コイル34、37、40の配線パターンが図6に示したものと異なる場合、高熱伝導部分26、28の配置、形状も当然異なってくる。
【0077】
また、低熱伝導部分25、27、29を構成するa’層35、b’層36、・・・・、f’層42において、熱伝導率を同一のものとするのではなく、高熱伝導部分26、28の場合と同様に、上に向かうにしたがって熱伝導率が高くなる構造としても良い。勾配コイル34、37、40から発生する熱は、厳密にはまったく横方向に拡散しないというわけではなく、多少の熱は横方向に漏れ出す。したがって、この横方向に漏れだした熱についても処理することがより望ましい。そのため、低熱伝導部分25、27、29についても、上下方向に熱伝導率を変化させて漏れだした熱を上方に拡散させて上部に配置した冷却部3で処理をおこなうことにより、他の装置に及ぼすおそれを一切排除することができる。ただし、この場合でも横方向に拡散する熱をなるべく抑えるために、例えばa”層43の熱伝導率はa’層35の熱伝導率よりも高くする必要がある。
【0078】
さらに、高熱伝導部分と低熱伝導部分の配置を、勾配コイルの存在の有無によって分けるのではなく、勾配コイルの密集した部分と、密集していない部分にわけてもよい。この場合は、勾配コイルが密集した部分からは大量の熱が発生するため、密集部分を高熱伝導部分とすることで効率よく熱を上方向に拡散させることができるという効果を有する。
【0079】
さらに、横方向の熱伝導率の違いを高熱伝導部分26、28と低熱伝導部分25、27、29の2段階にのみ分けるのではなく、例えば高熱伝導部分と低熱伝導部分との間の値の熱伝導率を有する部分を複数設けて、熱伝導率の違いを多段階のものとしても良い。この場合、例えば、高熱伝導率領域は勾配コイルがもっとも密集している領域に配置し、勾配コイルの密集の度合いに応じて異なる熱伝導率を有する領域を配置する構造とすることができる。
【0080】
実施の形態3.
次に、図1および図7を用いて実施の形態3にかかるMRI装置について、説明する。実施の形態3にかかるMRI装置は、図1に示すように、静磁場発生磁石1と、勾配磁場発生部2と、図7に示すように勾配磁場発生部2の上部に配置されたヒートシンク49と、ヒートシンク49の上部に配置された冷却部3と、撮影対象物8に対して電磁波の送受信をおこなうRFコイル4と、磁気回路用ヨーク5と、静磁場を均一化するための整磁板6と、RFシールド7とを有する。
【0081】
勾配磁場発生部2は、図7に示すように、X方向勾配磁場発生部9と、Y方向勾配磁場発生部10と、Z方向勾配磁場発生部11と、冷却部3を順に積層した構造からなる。
【0082】
ヒートシンク49は、勾配コイル12、15、18から発生し、勾配磁場発生部2の上端部まで到達した熱を冷却部3に伝えるためのものである。ヒートシンク49の材料としては、熱伝導性に優れた金属等を用いることが望ましい。具体的には、銅(Cu)や、アルミニウム(Al)等で構成することが望ましい。
【0083】
ヒートシンク49を勾配磁場発生部2と冷却部3との間に配置することによって、勾配磁場発生部2から発生した熱を効率よく冷却部3へ伝えることができる。具体的には、ヒートシンク49の熱伝導率はf層20よりも大きな値であるため、勾配磁場発生部2内部の場合と同様に、f層20上に存在する熱は、ヒートシンク49内部を上方向に拡散して、冷却部3に到達する。
【0084】
また、ヒートシンク49は熱伝導率が大きいため、一度に多量の熱を拡散させることが可能である。したがって、f層20に到達した熱は、ヒートシンク49により速やかに冷却部3へ到達し、その分f層20の上面の温度は低下する。これにより、熱が発生する勾配コイル12、15、18とf層20との温度差は拡大するため、式(1)より、勾配コイル12、15、18から上方向に拡散される熱の量は増大することが分かる。熱を効率的に冷却部に送ることが可能となるため、発生した熱の処理にさらに優れたMRI装置を実現することができる。
【0085】
なお、実施の形態3における勾配磁場発生部2は、実施の形態1における場合と同様の構造からなるが、実施の形態2のように、高熱伝導部分と低熱伝導部分とに分かれた構造としても良い。このような構造としても、ヒートシンク49を冷却部3との間に挟んでいれば、冷却効率をさらに上げることできる。
【0086】
また、図7ではヒートシンク49は一様な板状体からなるものとしているが、ヒートシンク49の形状はこれに限定されない。放熱効果に優れた構造からなるヒートシンクであれば、本実施の形態3におけるヒートシンク49として用いることができる。
【0087】
なお、上述のように本発明は実施の形態1から実施の形態3によって記載したが、この開示の一部をなす論述および図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかになると思われる。例えば、本実施の形態1から実施の形態3において、MRI装置の撮影対象は人体に限定されず、使用目的も医療用に限定されない。例えば、本実施の形態にかかるMRI装置は、人体以外の物体についての非破壊検査などに利用することも有効である。
【0088】
また、勾配磁場発生部2に関してもX方向勾配磁場発生部、Y方向勾配磁場発生部、Z方向勾配磁場発生部の順に積層する必要は必ずしもなく、積層する順番を変更することが可能であり、各方向勾配磁場発生部を互いに分離した形態で配置することもできる。互いに分離した場合には、それぞれに対して冷却部を配置する必要が生ずるが、その場合でも、従来の上下に配置する構造と比較して効率の良い熱の処理をおこなうことができる。また、勾配磁場発生部2以外の配置についても同様で、適宜設計変更が可能である。例えば静磁場発生磁石1、整磁板6、勾配磁場発生部2、冷却部3、RFシールド7、RFコイル4のセットを撮影対象物8の上部に配置することも可能であり、上部と下部の双方に配置しても良い。
【0089】
また、実施の形態1〜3にかかるMRI装置は、垂直方向に静磁場を印加する、いわゆる垂直磁場型であるが、本発明は静磁場を水平方向に印加する、いわゆる水平磁場型のMRI装置に適用することも可能である。
【0090】
また、勾配磁場発生部2の構造を、熱を上方へ拡散させる構造のみならず、下方へ拡散させる構造としても良い。この場合は、勾配磁場発生部2の下部に向かってアルミナの含有量を増加させればよい。ただし、その場合には冷却部3は磁場発生装置2の上部ではなく、下部に接触して配置する必要がある。
【0091】
さらに、熱の拡散を1方向におこなうのではなく、例えば、静磁場発生磁石1のように温度変化に敏感な装置に対する方向にのみ熱の拡散が起こらないように勾配磁場発生部2の熱伝導率を変化させることも有効である。勾配磁場発生部2から発生する熱の総量がそれほどでない場合、温度変化に敏感な装置に熱拡散が集中しなければ装置の特性を悪化させることはないためである。
【0092】
また、熱の拡散を1方向におこなうのではなく、勾配磁場発生部2上のある1点に向かうように熱の移動をおこなわせるように勾配磁場発生部2の熱伝導率を変化させる構造とすることも有効である。この場合には、勾配磁場発生部2から外部に対して熱は1カ所のみから放出されるため、冷却部3を熱が放出される領域の大きさに対応して小型化することができる。
【0093】
また、勾配磁場発生部はそれぞれX方向、Y方向、Z方向について勾配磁場を発生するものとしているが、これらの方向についても必ずしも直交座標系に限定されるものではない。また、図中に表示したX軸、Y軸、Z軸についても、これに限定されるものではない。装置の特性および撮影対象の形状などにあわせて適宜変更することが可能である。
【0094】
【発明の効果】
上述してきたように、第1の観点にかかる発明によれば、熱拡散装置による熱の拡散に異方性を持たせた構成としたため、たとえば熱拡散装置の周囲に熱の影響を受けやすい物体が配置されていても、その物体が配置された方向への熱の拡散を防止することができるという効果を奏する。
【0095】
また、第2の観点にかかる発明によれば、所定の方向に熱を拡散させることができる構成としたため、効率良く熱の拡散をおこなえるという効果を奏する。
【0096】
また、第3の観点にかかる発明によれば、熱拡散装置を構成する部材のうち、もっとも熱伝導率の高い部材に冷却部を接触させる構成としたため、拡散してきた熱を冷却部で効率良く処理することができるという効果を奏する。
【0097】
また、第4の観点にかかる発明によれば、熱伝導率の異なる複数の物質から構成し、熱の拡散に異方性を持たせる構成としたため、熱の影響を受けやすい装置の配置された方向に対して熱の拡散を防止することができるという効果を奏する。
【0098】
また、第5の観点にかかる発明によれば、所定の方向に対してのみ熱の拡散をおこなうような構成としたため、効率の良い熱の放出をおこなうことができるという効果を奏する。
【0099】
また、第6の観点にかかる発明によれば、勾配磁場発生部で発生した熱を上方向に拡散させることが可能であり、勾配磁場発生部の上部に冷却部を配置することにより拡散してきた熱を効率よく排除することができるという効果を奏する。
【0100】
また、第7の観点にかかる発明によれば、勾配磁場発生部において、コイルが存在して大量の熱が発生する部分においては、同一の固定板における他の部分よりも熱伝導率の高い物質で構成することとしたため、横方向への熱の拡散を抑制し、上部方向への効率良い熱拡散をおこなうことができるという効果を奏する。
【0101】
また、第8の観点にかかる発明によれば、勾配磁場発生部と冷却部との間にヒートシンクを配置する構成としたため、勾配磁場発生部で発生した熱を冷却部に効率よく伝えることができるという効果を奏する。
【0102】
また、第9の観点にかかる発明によれば、固定板を構成する繊維強化プラスチックにアルミニウムを混入することで熱伝導率を変化させる構成としたため、固定板としての機能を損なうことなく、熱伝導率を変化させることができるという効果を奏する。
【図面の簡単な説明】
【図1】実施の形態1、2、3にかかるMRI装置の構造を示す模式図である。
【図2】実施の形態1にかかるMRI装置における勾配磁場発生部の構造を示す断面図である。
【図3】実施の形態1にかかるMRI装置の動作を示すフローチャートである。
【図4】実施の形態1にかかるMRI装置における勾配磁場発生部における熱の流れを示す模式図である。
【図5】実施の形態2にかかるMRI装置における勾配磁場発生部の構造を示す上面図である。
【図6】実施の形態2にかかるMRI装置における勾配磁場発生部の構造を示す断面図である。
【図7】実施の形態3にかかるMRI装置における勾配磁場発生部の構造を示す断面図である。
【図8】従来技術にかかる勾配磁場発生部の構造を示す断面図である。
【符号の説明】
1 静磁場発生磁石
2 勾配磁場発生部
3、73、74 冷却部
4 RFコイル
5 磁気回路用ヨーク
6 整磁板
7 RFシールド
8 撮影対象物
9、31、61 X方向勾配磁場発生部
10、32、62 Y方向勾配磁場発生部
11、33、63 Z方向勾配磁場発生部
12、15、18、34、37、40、64、67、70 勾配コイル
13 a層
14 b層
16 c層
17 d層
19 e層
20 f層
25、27、29 低熱伝導部分
26、28 高熱伝導部分
35 a’層
36 b’層
38 c’層
39 d’層
41 e’層
42 f’層
43 a”層
44 b”層
45 c”層
46 d”層
47 e”層
48 f”層
49 ヒートシンク
65、66 X方向勾配コイル固定板
68、69 Y方向勾配コイル固定板
71、72 Z方向勾配コイル固定板
Claims (4)
- 均一な磁場を発生する静磁場発生磁石と、位置および時間に応じて変動する磁場を発生する勾配磁場発生部と、勾配磁場発生部から生ずる熱を除去する冷却部と、電磁波送受信手段とを有する磁気共鳴映像撮像装置において、
前記勾配磁場発生部が、勾配コイルを複数の固定板により挟み込む構成からなる1方位勾配磁場発生部を複数積層したものであって、個々の前記固定板が、それぞれ下部に位置する固定板の熱伝導率よりも高い熱伝導率を有し、
前記冷却部が、前記勾配磁場発生部の上部に配置されていることを特徴とする磁気共鳴映像撮像装置。 - 前記固定板が、前記勾配コイルの周辺部分において前記固定板における他の部分よりも熱伝導率の高い物質からなることを特徴とする請求項1に記載の磁気共鳴映像撮像装置。
- 前記固定板が、繊維強化プラスチックおよびアルミニウム酸化物を構成成分に有し、アルミニウム酸化物の含有量を変化させることで前記固定板の熱伝導率を変化させることを特徴とする請求項1又は2に記載の磁気共鳴映像撮像装置。
- 前記勾配磁場発生部と前記冷却部との間に配置され、前記勾配磁場発生部から発生した熱を前記冷却部に伝えるためのヒートシンクを有することを特徴とする請求項1〜3のいずれかに記載の磁気共鳴映像撮像装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001252071A JP5015392B2 (ja) | 2001-08-22 | 2001-08-22 | 熱拡散装置および磁気共鳴映像撮像装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001252071A JP5015392B2 (ja) | 2001-08-22 | 2001-08-22 | 熱拡散装置および磁気共鳴映像撮像装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003061930A JP2003061930A (ja) | 2003-03-04 |
JP5015392B2 true JP5015392B2 (ja) | 2012-08-29 |
Family
ID=19080611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001252071A Expired - Fee Related JP5015392B2 (ja) | 2001-08-22 | 2001-08-22 | 熱拡散装置および磁気共鳴映像撮像装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5015392B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7140420B2 (en) * | 2003-11-05 | 2006-11-28 | General Electric Company | Thermal management apparatus and uses thereof |
US6812705B1 (en) * | 2003-12-05 | 2004-11-02 | General Electric Company | Coolant cooled RF body coil |
GB2419417B (en) * | 2004-10-20 | 2007-05-16 | Gen Electric | Gradient bore cooling and RF shield |
JP5100199B2 (ja) * | 2006-05-17 | 2012-12-19 | 株式会社東芝 | 傾斜磁場コイル、当該傾斜磁場コイルの製造方法、ならびに上記傾斜磁場コイルを備えた磁気共鳴イメージング装置 |
JP5379993B2 (ja) * | 2007-05-18 | 2013-12-25 | 株式会社東芝 | 磁気共鳴イメージング装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001149337A (ja) * | 1999-11-26 | 2001-06-05 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
-
2001
- 2001-08-22 JP JP2001252071A patent/JP5015392B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003061930A (ja) | 2003-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020127750A (ja) | 磁気共鳴映像法のための強磁性増強 | |
US8035385B2 (en) | MRI system and RF coil with enhanced cooling in vicinty of included circuit elements | |
JP3654463B2 (ja) | 磁気共鳴イメージング装置 | |
JP5502304B2 (ja) | 磁気共鳴イメージング装置およびrfコイル | |
JPH06277193A (ja) | 磁気共鳴撮像システム | |
GB2406173A (en) | Directly cooling hollow conductor wound transverse gradient coil boards | |
US9229078B2 (en) | Method for reducing mechanical vibrations in a magnetic resonance imaging system | |
JP5932815B2 (ja) | 磁気共鳴イメージング装置 | |
RU2572646C2 (ru) | Радиочастотный экран для формирования магнитно-резонансных изображений, включающий в себя проводящее покрытие в качестве экранирующего материала | |
JP2016518897A (ja) | アルミニウムを含む外側コイルを備える勾配コイルアセンブリ | |
JP5015392B2 (ja) | 熱拡散装置および磁気共鳴映像撮像装置 | |
JP2008012118A (ja) | 磁気共鳴イメージング装置 | |
US20150042342A1 (en) | Shielding with Integrated Cooling | |
JP4886482B2 (ja) | 超電導磁石装置及び核磁気共鳴イメージング装置 | |
JP2008028146A (ja) | 超電導磁石用熱シールド、超電導磁石装置および磁気共鳴イメージング装置 | |
US20130241558A1 (en) | Magnetic Resonance Tomograph with Cooling Device for Gradient Coils | |
JP2008000324A (ja) | 核磁気共鳴イメージング装置の傾斜磁場コイル装置 | |
JP7410790B2 (ja) | オープン型磁気共鳴イメージング装置 | |
JP3747981B2 (ja) | 磁気共鳴イメージング装置 | |
JP7212578B2 (ja) | 磁気共鳴イメージング装置および超電導磁石 | |
JP5931612B2 (ja) | 磁気共鳴イメージング装置 | |
JP2016116804A (ja) | 磁気共鳴イメージング装置 | |
JP4866215B2 (ja) | 超電導磁石装置及び核磁気共鳴イメージング装置 | |
JP5901561B2 (ja) | 磁気共鳴イメージング装置 | |
JP2014039633A (ja) | 磁気共鳴イメージング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20080613 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120607 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |