JP5013225B2 - Bubble circulation drive type heat pipe device - Google Patents

Bubble circulation drive type heat pipe device Download PDF

Info

Publication number
JP5013225B2
JP5013225B2 JP2009249373A JP2009249373A JP5013225B2 JP 5013225 B2 JP5013225 B2 JP 5013225B2 JP 2009249373 A JP2009249373 A JP 2009249373A JP 2009249373 A JP2009249373 A JP 2009249373A JP 5013225 B2 JP5013225 B2 JP 5013225B2
Authority
JP
Japan
Prior art keywords
hydraulic fluid
heating
heat
reservoir
fluid reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009249373A
Other languages
Japanese (ja)
Other versions
JP2011094880A5 (en
JP2011094880A (en
Inventor
秀夫 新宮
Original Assignee
秀夫 新宮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秀夫 新宮 filed Critical 秀夫 新宮
Priority to JP2009249373A priority Critical patent/JP5013225B2/en
Publication of JP2011094880A publication Critical patent/JP2011094880A/en
Publication of JP2011094880A5 publication Critical patent/JP2011094880A5/ja
Application granted granted Critical
Publication of JP5013225B2 publication Critical patent/JP5013225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、封入した作動液(熱媒液)を作動液加熱部(吸熱部ないしは受熱部)と加熱作動液放熱部(冷却部)を通して循環して熱を輸送するヒートパイプ装置、特に作動液加熱部において連続的に発生する作動液の気泡(蒸気泡)の浮力を介して作動液加熱部から加熱作動液を連続的に流出させながら、作動液加熱部に放熱作動液を連続的に流入させる方式で作動液を循環させる気泡循環駆動式ヒートパイプ装置の改良に関する。   The present invention relates to a heat pipe device that circulates a sealed working fluid (heat medium fluid) through a working fluid heating section (heat absorption section or heat receiving section) and a heating working fluid heat radiation section (cooling section), and transports heat. The heat dissipating hydraulic fluid flows continuously into the hydraulic fluid heating unit while the hydraulic fluid is continuously discharged from the hydraulic fluid heating unit via the buoyancy of the bubbles (vapor bubbles) of the hydraulic fluid that are continuously generated in the heating unit. It is related with the improvement of the bubble circulation drive-type heat pipe apparatus which circulates hydraulic fluid by the method of making it.

この種のヒートパイプ装置としては、加熱機構を介した加熱により作動液の気泡を連続的に発生可能な作動液加熱部から流出する加熱作動液を、気泡と共に、上方に向かってのびる加熱作動液上昇管を介して、液相上に蒸気相を形成する加熱作動液溜めに誘導した後、下方に向かってのびる加熱作動液下降管を介して加熱作動液放熱部に誘導し、加熱作動液放熱部を流出した放熱作動液は、上方に向かってのびた後加熱作動液溜めの蒸気相を貫通してのびる放熱作動液管を介して作動液加熱部に還流するように構成したものが提案されている(例えば、特許文献1参照)。   As this kind of heat pipe device, the heating hydraulic fluid that flows out from the hydraulic fluid heating section that can continuously generate the bubbles of the hydraulic fluid by heating through the heating mechanism, and that rises upward together with the bubbles. After being guided to the heated hydraulic fluid reservoir that forms a vapor phase on the liquid phase via the riser pipe, it is guided to the heated hydraulic fluid heat radiating section via the heated hydraulic fluid descender pipe that extends downward, and the heated hydraulic fluid heat dissipation The heat dissipating hydraulic fluid that has flowed out of the part has been proposed to flow back to the hydraulic fluid heating unit through the heat dissipating hydraulic fluid pipe that extends upward and then passes through the vapor phase of the heated hydraulic fluid reservoir. (For example, refer to Patent Document 1).

この既提案のヒートパイプ装置によれば、作動液加熱部と加熱作動液放熱部の高低の位置関係に関係なく、熱の輸送量、輸送速度をアップすることができるとされているが、加熱作動液溜めの上部の蒸気相部に溜まる気泡の蒸気は、該蒸気相部をのびる放熱作動液管部内を流通する放熱作動液から放熱作動液管部を介して冷却されて凝縮するとともにこれに伴って圧力が低下するものの、加熱作動液と共存しているため、凝縮熱(潜熱)の放出も圧力の低下も比較的緩慢である。   According to this proposed heat pipe device, it is said that the heat transport amount and transport speed can be increased regardless of the positional relationship between the hydraulic fluid heating section and the heating hydraulic fluid heat radiation section. The bubble vapor that accumulates in the vapor phase section at the top of the hydraulic fluid reservoir is cooled and condensed through the heat dissipation hydraulic fluid pipe section from the heat dissipation hydraulic fluid flowing in the heat dissipation hydraulic fluid pipe section that extends through the vapor phase section. Along with this, the pressure decreases, but since it coexists with the heating hydraulic fluid, both the release of condensation heat (latent heat) and the pressure decrease are relatively slow.

従って作動液加熱部における気泡の発生も比較的緩慢で、この気泡の浮力を介した加熱作動液の上昇速度(流出速度)及び作動液加熱部への放熱作動液の流入速度、即ち作動液の循環速度も比較的緩慢で、この結果全体として高速で高効率の熱輸送が達成し難いという問題がある。   Therefore, the generation of bubbles in the hydraulic fluid heating section is relatively slow. The rising speed (outflow speed) of the heated hydraulic fluid via the buoyancy of the bubbles and the inflow speed of the heat dissipating hydraulic fluid into the hydraulic fluid heating section, that is, the hydraulic fluid The circulation speed is also relatively slow, and as a result, there is a problem that it is difficult to achieve high-speed and highly efficient heat transport as a whole.

特開2009-52757号公報JP 2009-52757 A

この発明は、既提案のものに認められる上記のような問題に鑑み、気泡循環駆動式ヒートパイプ装置として、作動液加熱部と加熱作動液放熱部の高低の位置関係に関係なく、高速で高効率の熱輸送が可能なものを提供することを主要な課題としている。   In view of the above-mentioned problems recognized in the already proposed one, the present invention is a bubble circulation drive type heat pipe device which is high-speed and high-speed regardless of the positional relationship between the hydraulic fluid heating unit and the heating hydraulic fluid heat dissipation unit. The main challenge is to provide efficient heat transport.

この発明によれば、上記の課題は、特許請求の範囲の請求項1に記載のように、封入した作動液を気泡の浮力を介して循環する気泡循環駆動式ヒートパイプ装置であって、加熱機構を介して作動液の気泡を連続的に発生可能な作動液加熱部に、加熱作動液上昇管を介して、液相上に蒸気相を形成する加熱作動液溜めを接続するとともに、該加熱作動液溜めの液相部に、加熱作動液下降管を介して、加熱作動液放熱部を接続し、かつ該加熱作動液放熱部に、放熱作動液上昇管を介して、加熱作動液溜めと同等の高さ位置に設置した、液相上に気相を形成する放熱作動液溜めを接続し、さらに該放熱作動液溜めの液相部を、放熱作動液下降管を介して作動液加熱部の液相部に接続する一方、放熱作動液溜めの気相部と加熱作動液溜めの蒸気相部を蒸気管を介して接続してなる、気泡循環駆動式ヒートパイプ装置によって解決する。   According to the present invention, the above-described problem is a bubble circulation drive type heat pipe device that circulates a sealed working fluid through the buoyancy of bubbles, as defined in claim 1 of the invention. A heated hydraulic fluid reservoir that forms a vapor phase on the liquid phase is connected to the hydraulic fluid heating unit that can continuously generate bubbles of the hydraulic fluid via the mechanism via the heated hydraulic fluid riser, and the heating A heating hydraulic fluid radiating section is connected to the liquid phase portion of the hydraulic fluid reservoir via a heating hydraulic fluid downcomer, and a heating hydraulic fluid reservoir is connected to the heating hydraulic fluid radiating section via a radiating hydraulic fluid rising pipe. A heat dissipating hydraulic fluid reservoir that forms a gas phase on the liquid phase is connected at the same height position, and the liquid phase part of the heat dissipating hydraulic fluid reservoir is connected to the hydraulic fluid heating unit via the heat dissipating hydraulic fluid downcomer. While connecting the gas phase part of the heat dissipation hydraulic fluid reservoir and the vapor phase part of the heating hydraulic fluid reservoir. Formed by connecting through the trachea, the solution by bubble circularly driven heat pipe device.

この発明のヒートパイプ装置においては、なるべく請求項2に記載のごとく、作動液加熱部の液相上に発生蒸気を受容可能な気相を設けるとともに、加熱作動液上昇管の下端開口部(液流入口部)を該蒸気相直下部(液相の液面直下部)に臨ませる。   In the heat pipe device of the present invention, as much as possible, the gas phase capable of receiving the generated vapor is provided on the liquid phase of the hydraulic fluid heating unit, and the lower end opening (liquid The inflow port portion) faces the vapor phase directly below (the liquid phase liquid level directly below).

特許請求の範囲の請求項1に記載のこの発明のヒートパイプ装置においては、作動液加熱部内の作動液が、ここで発生する気泡の上昇に連動して、加熱作動液上昇管を通して加熱作動液溜めの液相部に流入し、その液面を放熱作動液溜め内の液面に比して一段と高い状態に盛り上げるとともに、作動液加熱部内にそれからの加熱作動液の流出に伴って流入する放熱作動液の放熱作動液溜め内からの流出により、放熱作動液溜め内の液面を下降化する一方、加熱作動液溜めに流入して蒸気相を占める作動液の蒸気は、蒸気管を通して、放熱作動液溜め内の気相との圧力差と温度差に基づいて、放熱作動液溜め内に流入して、同等の高さ位置を占める加熱作動液溜めと放熱作動液溜めの気相部の圧力差を減少化する。
この結果加熱作動液溜めから放熱作動液溜めに作動液が流動して、両者の液面が同一化(同高化))に向かうようにする。すなわち加熱作動液溜め内の加熱作動液が加熱作動液下降管を通して加熱作動液放熱部に流入した後、放熱作動液の状態で、放熱作動液上昇管を通して放熱作動液溜めに入る。この放熱作動溜め内の放熱作動液は、作動液加熱部からの作動液の流出に伴って、放熱作動液下降管を通して作動液加熱部に流入し、以後このような流動、すなわち循環を繰り返していく。他方蒸気管を通して放熱作動液溜め内に流入した作動液の蒸気は、放熱作動液に対する直接の接触により冷却されて凝縮し、放熱作動液と一体化する。
In the heat pipe device according to the first aspect of the present invention, the working fluid in the working fluid heating section is heated through the heating working fluid riser in conjunction with the rising of the bubbles generated here. liquid phase portion inflows city reservoir, with excitement in much higher state than the liquid level on the liquid surface of the heat dissipating hydraulic fluid within reservoir, flows with the outflow of heated working fluid therefrom to the working fluid heated portion The outflow of the heat dissipating hydraulic fluid from the heat dissipating hydraulic fluid reservoir lowers the liquid level in the heat dissipating hydraulic fluid reservoir, while the vapor of the hydraulic fluid flowing into the heating hydraulic fluid reservoir and occupying the vapor phase passes through the steam pipe, Based on the pressure difference and temperature difference with the gas phase in the heat dissipation hydraulic fluid reservoir, the gas flows into the heat dissipation hydraulic fluid reservoir and occupies the same height position of the heating hydraulic fluid reservoir and the heat dissipation hydraulic fluid reservoir Reduce pressure difference.
As a result, the hydraulic fluid flows from the heated hydraulic fluid reservoir to the radiating hydraulic fluid reservoir so that both liquid levels are directed to the same level (same height). That is, after the heated working fluid in the reservoir heated working fluid flows into the heated working fluid heat radiating portion through a heated working fluid downcomer, in the state of heat radiation hydraulic fluid, Ru enter the reservoir radiator hydraulic fluid through the heat dissipating hydraulic fluid riser. The radiating hydraulic fluid in the radiating hydraulic reservoir flows into the hydraulic fluid heating section through the radiating hydraulic fluid downcomer as the hydraulic fluid flows out from the hydraulic fluid heating section, and thereafter repeats such flow, that is, circulation. Go. The vapor of the working fluid flowing into the reservoir while the steam pipe through thermally actuated fluid discharge is cooled by direct contact for heat dissipation working fluid condenses and integrated with the heat dissipating hydraulic fluid.

すなわちこの発明のヒートパイプ装置によれば、加熱作動液溜め内の作動液の蒸気は、温度と圧力が低い放熱作動液溜め内に流入して、直接放熱作動液に接触するので、放熱作動液溜め内に入った後は迅速に凝縮して、温度とともに圧力を急速に低下し、これに追従して加熱作動液溜めの蒸気の圧力も急速に低下する。この結果作動液加熱部における蒸気の発生が活発化し、加熱作動液上昇管を介した加熱作動液の上昇が高速化すると同時に放熱作動液下降管を介した作動液加熱部への放熱作動液の流入も高速化する。このように蒸気の移動と作動液の循環の両者が蒸気の凝縮熱の放出と合わせて活発化するため、高速で効率的な熱輸送が行われる。   That is, according to the heat pipe device of the present invention, the vapor of the working fluid in the heating working fluid reservoir flows into the heat radiation working fluid reservoir having a low temperature and pressure and directly contacts the heat radiation working fluid. After entering the reservoir, it quickly condenses, and the pressure rapidly decreases with the temperature. Following this, the steam pressure in the heated hydraulic fluid reservoir also decreases rapidly. As a result, the generation of steam in the hydraulic fluid heating unit is activated, and the rise of the heating hydraulic fluid through the heating hydraulic fluid riser speeds up. Inflow is also accelerated. In this way, both the movement of the steam and the circulation of the working fluid are activated together with the release of the condensation heat of the steam, so that high-speed and efficient heat transport is performed.

また請求項2に記載の作動液加熱部における蒸気受容用気相の付設と蒸気相直下部に対する加熱作動液上昇管の開口構成によれば、作動液加熱部における気泡の発生及び加熱作動液上昇管に対する流入が、作動液の突沸のような異常沸騰もなく、適確に行われる。   According to the attachment of the vapor-accepting vapor phase in the hydraulic fluid heating section and the opening configuration of the heated hydraulic fluid riser pipe immediately below the vapor phase according to claim 2, the generation of bubbles in the hydraulic fluid heating section and the heating hydraulic fluid rise Inflow to the pipe is performed accurately without abnormal boiling such as bumping of the hydraulic fluid.

この発明に係るヒートパイプ装置の実施例1の構成概要を示す略図である。1 is a schematic diagram showing a configuration outline of Embodiment 1 of a heat pipe device according to the present invention. この発明のヒートパイプ装置の実施例2の構成概要を示す略図である。It is the schematic which shows the structure outline | summary of Example 2 of the heat pipe apparatus of this invention. この発明のヒートパイプ装置の実施例3の構成概要を示す略図である。It is the schematic which shows the structure outline | summary of Example 3 of the heat pipe apparatus of this invention.

この発明に係るヒートパイプ装置における作動液としては、その使用温度域に応じて、水、アルコール、アンモニア水、フロン液、オイル類、水銀などを一種単独で、あるいは二種以上を混合して用いることができる。またこの作動液の封入は、一般には減圧状態とするが、大気圧状態とすることもできる。   As the hydraulic fluid in the heat pipe device according to the present invention, water, alcohol, ammonia water, Freon liquid, oils, mercury, etc. are used singly or in combination of two or more depending on the operating temperature range. be able to. In general, the hydraulic fluid is sealed in a reduced pressure state, but may be in an atmospheric pressure state.

また作動液加熱部と加熱作動液放熱部の相対的な位置の高低関係は、その用途に応じて任意に選定することができる。   Moreover, the height relationship of the relative position of a hydraulic fluid heating part and a heating hydraulic fluid thermal radiation part can be arbitrarily selected according to the use.

以下図1〜3に基づいて、作動液加熱部と加熱作動液放熱部の高低の位置関係を異にする実施例1〜3について説明する。   Hereinafter, based on FIGS. 1 to 3, Examples 1 to 3 in which the height relationship between the hydraulic fluid heating unit and the heating hydraulic fluid radiating unit are different will be described.

図1に略示する実施例1は、加熱機構25により加熱されるタンク状の作動液加熱部11と冷却機構26に放熱するタンク状の加熱作動液放熱部15を、高低差を設けず同じ高さレベルに配置したもので、作動液加熱部11内における作動液20の沸騰により上部の空隙部(気相部)11aに溜まる作動液の蒸気は、作動液20の液面直下部に開口する加熱作動液上昇管12内に気泡21として流入し、温度が高い加熱作動液とともに上昇して、加熱作動液溜め13内の液面を盛り上げながら加熱作動液の液面上の空隙部(蒸気相部)13aに入った後、蒸気管19を通して、加熱作動液放熱部15の上方の加熱作動液溜め13と同一の高さレベルに設置した放熱作動液溜め17内の空隙部(気相部)17aに流入し、温度の低い放熱作動液に接触して冷却されて凝縮する。   In the first embodiment schematically shown in FIG. 1, the tank-shaped hydraulic fluid heating unit 11 heated by the heating mechanism 25 and the tank-shaped heating hydraulic fluid radiation unit 15 that radiates heat to the cooling mechanism 26 are the same without providing a height difference. The vapor of the hydraulic fluid accumulated in the upper gap (gas phase portion) 11a due to the boiling of the hydraulic fluid 20 in the hydraulic fluid heating unit 11 is opened at a position directly below the liquid level of the hydraulic fluid 20. Into the heating hydraulic fluid rising pipe 12 as bubbles 21 and rises together with the heating hydraulic fluid having a high temperature to raise the liquid level in the heating hydraulic fluid reservoir 13 while raising the liquid surface of the heating hydraulic fluid (vapor) After entering the phase part) 13a, the gap (gas phase part) in the heat-dissipating hydraulic fluid reservoir 17 installed at the same level as the heating hydraulic fluid reservoir 13 above the heating hydraulic fluid radiator 15 through the steam pipe 19 ) Heat release fluid that flows into 17a and has a low temperature Contact with condensed is cooled.

他方加熱作動液溜め13内に液面を盛り上げる状態で上昇した温度の高い加熱作動液は、加熱作動液溜め13と放熱作動液溜め17の液面差の同高化の方向で、加熱作動液溜め13の下部から加熱作動液放熱部15の下部までのびる加熱作動液下降管14を通して加熱作動液放熱部15に流入し、ここで冷却機構20に対して放熱して温度を低下させた後、この温度の低い放熱作動液の状態で、放熱作動液上昇管16を介して放熱作動液溜め17内に流入して、ここで作動液の蒸気を凝縮して取り込み、これにより加熱作動液溜め13の蒸気の圧力も蒸気管19を介して低下させて、作動液加熱部11における気泡21の発生を促進し、続いて放熱作動液溜め17内の放熱作動液は、作動液加熱部11からの加熱作動液の流出に連動して、その下部から作動液加熱部11の下部までのびる放熱作動液下降管18を介して、作動液加熱部11に流入して、次の循環に供される。 On the other hand, the high-temperature heating hydraulic fluid that has risen in a state where the liquid level is raised in the heating hydraulic fluid reservoir 13 is the heating hydraulic fluid in the same level of the liquid level difference between the heating hydraulic fluid reservoir 13 and the heat radiation hydraulic fluid reservoir 17. After flowing from the lower portion of the reservoir 13 to the lower portion of the heating hydraulic fluid radiating portion 15 through the heating hydraulic fluid descending pipe 14, it flows into the heating hydraulic fluid radiating portion 15 where heat is radiated to the cooling mechanism 20 to lower the temperature. in a state of low heat dissipation working fluid of this temperature, and flows into the 17 reservoir radiator hydraulic fluid through a thermally actuated fluid riser 16 release, where it condenses the vapor of the working fluid uptake, thereby sump heated working fluid The steam pressure of the steam 13 is also reduced via the steam pipe 19 to promote the generation of bubbles 21 in the hydraulic fluid heating unit 11, and then the thermal radiation hydraulic fluid in the thermal radiation hydraulic fluid reservoir 17 is transferred from the hydraulic fluid heating unit 11. In conjunction with the outflow of heated hydraulic fluid, Through the radiator hydraulic fluid downcomer 18 extending from the bottom to the bottom of the hydraulic fluid heating unit 11, to flow into the hydraulic fluid heating unit 11, it is used for the next circulation.

このような作動液20の蒸気の移動と凝縮及び作動液20の加熱及び放熱を介した循環により、作動液20の潜熱と顕熱を合わせた熱の輸送迅速にかつ効率的に行われる。 Through such movement and condensation of the vapor of the hydraulic fluid 20 and circulation through heating and heat dissipation of the hydraulic fluid 20, heat transport including the combined latent heat and sensible heat of the hydraulic fluid 20 is performed quickly and efficiently.

図2に示すごとく、この実施例は、作動液加熱部11を加熱作動液放部15よりも高い位置に配置したもので、蒸気と作動液20の流れは実施例1の場合と同様である。図2から明らかなように、この実施例においては、加熱作動液上昇管12の長さを短縮できるので、温度の高い部分をコンパクトにすることができる。なお図2には加熱機構と冷却機構の図示は省略してある。 As shown in FIG. 2, this embodiment is obtained by arranged at a position higher than the thermal unit 15 release heat hydraulic fluid to hydraulic fluid heating unit 11, the flow of the steam and the working fluid 20 is the same as in Example 1 is there. As can be seen from FIG. 2, in this embodiment, the length of the heating hydraulic fluid riser 12 can be shortened, so that the high temperature portion can be made compact. In FIG. 2, the heating mechanism and the cooling mechanism are not shown.

この実施例は、図3に略示するように、実施例2とは逆に、加熱作動液放部15を作動液加熱部11よりも高い位置に配置した例で、蒸気と作動液20の流れは実施例1及び実施例2と同一である。この実施例によれば、実施例2とは逆に、放熱作動液上昇管16の長さの短縮により、温度の低い部分をコンパクトに構成することができる。なお図3でも加熱機構と冷却機構は省略してある。 This embodiment, as schematically illustrated in FIG. 3, in contrast to Example 2, an example of arranging the heat section 15 release heat working fluid at a position higher than the working fluid heating unit 11, the hydraulic fluid 20 and the vapor The flow of is the same as in the first and second embodiments. According to this embodiment, conversely to the second embodiment, the portion having a low temperature can be made compact by shortening the length of the heat dissipating hydraulic fluid riser 16. In FIG. 3, the heating mechanism and the cooling mechanism are omitted.

この発明に係るヒートパイプ装置は、高効率の熱輸送の点から、パーソナルコンピューターなどの電子機器類や自動車のエンジンなどの熱機関機器類の冷却、太陽熱を利用した給湯、湯水を利用した融雪など、各種の熱制御やエネルギーの有効利用等に用いることができる。   The heat pipe device according to the present invention, from the viewpoint of high-efficiency heat transport, cooling of electronic equipment such as personal computers and heat engine equipment such as automobile engines, hot water supply using solar heat, snow melting using hot water, etc. It can be used for various types of heat control and effective use of energy.

またこのヒートパイプ装置は、ガラスなどの透明な材料で形成するとともに作動液に着色したり箔を混入したりするなどの構成により、作動液の循環を目視可能にすることによって、装飾器具類として利用することもできる。   In addition, this heat pipe device is made of a transparent material such as glass and has a configuration in which the working fluid is colored or mixed with foil so that the circulation of the working fluid can be visually observed. It can also be used.

11 作動液加熱部
11a 空隙部(気相部)
12 加熱作動液上昇管
13 加熱作動液溜め
13a 空隙部(蒸気相部)
14 加熱作動液下降管
15 加熱作動液放熱部
16 放熱作動液上昇管
17 放熱作動液溜め
17a 空隙部(気相部)
18 放熱作動液下降管
19 蒸気管
20 作動液
21 気泡
25 加熱機構
26 冷却機構
11 Hydraulic fluid heating part 11a Cavity part (gas phase part)
12 Heating hydraulic fluid riser 13 Heating hydraulic fluid reservoir 13a Cavity (steam phase)
14 Heating hydraulic fluid downcomer 15 Heating hydraulic fluid radiating part 16 Radiating hydraulic fluid riser 17 Heating hydraulic fluid reservoir 17a Air gap (gas phase)
18 Heat Dissipating Hydraulic Fluid Downcomer 19 Steam Pipe 20 Hydraulic Fluid 21 Bubble 25 Heating Mechanism 26 Cooling Mechanism

Claims (2)

封入した作動液を気泡の浮力を介して循環する気泡循環駆動式ヒートパイプ装置であって、加熱機構を介して作動液の気泡を連続的に発生可能な作動液加熱部に、加熱作動液上昇管を介して、液相上に蒸気相を形成する加熱作動液溜めを接続するとともに、該加熱作動液溜めの液相部に、加熱作動液下降管を介して加熱作動液放熱部を接続し、かつ該加熱作動液放熱部に、放熱作動液上昇管を介して、加熱作動液溜めと同等の高さ位置に設置した、液相上に気相を形成する放熱作動液溜めを接続し、さらに該放熱作動液溜めの液相部を放熱作動液下降管を介して作動液加熱部に接続する一方、放熱作動液溜めの気相部を加熱作動液溜めの蒸気相部と蒸気管を介して接続してなる、気泡循環駆動式ヒートパイプ装置。   It is a bubble circulation drive type heat pipe device that circulates the enclosed hydraulic fluid through the buoyancy of the bubble, and the heated hydraulic fluid rises to the hydraulic fluid heating section that can continuously generate the hydraulic fluid bubbles via the heating mechanism A heating hydraulic fluid reservoir that forms a vapor phase on the liquid phase is connected via a pipe, and a heating hydraulic fluid heat dissipation portion is connected to the liquid phase part of the heating hydraulic fluid reservoir via a heating hydraulic fluid downcomer. And, to the heating hydraulic fluid heat radiating part, connected to a heat radiation hydraulic fluid reservoir that forms a gas phase on the liquid phase, installed at a height position equivalent to the heating hydraulic fluid reservoir, through a heat radiation hydraulic fluid riser pipe, Furthermore, the liquid phase part of the heat dissipation hydraulic fluid reservoir is connected to the hydraulic fluid heating part via the heat dissipation hydraulic fluid downcomer, while the gas phase part of the heat dissipation hydraulic fluid reservoir is connected via the vapor phase part and the steam pipe of the heating hydraulic fluid reservoir. A bubble circulation drive type heat pipe device. 作動液加熱部の液相上に発生蒸気を受容可能な気相を設けるとともに、加熱作動液上昇管の下端開口部を該蒸気相直下部に臨ませてなる、請求項1記載の気泡循環駆動式ヒートパイプ装置。   2. The bubble circulation drive according to claim 1, wherein a gas phase capable of receiving the generated steam is provided on the liquid phase of the hydraulic fluid heating section, and a lower end opening of the heating hydraulic fluid riser is directly below the vapor phase. Type heat pipe device.
JP2009249373A 2009-10-29 2009-10-29 Bubble circulation drive type heat pipe device Expired - Fee Related JP5013225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009249373A JP5013225B2 (en) 2009-10-29 2009-10-29 Bubble circulation drive type heat pipe device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249373A JP5013225B2 (en) 2009-10-29 2009-10-29 Bubble circulation drive type heat pipe device

Publications (3)

Publication Number Publication Date
JP2011094880A JP2011094880A (en) 2011-05-12
JP2011094880A5 JP2011094880A5 (en) 2011-10-06
JP5013225B2 true JP5013225B2 (en) 2012-08-29

Family

ID=44111990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249373A Expired - Fee Related JP5013225B2 (en) 2009-10-29 2009-10-29 Bubble circulation drive type heat pipe device

Country Status (1)

Country Link
JP (1) JP5013225B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60290A (en) * 1983-06-15 1985-01-05 Matsushita Electric Ind Co Ltd Heat transfer device
JPS61276696A (en) * 1985-05-31 1986-12-06 Matsushita Electric Ind Co Ltd Heat conveying device
KR20060105769A (en) * 2003-12-08 2006-10-11 노이즈 리미트 에이피에스 A cooling system with a bubble pump

Also Published As

Publication number Publication date
JP2011094880A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP2003243590A (en) Loop thermosyphon using microchannel etched semiconductor as evaporator
CN101762196A (en) Multi-channel wick-embedded flat plate heat pipe
CN101917835A (en) Large-power module cooling structure of electric vehicle controller
CN102713787A (en) Heat sink with multiple vapor chambers
JP2009052757A (en) Siphon type circulation type heat pipe
JP4899997B2 (en) Thermal siphon boiling cooler
CN100489434C (en) Plate type integral structure heat-irradiation method and device suitable for large power high efficiency heat pipe heat-radiator
JP5786132B2 (en) Electric car
CN101676672A (en) Temperature-uniforming plate
JP5013225B2 (en) Bubble circulation drive type heat pipe device
CN201039637Y (en) Composite heat exchange device
JP5957686B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
TWI543703B (en) Thermal conductivity device for both thermal conductivity and power generation
JP2009010050A (en) Light source device
CN101977489A (en) Cooling device and method for heating elements
CN101022717A (en) Liquid self-loop composite heat pipe radiating device used for electronic equipment
CN202713879U (en) Cooling structure for high-power module of electric vehicle controller
EP2093808A2 (en) Multiple cooling systems of photovoltaic panels
CN113207264A (en) Power supply heat dissipation device and power supply
JP2013194919A (en) Self-excited oscillation heat pipe and program
JP2013019549A (en) Cooling device, and electronic apparatus and electric vehicle equipped with the same
CN101976661B (en) High-power chip liquid cooling device
CN112764302A (en) Light processing projector
JP5938574B2 (en) Cooling device and electric vehicle equipped with the same
KR101204910B1 (en) Cooling system for closed circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110825

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20210615

Year of fee payment: 9

R150 Certificate of patent or registration of utility model

Ref document number: 5013225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees